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We propose in this work a Monte Carlo method for three dimensional scalar radiative 
transfer equations with non-integrable, space-dependent scattering kernels. Such kernels 
typically account for long-range statistical features, and arise for instance in the context 
of wave propagation in turbulent atmosphere, geophysics, and medical imaging in the 
peaked-forward regime. In contrast to the classical case where the scattering cross section 
is integrable, which results in a non-zero mean free time, the latter here vanishes. 
This creates numerical difficulties as standard Monte Carlo methods based on a naive 
regularization exhibit large jump intensities and an increased computational cost. We 
propose a method inspired by the finance literature based on a small jumps - large 
jumps decomposition, allowing us to treat the small jumps efficiently and reduce the 
computational burden. We demonstrate the performance of the approach with numerical 
simulations and provide a complete error analysis. The multifractional terminology refers 
to the fact that the high frequency contribution of the scattering operator is a fractional 
Laplace-Beltrami operator on the unit sphere with space-dependent index.

 2023 Elsevier Inc. All rights reserved.

1. Introduction

Radiative transfer models have been used for more than a century to describe wave energy propagation through com-

plex/random media [32,10], as well as neutron transport [40,51], heat transfer [54], and are still an active area of research 
in astrophysics, geophysics, and optical tomography [39,43–45] for instance. In this work, we propose a new Monte Carlo 
(MC) method to simulate the following radiative transfer equation (RTE)

{

∂tu + k̂ · ∇xu = Qu,

u(t = 0, x, k̂) = u0(x, k̂),
(t, x, k̂) ∈ (0,∞) × R

3 × S
2, (1)

where S2 denotes the unit sphere in R3 , and u is the wave energy density in the context of wave propagation or a particle 
distribution function in the context of neutronics. The scattering operator Q has the standard form

(Qu)(x, k̂) = λ(x)

ˆ

S2

�(x, |p̂ − k̂|)(u(x, p̂) − u(x, k̂))σ (dp̂), (2)
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for σ (dp̂) the surface measure on S2 , � the scattering kernel, and λ > 0 a function modeling the support of the scattering 
process. Regions where λ(x) = 0 are homogeneous and u undergoes free transport. MC methods have long be used for the 
resolution of (1), see e.g. [36,51]. The originality and difficulty in our work lies in the fact that we consider situations where 
the mean free time t0 associated with Q vanishes in the scattering regions, that is

1

t0(x)
= λ(x)

ˆ

S2

�(x, |k̂ − p̂|)σ (dp̂) = +∞, where λ(x) > 0, (3)

and as a consequence the standard MC representations of u do not apply. Such a scenario arises for instance in the context 
of highly peaked-forward light scattering in biological tissues and in turbulent atmosphere, or more generally in the context 
of wave propagation in random media with long-range correlations that we describe below. In this paper we write � as

�(x, |p̂ − k̂|) := a(|p̂ − k̂|)
|p̂ − k̂|2+α(x)

= 1

21+α(x)/2
ρ(x, k̂ · p̂), with ρ(x, s) :=

a
(√

2(1− s)
)

(1− s)1+α(x)/2
s ∈ [−1,1). (4)

Above, α : R3 −→ [0, 2) accounts for the slow variations of scattering across the ambient space, and a is a smooth bounded 
function characterizing some statistical properties of the medium and such that a(0) > 0. Practical examples are given 
further. A direct calculation shows that (3) holds when α ∈ [0, 2). Also, the integral in (2) has to be understood in the 
principal value sense when α ∈ [1, 2), see [23]. The multifractional terminology that we use is motivated by the fact that 
the unbounded operator Q can be expressed as a (multi)-fractional Laplace-Beltrami operator (−�S2 )α(x)/2 on the unit 
sphere up to a bounded operator w.r.t. the k̂ variable [22,23].

We would like to emphasize that we focus in this work on kernels of the form (4) for simplicity of the exposition, 
and that our method applies, after proper decomposition (see [23]), to more general kernels that behave like (4) at the 
singularity.

The RTE can be derived from high frequency wave propagation in random media, see e.g. [49]. In such a context, the 
velocity field c(x) has the form

1

c2(x)
= 1

c20

(

1+ √
η V0

(

x,
x

η

))

x ∈ R
3, η ≪ 1,

where c0 is the background velocity (that we set to one in the sequel for simplicity), V0 is a mean zero random field 
modeling fluctuations around the background, and η is the correlation length of the random medium, assumed to be small 
after proper rescaling. The first variable in V0 represents the slow variations of the random perturbations, while the second 
one corresponds to their high frequency oscillations. The latter are responsible for the strong interaction between the wave 
and the medium over sufficient distances. The scattering kernel � is related to the correlation function of V0 , and assuming 
V0 is stationary (in the statistical sense) with respect to the fast variable, a kernel of the form (4) can be obtained from 
random fields such that

E[V0(x, x
′)V0(y, y

′)] =
√

λ(x)λ(y)

ˆ

R3

a(|p|)
|p|1+

α(x)+α(y)
2

eip·(x′−y′)dp, (5)

with α ranging from 0 to 2. Denoting by R(x) the expectation in (5) with y = x, y′ = x′ + x/η, one can show that R behaves 
like |x|α(x)−2 for |x| ≫ 1, and is therefore not integrable. This is how random fields with long-range correlations are defined, 
as opposed to random fields with short-range correlations that exhibit an integrable correlation function. This approach 
is of practical interest in biomedical imaging as media with long-range correlations are able to reproduce experimentally 
observed power-law attenuations associated with effective fractional wave equations [20,25,30]. The value of the exponents 
is related to the rate of decay of the correlation function R , and depends on the nature of the imaged tissues as reported in 
[14,17,26,27]. Variations of this exponent can then be used for diagnosis purposes [38,47].

In Fig. 1, we provide examples of such 2D random fields. The top-left picture represents a random medium with short-
range correlations (with a standard Gaussian covariance kernel), while the top-right picture illustrates a random medium 
with long-range correlations with α ≡ 1. Because of the singularity at p = 0, one can observe significantly larger statistical 
patterns than in the short-range case. In the bottom two pictures, we highlight the roles of λ and α: λ characterizes 
scattering regions, and α defines the correlation structure. In the inner circle of the bottom-left picture we have α ≡ 0.1, 
which tends to create shorter range fluctuations than in the outside where α ≡ 1. In the bottom-right picture, we have a 
three-layer model for α in which the inner band exhibits smaller statistical patterns than the outer ones. This type of model 
is used for modeling non-Kolmogorov atmospheric turbulences, while standard atmospheric turbulence is modeled with the 
so-called Kolmogorov power spectrum

�(|k|) ∝ a(|k|)
|k|11/3 ,

2
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Fig. 1. Realizations of Gaussian random fields. The upper-left picture represents a field with short-range correlations, while the upper-right picture depicts 
a field with long-range correlations with λ ≡ 1 and α ≡ 1. In the lower-left picture, we have λ = 1{|x1 |<15} , and α = 0.1 · 1{|x|≤10} + 1 · 1{10<|x|} . In the 
lower-right, we have λ ≡ 1 and α(x2) = 5/3 · 1{x2≤2} + 0.5 · 1{2<x2≤8} + 1.9 · 1{8<x2} .

for |k| in the inertial range of turbulence. This corresponds to the case α = 5/3. This case is not always valid in experiments 
as reported in [4,52,55], and the statistics of atmospheric turbulence have been shown to vary with altitude. Models have 
been derived for instance (see [35] for a review) by considering three ranges (0-2 km, 2-8 km, and above 8 km) with distinct 
power laws (see Fig. 16 for an illustration).

In the context of biological tissues, the following the Gegenbauer scattering kernel ρG and Henyey-Greenstein (HG) 
kernel ρHG are commonly used in the peaked-forward regime [29,48]:

ρG(x, s) := α g (1+ g2 − 2g s)−1−α/2

2π((1− g)−α − (1+ g)−α)
, ρHG(x, s) := 1

4π

1− g2

(1+ g2 − 2g s)3/2
. (6)

The parameter g ∈ (−1, 1) is called the anisotropy factor, and ρHG is obtained by setting α ≡ 1 in ρG . The case g = 0

corresponds to isotropic energy transfer over the unit sphere, g < 0 to dominant transfer in the backward direction, and 
g > 0 to forward energy transfer. The peaked forward regime is obtained in the limit g → 1, for which

1

(1− g)α
ρG(x, k̂ · p̂) ∼

g→1

α

2π(2− 2k̂ · p̂)1+α/2
= α

2π |k̂ − p̂|2+α
. (7)

The case α ≡ 1 for the HG kernel is widely used in photon scattering in biological tissues [13,21,31]. A typical realization 
of the corresponding random field in 2D as g → 1 is depicted in the top-right panel of Fig. 1.

There exists a variety of methods for the resolution of (1) that handle the singular nature of the HG kernel, see e.g. [18,
19,33,34,37]. They are based on finite differences type discretizations, projections over appropriate bases w.r.t. the k̂ variable, 
and approximations of the kernel. Here we propose an alternative approach to handle singular scattering kernel (4) that is 
based on a MC method. The latter are popular choices for the simulation of the RTE when the kernel is smooth, see e.g. 
[36,41,42,46,51], essentially for their adaptability to a wide range of configurations and their simplicity of implementation. A 
downside is their slow convergence rate, and there is a vast literature on variance reduction techniques for acceleration. In 
this work, we focus on the design of an efficient MC method and postpone any variance reduction considerations to future 
works.

Our approach is based on an adaptation of a method proposed by Asmussen-Cohen-Rosiński [3,11] (ACR) for the simula-
tion of Lévy processes with infinite jump intensity. It relies on a small jumps/large jumps decomposition of the corresponding 

3
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infinitesimal generator. The main idea is to approximate the generator of the small-jump part, which possesses the infinite 
intensity due to the singularity of kernel, by a Laplace-Beltrami operator (with respect to the angular variables) on the 
unit sphere S2 . This requires us to simulate paths of a jump-diffusion process over the unit sphere. For this purpose, we 
use the characterization of Brownian motion on the unit sphere given in [5] based on a standard stochastic differential 
equation (SDE) in R3 that is suitable for space-dependent kernels. This situation is hence more involved than the 2D case 
we investigated in [24] where the small jumps part can be approximated by Brownian motion on the unit circle for which 
analytical expressions are available. Note that, as shown in [24], neglecting small jumps altogether in order to use standard 
MC methods leads to large errors, and reducing those comes at significantly increased computational cost.

Denoting by μ̂(u) the estimator produced by our MC method for some observable μ(u) built on the solution u to (1), 
we provide an error estimate of the form

P

(

|μ̂(u) − μ(u)| > E1 + E2 + E3

)

≪ 1

as a theoretical support of our method. Above, E1 , E2 , and E3 are small terms characterizing the various approximation er-
rors from the original model: the Laplace-Beltrami (i.e. small jumps) approximation, the discretization error of the diffusion 
process over the unit sphere, and the MC error. Note that the method we propose here applies directly to the stationary 
version of (1)

k̂ · ∇xu−Qu = u0, (x, k̂) ∈ R
3 × S

2,

with source term u0 , through the relation

u(x, k̂) :=
∞̂

0

u(t, x, k̂)dt.

The paper is organized as follows. In Section 2, we introduce probabilistic representations for (1) and its approximation 
based on the ACR method. In Section 3, we describe our MC method, state the main theoretical result regarding the overall 
approximation error, and detail the simulation algorithms. Section 4 is dedicated to the validation of the method using semi-
analytical solutions. Numerical illustrations are given in Section 5, where we investigate the role of the strength α of the 
singularity, both when constant or space-dependent in the case of non-Kolmogorov turbulence, and compare with solutions 
for the HG kernel. Section 6 is devoted to the proofs of our main results and we recall in an Appendix the stochastic 
collocation method.

The numerical simulations are performed using the Julia programming language (v1.6.5) on a NVIDIA Quadro RTX 6000 
GPU driven by a 24 Intel Xeon Sliver 2.20 GHz CPUs station. The codes have been implemented using the CUDA.jl library 
[8,9].

Acknowledgment OP acknowledges support from NSF grant DMS-2006416.

2. Probabilistic representations and approximation

2.1. Representation for (1)

The starting point is the following standard probabilistic interpretation to (1):

u(t, x,k) = E
x,k̂

[

u0(D(t))
]

:= E
[

u0(D(t)) | D(0) = (x, k̂)
]

,

where D = (X, K ) is a Markov process on R3 × S2 with infinitesimal generator

L f (x, k̂) := −k̂ · ∇x f (x, k̂) + λ(x)

21+α(x)/2

ˆ

S2

ρ(x, p̂ · k̂)
(

f (x, p̂) − f (x, k̂)
)

σ (dp̂).

A path, or a realization, of the Markov process D is often referred to as a particle trajectory. The X component of D represents 
the position of a particle, and the component K its direction. The generator L comprises two terms, the transport part 
describing free propagation of the particle, and the scattering operator (often referred to as the jump part in the probabilistic 
literature) describing the evolution of its direction. The jump component exhibits a non-integrable singularity leading to a 
infinite jump intensity and a vanishing mean free time as expressed in (3).

Note that when λ and α are constant, it is shown in [23] that the solution u is unique and infinitely differentiable in 
all variables for t > 0 for any square integrable initial condition. When λ and α are infinitely differentiable with bounded 
derivatives at all orders, this result remains valid and we will assume throughout this work that u is smooth. The same 
applies to the function uε defined further in Proposition 2.1.

4
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In order to adapt the ACR method, we introduce the following small region over which the singularity of the kernel ρ
(in (4)) is not integrable, resulting in an unbounded infinitesimal generator L:

Sε
< = Sε

<(k̂) := {p̂ ∈ S
2 : 1− p̂ · k̂ < ε} ε ∈ (0,1). (8)

We can now decompose the jump part of the generator L into two components

L f (x, k̂) = −k̂ · ∇x f (x, k̂) +L
ε
< f (x, k̂) +L

ε
> f (x, k̂)

:= −k̂ · ∇x f (x, k̂) + λ(x)

21+α(x)/2

⎛

⎜
⎝

ˆ

Sε
<

+
ˆ

Sε
>

⎞

⎟
⎠ρ(x, p̂ · k̂)

(

f (x, p̂) − f (x, k̂)
)

σ (dp̂),

where Sε
> = (Sε

<)c is the complementary set of region (8) over the unit sphere. The part of the scattering operator in-
volving Sε

> (with no singularity) is the infinitesimal generator of a standard jump Markov process. Regarding Sε
< (with the 

singularity), the following result justifies the approximation of this singular part by a Laplace-Beltrami operator �S2 over 
the unit sphere S2 . We will use the notation r′ε =

√

1− (1− ε)2/(2 − ε) in what follows, and set in the rest of the paper 
0 < ε ≤ ε0 < 1 and 0 ≤ αm ≤ α(x) ≤ αM < 2.

Proposition 2.1. Let u be the solution to (1) and uε be the solution to
⎧

⎪
⎪
⎨

⎪
⎪
⎩

∂tuε + k̂ · ∇xuε = σ 2
ε (x)�S2uε + λ(x)

21+α(x)/2

ˆ

Sε
>

ρ(x, p̂ · k̂)(uε(p̂) − uε(k̂))σ (dp̂),

uε(0, x, k̂) = u0(x, k̂),

(9)

for (t, x, ̂k) ∈ (0, ∞) × R3 × S2 , where

σ 2
ε (x) := 21−α(x)a(0)πλ(x)

2− α(x)
r′ε

2−α(x)
. (10)

Assuming a′(0) = 0, for any T > 0, we have

sup
t∈[0,T ]

‖u(t, ·, ·) − uε(t, ·, ·)‖L2(R3×S2) ≤ ε2−(αM/2)
√
2T E(u) (11)

where E(u) is defined in (34).

The proof of Proposition 2.1 is postponed to Section 6.1. The term E(u) is independent of ε and depends on derivatives 
of u w.r.t. k̂ up to order 4. Note that the error is of order ε1−(αM/2)/(2 − αM) when a′(0) �= 0 yielding a less accurate 
approximation than for a′(0) = 0. The difference comes from a truncated expansion along the sphere curvature providing 
an extra order in ε assuming a′(0) = 0. This later assumption holds throughout the remaining of the paper. Based on (11), 
we then devise a MC method for (9) instead of (1). The advantage in using (9) is the fact that the angular diffusion term 
σ 2

ε (x)�S2 is the generator of a Markov process that can be easily simulated. Indeed, for W a standard 3D Brownian motion 
on R3 and × the cross product in R3 , it is shown in [5] that the process B solving the SDE

dB = B × dW − Bdt, B(0) ∈ S
2,

has generator 1
2�S2 . A simple adaptation then gives the desired diffusion coefficient. Since the error is of order ε2−(αM /2) , 

it is always smaller than ε, and can be adjusted to obtain a desired accuracy. Note also that σε(x) increases as α(x) gets to 
2, and diffusion on the sphere eventually becomes the dominant dynamics.

2.2. Representation for (9)

We interpret (9) as the forward Kolmogorov equation of an appropriate Markov process, and as a consequence focus 
on forward MC methods, see e.g. [36] for terminology. Backward equations are simulated in a similar manner, and can be 
combined with forward methods for variance reduction techniques [7,40,51].

The Markov process we consider for this approach is defined by

Dε(t) :=
∑

n≥0

1[Tn,Tn+1)(t)ψ
Zn
n (t − Tn) t ≥ 0, (12)

where (in the remaining of the paper we extensively make use of the notation z = (x, ̂k)):

5
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1. The flow ψ z
n = (Xx

n, K
k̂
n) is the unique strong solution to the SDE

{

dXx
n(t) = K k̂

n(t)dt

dK k̂
n(t) =

√
2σε(X

x
n(t)) K

k̂
n(t) × dWn(t) − 2σ 2

ε (Xx
n(t)) K

k̂
n(t)dt,

(13)

where ψ z
n (0) = z, × is the cross product in R3 , (Wn)n is a sequence of independent standard Brownian motions on R3 , 

and σε is defined by (10).
2. The jump times (Tn)n are distributed according to

P
(

Tn+1 − Tn > t | Dε(Tn) = z, (ψ z
n (s))s∈[0,t]

)

= exp
(

−
t
ˆ

0


ε(ψ
z
n(s))ds

)

, ∀n ≥ 0,

with T0 = 0, and for ρ given by (4),


ε(z) := λ(x)

21+α(x)/2

ˆ

Sε
>

ρ(x, p̂ · k̂)σ (dp̂). (14)

3. The jumps (Zn)n describe a Markov chain with transition probability

P (Zn+1 ∈ dy ⊗ σ (dp̂) |Zn, Tn+1 − Tn) = �ε(zn+1, dz), (15)

where zn+1 := ψ
Zn
n (Tn+1 − Tn), and

�ε(z,dz) := πε(z, p̂)σ (dp̂)δx(dy), (16)

with density

πε(z, p̂) := ρ(x, p̂ · k̂)
´

Sε
>
ρ(x, p̂′ · k̂)dσ (p̂′)

1Sε
>
(p̂), z = (x, k̂), (17)

which is supported over Sε
> . The above Dirac mass δx(dy) := δ(x − y)dy translates the fact that the jumps only hold 

w.r.t. the k̂ variable.

Let us note that the above family of standard Brownian motions (Wn(t))t∈[0,Tn+1−Tn] can be defined as

Wn(t) = W (t + Tn) − W (Tn), t ∈ [0, Tn+1 − Tn],
for any n, where W is a single standard Brownian motion on R3 . We have then the following probabilistic representation 
for the solution to (9).

Proposition 2.2. The Markov process Dε defined in (12) has for infinitesimal generator

Aε g(z) := k̂ · ∇xg(z) + σ 2
ε (x)�S2 g(z) + 
ε(z)

ˆ

S2

πε(z, p̂)
(

g(x, p̂) − g(x, k̂)
)

σ (dp̂),

and we have

Pμ0(Dε(t) ∈ dx⊗ σ (dk̂)) = 1

ū0
uε(t, x, k̂)dxσ (dk̂), (18)

where

μ0(dx,dk̂) := P (Dε(0) ∈ dx⊗ σ (dk̂)) = u0(x, k̂)

ū0
dxσ (dk̂) with ū0 :=

ˆ

R3×S2

u0(x, k̂)dxσ (dk̂). (19)

The terminology forward comes from the fact that the particles are emitted at random points at time t = 0 (through μ0) 
and propagate towards the observation position z = (x, ̂k). The proof of Proposition 2.2 is provided in Section 6.2. Let us 
illustrate two aspects of the representation (18). In order to obtain an estimation of uε(t, x, ̂k) at the point z = (x, ̂k), we 
calculate the probability

ū0

|B(z, r)| Pμ0

(

Dε(t) ∈ B(z, r)
)

≃ uε(t, x, k̂), (20)

6
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where B(z, r) ⊂ R3 × S2 stands for the open ball centered at z = (x, ̂k) with radius r ≪ 1. If we are only interested in e.g. 
the energy density at point x, we estimate

ū0

|B(x, r)| Pμ0

(

Dε(t) ∈ B(x, r) × S
2
)

= ū0

|B(x, r)|Pμ0

(

D1,ε(t) ∈ B(x, r)
)

≃
ˆ

S2

uε(t, x, k̂)σ (dk̂),

where B(x, r) ⊂ R3 stands for the open ball centered at x with radius r ≪ 1, and D1,ε is the x component of Dε .

3. Monte Carlo method

Based on the previous probabilistic representation of (9), solving (9) requires the generation of random paths of the 
stochastic process Dε . For any measurable bounded functions f , the convergence of the estimator

μN(t, f ) := 1

N

N
∑

j=1

f (D
j
ε(t)) −→

N→∞

ˆ

f (x, k̂)uε(t, x, k̂)dxσ (dk̂) Pμ0 − almost surely,

is guaranteed by the strong law of large numbers. Above (D j
ε) j is a sample of Dε . We detail next how to treat efficiently 

the diffusion and jump components of the process Dε .

3.1. The jump part

Since the process Dε is inhomogeneous, i.e. 
ε and �ε both depend on z = (x, ̂k), we use the so-called thinning method, 
also referred to as the fictitious shocks method [36]. It is based on a acceptation/rejection step and consists in simulating at 
first more jumps (or shocks) than necessary. In a second step, some of the jumps are rejected according to an appropriate 
probability distribution in order to recover the original dynamics. Assume 0 < αm ≤ α(x) ≤ αM < 2. A direct calculation 
shows that


ε(z) ≤ 2π supλ supa

21+α(x)/2

1−ε
ˆ

−1

dt

(1 − t)1+α(x)/2
= 4π supλ supa

α(x)21+α(x)/2εα(x)/2
≤ 2π supλ supa

αmεαM/2
=: 
̄ε. (21)

The fictitious jump times are then drawn as

T̄n :=
n

∑

j=1

ξ j, and T̄0 = 0,

where the (ξ j) j are i.i.d. exponentially distributed random variables with parameter 
̄ε .

The thinning method consists in the following acceptation/rejection step. At a jump time T̄n and current position zn , 
we draw a jump z according to the probability distribution �ε given by (15). This jump is accepted with probability 
p(zn) = 
ε(zn)/
̄ε . Otherwise, the process Dε continues to diffuse starting from zn , and T̄n is not considered as a true
jump time for Dε . Practically, we can define the state as

Z̄n := z 1(Un≤p(zn)) + zn 1(Un>p(zn))

at each fictitious jump times T̄n . Above, Un is a random variable uniformly distributed over [0, 1] and all the Un ’s are 
independent.

3.2. The diffusion part

The diffusion part between two jumps satisfies the linear SDE (13), and is simulated using the following Euler-Maruyama 
type scheme

(Sn,m) :

⎧

⎪
⎨

⎪
⎩

Xn,m+1 = Xn,m + hn,m K̂n,m

Kn,m+1 = K̂n,m − 2hn,m σ 2
ε (Xn,m) K̂n,m +

√

2hn,m σε(Xn,m) K̂n,m × Wn,m

K̂n,m+1 = Kn,m+1

|Kn,m+1| ,
(22)

where the (Wn,m)m,n are i.i.d. mean-zero Gaussian random vectors with identity covariance matrix. Note that the above 
scheme does not conserve the Euclidean norm with respect to the angular variable, and as a consequence the evolution of 
(Kn,m)n,m does not remain on the unit sphere over the iterations. This motivates the definition of K̂n,m . We have neverthe-
less E[ |K k

n,m|2 ] = 1, for all n and m, and Theorem 3.1 below guarantees that the distribution of K̂n,m provides a converging 
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approximation of the true statistics. The stepsizes hn,m are determined from a fixed stepsize h as follows. Since our conver-
gence theorem further is stated at a fixed time T , we include t = T in the discretization grid for simplicity. Let then NT

such that T̄NT
≤ T < T̄NT +1 . When n �= NT , let dtn = T̄n+1 − T̄n . With mn = [dtn/h] ([·] the integer part), we set, for n �= NT ,

hn,m =
{

h f or m = 0, . . . ,mn − 1
dtn −mnh f or m =mn,

and if mn = 0, we set hn,0 = dtn . In the rest of the paper, the grid is denoted by (Tn,m), where Tn,m+1 = Tn,m + hn,m for 
Tn,0 = T̄n , n ≥ 0 and m = 0, . . . , mn − 1. When n = NT , we divide the interval [T̄NT

, T̄NT +1] similarly into subintervals of 
length hNT ,m at most h (we suppose there are mNT

of those) and such that TNT ,m = T for one m in 0, . . . , mNT
.

3.3. The overall discretized process and convergence

For any t ≥ 0, the approximate version of the process Dε , denoted Dh,ε , is defined by:

Dh,ε(t) = (Xh,ε(t), Kh,ε(t)) :=
∞
∑

n=0

mn∑

m=0

1[Tn,m,Tn,m+hn,m)(t)Zn,m,

where

1. For any m ∈ {0, . . . , mn},

Zn,m+1 = Sn,m(Zn,m),

where Zn,0 = Z̄n for the ( Z̄n)n defined below, and where Sn,m(Zn,m) = (Xn,m+1, K̂n,m+1) is given by the scheme (22)
with initial condition Zn,m = (Xn,m, K̂n,m).

2. The sequence ( Z̄n)n is defined by

Z̄n+1 = z 1(Un≤p(Zn,mn+1)) + Zn,mn+1 1(Un>p(Zn,mn+1)) n ≥ 0,

where z is drawn according to the probability measure �ε(Zn,mn+1, dz) defined by (16).

Below, b is the backward solution to (1) with terminal condition b(T , x, ̂k) = f (x, ̂k), see (41). Our convergence result is 
then the following (we set h such that 4h supx σ

2
ε (x) ≤ 1 to simplify some expressions):

Theorem 3.1. Consider

μN,h,ε(t, f ) = 1

N

N
∑

j=1

f (D
j

h,ε(t)), μ(t, f ) =
ˆ

f (x, k̂)u(t, x, k̂)dxσ (dk̂),

where (D j

h,ε) j is a sample of Dh,ε . For any T > 0, η > 0 and any smooth bounded function f on R3 × S2 , we have

limsup
N→∞

P

(

|μN,h,ε(T , f ) − μ(T , f )| > η�h,ε√
N

+ ε2−(αM/2)F0(u,b, f ) + hF1(b)
)

≤ erfc(η/
√
2), (23)

where

�h,ε =
√

Var
(

f (Dh,ε(T ))
)

≤ sup | f |.

The functions F0 and F1 are explicit and independent of ε and h, and are defined in the proof of the theorem in Section 6.3.

Theorem 3.1 is proved in Section 6.3. In (23), there are three terms that quantify the approximation error of our estimator 
μN,h,ε(t, f ): one of order ε2−(αM/2) due to the approximation of u by uε (the smaller the αM , i.e. the less singular the kernel 
is, the smaller the error), one of order h due to the numerical approximation of the diffusion over the unit sphere, and one 
due to the MC approximation with the standard 1/

√
N convergence rate. Note that the discretization error of the diffusion 

process is only of order h and not of order the standard 
√
h. The reason is that we are only interested in the convergence of 

Monte Carlo estimators, allowing us to consider this discretization error in the weak sense [53]. However, a weak second-
order Runge-Kutta method can be considered to provide an error in h2 instead of h for the Euler scheme [12]. Modifications 
of the SDE (13) can also be considered to provide weak higher-order scheme [1]. The main goal of this paper being to 
present a methodology to capture efficiently the behavior induced by the singularity, we focus our attention on the error in 
ε, and do not present weak-higher order discretization schemes for the SDE. In this way, the Euler scheme is considered for 
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simplicity in the proof of Theorem 3.1. For the numerical simulations of Sections 4 and 5, that illustrate the roles of ε and α
in the approximation, the parameter h will be chosen proportionally to the shortest mean free time 
̄−1

ε , and small enough 
so that the approximation error w.r.t. ε in dominant. N will also be chosen large enough so that the error of approximation 
in ε is dominant. The MC error is controlled by the standard deviation �h,ε , and variance reduction techniques can be 
designed to reduce this term. When estimating the energy density over a given region B , as in (20), the number of particles 
N needed to reach a given error threshold can be estimated as follows: the root mean square error of the MC estimator for 
f = 1B/|B| reads

RMSEh,ε :=
E

[(

μN,h,ε(T , f ) − E
[

f (Dh,ε(T ))]
)2]1/2

E
[

f (Dh,ε(T ))
] =

√

Ph,ε(1− Ph,ε)

N|B|2 ≤ 1

2
√
N|B|

, (24)

and the relative MC error is

RMSEh,ε

E
[

f (Dh,ε(T ))
] = 1√

N

√

1− Ph,ε

Ph,ε
≤ 1

√

NPh,ε

, (25)

with

Ph,ε := Pμ0(Dh,ε(T ) ∈ B) ≃ 1

ū0

ˆ

B

uε(t, x,k)dxσ (dk̂).

Above, μ0 and ū0 are given by (19). A RMSE lower than a threshold c would then require

N ≥ 1

4c2|B|2 , (26)

while a relative error would require

N ≥ 1

c2Ph,ε
. (27)

If B is a region centered around a point (x0, k0), with a small volume (that is Ph,ε ≪ 1 as for (20)), we would have

N ≥ ū0

c2|B|uε(t, x0,k0)
.

3.4. Algorithms

We discuss in this section practical aspects of the method. Before stating the algorithm itself, let us emphasize that a 
key point is to sample efficiently the jumps from �ε given by (16).

Let us fix the current state of the process Dh,ε at a point z = (x, ̂k). In spherical coordinates, πε defined in (17) is 
equivalent to a probability density function drawing a polar angle θ and an azimuthal angle ϕ . Here, the north pole of the 
spherical system is the current direction k̂, and it is direct to see that the azimuthal angle ϕ is uniformly distributed over 
(0, 2π). We denote this by ϕ ∼ U(0, 2π). For the polar angle, a change of variables leads to θ = arccos(1 −χ), where χ has 
probability density function

fχ (χ |x) := a(
√
2χ)

Cχχ1+α(x)/2
1(ε,2)(χ),

and Cχ is a normalizing constant. Therefore, to draw a jump according to (17) starting from k̂, we compute

p̂ = R(θ,ϕ, k̂) := cos(θ)k̂ + sin(θ)
(

I3 + sin(ϕ)Q (k̂) + (1− cos2(ϕ))Q 2(k̂)
)

k̂⊥, (28)

where k̂⊥ is an orthonormal vector to k̂, I3 is the 3 × 3 identity matrix, and

Q (k) =

⎛

⎝

0 −k3 k2
k3 0 −k1

−k2 k1 0

⎞

⎠ , where k = (k1,k2,k3). (29)

The transformation R corresponds to a rotation from k̂ to p̂ with polar angle θ with respect to k̂ and azimuthal angle ϕ
with respect to k̂⊥ . Note that the choice of k̂⊥ is not important since ϕ is uniformly distributed over (0, 2π).

We notice that in the case of a constant function a ≡ a0 , one obtains a truncated Pareto distribution for χ . The corre-
sponding cumulative distribution function can be exactly inverted giving then a direct simulation method. In this case, the 
cumulative distribution function is given by, for χ ∈ (ε, 2),

9
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Fχ (χ |x) = a0

Cχ

χ̂

ε

dv

v1+α(x)/2
= 1− (ε/χ)α(x)/2

1− (ε/2)α(x)/2
.

The random variable χ can then be generated by

χ = F−1
χ (U |x) = ε(1 − (1 − (ε/2)α(x)/2)U )−2/α(x),

where U is a random variable uniformly distributed over (0, 1) (U ∼ U(0, 1)). In the case of a non constant function a, the 
main features of the density fχ (·|x) are similar to those of the truncated Pareto distribution, and a stochastic collocation 
method can be considered to simulate fχ (·|x). This method is described in Appendix A in our context. It is based on the 
simulation of the above truncated Pareto distribution and proves to be very effective.

The algorithm used to simulate a trajectory of Dh,ε can be summarized in the following two procedures. The first one 
corresponds to the simulation of the diffusion process between two (fictitious) jumps, and we use the notation

S(Z ,W ,h) =
{

X + h K

K − 2hσ 2
ε (X) K +

√
2hσε(X)W × K ,

with Z = (X, K ). Below, N(0, I3) stands for the three dimensional multivariate Normal distribution with identity covariance 
matrix.

Algorithm 1: Diffusion.

input : current state of the particle z = (x, ̂k), duration of the diffusion δt
output : state of the particle after the diffusion process
initialization : n ← [δt/h] // number of iterations
Z ← z // initialization of the diffusion state
// Main loop of the diffusion
for j ← 1 to n do

W ∼ N(0, I3)
Z ← S(Z , W , h)

K ← K/|K |
// Add a diffusion step with stepsize h′ ≤ h to match the duration δt

h′ ← δt − nh

W ∼ N(0, I3)
Z ← S(Z , W , h′)
K ← K/|K |
return Z

The second procedure combines the diffusion step with the jump process. Below, we denote by E(
̄ε) the exponential 
distribution with parameter 
̄ε defined by (21).

Algorithm 2: TrajectorySimulation.

input : Duration T of the particle evolution
output : state of the particle at time T
initialization : Z ← (x, ̂k) ∼ μ0 // initialization of the particle state at random
t ← 0 // temporary time variable
δt ∼ E(
̄ε) // first jump time
// main loop for the path evolution
while t + δt < T do

Z ← Diffusion(Z , δt)
U ∼ U(0, 1)
if U ≤ p(Z) then

// the jump is accepted, Z is transformed
χ ∼ fχ (· | x)
θ ← arccos(1 − χ)

ϕ ∼ U(0, 2π)

p̂ ← R(θ, ϕ, ̂k)
Z ← (x, ̂p)

t ← t + δt

δt ∼ E(
̄ε)

// remaining diffusion step of duration T − t

Z ← Diffusion(Z , T − t)

return Z

10
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The rest of the paper is dedicated to numerical simulations and the proofs of our main results.

4. Validation

In this section, we first derive a semi-analytical solution to validate our method in the simplest situation where α, a, λ
are constant functions. We then highlight the crucial role of the small jumps correction for computational efficiency.

4.1. Semi-analytical solution

We set λ ≡ 1 and the RTE (1) reads

∂tu + k̂ · ∇xu = Qu (30)

with scattering kernel

Q f (k̂) = a

ˆ

S2

σ (dp̂)

|p̂ − k̂|2+α
( f (p̂) − f (k̂)), k̂ ∈ S

2.

Using the Funk-Hekke formula [50], this operator can be diagonalized in L2(S2) equipped with the inner product

〈

f , g
〉

L2(S2)
=
ˆ

S2

f (p̂)g(p̂)σ (dp̂) =
π̂

0

2π
ˆ

0

f (θ,ϕ)g(θ,ϕ) sin(θ)dθdϕ.

The eigenvalues are given by

λl =
aπŴ(−α/2)

2αŴ(1 + α/2)

(
Ŵ(l + 1+ α/2)

Ŵ(l + 1− α/2)
− Ŵ(1 + α/2)

Ŵ(1 − α/2)

)

l ∈ N,

and the eigenvectors are the spherical harmonics

Y l,m(k̂) = Y l,m(θ,ϕ) :=
√

(2l + 1)(l −m)!
4π(l +m)! Pm

l (cos(θ))eimϕ , (l,m) ∈ N × {−l, . . . , l},

where the Pm
l

are the associated Legendre polynomials. In order to derive a semi-analytical solution, we Fourier transform 
(30) w.r.t. x, and introduce

û(t,q,k) =
ˆ

R3

u(t, x,k)e−iq·xdx.

Above, q = q̃ := (0, 0, ξ) so that ũ(t, ξ, ̂k) = û(t, ̃q, ̂k) solves

∂t ũ + i k̂ · q̃ ũ = Qũ. (31)

Writing k̂ in spherical coordinates with (0, 0, 1) as north-pole, this latter equation reads,

∂t ũ(t, ξ, θ,ϕ) = (Q− iξ cos(θ))ũ(t, ξ, θ,ϕ), (t, ξ, θ,ϕ) ∈ (0,∞) × R × (0,π) × (0,2π).

We now decompose ũ on the basis of spherical harmonics

ũ(t, ξ, θ,ϕ) =
∞
∑

l=0

l
∑

m=−l

ûl,m(t, ξ)Y l,m(θ,ϕ),

resulting in

d

dt
ûl,m = λlûl,m − iξ(d+

l,m
ûl+1,m + d−

l,m
ûl−1,m) for l ≥ 1,

d

dt
û0,0 = −iξd+

0,0 û1,0 for l = 0. (32)

Above, we have used the fact that

〈

Ym′,l′ , cos(θ)Ym,l

〉

L2(S2)
=

⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎩

d+
l,m

:=
√

(l +m + 1)(l −m + 1)

(2l + 1)(2l + 3)
if m =m′ and l′ − l = 1,

d−
l,m

:=
√

(l +m)(l −m)

(2l − 1)(2l + 1)
if m =m′ and l′ − l = −1,

0 otherwise.

11
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For computational purposes, we introduce a cutoff in the variable l (l ∈ {0, . . . , L}), and consider a truncated version of (32)
as the vector differential equation

d

dt
ûL(t, ξ) = (D L − iξ AL) ûL(t, ξ), ûL(t, ξ) =

(

ûL
l2+ j

(t, ξ)
)

l∈{0,...,L} j∈{0,...,2l} ∈ C
(L+1)2 , (33)

where D L and AL are two (L + 1)2 × (L + 1)2 matrices defined by
⎧

⎪
⎨

⎪
⎩

D L
l2+ j+1,l2+ j+1

:= λl for l ∈ {0, . . . , L}, j ∈ {0, . . . ,2l},
AL
l2+ j+1,(l+1)2+ j+2

:= d+
l, j−l

for l ∈ {0, . . . , L − 1}, j ∈ {0, . . . ,2l}
AL
l2+ j+2,(l−1)2+ j+1

:= d−
l, j−l+1 for l ∈ {1, . . . , L}, j ∈ {0, . . . ,2(l − 1)}.

All other coefficients in both D L and AL are set to 0. Note that the indexing of the matrices starts at 0 for simplicity. The 
solution to (33) reads ûL(t, ξ) = e(DL−iξ AL )t ûL(0, ξ), where the matrix exponential is computed numerically. For our test 
case, we consider the following initial condition

u(t = 0, x, k̂) = 1√
2π

e−|x|2/2 · 2cos2(θ/2) = 1√
2π

e−|x|2/2(2
√

πY0,0(θ,ϕ) + 2
√

π/3Y0,1(θ,ϕ)),

so that

ûL
l2+ j

(t = 0, ξ) =

⎧

⎨

⎩

2
√

πe−ξ2/2 for l = j = 0,

2
√

π/3e−ξ2/2 for l = j = 1,
0 otherwise.

Finally, an approximation of ũ, solution to (31), is given by

ũL(t = 0, ξ, θ,ϕ) =
L

∑

l=0

2l
∑

j=0

[

e(D L−iξ AL)t ûL(0, ξ)
]

l2+ j
Y l, j−l(θ,ϕ).

For numerical comparisons with our MC method, we introduce a discretization of the unit sphere S2 via the polar and 
azimuthal angles (θm)m and (ϕm)m , with respective stepsize �θ and �ϕ . We then compare

ũL(t, ξ, θm,ϕ′
m) ≃ 1

�θ�ϕ

θm+1
ˆ

θm

ϕm′+1
ˆ

ϕm′

ũL(t, ξ, θ,ϕ) sin(θ)dθdϕ

with its MC approximation

ũL
N(t, ξ,m,m′) = 1

�θ�ϕ N

N
∑

n=1

e
−iξ Xn

3,h,ε(t)
1(

θn
h,ε(t)∈(θm,θm+1),ϕ

n
h,ε(t)∈(ϕm′ ,ϕm′+1)

)

where θn
h,ε and ϕn

h,ε are respectively the polar and azimuthal angles for K̂n
h,ε , and where (Dn

h,ε)n = (Xn
h,ε, K̂

n
h,ε)n is a sample 

of Dh,ε introduced in Section 3.
In the following numerical illustrations we consider a = 0.002 in the RTE, and set �θ = �ϕ = 0.05, ε = 0.1 and h =

0.5/
̄ε ≃ 12.6 for the approximation parameters. Note that these choices for ε and h are providing us with a good accuracy 
at a very low computational cost as we will see. Such values may have to be decreased in other setups and when considering 
different observables. For instance, in Section 5.2 where α is varying, smaller values of ε and h are needed to capture 
correctly the solution.

Also, in the context of singular scattering kernels, the classical notion of scattering mean free time is not informative 
since it is equal to 0 (see (3)). Instead, we define a characteristic time using the inverse of the second eigenvalue of Q, i.e. 
the first non zero eigenvalue, and set tc = −1/λ1 . We refer to Fig. 2 for the evolution of tc w.r.t. α.

In our setting, tc ≃ 79.6 (for α = 1), which is about six times the stepsize h needed to capture the diffusive correction. 
Also, since ε is not too small, this correction plays a significant role in obtaining the correct dynamics.

In Fig. 3, we compare, for α = 1, the real and imaginary parts of the observable

û1(t, ξ) :=
π̂

0

2π
ˆ

0

ũL(t, ξ, θ,ϕ) sin(θ)dθdϕ with 4π �θ�ϕ
∑

m,m′
ũL
N(t, ξ,m,m′),

for three values of t . In Fig. 4, we compare the real and imaginary parts of
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Fig. 2. Illustration of the evolution of tc w.r.t. α.

Fig. 3. Comparisons of the real and imaginary parts of û1(t, ξ) for three observation times and for α = 1. The grid in ξ range from −0.2 to 0.2 with 100
discretization points and we run N = 2.4 × 106 particles. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this 
article.)

û2(t, ξ, θ) :=
2π
ˆ

0

ũL(t, ξ, θ,ϕ)dϕ sin(θ) with 4π �ϕ
∑

m′
ũL
N(t, ξ,m,m′),

for three values of ξ .
In Fig. 5, we compare

û3(t = 2tc, ξ = 0.02, θ) :=
2π
ˆ

0

ũL(t = 2tc, ξ = 0.02, θ,ϕ)dϕ sin(θ) with 4π �ϕ
∑

m′
ũL
N(t = 2tc, ξ = 0.02,m′),

for three values of α.
In all these illustrations, and despite somewhat fairly large values for ε and h, we observe a very good agreement 

between the Monte Carlo results and the semi-analytic calculations.

4.2. Role of the correction

In this section, we highlight the role of the correction provided by the diffusion over the unit sphere w.r.t. the k̂-variable. 
To this end, we compare the following observables obtained from the semi-analytic solution

u4(x3) =
3tc
ˆ

0

ũL(t, x⊥, x3, θ,ϕ) sin(θ)dt dx⊥ dθ dϕ, x := (x⊥, x3) ∈ R
2 × R,

with the ones obtained with our MC method, with and without this diffusive correction, and for various values of α, ε and 
h. The grid in z range from −300 to 300 with size 28 and we run N = 300 × 106 particles. According to (26) and (27), the 
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Fig. 4. Comparisons of the real and imaginary parts of û2(t, ξ, θ) for α = 1, for three values of ξ if t = tc , and for ξ = 0 if t = 10tc . We run N = 2.4 × 106

particles for the top two pictures and N = 24 × 106 for the third one.

Fig. 5. Comparisons of the real and imaginary parts of the observable û3(t = 2tc , ξ = 0.02, θ) for three values of α. We run N = 24× 106 particles.

number of samples N is taken large enough so that the RMSE (24) of the MC estimation is of order 10−5 and the relative 
MC error (25) is of order 0.03% where u4 takes values of order as low as 10−3 . With this choice of N , we can focus our 
attention on the role played by ε and h in the approximation. In Fig. 6, we represent the relative error

Errε,α := max
z

|u4(z) − u4,MC (z)|
maxz u4(z)

,

for various sizes of the cutoff ε, and where u4,MC (z) is the MC approximation to u4(z). The left picture illustrates the 
evolution of the relative error for various ε. The blue curve corresponds to the corrected MC with ε = 0.1 (with still a 
fairly large stepsize h = 0.5/
̄ε) providing at most a relative error slightly larger than 1%. The other curves correspond 
to the noncorrected MC method for several values of ε. The corrected MC consistently yields a better accuracy than the 
noncorrected version, and even in weakly singular cases where α is less than one, a very small value of ε (red and green 
curves) is necessary to match the accuracy of the corrected method. The right picture illustrates the evolution of the relative 
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Fig. 6. Illustration of the relative error Errε,α and running time of the MC method with and without a diffusive correction. The reference time in the right 
picture is the one of corrected method with ε = 0.1.

Fig. 7. Illustration of the relative error Errε,α and running time of the (corrected) Monte Carlo method.

Fig. 8. Illustration of the relative error Errε,α and running time of the (corrected) MC method.

running time of the noncorrected method w.r.t. the corrected one. For values of α less than 0.7 (weakly singular kernels), 
corrected and noncorrected methods have similar computational times for comparable accuracy, while in the case of singular 
kernels with α ≥ 1, the noncorrected methods yield a much larger cost and a much lower accuracy.

In Fig. 7, we illustrate the precision and running time sensitivity of the (corrected) MC method w.r.t. the stepsize h =
h0/
̄ε . As expected, we obtain a better precision for smaller stepsizes but at the price of a longer running time. These 
effects are amplified as α increases due to the increasing strength of the diffusion correction. In what follows, we select 
h0 = 0.3 since this yields a relative error less than 1% for a wide range of α’s while not changing significantly the running 
time.
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Fig. 9. Illustration of the numerical setting.

In Fig. 8, we depict the precision and running time sensitivity w.r.t. the cutoff parameter ε, and observe the same 
phenomena as in the case of the stepsize h. The parameter ε defines not only the accuracy of the diffusion correction, but 
also the average number of jumps, and as a consequence the running time increases as ε decreases as in the case of the 
noncorrected Monte Carlo method.

5. Numerical illustrations

5.1. The role of α

In this section, we highlight the effects of the kernel singularity on the energy density. We consider a constant α, with 
a = 0.002 in this section. Our setting is depicted in Fig. 9. The spatial variable x is decomposed into a main propagation axis 
x3 and a transverse plane x⊥ , i.e. x = (x⊥, x3) ∈ R2 ×R. The same notation holds for the direction variable k̂ = (k̂⊥, ̂k3) ∈ S2 . 
We choose an initial condition for (1) of the form

u0(x, k̂) = δ(x)δ(k̂ − k̂0), k̂0 = (0,0,1),

modeling a source located at x = 0 and embedded in the random medium, and emitting in the forward x3-direction. We 
set a function λ of the form λ(x) = 1(−5,40)(x3), that defines a scattering layer between x3 = −5 and x3 = 40. In such a 
configuration, both transmitted and reflected quantities at x3 = 40 and x3 = −5 are of interest. With our particular choice 
for k̂0 , what is obtained at x3 = −5 is purely due to backscattering.

In the following two subsections, the MC estimations are obtained using N = 1 × 109 particles and a diffusion stepsize 
h = 0.3/
̄ε . We set ε = 0.01 for the calculation of transmitted quantities, and ε = 0.1 for the reflected ones. For any value 
of α, the observation time we consider is T = 4tc , for tc the critical time computed for α = 1.

In the transmission case and when ε is too large, the mean free time is large as well and it is possible that particles 
escape the slab without undergoing any jumps, leading to inaccurate results. Hence the choice ε = 0.01. A larger value of 
ε is acceptable in the calculation of the reflected quantities since the particles exiting early would not have traveled to the 
plane located at x3 = −5, and the error is reduced compared to the transmission case.

The running times for the time-integrated transmitted (ε = 0.01) and reflected (ε = 0.1) signals for different values of α
are the following:

running time (s) α = 0.3 α = 0.7 α = 0.1 α = 1.3 α = 1.5

ε = 0.01 9.38 15.21 24.54 42.74 65.39

ε = 0.1 3.61 3.72 4.12 4.92 6.01

All these running time measurements account also for the transfer of the resulting arrays from the device to the host. 
We clearly observe a significantly larger running time for smaller values of ε and large values of α. This is due to the 
increase in scattering events as the mean free time decreases. These computational times correspond to the cost for the 
MC method to reach the expected accuracy for fixed ε’s and α’s. With our choice of N = 109 , the RMSEs (24) are of order 
10−4 (resp. 10−5) for the transmitted (resp. reflected) observables, and the relative errors are of order 1% (resp. 0.1%) for 
the transmitted (resp. reflected) observables taking values of order 10−3 (resp. 10−4 upto 10−5).

5.1.1. Energy at the boundaries of the transverse plane
In what follows, the (time-integrated) transverse reflected and transmitted energy are defined by

F T
tr(x⊥) :=

T
ˆ

0

dt

ˆ

S2

σ (dk̂)u(t, x⊥, x3 = 40, k̂) and F T
ref (x⊥) :=

T
ˆ

0

dt

ˆ

S2

σ (dk̂)u(t, x⊥, x3 = −5, k̂).

The MC estimators for these quantities are given respectively by
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Fig. 10. Illustration of the energy at the boundaries F T
tr(x⊥) and F T

ref
(x⊥) w.r.t. x1 with x2 = 0 (solid line) and x2 = 1 (dotted line) for the left picture and 

x2 = 10 (dotted line) for the right one. The RMSEs (24) are less than 6.5 ×10−4 (resp. 2.6 ×10−5) on the left picture (resp. right picture), while the relative 
errors (25) are less than 0.6% for the left picture (resp. 1.3% for the right picture) for values of the observables as low as 10−3 (resp. 10−5).

Fig. 11. Illustrations of the evolution w.r.t. α of 
ε defined by (14) and σε defined by (10). Here, a = 0.002 and ε = 0.01.

F̂ T
tr(m,n) := 1

�x⊥ N

N
∑

j=1

1(

X
j,⊥
h,ε (τ j)∈�mn, X

j

3,h,ε(τ j)>40
), F̂ T

ref (m,n) := 1

�x⊥ N

N
∑

j=1

1(

X
j,⊥
h,ε (τ j)∈�mn, X

j

3,h,ε(τ j)<−5
)

where

τ j := inf
(

t ∈ [0, T ] : X
j

3,h,ε(t) > 40 or X
j

3,h,ε(t) < −5
)

,

is the first time the j-th particle exits the slab. Note that once a particle escapes, it cannot reenter it since it propagates 
freely. Above, (�mn)m,n is a uniform square grid of the traverse plane to the x3-axis. All squares in the grid have area �x⊥ . 
Note that the grid can be different for the transmitted and reflected signals. We have considered for the transverse variable 
of the transmitted energy a uniform grid over a detector of size [−10, 10] × [−10, 10] centered around the x3-axis, and 
over a detector of size [−50, 50] × [−50, 50] for the reflected energy. For both cases, we chose 128 × 128 grid points. The 
principle of these estimators is simply to count the number of particles that exit the slab before time T and to record their 
position in the transverse plane.

In Fig. 10, we illustrate the transmitted and reflected energy flux, for several values of α. We represent the variations 
w.r.t. the first coordinate of x⊥ = (x1, x2), and for two values of x2 .

One can observe that at fixed times, the larger the α, the more diffuse are the signals. Indeed, as α increases, the jump 
intensity 
ε (in other words the number of scattering events) increases as well as the strength of the diffusive correction 
σε (see Fig. 11).

5.1.2. Time evolution of the exiting energy
Here, we are interested of the time evolution of the energy exiting the slab, and we define the (integrated) reflected and 

transmitted energy by
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Fig. 12. Time evolution of the energy at the boundaries Ftr(t) and Fref (t). The RMSE (24) are less than 8 × 10−4 (resp. 4 × 10−5) on the left picture (resp. 
right picture), while the relative errors (25) are less than 0.7% for the left picture (resp. 0.5% for the right picture) for values of the observables as low as 
10−3 (resp. 10−4).

Ftr(t) :=
ˆ

R2

dx⊥

ˆ

S2

σ (dk̂)u(t, x⊥, x3 = 40, k̂) and Fref (t) :=
ˆ

R2

dx⊥

ˆ

S2

σ (dk̂)u(t, x⊥, x3 = −5, k̂).

The MC estimators for these two quantities are given by

F̂tr(n) := 1

dt N

N
∑

j=1

1(

τ j∈(tn,tn+1], X j

3,h,ε(τ j)>40
) and F̂ref (n) := 1

dt N

N
∑

j=1

1(

τ j∈(tn,tn+1], X j

3,h,ε(τ j)<−5
).

Here, (tn)n is a uniform grid of the time interval with stepsize dt . For the transmitted signal, we have considered the time 
interval [40, 45] with a stepsize dt = 0.02, and have set [0, 4tc] with a stepsize dt = 0.4 for the backscattered signal. Note 
that the time interval starts at 40 for the transmitted energy, which is the travel time of the wave (traveling at speed c0 = 1) 
from the source to the plane x3 = 40. These estimators count the number of particles that exit the slab in the time interval 
(tn, tn+1] at each side of the slab. In Fig. 12, we illustrate the evolution of the transmitted and reflected energy, for several 
values of α.

In the case of the transmitted signal (left), and for small values of α, we see the arrival of the coherent wave at the 
proper travel time followed by the coda. When α increases, one notices the stronger impact of scattering and of the diffusive 
correction that smooths the signal out and damps its amplitude. For the largest α, we only observe a coda. Regarding the 
reflected signal (right), there is only a coda for all α due our choice of k̂0 , and one can observe two stages in the dynamics: 
backscattering increases up to a time of order tc , about which exponentially decay due to the operator Q takes over.

5.1.3. Comparison with the Henyey-Greenstein scattering kernel
In this section, we compare the solutions to the RTE with Henyey-Greenstein scattering kernel (6) for an anisotropy 

factor g close to one with the solutions to (9) with singular kernel derived from (7), that is by setting a ≡ (1 − g)/(2π) and 
α = 1 in (4). Note that the value of the constant a changes with g , and as a consequence 
̄ε , h, and σε vary accordingly. To 
illustrate this approximation, we still consider the setting depicted in Fig. 9 and the various observables introduced in the 
previous sections, but now at a time T = 300.

We observe in Fig. 13 the very good agreement between the two solutions. The reflected signal is well captured by 
our method despite fairly large values of ε and h. Also, let us mention that the computational cost is decreasing as the 
anisotropic parameter g is getting close to 1, as the overall jump intensity decreases in this case in the highly peaked 
regime g → 1. Regarding the transmitted signal, ε (and then h) needs to be lowered for an accurate approximation, as 
explained at the beginning of Section 5.1.

The RTE with a Henyey-Greenstein scattering kernel is simulated with a standard MC method. Compared to our method, 
its computational costs to achieve RMSEs of order 10−4 and 10−5 for respectively the transmitted and reflected observables 
are the following:

running time (s) g = 0.97 g = 0.98 g = 0.99

HG kernel 8.3 7.6 6.0

singular kernel, ε = 0.01 13.9 6.7 2.0

singular kernel, ε = 0.1 2.5 1.5 0.7

Here, ε = 0.01 is considered for the transmitted observables, while we set ε = 0.1 for the reflected ones. According to this 
table, lower computational times are observed with our method for the three considered g ’s compared to standard MC 
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Fig. 13. Comparison of the observables obtained using the Henyey-Greenstein scattering kernel and our singular kernel with α = 1, T = 300, ε = 0.01 for 
the transmitted observables (left panels), and ε = 0.1 for the reflected ones (right panels). The RMSEs (24) and relative errors (25) are similar to those of 
Figs. 10 and 12.

Fig. 14. Illustration of the setting with λ = 1{x3∈(−5,40)} and α(x) = α11x∈B + 1 · 1x/∈B where B is a ball centered at 0 with radius 3.

methods for the Henyey-Greenstein scattering kernel. Our MC method provides therefore an efficient tool to simulate an 
RTE with a Henyey-Greenstein kernel. For transmitted observables, g needs to be quite close to one to provide a significant 
advantage to our method.

5.2. Varying α function

In this section, we investigate the influence of a varying α function that characterizes the strength of the singularity. 
We consider two situations, one inspired from optical tomography, and the second one from wave propagation through 
atmospheric turbulence.

5.2.1. A two-stage model with a sphere
We keep the setting introduced in Section 5.1, and add a defect with a different value of α to the setting. This defect 

is modeled by ball of radius 3 centered at the origin and where α is equal to α1 . We set α ≡ 1 in the exterior of the ball, 
corresponding to the peak forward regime of the Henyey-Greenstein scattering kernel. See Fig. 14. This situation models a 
biological tissue in which statistical properties are changing and define a region of interest for imaging.
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Fig. 15. Illustrations the transmitted (left-hand-side) and reflected (right-hand-side) observables with T = 300, and ε = 0.01. For the top two pictures we 
set x2 = 0 (solid lines) and x2 = 1.5 for the top-left and x2 = 0.5 for top-right picture (dotted lines).

Fig. 16. Illustration of a three stages α-profile for a non-Kolmogorov phase function.

We illustrate in Fig. 15 the impact of the introduction of the defect on the observables introduced in Section 5.1. The 
impact is stronger on transmitted observables and quite significant, giving then the possibility to identify the defect with 
α = α1 inside the scattering medium. Reflected quantities tend to be less sensitive to the presence of the defect since a 
fraction of the signal is backscattered before reaching it.

5.2.2. Non-Kolmogorov turbulences
In this section, we keep once more the setting introduced in Section 5.1, with the difference that α takes three different 

large values depending on the altitude parametrized by x3 , see Fig. 16:

α(x3) = 5/3 · 1{x3≤2} + 4/3 · 1{2<x3≤8} + 1.9 · 1{8<x3}.
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Fig. 17. Illustrations the transmitted (left-hand-side) and reflected (right-hand-side) observables with T = 300, and ε = 0.01. For the top two pictures we 
illustrate x2 = 0 (solid lines) and x2 = 2 for the top-left and x2 = 5 for top-right picture (dot line).

The value 5/3 corresponds to standard Kolmogorov turbulences, while other values are associated with non-Kolmogorov 
turbulence models [4,52,55]. In these models, it is considered that for altitudes higher than 8 km, the atmospheric tur-
bulence yields larger statistical patterns (which tend to be created by singular kernels) than around the ground (0-2 km). 
Hence, we set α = 1.9 for altitudes greater than 8 km. The function a is no longer constant in these models, and for our 
illustrations we chose

a(r) = 0.002 · exp(−r2/(2× 0.82)).

In Fig. 17, one can notice that non-Kolmogorov turbulence yields quite different signals compared to Kolmogorov turbu-
lence, in particular for reflected quantities. As we saw in Section 5.1, the higher the α, the more diffuse is the signal which 
then enhances reflected signals. This explains the increased reflections in the non-Kolmogorov case.

6. Proofs

This section is dedicated to the proof of Proposition 2.1, describing the approximation of the RTE (1) by (9) where the 
small jumps have been replaced by a diffusion term, Proposition 2.2, providing the probabilistic representation to (9), and 
Theorem 3.1, justifying the overall MC method involving a discretization scheme for the diffusion part.

6.1. Proof of Proposition 2.1

Let vε := uε − u, so that vε(t = 0) = 0. We have

d

dt
‖vε(t)‖2L2(R3×S2)

= 2 < ∂t vε(t), vε(t) >L2(R3×S2)

= 2 < (σ 2
ε �S2 +L

ε
>)vε(t), vε(t) >L2(R3×S2) +2 < (σ 2

ε �S2 −L
ε
<)u, vε(t) >L2(R3×S2) .

Since �S2 is a nonpositive operator, we have
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< (σ 2
ε �S2 +L

ε
>)vε(t), vε(t) >L2(R3×S2)

≤ −1

2

˚

R3×S2×S2

dxσ (dp̂)σ (dk̂)
λ(x)

21+α(x)/2

ˆ

Sε
>

ρ(x, p̂ · k̂)( f (x, p̂) − f (x, k̂))2

≤ 0.

We then obtain

sup
t∈[0,T ]

‖vε(t)‖2L2(R3×S2)
≤ 2

T
ˆ

0

‖(σ 2
ε �S2 −L

ε
<)u(t)‖2

L2(R3×S2)
dt,

which concludes the proof using the following lemma.

Lemma 6.1. Let 0 < ε < ε0 < 1. Then, for any f ∈ L2x(R
3, C4

k̂
(S2)), we have

‖(Lε
< − σ 2

ε �S2) f ‖L2(R3×S2) ≤ ε2−αM/2 E( f )

where, with f̌ (x, v) := f (x, v/|v|) for v ∈ R3 ,

E( f ) := π

3(1− ε0)6
supλ supa sup

|h|≤rε0

‖D4
k f̌ (·, · + h)‖L2(R3×S2)

+
( 6π

(1 − ε0)3
supa + 24π sup

v∈[0,2
√
2ε0]

|a′′(v)|
)

supλ‖�S2 f ‖L2(R3×S2).

(34)

Proof. Before starting the proof, we introduce the retraction R
k̂
at k̂ onto the sphere R

k̂
(h) := k̂+h

|k̂+h|
, and

B
ε,k̂

:= R−1

k̂
(Sε

<) =
{

h = β1 k̂
⊥
1 + β2 k̂

⊥
2 : β = (β1, β1) ∈ R

2 with |β| < rε
}

,

where (k̂⊥
1 , ̂k⊥

2 ) stands for an orthonormal basis of k̂⊥ . We also recall that rε =
√

1− (1− ε)2/(1 − ε), coming from the 
relation tan(arccos(s)) =

√
1− s2/s and (8). In different terms, B

ε,k̂
is a ball centered at 0 with radius rε on the tangent 

plane to the unit sphere at k̂, and the retraction R
k̂
holds from B

ε,k̂
onto Sε

< .

To prove the lemma, we start with the following change of variables p̂ = R
k̂
(h) in Lε

< , so that

L
ε
< f (x, k̂) = λ(x)

21+α(x)/2

ˆ

B
ε,k̂

ρ(x, R
k̂
(h) · k̂)

(

f (x, R
k̂
(h)) − f (x, R

k̂
(0))

)

|det JacR
k̂
(h)|dh.

Using that f̌ (x, ̂k + h) = f (x, R
k̂
(h)) and f̌ (x, ̂k) = f (x, ̂k), one can decompose Lε

< f as

L
ε
< f (x, k̂) = D1 + D2 + D3 + D4,

where the terms D j follow with obvious notations from the Taylor expansion

f̌ (x, k̂ + h) − f̌ (x, k̂) = Dk f̌ (x, k̂)(h) + 1

2!D
2
k f̌ (x, k̂)(h,h) + 1

3! D
3
k f̌ (x, k̂)(h,h,h)

+ 1

3!

1
ˆ

0

(1 − s)3D4
k f̌ (x, k̂ + sh)(h,h,h,h)ds.

The terms D1 and D3 Using that the ball B
ε,k̂

in the tangent plane is symmetric with respect to 0, we just make the change 
of variables h → −h, so that D1 = −D1 and D3 = −D3 leading to D1 = D3 = 0.

The term D4 We have

|D4| ≤
λ(x)

3!21+α(x)/2

1
ˆ

0

ds (1− s)3
ˆ

B
ε,k̂

dhρ(x, R
k̂
(h) · k̂)‖D4

k f̌ (x, k̂ + sh)‖ |h|4|det JacR
k̂
(h)|dh.
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Since R
k̂
(h) = k̂+h

√

1+|h|2
, we have

R
k̂
(h) · k̂ = 1

√

1+ |h|2
and |det JacR

k̂
(h)| = 1

√

1+ |h|2
.

As a consequence, we find

‖D4‖L2(R3×S2) ≤ 1

4! supv
a(v) sup

|h|≤rε

‖D4 f̌ (·, · + h)‖L2(R3×S2)

× sup
x

λ(x)

21+α(x)/2

ˆ

{|h|≤rε}

|h|4

(1− 1/
√

1+ |h|2)1+α(x)/2
dh.

Changing to polar coordinates in the last integral gives

ˆ

{|h|≤rε}

|h|4

(1− 1/
√

1+ |h|2)1+α(x)/2
dh = 2π

rε
ˆ

0

r5

(1− 1/
√
1+ r2)1+α(x)/2

dr

= 2π

ε/(1−ε)
ˆ

0

v1−α(x)/2(2+ v)2(v + 1)2+α(x)/2dv

where we used the change of variables v =
√
1+ r2 − 1 and that 

√

1+ r2ε − 1 = ε/(1 − ε). This gives finally

‖D4‖L2(R3×S2) ≤ π

3
sup
v

a(v) sup
h∈Bε

‖D4 f̂ (·, · + h)‖L2(R3×S2) sup
x

λ(x)
ε2−αM/2

(1− ε)6
.

The term D2 For this last term, we have

D2 = λ(x)

22+α(x)/2

ˆ

B
ε,k̂

ρ(x, R
k̂
(u) · k̂)D2 f̌ (x, k̂)(h,h)|det JacR

k̂
(h)|dh,

with

D2 f̌ (x, k̂)(h,h) = h21 ∂2
k1k1

f̌ (x, k̂) + h22 ∂2
k2k2

f̌ (x, k̂) + 2h1h2 ∂2
k1k2

f̌ (x, k̂),

and, accordingly, the following decomposition D2 = D21 + D22 + 2D23 . Applying the change of variables h = (h1, h2) →
(−h1, h2) leads to D23 = 0. Setting h = (h1, h2) → (h2, h1) leads to

D2 = λ(x)

23+α(x)/2

ˆ

B
ε,k̂

ρ(x, R
k̂
(h) · k̂)|h|2|det JacR

k̂
(h)|dh T race(Hess f̌ (x, k̂)),

where

T race(Hess f̌ (x, k̂)) = �p f
(

x,
p

|p|
)

|p=k̂
= �S2 f (x, k̂).

Furthermore, with the change of variables p̂ = R
k̂
(h), we find

ˆ

B
ε,k̂

ρ(x, R
k̂
(h) · k̂)|h|2|det JacR

k̂
(h)|dh =

ˆ

Sε
<

ρ(x, p̂ · k̂)|R−1

k̂
(p̂)|2σ (dp̂),

and note that for p̂ · k̂ = cos(θ), we have |R−1

k̂
(p̂)|2 = tan2(θ). As a result, moving to spherical coordinates, and performing 

the change of variables v = tan(θ/2) together with the relation

arccos(s) = 2arctan
(

√
1− s2

1+ s

)

for s ∈ (−1,1],

we find, with r′ε =
√

1− (1− ε)2/(2 − ε),
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ˆ

Sε
<

ρ(x, p̂ · k̂)|R−1

k̂
(p̂)|2σ (dp̂) = 2π

arccos(1−ε)
ˆ

0

ρ(x, cos(θ)) tan2(θ) sin(θ)dθ

= 23−α(x)/2π

r′ε
ˆ

0

a(2v/
√
1+ v2)(1+ v2)α(x)/2

(1− v2)2vα(x)−1
dv,

leading to

D2 = D̃2�S2 f (k̂) := 21−α(x)πλ(x)

r′ε
ˆ

0

a(2v/
√
1+ v2)(1+ v2)α(x)/2

(1− v2)2vα(x)−1
dv �S2 f (x, k̂).

Now, let us introduce

σ̃ 2
ε (x) := 21−α(x)πλ(x)

r′ε
ˆ

0

a(2v/
√

1+ v2)
dv

vα(x)−1
,

and remark that

|D̃2 − σ̃ 2
ε (x)| ≤ 3 · 23−α(x)πλ(x) sup

v
a(v)

1

(1 − r′ε
2)3

r′ε
ˆ

0

v3−α(x)dv ≤ 3 · 22−α(x)πλ(x) sup
v

a(v)
r′ε

2

(1− r′ε
2)3

≤ 6π sup
x

λ(x) sup
v

a(v)
ε2−αM/2

(1− ε)3
,

since r′ε ≤
√
2ε, 0 ≤ αm ≤ α(x) ≤ αM < 2 and 1 − r′ε

2 = 2(1−ε)
2−ε > 2(1 − ε). With the definition of σε given in (10), we obtain 

using a′(0) = 0,

|σ̃ 2
ε (x) − σ 2

ε (x)| ≤ 25πλ(x) sup
ṽ∈[0,2

√
2ε]

|a′′(ṽ)|
r′ε
ˆ

0

v3−α(x)dv,

≤ 24π sup
x

λ(x) sup
v∈[0,2

√
2ε]

|a′′(v)|ε2−αM/2.

Collecting the various estimates on the D j and using that ε ≤ ε0 < 1 concludes the proof of Lemma 6.1 and therefore of 
Proposition 2.1. �

6.2. Proof of Proposition 2.2

We first show that the infinitesimal generator of the Markov process Dε is Aε .

Infinitesimal generator for Dε Let f be a smooth bounded function on R3 × S2 . The goal of this section is to prove that

lim
h→0+

1

h

(

Ez[ f (Dε(h))] − f (z)
)

= Aε f (z). (35)

To this end, we introduce the first jump time T1 to obtain

Ez[ f (Dε(t))] = Ez[ f (Dε(t))1(T1>t)] + Ez[ f (Dε(t))1(T1≤t)]. (36)

Using conditional expectations, we find for the first term

Ez[ f (Dε(t))1(T1>t)] = Ez[ f (ψ z
0(t))1(T1>t)] = Ez

[

Ez[ f (ψ z
0(t))1(T1>t)|ψ z

0(s), s ∈ [0, t]]
]

= Ez

[

f (ψ z
0(t))Pz

(

T1 > t |ψ z
0(s), s ∈ [0, t]

)
]

= Ez

[

f (ψ z
0(t))e

−
´ t
0 
ε(ψ

z
0(s))ds

]

.

With the following notations for the flow ψ z
n ,

ψ z
n = (Xx

n, K
k̂
n) =

(

(Xx
j,n) j=1,2,3, (K

k̂
j,n) j=1,2,3

)

∈ R
3 × S

2,
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together with f̌ (x, k) = f (x, k/|k|) for (x, k) ∈ R3 × R3 , the Itô formula yields

df (ψ z
n (t)) = d f̌ (ψ z

n(t)) = ∇x f̌ (ψ
z
n(t)) · dXx

n(t) + ∇k f̌ (ψ
z
n(t)) · dK k̂

n(t)

+ 1

2

∑

j,l=1,2,3

∂2
k jkl

f̌ (ψ z
n(t))d < K k̂

j,n(t), K
k̂
l,n(t) >

= K k̂
n(t) · ∇x f̌ (ψ

z
n(t))dt + σ 2

ε (Xx
n(t))�S2 f (ψ

z
n(t))dt

+
√
2σε(X

x
n(t))∇k f̌ (ψ

z
n(t)) · (K k̂

n(t) × dWn(t)).

Above, we have used the fact that

�S2 f (x, k̂) = �k f̌ (x, k̂) −
∑

j,l=1,2,3

k̂ jk̂l∂
2
k jkl

f̌ (x, k̂) − 2
∑

j=1,2,3

k̂ j∂k j
f̌ (x, k̂). (37)

Therefore, we have for n = 0,

d
(

( f (ψ z
0(t)) − f (z))e−

´ t
0 
ε(ψ z

0(s))ds
)

=
(

df (ψ z
0(t)) − 
ε(ψ

z
0(t))( f (ψ

z
0(t)) − f (z))

)

e−
´ t
0 
ε(ψ z

0(s))ds

so that

lim
h→0+

1

h
Ez[( f (Dε(h)) − f (z))1(T1>h)] = k̂ · ∇x f (z) + σ 2

ε (x)�S2 f (z), ∀z = (x, k̂) ∈ R
3 × S

2.

Regarding the second term in (36), we find, using the Markov property in the third line,

Ez

[

f (Dε(h))1(T1≤h)

]

= Ez

[

Ez[ f (Dε(h)) | T1]1(T1≤h)

]

= Ez

[
h
ˆ

0

Ez[ f (Dε(h)) | T1 = v]
ε(ψ
z
0(v)) e−

´ v
0 
ε(ψ

z
0(s))dsdv

]

= Ez

[
h
ˆ

0

ˆ

R3×S2

Ez′ [ f (Dε(h − v))]�ε(ψ
z
0(v),dz′)
ε(ψ

z
0(v)) e−

´ v
0 
ε(ψ z

0(s))dsdv
]

= Ez

[
h
ˆ

0

ˆ

S2

E(Xx
0(h−w),p̂)[ f (Dε(w))]πε(ψ

z
0(h − w), p̂)σ (dp̂)
ε(ψ

z
0(h − w)) e−

´ h−w
0 
ε(ψ z

0(s))dsdw
]

,

where the probability �ε and the density πε are defined respectively in (16) and (17). As a consequence,

lim
h→0+

1

h
Ez[ f (Dε(h))1(T1≤h)] = 
ε(z)

ˆ

S2

f (x, p̂)πε(z, p̂)σ (dp̂).

Moreover, we have

Pz(T1 ≤ h) = Ez

[

Pz

(

T1 ≤ h |ψ z
0(s), s ∈ [0,h]

)]

= Ez

[

1− e−
´ h
0 
ε(ψ z

0(s))ds
]

,

and it is then direct to see that

lim
h→0

1

h
Pz(T1 ≤ h) = 
ε(z).

This finally yields

lim
h→0+

1

h
Ez[( f (Dε(h)) − f (z))1(T1≤h)] = 
ε(z)

ˆ

S2

( f (x, p̂) − f (x, k̂))πε(z, p̂)σ (dp̂),

which gives (35) collecting all results.
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Proof of (18) Since Dε is a solution to the martingale problem associated to Aε (see [15, Proposition 1.7 pp. 162]), we have, 
for any smooth bounded function f on R3 × S2 ,

μt( f ) = μ0( f ) +
t
ˆ

0

μs(Aε f )ds, where μt( f ) := Eμ0 [ f (Dε(t))].

Let

νt( f ) := 1

ū0

ˆ

R3×S2

uε(t, x, k̂) f (x, k̂)dxσ (dk̂).

Since uε solves (9), we have

uε(t) = u0 +
t
ˆ

0

A
∗
εuε(s)ds,

where A∗
ε stands for the adjoint operator of Aε in L2(R3 × S2). Then,

νt( f ) = μ0( f ) + 1

ū0

ˆ

R3×S2

t
ˆ

0

A
∗
εuε(s, x, k̂)ds f (x, k̂)dxσ (dk̂)

= μ0( f ) +
t
ˆ

0

1

ū0

ˆ

R3×S2

uε(s, x, k̂)Aε f (x, k̂)dxσ (dk̂)ds = μ0( f ) +
t
ˆ

0

νs(Aε f )ds.

Therefore, according to [15, Proposition 9.18 pp. 251], we have μt = νt for any t ≥ 0, which concludes the proof.

6.3. Proof of Theorem 3.1

The proof of this result is provided in three steps. The first step consists in rewriting the probabilistic representation (18)
for (9) in terms of a SDE with jumps. The second step concerns the error analysis of the solution to this later SDE with its 
discretized version. Finally, the last step gathers all the error estimated and concludes the proof.

6.3.1. Step 1
We first introduce an equivalent formulation (in the statistical sense) for the process Dε in terms of a stochastic differen-

tial equation (SDE) with jumps. This representation is useful when comparing with the discrete scheme. Let D̃ε = ( X̃ε, K̃ε)

be the solution to the following SDE with jumps:

dX̃ε(t) = K̃ε(t)dt

dK̃ε(t) =
√
2σε( X̃ε(t

−)) K̃ε(t
−) × dW − 2σ 2

ε ( X̃ε(t
−))K̃ε(t

−)dt

+
ˆ

(0,π)×(0,2π)×(0,1)

R̃(θ,ϕ, D̃ε(t
−), v)P (dt,dθ,dϕ,dv)

(38)

where the function R̃ is defined by, for z = (x, ̂k),

R̃(θ,ϕ, z, v) =
{

R(θ,ϕ, k̂) − k̂ if v ≤ 
ε(z)πε(z, R(θ,ϕ, k̂))/
̄ε

0 otherwise.

Above, R is defined in (28), 
ε in (14), 
̄ε in (21), πε in (17), and P is a random Poisson measure with intensity measure

μ(dt,dθ,dϕ,du) = 
̄ε1(0,∞)×(0,π)×(0,2π)×(0,1)(t, θ,ϕ, v) sin(θ)dt dϕ dθ/(4π). (39)

See e.g. [2, Chapter 2] for more details on Poisson random measures. The notation t− is standard and refers to the left limit 
when approaching t before a jump. With this construction, the infinitesimal generator for the Markov process D̃ε is

Ãε f (z) = k̂ · ∇x f (z) + σ 2
ε (x)�S2 f (z) + 
̄ε

ˆ

(0,π)×(0,2π)×(0,1)

( f (x, k̂ + R̃(θ,ϕ, z, v)) − f (z))σ (dp̂)dv,

and we have the following result.
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Lemma 6.2. The processes D̃ε and Dε have the same distribution.

Proof. D̃ε and Dε are both Markov processes and are therefore characterized by their generators. We just have then to 
prove that Aε g = Ãε g for any bounded smooth function g . This is a direct consequence of the definition to R̃ . Indeed, 
denoting by Ĩε and Iε the integral operators in respectively Ãε and Aε , we have with z = (x, ̂k),

Ĩε g(z) = 
̄ε

ˆ

(0,π)×(0,2π)×(0,1)

(g(x, k̂ + R̃(θ,ϕ, z, v)) − g(z)) sin(θ)dϕ dθ dv/(4π)

= 
̄ε

ˆ

(0,π)×(0,2π)


ε(z)πε(z,R(θ,ϕ,k̂))/
̄ε
ˆ

0

dv (g(x, R(θ,ϕ, k̂)) − g(z)) sin(θ)dϕ dθ/(4π)

= 
̄ε

ˆ

S2


ε(z)πε(z, p̂)


̄ε

(g(x, p̂) − g(z))σ (dp̂) = Iε g(z),

which concludes the proof. �

6.3.2. Step 2
The goal is now to prove that the discretized process Dh,ε approximates D̃ε in a statistical sense. We use for this the 

notations of Section 3.2 for Xn,m , Kn,m and K̂n,m . For simplicity, we suppose that the Gaussian vectors (Wn,m) in (22)
are obtained from a single 3D standard Brownian motion W as follows: for n ≥ 0 and m = 0, . . . , mn , we set Wn,m =
(W (Tn,m + hn,m) − W (Tn,m))/

√

hn,m . In the sequel, we will use the following process, defined by, for t ∈ [Tn,m, Tn,m + hn,m], 
m = 0, . . . , mn ,

⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

Xn,m(t) = Xn,m +
t
ˆ

Tn,m

K̂n,mds

Kn,m(t) = K̂n,m − 2

t
ˆ

Tn,m

σε(Xn,m)K̂n,mds +
√
2

t
ˆ

Tn,m

σε(Xn,m) K̂n,m × dW (s).

(40)

For t ≥ 0, we then combine the (Xn,m, Kn,m) into

Dh,ε(t) = (Xh,ε(t),Kh,ε(t)) =
∞
∑

n=0

mn∑

m=0

1[Tm,n,Tm,n+hn,m)(t)�n,m(t),

where �n,m(t) = (Xn,m(t), Kn,m(t)) is the solution to (40) with initial condition �n,m(Tn,m) = (Xn,m, K̂n,m). Note that Dh,ε

is simply an interpolation of Dh,ε in the intervals [Tn,m, Tn,m + hn,m] that will allow us to use the Itô formula.

For any smooth function f , we now introduce b the (smooth) solution to the following backward RTE,

∂tb + k̂ · ∇xb + λ(x)

21+α(x)/2

ˆ

S2

ρ(x, k̂ · p̂)(b(p̂) − b(k̂))σ (dp̂) = 0, (41)

with terminal condition b(T , x, ̂k) = f (x, ̂k) and use the notation b̌(t, x, k) = b(t, x, k/|k|), (t, x, k) ∈ [0, T ] × R3 × R3 . We 
have the following result.

Proposition 6.1. For any T > 0, any smooth bounded function f on R3 × S2 , and any (x, ̂k) ∈ R3 × S2 , we have
∣
∣E

(x,k̂)
[ f (Dh,ε(T ))] − E

(x,k̂)
[ f (D̃ε(T ))]

∣
∣ ≤ ε2−αM/2 2T E∞(b) + hF1(b),

where E∞(b) is defined as in (34) with L2 norms replaced by L∞ norms in all variables, and where F1(b) is an explicit function 
independent of ε and h that depends on derivatives of b up to order 4.

The notation E
(x,k̂)

above indicates that the process under the expectation starts at the point (x, ̂k).

Proof. The proof consists in analyzing the discretization error of the diffusion process in a weak sense following the ideas 
of [53].
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We first write

Eh,ε := Ez[ f (Dh,ε(T ))] − Ez[ f (D̃ε(T ))] = Ez[b(T , Dh,ε(T ))] − Ez[b(T , D̃ε(T ))],

with z = (x, ̂k). Using the Itô formula, see e.g. [2, Th 4.4.7 p. 226], together with the expression of �S2 given in (37), we 
have

Ez[b(T , D̃ε(T ))] − b(0, z) = Ez

[
T
ˆ

0

∂tb(t, D̃ε(t)) + K̃ε(t) · ∇xb(t, D̃ε(t))

+ σ 2
ε ( X̃ε(t))�S2b(t, D̃ε(t)) + I

ε
>(t)dt

]

,

where

I
ε
>(t) = λ( X̃ε(t))

21+α( X̃ε(t))/2

ˆ

Sε
>

ρ( X̃ε(t), K̃ε(t) · p̂)(b(t, X̃ε(t), p̂) − b(t, X̃ε(t), K̃ε(t))σ (dp̂).

Using the fact that b satisfies (41), we find

Ez[b(T , D̃ε(T ))] = b(0, z) + Ez

[
T
ˆ

0

σ 2
ε ( X̃ε(t))�S2b(t, D̃ε(t)) − I

ε
<(t)dt

]

,

where Iε
< is as Iε

> with Sε
> replaced by Sε

< . Following the lines of the proof of Lemma 6.1, we obtain

|E[b(T , D̃ε(T ))] − b(0, z)| ≤ ε2−αM/2 T E∞(b),

where E∞(b) is defined as in (34) with L2 norms replaced by L∞ norms. We move now to the term Ez[b(T , Dh,ε(T ))]
which requires more work. Decomposing the interval [0, T ] according to the grid (Tn,m), we have

b(T , Dh,ε(T )) − b(0, z) = b̌(T , Dh,ε(T )) − b̌(0, z)

=
∑

n≥0

∑

m≥0

b̌(Tn,m+1 ∧ T , Dh,ε(Tn,m+1 ∧ T )) − b̌(Tn,m ∧ T , Dh,ε(Tn,m ∧ T ))

+ b̌(Tn,m ∧ T , Dh,ε(Tn,m ∧ T )) − b̌(Tn,m ∧ T , Dh,ε(Tn,m ∧ T−))

=: B1 + B2,

with obvious notations and where B1 is meant to capture the dynamic between jumps while B2 captures that at the jumps. 
The double sum and the Tn,m ∧ T are only here to simplify the proof. Note that in order to define the sum for all m ≥ 0, we 
set Tn,m = T for m >mn , and note also that there is only a finite number of terms in the sums. We are then led to estimate 
the differences in B1 and B2 for which we will use the process Dh,ε . We introduced b̌ since Kh,ε is not necessarily on the 
sphere between the grid points. Since T is on the grid, we have by definition Dh,ε(Tn,m ∧ T ) = Dh,ε(Tn,m ∧ T ). Consider 
now the notation

D̂ε,h := (Xε,h, K̂ε,h) with K̂ε,h := Kε,h

|Kε,h|
.

By construction, the process D̂h,ε is continuous at the times Tn,m that do not correspond to jump times, so that

b̌(Tn,m,Dh,ε(Tn,m)) = b(Tn,m, D̂h,ε(Tn,m)) = b(Tn,m, D̂h,ε(T
−
n,m)) = b̌(Tn,m,Dh,ε(T

−
n,m))

for those Tn,m . As a consequence, B2 indeed only accounts for jumps. We will then estimate B1 using the Itô formula for 
Dh,ε between Tn,m and Tn,m+1 , and the properties of Poisson random measures for B2 . For the latter, we notice that we 
have by construction Dh,ε(T̄

−
n ) = D̂h,ε(T̄

−
n ). Using then the random Poisson measure P with intensity measure μ introduced 

in (38) and (39), we can write

B2 =
T
ˆ

0

(

(b̌(t,Dh,ε(t
−)) + R̄(θ,ϕ, D̂h,ε(t

−), v)) − b̌(t,Dh,ε(t
−))

)

P (dt,dθ,dϕ,dv),

so that, together with the fact that P − μ is a measure-valued martingale, see e.g. [2, Chapter 2],
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Ez[B2] =
∑

n

∑

m

Ez

[
Tn,m+1∧T
ˆ

Tn,m∧T

Ĩ
ε
>(t)dt

]

with

Ĩ
ε
>(t) = λ(Xh,ε(t))

21+α(Xh,ε(t))/2

ˆ

Sε
>

ρ(Xh,ε(t), K̂h,ε(t) · p̂)(b̌(t,Xh,ε(t), p̂) − b̌(t,Xh,ε(t),Kh,ε(t))σ (dp̂).

For B1 , we have from the Itô formula

Ez[B1] =
∑

n

∑

m

Ez

[
Tn,m+1∧T
ˆ

Tn,m∧T

∂t b̌(t,Dh,ε(t)) +Kh,ε(Tn,m) · ∇xb̌(t,Dh,ε(t)) + σ 2
ε (Xh,ε(Tn,m))Bε

n,m(t)dt
]

where

B
ε
n,m(t) = �kb̌(t,Dh,ε(t)) −Kh,ε(Tn,m)T D2

k b̌(t,Dh,ε(t))Kh,ε(Tn,m) − 2Kh,ε(Tn,m) · ∇kb̌(t,Dh,ε(t)).

As a result,

Ez[B1 + B2] =
∑

n

∑

m

Ez

[
Tn,m+1∧T
ˆ

Tn,m∧T

∂t b̌(t,Dh,ε(t)) +Kh,ε(Tn,m) · ∇xb̌(t,Dh,ε(t))

+ σ 2
ε (Xh,ε(Tn,m))Bε

n,m(t) + Ĩ
ε
>(Dh,ε(t))dt

]

.

Using again the fact that b satisfies (41), we have

∂tb(t,Dh,ε(Tn,m)) +Kh,ε(Tn,m) · ∇xb(t,Dh,ε(Tn,m)) +Qb(t,Dh,ε(Tn,m)) = 0,

which also holds true for b̌ since the variable Kh,ε(Tn,m) has norm 1 at the grid points Tn,m . As a consequence,

Ez[b(T , Dh,ε(T ))] − b(0, z) =
∑

n

∑

m

7
∑

j=1

E
( j)
n,m

where

E
(1)
n,m := Ez

[
Tn,m+1∧T
ˆ

Tn,m∧T

∂t b̌(t,Dh,ε(t)) − ∂t b̌(t,Dh,ε(Tn,m))dt
]

E
(2)
n,m := Ez

[
Tn,m+1∧T
ˆ

Tn,m∧T

Kh,ε(Tn,m) · (∇xb̌(t,Dh,ε(t)) − ∇xb̌(t,Dh,ε(Tn,m)))dt
]

E
(3)
n,m := Ez

[
Tn,m+1∧T
ˆ

Tn,m∧T

σ 2
ε (Xh,ε(Tn,m)) (�kb̌(t,Dh,ε(t)) − �kb̌(t,Dh,ε(Tn,m)))dt

]

E
(4)
n,m := Ez

[
Tn,m+1∧T
ˆ

Tn,m∧T

−σ 2
ε (Xh,ε(Tn,m))Kh,ε(Tn,m)T (D2

k b̌(t,Dh,ε(t)) − D2
k b̌(t,Dh,ε(Tn,m)))Kh,ε(Tn,m)dt

]

E
(5)
n,m := Ez

[
Tn,m+1∧T
ˆ

Tn,m∧T

−2σ 2
ε (Xh,ε(Tn,m))Kh,ε(Tn,m) · (∇kb̌(t,Dh,ε(t)) − ∇kb̌(t,Dh,ε(Tn,m)))dt

]

E
(6)
n,m := Ez

[
Tn,m+1∧T
ˆ

Tn,m∧T

σ 2
ε (Xε(Tn,m))�S2b(t,Dh,ε(Tn,m)) − Ĩ

ε
<(Dh,ε(Tn,m))dt

]
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E
(7)
n,m := Ez

[
Tn,m+1∧T
ˆ

Tn,m∧T

Ĩ
ε
>(Dh,ε(t)) − Ĩ

ε
>(Dh,ε(Tn,m))dt

]

with

Ĩ
ε
<(Dh,ε(t)) = λ(Xh,ε(t))

21+α(Xh,ε(t))/2

ˆ

Sε
<

ρ(Xh,ε(t), K̂h,ε(t) · p̂)(b̌(t,Xh,ε(t), p̂) − b̌(t,Dh,ε(t))σ (dp̂). (42)

In the estimates below involving b̌, derivatives involving k �→ k̂ = k/|k| produce terms of the form 1/|k|p for some p > 0. 
These terms are due to the fact that Kn,m does not stay on the sphere at all times. However, these terms can be bounded 
uniformly thanks to the following lemma.

Lemma 6.3. We have for any n ≥ 0 and m ≤mn ,

inf
s∈[Tn,m,Tn,m+hn,m)

|Kn,m(s)| ≥ (1− 2hσ 2
ε,∞) ≥ 1

2
,

for h and ε small enough, and

sup
s∈[Tn,m,Tn,m+hn,m)

E
[

|Kn,m(s)|2 | Tn,m, Tn,m+1

]

≤ 1+ 4hσ 2
ε,∞ ≤ 2.

Proof. For s ∈ [Tn,m, Tn,m + hn,m], Kn,m can be rewritten as the sum of two orthogonal components

Kn,m(s) = (1 − 2(t − Tn,m)σ 2
ε (Xn,m))K̂n,m +

√
2σε(Xn,m) K̂n,m × (W (s) − W (Tn,m))

so that

|Kn,m(s)|2 ≥ (1− 2hσ 2
∞,ε)

2.

Now for the upper bound, using that Wn and P are independent, we have

E
[

|Kn,m(s)|2 | Tn,m, Tn,m+1

]

≤ (1+ 2hσ 2
ε,∞) + 2σ 2

ε,∞ E
[

|W (s) − W (Tn,m)|2 | Tn,m, Tn,m+1

]

≤ 1+ 4hσ 2
ε,∞

≤ 2,

where we used that 4hσ 2
ε,∞ ≤ 1. This concludes the proof. �

For E(1)
n,m Using the Itô formula between Tn,m and Tn,m+1 , we find

E

[

∂t b̌(t,Dh,ε(t)) − ∂t b̌(t,Dh,ε(Tn,m))

∣
∣
∣ Tn,m, Tn,m+1

]

=
t
ˆ

Tn,m

Kh,ε(Tn,m) · ∇x∂t b̌(t,Dh,ε(s))

+ σ 2
ε (Xh,ε(Tn,m))

(

�k∂t b̌(t,Dh,ε(s)) −Kh,ε(Tn,m)T D2
k∂t b̌(t,Dh,ε(s))Kh,ε(Tn,m)

− 2Kh,ε(Tn,m) · ∇k∂t b̌(t,Dh,ε(s))
)

ds,

so that

|E(1)
n,m| ≤ h

(

‖D2
t,xb̌‖∞ + 2σ 2

ε,∞(‖D3
t,k,kb̌‖∞ + ‖D2

t,kb̌‖∞)
)

,

where σ∞,ε = supx σε(x). When ε ≤ ε0 , we have σ∞,ε ≤ σ∞,ε0 since r′ε is an increasing function of ε. As a result, we obtain

∑

n

∑

m

|E(1)
n,m| ≤ h T

(

‖D2
t,xb̌‖∞ + 2σ 2

∞,ε0
(‖D3

t,k,kb̌‖∞ + ‖D2
t,kb̌‖∞)

)

=: hF2(b).
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For E( j)
n,m with j = 2, . . . , 5 Following the same lines as above, we have

∑

n

∑

m

5
∑

j=2

|E( j)
n,m| ≤ 2h T

(

‖D2
x,xb̌‖∞ + 2σ 2

∞,ε0
(‖D3

x,k,kb̌‖∞ + ‖D2
x,kb̌‖∞)

)

+ 4h T σ 2
∞,ε0

(

‖D2
x,kb̌‖∞ + ‖D3

x,k,kb̌‖∞ + 2σ 2
∞,ε0

(2‖D3
k,k,kb̌‖∞ + ‖D4

k,k,k,kb̌‖∞ + ‖D2
k,kb̌‖∞)

)

=: hF3(b).

For E(6)
n,m For this term, we follow the proof of Lemma 6.1 and find
∑

n

∑

m

|E(6)
n,m| ≤ T ε2−αM/2 E∞(b),

where E∞(b) is defined as before.

For E(7)
n,m Starting from (42), we have

Ĩ
ε
>(Dh,ε(t)) = λ(Xh,ε(t))

21+α(Xh,ε(t))/2

ˆ

Sε
>

ρ(Xh,ε(t), K̂h,ε(t) · p̂)(b̌(t,Xh,ε(t), p̂) − b̌(t,Xh,ε(t), K̂h,ε(t))σ (dp̂)

= λ(Xh,ε(t))

21+α(Xh,ε(t))/2

2π
ˆ

0

dϕ

1−ε
ˆ

−1

dsρ(Xh,ε(t), s)

×
(

b̌
(

t,Xh,ε(t), sK̂h,ε(t) +
√

1− s2 G(ϕ, K̂h,ε(t))
)

− b̌
(

t,Xh,ε(t), K̂h,ε(t)
)
)

where the last line is obtained by changing to spherical coordinates with s = cos(θ), and

G(ϕ,k) := cos(ϕ)k̂⊥
1 + sin(ϕ)k̂⊥

2 .

Above, (k̂⊥
1 , ̂k⊥

2 ) forms an orthonormal basis of the plane k̂⊥ . Note that the choice of (k̂⊥
1 , ̂k⊥

2 ) does not play any role since 
the variable ϕ is integrated. Now, writing

Ĩ
ε
>(Dh,ε(t)) = λ(Xh,ε(t))

21+α(Xh,ε(t))/2

2π
ˆ

0

dϕ

1−ε
ˆ

−1

ds

1
ˆ

0

dv ρ(Xh,ε(t), s)

×
(

(s − 1)K̂h,ε(t) +
√

1− s2 G(ϕ, K̂h,ε(t))
)

· ∇kb̌
(

t,Xh,ε(t), (1 + v(s − 1))K̂h,ε(t) + v
√

1− s2G(ϕ, K̂h,ε(t))
)

,

and using that G(ϕ + π , k) = −G(ϕ, k), we just have to focus on

Ĩ
ε
>(Dh,ε(t)) = λ(Xh,ε(t))

21+α(Xh,ε(t))/2

2π
ˆ

0

dϕ

1−ε
ˆ

−1

ds

1
ˆ

0

dv ρ(Xh,ε(t), s)(s − 1)K̂h,ε(t)

· ∇kb̌
(

t,Xh,ε(t), (1 + v(s − 1))K̂h,ε(t) + v
√

1− s2 G(ϕ, K̂h,ε(t))
)

.

Before applying the Itô formula to this term, we rewrite G as

G(ϕ, k̂) =
(

I3 + sin(ϕ)Q (k̂) + (1− cos(ϕ))Q 2(k̂)
)

H1(k̂)

where I3 is the 3 × 3 identity matrix, Q is defined by (29), and where

H1(k̂) := 1
√

k̂21 + k̂22

⎛

⎝

k̂2

−k̂1
0

⎞

⎠ = 1
√

k21 + k22

⎛

⎝

k2
−k1
0

⎞

⎠ ,

which is orthogonal to k̂ = k/|k|. In fact, G(ϕ, ̂k) corresponds to the rotation of H1(k̂) ∈ k̂⊥ with angle ϕ and axis k̂. This 
choice simplifies calculations. Now, note that
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1−ε
ˆ

−1

ρ(x, s)(s − 1)ds ≤
1
ˆ

−1

ρ(x, s)(s − 1) ≤ ‖a‖∞
21−ηm/2

1− ηM/2
,

so that E(7)
n,m does not depend on ε. Applying the Itô formula, we obtain

∑

n

∑

m

|E(7)
n,m| ≤hT (1 + (1+ 27 · 33)σ 2

∞,ε0
)‖a‖∞

21−ηm/2

1− ηM/2

(

1+ 1

1− ηM/2

)

×
(

‖∇xλ‖∞ + ‖λ‖∞ + ‖∇xα‖∞
)(

‖D1
k b̌‖∞ + ‖D2

k,kb̌‖∞
)

=: hF4(b)
Setting finally F1 := F2 + F3 + F4 and gathering all previous results concludes the proof of Proposition 6.1. �

6.3.3. Step 3 and conclusion
We remark first that the error bound in Proposition 6.1 does not depend on the starting point (x, ̂k). Then, from this 

pointwise result, we find

∣
∣Eμ0 [ f (Dh,ε(T ))] − Eμ0 [ f (D̃ε(T ))]

∣
∣ ≤

ˆ

R3×S2

∣
∣E

x,k̂
[ f (Dh,ε(T ))] − E

x,k̂
[ f (D̃ε(T ))]

∣
∣μ0(dx,dk̂),

where μ0 is the probability measure given by (19). Let now

μ(t, f ) =
ˆ

R3×S2

u(t, x, k̂) f (x, k̂)dxσ (dk̂) and μh,ε(t, f ) = Eμ0 [ f (Dh,ε(t))].

Using Propositions 2.1 and 6.1, and that 
´

R3×S2 uε(T , x, ̂k) f (x, ̂k) dx σ (dk̂) = Eμ0 [ f (Dε(T ))] = Eμ0 [ f (D̃ε(T ))] according to 
Lemma 6.2, we have

|μh,ε(T , f ) − μ(T , f )| ≤ ε2−αM/2
√
2T E(u)‖ f ‖L2(R3×S2) + ε2−αM/2 2T E∞(b) + hF1(b).

In order to end the proof of Theorem 3.1, it suffices to remark now that

|μN,h,ε(T , f ) − μ(T , f )| ≤ |μN,h,ε(T , f ) − μh,ε(T , f )| + |μh,ε(T , f ) − μ(T , f )|,

so that

P

(

|μN,h,ε(T , f ) − μ(T , f )| > η�h,ε√
N

+ ε2−αM/2F0(u,b, f ) + ε2−αM/2 2T E∞(b) + h F1(b)
)

≤ P

(

|μN,h,ε(T , f ) − μh,ε(T , f )| > η�h,ε√
N

+ ε2−αM/2F0(u,b, f ) + h F1(b) − |μh,ε(T , f ) − μ(T , f )|
︸ ︷︷ ︸

≥0

)

≤ P

(

|μN,h,ε(T , f ) − μh,ε(T , f )| > η�h,ε√
N

)

where

F0(u,b, f ) :=
√
2T E(u)‖ f ‖L2(R3×S2) + 2T E∞(u).

We conclude by applying the central limit theorem [16] together with the Portmanteau theorem [6, Theorem 2.1 pp.16]. �

7. Conclusion

We have derived an efficient MC method for the resolution of the RTE with non-integrable scattering kernels. It is based 
on a small jumps/large jumps decomposition that allows us to simulate the small jumps part at a low cost by solving a stan-
dard SDE. The large jumps are obtained by using the stochastic collocation technique with a candidate distribution function 
that captures the singular behavior of the kernel. We have moreover demonstrated the necessity to include the small jumps 
component in order to obtain a good accuracy at a manageable computational cost, and investigated practical situations in 
optical tomography and atmospheric turbulence where the singular RTE is of interest. We in particular highlighted the role 
of the singularity strength α on the qualitative behavior of the solution.

Future investigations include the estimation of the scattering kernel, with an emphasis on the parameter α, from either 
simulated or experimental data obtained e.g. from light propagation in biological tissues. This problem is of practical interest 
in biomedical applications and will require the development of appropriate inverse techniques.
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Fig. 18. Illustration of the polynomial approximation to G with 5 (left picture) and 10 (right picture) interpolations points. We use the library Jacobi.jl to 
compute these quadrature points.
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Appendix A. Stochastic collocation

In this section, we describe the stochastic collocation method, see e.g. [28], and consider the situation of Section 5.2.2

as an illustration. The goal is to simulate a real-valued random variable W (for which direct simulation is not possible or 
too costly) from an auxiliary variable V that can be generated efficiently. In our context, we want to simulate W with 
probability density function (PDF)

fW (w) := a(
√
2w)

CW w1+α/2
1(ε,2)(w),

where CW is a normalization constant. As already noticed in Section 3.4, a direct method is available when a ≡ 1. Therefore, 
we take V with PDF

fV (v) := 1

CV v1+α/2
1(ε,2)(v),

that can be simulated with

V = F−1
V (U ) = ε(1− (1− (ε/2)α/2)U )−2/α,

where U ∼ U(0, 1) and where FV is the cumulative distribution function (CDF) of V . The stochastic collocation method is 
based on the following three observations. First, we have FV (V ) ∼ U(0, 1). Second, denoting by FW the CDF of W , we note 
that W can be (theoretically) simulated with

F−1
W (U ) = F−1

W (FV (V )) =: G(V ),

with G = F−1
W ◦ FV and U = FV (V ). Last, we only need to approximate G and not F−1

W , and with a good candidate V , G
behaves better than F−1

W . In order to approximate G , we use Gauss polynomial interpolation and only need to invert FW at 
a small number of points.

In our example, V captures the “singular” behavior of W , and is as a consequence a good candidate. The function G
is then direct to approximate with just a few quadrature points for a reduced computational cost. Because G needs only 
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to be approximated over (ε, 2), with known values at the extremes, we rather use a Gauss-Lobatto-Jacobi quadrature rule. 
In Fig. 18, we illustrate the polynomial approximation of G , with 5 and 10 interpolation points for α = 5/3, ε = 0.01, 
and a(r) = exp(−r2/(2 × 0.82)). Because of our choice for V , one can observe that the overall behavior of the PDF fW is 
well captured with just 5 quadrature points, even for strongly singular kernels with α = 5/3. However, the fast decay of 
the function a, which is the main source of error between FW and FV , requires more quadrature points for an accurate 
approximation and 10 points seem sufficient.
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