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typically account for long-range statistical features, and arise for instance in the context
of wave propagation in turbulent atmosphere, geophysics, and medical imaging in the
peaked-forward regime. In contrast to the classical case where the scattering cross section

Keywords: is integrable, which results in a non-zero mean free time, the latter here vanishes.
Radiative transfer This creates numerical difficulties as standard Monte Carlo methods based on a naive
Singular scattering kernels regularization exhibit large jump intensities and an increased computational cost. We
Monte Carlo method propose a method inspired by the finance literature based on a small jumps - large
Wave propagation jumps decomposition, allowing us to treat the small jumps efficiently and reduce the

Random media

computational burden. We demonstrate the performance of the approach with numerical
Long-range correlations

simulations and provide a complete error analysis. The multifractional terminology refers
to the fact that the high frequency contribution of the scattering operator is a fractional
Laplace-Beltrami operator on the unit sphere with space-dependent index.

© 2023 Elsevier Inc. All rights reserved.

1. Introduction

Radiative transfer models have been used for more than a century to describe wave energy propagation through com-
plex/random media [32,10], as well as neutron transport [40,51], heat transfer [54], and are still an active area of research
in astrophysics, geophysics, and optical tomography [39,43-45] for instance. In this work, we propose a new Monte Carlo
(MC) method to simulate the following radiative transfer equation (RTE)

oru +IA<- Vyu = Qu,

) . (t.x, k) € (0, 00) x R x S2, (1)
u(t=0,x,k) =upx, k),

where S? denotes the unit sphere in R3, and u is the wave energy density in the context of wave propagation or a particle
distribution function in the context of neutronics. The scattering operator Q has the standard form

(Qu)(x, k) = A(x) / D, | — kDU, p) — ux, ko dp), )
SZ
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for o (dp) the surface measure on S2, & the scattering kernel, and A > 0 a function modeling the support of the scattering
process. Regions where A(x) =0 are homogeneous and u undergoes free transport. MC methods have long be used for the
resolution of (1), see e.g. [36,51]. The originality and difficulty in our work lies in the fact that we consider situations where
the mean free time tp associated with Q vanishes in the scattering regions, that is

%—A(x)/dxx |I<—p|)a(dp) 400, where A(x) >0, 3)

and as a consequence the standard MC representations of u do not apply. Such a scenario arises for instance in the context
of highly peaked-forward light scattering in biological tissues and in turbulent atmosphere, or more generally in the context
of wave propagation in random media with long-range correlations that we describe below. In this paper we write ® as

oo a(p—kp 1 . _ a(v2—9)
D(x, |p —k|) := o = 21+a(x)/2p(x, k-p), with  p(x,s):= R se[-1,1). (4)

Above, o : R3 — [0, 2) accounts for the slow variations of scattering across the ambient space, and a is a smooth bounded
function characterizing some statistical properties of the medium and such that a(0) > 0. Practical examples are given
further. A direct calculation shows that (3) holds when « € [0, 2). Also, the integral in (2) has to be understood in the
principal value sense when « € [1,2), see [23]. The multifractional terminology that we use is motivated by the fact that
the unbounded operator Q can be expressed as a (multi)-fractional Laplace-Beltrami operator (—ASz)"‘(")/2 on the unit
sphere up to a bounded operator w.r.t. the k variable [22,23].

We would like to emphasize that we focus in this work on kernels of the form (4) for simplicity of the exposition,
and that our method applies, after proper decomposition (see [23]), to more general kernels that behave like (4) at the
singularity.

The RTE can be derived from high frequency wave propagation in random media, see e.g. [49]. In such a context, the
velocity field c(x) has the form

1 1 X
i %(1 +ﬁv0(x, 5)) xeR3, n<«i,
where cq is the background velocity (that we set to one in the sequel for simplicity), Vo is a mean zero random field
modeling fluctuations around the background, and 5 is the correlation length of the random medium, assumed to be small
after proper rescaling. The first variable in Vo represents the slow variations of the random perturbations, while the second
one corresponds to their high frequency oscillations. The latter are responsible for the strong interaction between the wave
and the medium over sufficient distances. The scattering kernel @ is related to the correlation function of Vg, and assuming
Vo is stationary (in the statistical sense) with respect to the fast variable, a kernel of the form (4) can be obtained from
random fields such that

E[Vo(x. X)Vo(y. ¥)] = VA1) / (Lﬁfiw eV dp, (5)

with « ranging from 0 to 2. Denoting by R(x) the expectation in (5) with y =x, y' = X'+ x/n, one can show that R behaves
like |x|%®=2 for |x| > 1, and is therefore not integrable. This is how random fields with long-range correlations are defined,
as opposed to random fields with short-range correlations that exhibit an integrable correlation function. This approach
is of practical interest in biomedical imaging as media with long-range correlations are able to reproduce experimentally
observed power-law attenuations associated with effective fractional wave equations [20,25,30]. The value of the exponents
is related to the rate of decay of the correlation function R, and depends on the nature of the imaged tissues as reported in
[14,17,26,27]. Variations of this exponent can then be used for diagnosis purposes [38,47].

In Fig. 1, we provide examples of such 2D random fields. The top-left picture represents a random medium with short-
range correlations (with a standard Gaussian covariance kernel), while the top-right picture illustrates a random medium
with long-range correlations with o = 1. Because of the singularity at p =0, one can observe significantly larger statistical
patterns than in the short-range case. In the bottom two pictures, we highlight the roles of A and «: A characterizes
scattering regions, and « defines the correlation structure. In the inner circle of the bottom-left picture we have o = 0.1,
which tends to create shorter range fluctuations than in the outside where o = 1. In the bottom-right picture, we have a
three-layer model for « in which the inner band exhibits smaller statistical patterns than the outer ones. This type of model
is used for modeling non-Kolmogorov atmospheric turbulences, while standard atmospheric turbulence is modeled with the
so-called Kolmogorov power spectrum

a(lkl)

D(|k]) o W’
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Fig. 1. Realizations of Gaussian random fields. The upper-left picture represents a field with short-range correlations, while the upper-right picture depicts
a field with long-range correlations with A =1 and « = 1. In the lower-left picture, we have A = 1x|<15), and @ = 0.1 - Ijx<10y + 1 - 1{10<)x}- In the
lower-right, we have A =1 and a(x3) =5/3 - 1{x,<2) + 0.5 Tp<x,<g) + 1.9 - 1(8xy).

for |k| in the inertial range of turbulence. This corresponds to the case o = 5/3. This case is not always valid in experiments
as reported in [4,52,55], and the statistics of atmospheric turbulence have been shown to vary with altitude. Models have
been derived for instance (see [35] for a review) by considering three ranges (0-2 km, 2-8 km, and above 8 km) with distinct
power laws (see Fig. 16 for an illustration).

In the context of biological tissues, the following the Gegenbauer scattering kernel p; and Henyey-Greenstein (HG)
kernel pyg are commonly used in the peaked-forward regime [29,48]:

ag(l+g®—2gs) 172 1 1- g2
PG(X,s) == “a oy PHG(X,S) 1= — ———————.. (6)
(1= =1+ 4 (1+g2 —2gs)%
The parameter g € (—1,1) is called the anisotropy factor, and py¢ is obtained by setting &« =1 in p¢. The case g =0
corresponds to isotropic energy transfer over the unit sphere, g < 0 to dominant transfer in the backward direction, and
g > 0 to forward energy transfer. The peaked forward regime is obtained in the limit g — 1, for which

o o

1 .
——— PG, k- p) ~ )

(1—g~ g1 27 (2 —2k- p)1+e2 2|k — p2te’

The case « =1 for the HG kernel is widely used in photon scattering in biological tissues [13,21,31]. A typical realization
of the corresponding random field in 2D as g — 1 is depicted in the top-right panel of Fig. 1.

There exists a variety of methods for the resolution of (1) that handle the singular nature of the HG kernel, see e.g. [18,
19,33,34,37]. They are based on finite differences type discretizations, projections over appropriate bases w.r.t. the k variable,
and approximations of the kernel. Here we propose an alternative approach to handle singular scattering kernel (4) that is
based on a MC method. The latter are popular choices for the simulation of the RTE when the kernel is smooth, see e.g.
[36,41,42,46,51], essentially for their adaptability to a wide range of configurations and their simplicity of implementation. A
downside is their slow convergence rate, and there is a vast literature on variance reduction techniques for acceleration. In
this work, we focus on the design of an efficient MC method and postpone any variance reduction considerations to future
works.

Our approach is based on an adaptation of a method proposed by Asmussen-Cohen-Rosifski [3,11] (ACR) for the simula-
tion of Lévy processes with infinite jump intensity. It relies on a small jumps/large jumps decomposition of the corresponding
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infinitesimal generator. The main idea is to approximate the generator of the small-jump part, which possesses the infinite
intensity due to the singularity of kernel, by a Laplace-Beltrami operator (with respect to the angular variables) on the
unit sphere S2. This requires us to simulate paths of a jump-diffusion process over the unit sphere. For this purpose, we
use the characterization of Brownian motion on the unit sphere given in [5] based on a standard stochastic differential
equation (SDE) in R3 that is suitable for space-dependent kernels. This situation is hence more involved than the 2D case
we investigated in [24] where the small jumps part can be approximated by Brownian motion on the unit circle for which
analytical expressions are available. Note that, as shown in [24], neglecting small jumps altogether in order to use standard
MC methods leads to large errors, and reducing those comes at significantly increased computational cost.

Denoting by fi(u) the estimator produced by our MC method for some observable w(u) built on the solution u to (1),
we provide an error estimate of the form

P(1i@) — @) > Ey + E2 + E3) < 1

as a theoretical support of our method. Above, Eq, E;, and E3 are small terms characterizing the various approximation er-
rors from the original model: the Laplace-Beltrami (i.e. small jumps) approximation, the discretization error of the diffusion
process over the unit sphere, and the MC error. Note that the method we propose here applies directly to the stationary
version of (1)

k-Vau— Qu=uog, (x,IAc)e]R{3xSZ,

with source term ug, through the relation

e e}

u(x, IAc) = /u(t,x, IA<)dt.
0

The paper is organized as follows. In Section 2, we introduce probabilistic representations for (1) and its approximation
based on the ACR method. In Section 3, we describe our MC method, state the main theoretical result regarding the overall
approximation error, and detail the simulation algorithms. Section 4 is dedicated to the validation of the method using semi-
analytical solutions. Numerical illustrations are given in Section 5, where we investigate the role of the strength « of the
singularity, both when constant or space-dependent in the case of non-Kolmogorov turbulence, and compare with solutions
for the HG kernel. Section 6 is devoted to the proofs of our main results and we recall in an Appendix the stochastic
collocation method.

The numerical simulations are performed using the Julia programming language (v1.6.5) on a NVIDIA Quadro RTX 6000
GPU driven by a 24 Intel Xeon Sliver 2.20 GHz CPUs station. The codes have been implemented using the CUDA.jl library
[8,9].

Acknowledgment OP acknowledges support from NSF grant DMS-2006416.
2. Probabilistic representations and approximation
2.1. Representation for (1)

The starting point is the following standard probabilistic interpretation to (1):

ut, x.) =E,;[uo(D®)] :=E[uo(D(®) | D(0) = (x. k)],

where D = (X, K) is a Markov process on R? x S? with infinitesimal generator

Lf(x, k) :=—k-Vyif(xk)+ M%/p(x,p-k)(f(x, p) — f(x,k))o (dp).
S2

A path, or a realization, of the Markov process D is often referred to as a particle trajectory. The X component of D represents
the position of a particle, and the component K its direction. The generator £ comprises two terms, the transport part
describing free propagation of the particle, and the scattering operator (often referred to as the jump part in the probabilistic
literature) describing the evolution of its direction. The jump component exhibits a non-integrable singularity leading to a
infinite jump intensity and a vanishing mean free time as expressed in (3).

Note that when A and « are constant, it is shown in [23] that the solution u is unique and infinitely differentiable in
all variables for t > 0 for any square integrable initial condition. When A and « are infinitely differentiable with bounded
derivatives at all orders, this result remains valid and we will assume throughout this work that u is smooth. The same
applies to the function u. defined further in Proposition 2.1.



C. Gomez and O. Pinaud Journal of Computational Physics 489 (2023) 112279

In order to adapt the ACR method, we introduce the following small region over which the singularity of the kernel p
(in (4)) is not integrable, resulting in an unbounded infinitesimal generator L:

By - b 2. -
S¢ =S°(k):={peS°: 1—p-k<e} €€(0,1). (8)
We can now decompose the jump part of the generator £ into two components

Lf(xky=—k-Vyfx. k) + L5 fx. k) + L5 f(x. k)

N ~ A P ~ ~ A
=k Vi fx k) + 21%57)2)/2 /+/ p(x. p-k)(f(x.p)— f(x.k))o(dp),
S€ N

where 5S¢ = (§%)¢ is the complementary set of region (8) over the unit sphere. The part of the scattering operator in-
volving S¢ (with no singularity) is the infinitesimal generator of a standard jump Markov process. Regarding S¢ (with the
singularity), the following result justifies the approximation of this singular part by a Laplace-Beltrami operator As> over
the unit sphere S2. We will use the notation r.=+/1—(1-¢)2/(2 — ¢) in what follows, and set in the rest of the paper
O<e<gy<land 0 <oy <o) <ay <2.

Proposition 2.1. Let u be the solution to (1) and u. be the solution to

~ A(x) A7 R ~ N
deue +k- Vile = 07 () Agatte + ST /p(x, D - k) (e (p) — ue (K)o (dp),
$e 9)
up (0, X, k) = ug(x, k),
for (¢, x, k) € (0, 00) x R3 x S2, where
21-¢@q0) A (x) -
2 7 2—a(x)
= . 10
o; (%) 7 e e (10)
Assuming a’(0) = 0, for any T > 0, we have
sup u(t, -, -) = ue(t, -, )l zgxs2) < 2P V2T E(u) (11)

te[0,T]

where E(u) is defined in (34).

The proof of Proposition 2.1 is postponed to Section 6.1. The term E(u) is independent of & and depends on derivatives
of u w.rt. k up to order 4. Note that the error is of order £!=@M/2 /(2 — o) when a’(0) # 0 yielding a less accurate
approximation than for a’(0) = 0. The difference comes from a truncated expansion along the sphere curvature providing
an extra order in & assuming a’(0) = 0. This later assumption holds throughout the remaining of the paper. Based on (11),
we then devise a MC method for (9) instead of (1). The advantage in using (9) is the fact that the angular diffusion term
082 (x)Ag2 is the generator of a Markov process that can be easily simulated. Indeed, for W a standard 3D Brownian motion
on R3 and x the cross product in R3, it is shown in [5] that the process B solving the SDE

dB=B xdW — Bdt,  B(0) € S,

has generator %ASz. A simple adaptation then gives the desired diffusion coefficient. Since the error is of order g2~(@m/2),
it is always smaller than &, and can be adjusted to obtain a desired accuracy. Note also that o, (x) increases as «(x) gets to
2, and diffusion on the sphere eventually becomes the dominant dynamics.

2.2. Representation for (9)

We interpret (9) as the forward Kolmogorov equation of an appropriate Markov process, and as a consequence focus
on forward MC methods, see e.g. [36] for terminology. Backward equations are simulated in a similar manner, and can be
combined with forward methods for variance reduction techniques [7,40,51].

The Markov process we consider for this approach is defined by

De(t) =Y A1, 1) O " (= Ta)  £20, (12)

n>0

where (in the remaining of the paper we extensively make use of the notation z = (x, 12)):

5
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1. The flow ¥} = (X}, KE) is the unique strong solution to the SDE

dxx(t) = Kk(ydt

. ) 13
dKK(t) = V20, (X)) KK(t) x dWp(t) — 202(XX () KK(¢t) dt, (13)

where ¥7(0) =z, x is the cross product in R3, (Wp), is a sequence of independent standard Brownian motions on R3,
and o, is defined by (10).
2. The jump times (Ty), are distributed according to

t
B(Tust = T = DT =2 (6 scon) =exp (— [ Acyi(onds).  vn=0,

0
with To =0, and for p given by (4),
) P
Ae(2) = 21+Olﬁ/z/)O(x,zmk)cf(ﬂlp). (14)

%
3. The jumps (Zy), describe a Markov chain with transition probability
P(Zny1 €dy @ 0 (dP) |Zn, Tn1 — Tn) = He(zny1, d2), (15)
where z;41 := wnz”(TnH —Ty), and
Me(z,dz) = 7e (2, P)o (dP)sx(dy), (16)
with density

p(x, bk »
fsi p(x, p"-kydo (p')

which is supported over S¢. The above Dirac mass &x(dy) := §(x — y)dy translates the fact that the jumps only hold
w.rt. the k variable.

c(p).  z=@&h), (17)

7T8(Z’ I’j) =

Let us note that the above family of standard Brownian motions (Wy(t))¢e(0,T,,;-T,) can be defined as

Wi®) =W({+Tn) —W(Ty),  te[0,Thy1 —Tal,

for any n, where W is a single standard Brownian motion on R3. We have then the following probabilistic representation
for the solution to (9).

Proposition 2.2. The Markov process D, defined in (12) has for infinitesimal generator

Aeg(2) =k - Vyg(2) + 02(X) Ag28(2) + Ae(2) /778 (z D) (g(x, ) — gx, k))o (dp),

)
and we have

Py, (De(t) € dx ® o (dk)) = ﬁloug(t,x, k) dx o (dk), (18)
where

wo(dx, dk) := P (D, (0) € dx ® o (dk)) = %’;k) dxo(dk)  with 1= / uo(x, k) dx o (dk). (19)

R3xS?

The terminology forward comes from the fact that theAparticles are emitted at random points at time ¢t = 0 (through wo)
and propagate towards the observation position z = (x, k). The proof of Proposition 2.2 is provided in Section 6.2. Let us
illustrate two aspects of the representation (18). In order to obtain an estimation of u.(t,x, k) at the point z = (x, k), we
calculate the probability

ug

Ba Py (De () € B(z, 1)) ~ U (t, X, k), (20)
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where B(z,1)  R3 x S? stands for the open ball centered at z = (x, IA<) with radius r « 1. If we are only interested in e.g.
the energy density at point x, we estimate

ﬁ Py (De(t) € B(x, 1) x S?) = w&i"r)lmg(m,g(t) €B(x, 1)~ /ug(t,x, ko (dk),
SZ

where B(x,r) C R3 stands for the open ball centered at x with radius r <« 1, and D1 ¢ is the x component of Ds.
3. Monte Carlo method

Based on the previous probabilistic representation of (9), solving (9) requires the generation of random paths of the
stochastic process D. For any measurable bounded functions f, the convergence of the estimator

N
1 ; A N N
Un(, f):=— Zf(Dé(t)) — /f(x, kug(t, x, k) dx o (dk) Py, — almost surely,
N iz N—oo
is guaranteed by the strong law of large numbers. Above (Dg) j is a sample of D.. We detail next how to treat efficiently
the diffusion and jump components of the process D.
3.1. The jump part

Since the process D is inhomogeneous, i.e. A; and IT; both depend on z = (x, IAc), we use the so-called thinning method,
also referred to as the fictitious shocks method [36]. It is based on a acceptation/rejection step and consists in simulating at
first more jumps (or shocks) than necessary. In a second step, some of the jumps are rejected according to an appropriate
probability distribution in order to recover the original dynamics. Assume 0 < o < o (X) < oy < 2. A direct calculation
shows that

Ae(2) <

1—¢

27 supAsupa dt _ _ 4wsupisupa _ 27rsupAsupa - 21
J1+a()/2 (1 —0)1He®/2 ~ gx)21+e®/2ga®/2 = gpeem/2  — TF 21

e

The fictitious jump times are then drawn as
n
Tpi=) &, and To=0,
j=1

where the (£;); are i.i.d. exponentially distributed random variables with parameter Ae.

The thinning method consists in the following acceptation/rejection step. At a jump time T, and current position z,
we draw a jump z according to the probability distribution IT, given by (15). This jump is accepted with probability
P(zn) = Ag(zn)/Ag. Otherwise, the process D, continues to diffuse starting from z,, and T, is not considered as a true
jump time for D,. Practically, we can define the state as

Zn =2V, <p@)) + 20 VUp>pzn)

at each fictitious jump times T,. Above, U, is a random variable uniformly distributed over [0, 1] and all the U,’s are
independent.

3.2. The diffusion part

The diffusion part between two jumps satisfies the linear SDE (13), and is simulated using the following Euler-Maruyama
type scheme

Xn,m+1 = Xn,m +hn,m IA{n,m

(Snm) : Knms1 = Iin,m - 2hn,m 0-52 (Xn,m) IA(n,m + 2hn,m e (Xn,m) IA(n,m x Wnm (22)
Knmi1 = mesin

where the (Wp ;)m.n are i.i.d. mean-zero Gaussian random vectors with identity covariance matrix. Note that the above
scheme does not conserve the Euclidean norm with respect to the angular variable, and as a consequence the evolution of
(Kn,m)n.m does not remain on the unit sphere over the iterations. This motivates the definition of I%n.m. We have neverthe-
less E[ |I<,’§,m 21=1, for all n and m, and Theorem 3.1 below guarantees that the distribution of IA(n,m provides a converging

7
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approximation of the true statistics. The stepsizes hy ;; are determined from a fixed stepsize h as follows. Since our conver-
gence theorem further is stated at a fixed time T, we include t =T in the discretization grid for simplicity. Let then Nt
such that Ty, <T < Tn;41. When n # Nr, let dty = Typqq — Ty With my = [dty/h] ([-] the integer part), we set, for n # Nr,

P h form=0,...,m; -1
M= dt, —mph for m=mpy,

and if mp = 0, we set hp o = dty. In the rest of the paper, the grid is denoted by (Tn,m), where Tnmt1 = Tn.m + hnm for

Tho= Toyn>0and m=0,...,m, — 1. When n = N7, we divide the interval [TNT, Tny+1] similarly into subintervals of
length hy; m at most h (we suppose there are my, of those) and such that Ty, ,, =T for one m in O,..., my,.

3.3. The overall discretized process and convergence

For any ¢ > 0, the approximate version of the process D¢, denoted Dy, ¢, is defined by:

oo Mmy
Di.e(®) = Xne(0). Kne(®) =Y > " A1, Ty ety ) O Znm.
n=0m=0
where
1. Forany m € {0, ..., my},

Zn,m+1 = Sn,m(zn,m)v

where Z, o= Z, for the (Z,)n defined below, and where Snm(Znm) = (Xn,m+1, IA(n~m+1) is given by the scheme (22)
with initial con(_jition Zn.m = Xn.m, IA(n,m).
2. The sequence (Zy);, is defined by

Zn1 =2V Uy <pZnmys1) T Znamg+1 VU pZomns) 1 =0,

where z is drawn according to the probability measure I (Zn m,+1,dz) defined by (16).

Below, b is the backward solution to (1) with terminal condition b(T, x, lAc) = f(x, IAc), see (41). Our convergence result is
then the following (we set h such that 4h sup, 082 (x) <1 to simplify some expressions):

Theorem 3.1. Consider
1 ; - - s
pune€ D)= SO @), we = [ Fexhutsbdco b,
j=1

where (Dé ¢)j is asample of Dp . For any T > 0, n > 0 and any smooth bounded function f on R3 x S2, we have

NZh,e

R e DR b )+ L)) < erfe(n/v2), (23)

limsup P (|t ne (T, ) = u(T, )] >

N—oo

where

The =4/ Var(f(Dne(T)) <sup|fl.

The functions Fo and Fq are explicit and independent of ¢ and h, and are defined in the proof of the theorem in Section 6.3.

Theorem 3.1 is proved in Section 6.3. In (23), there are three terms that quantify the approximation error of our estimator
UN.he(t, f): one of order £2~@M/2) due to the approximation of u by u, (the smaller the oy, i.e. the less singular the kernel
is, the smaller the error), one of order h due to the numerical approximation of the diffusion over the unit sphere, and one
due to the MC approximation with the standard 1/+/N convergence rate. Note that the discretization error of the diffusion
process is only of order h and not of order the standard +/h. The reason is that we are only interested in the convergence of
Monte Carlo estimators, allowing us to consider this discretization error in the weak sense [53]. However, a weak second-
order Runge-Kutta method can be considered to provide an error in h? instead of h for the Euler scheme [12]. Modifications
of the SDE (13) can also be considered to provide weak higher-order scheme [1]. The main goal of this paper being to
present a methodology to capture efficiently the behavior induced by the singularity, we focus our attention on the error in
g, and do not present weak-higher order discretization schemes for the SDE. In this way, the Euler scheme is considered for

8
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simplicity in the proof of Theorem 3.1. For the numerical simulations of Sections 4 and 5, that illustrate the roles of ¢ and «
in the approximation, the parameter h will be chosen proportionally to the shortest mean free time A;!, and small enough
so that the approximation error w.r.t. € in dominant. N will also be chosen large enough so that the error of approximation
in ¢ is dominant. The MC error is controlled by the standard deviation X ¢, and variance reduction techniques can be
designed to reduce this term. When estimating the energy density over a given region B, as in (20), the number of particles
N needed to reach a given error threshold can be estimated as follows: the root mean square error of the MC estimator for
f =1p/|B] reads

e ELnne ) =E[f@ne)]” _ [Pre=Pre) _ 1 "
e E[f(Dh,s(T))] N|B|? - 2ﬁ|3|’

and the relative MC error is

RMSEp. 1 1—Ppe - 1 (25)
E[f(Dne(T)] NV Prne — NPpe
with
1 A
Pp ¢ =Py, (Dpe(T) € B) = = /us(t, X, k)dxo (dk).
0
B
Above, o and ug are given by (19). A RMSE lower than a threshold ¢ would then require
N>———, 26
~ 4¢2|B|? (26)
while a relative error would require
1
> 27
T 2P, (27)

If B is a region centered around a point (xo, ko), with a small volume (that is P, <« 1 as for (20)), we would have
>t
c2[Bue(t, Xo, ko)

3.4. Algorithms

We discuss in this section practical aspects of the method. Before stating the algorithm itself, let us emphasize that a
key point is to sample efficiently the jumps from IT, given by (16).

Let us fix the current state of the process D, at a point z = (x, IA<). In spherical coordinates, . defined in (17) is
equivalent to a probability density function drawing a polar angle 6 and an azimuthal angle ¢. Here, the north pole of the
spherical system is the current direction k, and it is direct to see that the azimuthal angle @ is uniformly distributed over
(0, 27r). We denote this by ¢ ~1£(0, 27r). For the polar angle, a change of variables leads to 6 = arccos(1 — ), where x has
probability density function

_a(v2x)
Fx(x1x) = WI(S,Z)(X)v

and C, is a normalizing constant. Therefore, to draw a jump according to (17) starting from k, we compute

b =R, @, k) = cos®)k + sin(O)(Ig +sin(@)Q (k) + (1 — cosz((p))Qz(I}))lél, (28)
where k* is an orthonormal vector to k, I3 is the 3 x 3 identity matrix, and
0 —k3 k2
Qk)=1 ks 0 —ki], where k= (kq,k,k3). (29)
—ky  kq 0

The transformation R corresponds to a rotation from k to p with polar angle 6 with respect to k and azimuthal angle ¢
with respect to kL. Note that the choice of k* is not important since ¢ is uniformly distributed over (0, 27).

We notice that in the case of a constant function a = ap, one obtains a truncated Pareto distribution for x. The corre-
sponding cumulative distribution function can be exactly inverted giving then a direct simulation method. In this case, the
cumulative distribution function is given by, for x € (¢, 2),
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P
a dv 1— (g/x)*®/2
Fy(xho === / SRR
P

ylHa®/2 = 1 = (8/2)a(x)/2 '

&

The random variable x can then be generated by

X = F;l(U|x) =e(1-(1-— (8/2)0‘()‘)/2)[])72/0[()()’

where U is a random variable uniformly distributed over (0, 1) (U ~£(0, 1)). In the case of a non constant function a, the
main features of the density fy(:|x) are similar to those of the truncated Pareto distribution, and a stochastic collocation
method can be considered to simulate f, (-|x). This method is described in Appendix A in our context. It is based on the
simulation of the above truncated Pareto distribution and proves to be very effective.

The algorithm used to simulate a trajectory of Dy . can be summarized in the following two procedures. The first one
corresponds to the simulation of the diffusion process between two (fictitious) jumps, and we use the notation

X+hK

S(Z,W,h) = { I(—ZhGE(X)I(+mGE(X)W x K,

with Z = (X, K). Below, N(0, I3) stands for the three dimensional multivariate Normal distribution with identity covariance
matrix.

Algorithm 1: Diffusion.

input : current state of the particle z = (x, IA<), duration of the diffusion 5t
output : state of the particle after the diffusion process
initialization: n < [§t/h] // number of iterations
Z <z // initialization of the diffusion state
// Main loop of the diffusion
for j < 1ton do
W ~ N(0, I3)
Z <~ S(Z,W, h)
K < K/|K|

// BAdd a diffusion step with stepsize h’<h to match the duration 6§t
h" < 8t —nh

W ~ N(0, I3)

Z < S(Z,W,I)

K < K/|K|

return Z

The second procedure combines the diffusion step with the jump process. Below, we denote by &£ (A¢) the exponential
distribution with parameter A, defined by (21).

Algorithm 2: TrajectorySimulation.

input : Duration T of the particle evolution
output : state of the particle at time T
initialization: Z < (x, IA<)~M.0 // initialization of the particle state at random
t<0// temporary time variable
St~E(Ag) // first jump time
// main loop for the path evolution
while t + 5t < T do
Z < Diffusion(Z,ét)
U~U@,1)
if U < p(Z) then
// the jump is accepted, Z is transformed
X~ fxClx)
6 < arccos(1 — x)
@ ~U(0,2m)
p <R, 9.k
Z <P

t<—t+48t
L St~ E(Ag)

// remaining diffusion step of duration T —t
Z < Diffusion(Z,T —t)
return Z

10
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The rest of the paper is dedicated to numerical simulations and the proofs of our main results.
4. Validation

In this section, we first derive a semi-analytical solution to validate our method in the simplest situation where «, a, A
are constant functions. We then highlight the crucial role of the small jumps correction for computational efficiency.

4.1. Semi-analytical solution

We set A =1 and the RTE (1) reads
du + k- Vyu=Qu (30)
with scattering kernel

» o (dp) . . .
ofy=a [ -ZC0(fh)— ). ke
b — k|t
S2
Using the Funk-Hekke formula [50], this operator can be diagonalized in L?(S?) equipped with the inner product

T 27w

(. &)izee) = / fB)gB)odp) = / / 16, 9)8@, ) sin(©@)dodg.
S? 00

The eigenvalues are given by
_anl(=a/2) (T(+1+4+a/2) T0+a/2) leN
’_2“F(1+a/2) rd+1—-w/2) T'(d-oa/2) ’

and the eigenvectors are the spherical harmonics

QI+ —m)!

20+ ) Pl"(cos(@)e™,  (,m)eN x {—I,...,1},

Yim(k) = Ym0, 9) ==

where the P[" are the associated Legendre polynomials. In order to derive a semi-analytical solution, we Fourier transform
(30) w.r.t. x, and introduce

u(t,q,k) :/u(t, x, k)e~14%dx.
R3
Above, ¢ = := (0,0, £) so that ii(t, &, IAc) =1u(t,q, IAc) solves
dll +ik-Gil = Qil. (31)
Writing k in spherical coordinates with (0, 0, 1) as north-pole, this latter equation reads,

du(t,&,0,9)=(Q —itcos(d))u(t, &0, @), (t,€,0,¢0)€(0,00) xR x (0,7) x (0,2m).

We now decompose ii on the basis of spherical harmonics

00 l
06,0, 9) =) > Wmt,E)Yim0, @),

=0 m=-1
resulting in

d, N ) N A d. ) N
au,,m =Mlpm — l‘;‘(dz_mul-y-l,m +d L t-1m) for =1, Euo,o = —zgdao i1 for I=0. (32)

Above, we have used the fact that

l Hd - 1
df = (+m+Dd—m+1) if m=m'andl' — =1,
m 2+ 12 +3)
(Yo 1, 0S(0)Yim 1),2,62, = ) 1—
N /% if m=m'andl' — =1,
0 otherwise.

11
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For computational purposes, we introduce a cutoff in the variable [ (I € {0, ..., L}), and consider a truncated version of (32)
as the vector differential equation

d. A . A 2
G EH=0"—igaAhat .o, A= (p,;69) 0.1 je..n €CT (33)

..........

where D and Al are two (L + 1)2 x (L + 1)2 matrices defined by

DILLZHHJZHH::M +for lef{o,...,L}, je{o,...,21},
AIL2+j+1,(I+1)2+j+2:=dl;j—l for le{O0,...,L—1}, ']e{O,...,Zl}
A12+j+2,(171)2+j+1:=d for lef{1,...,L}, je{0,....,2(l—1)}.

Lj—1+1

All other coefficients in both D' and Al are set to 0. Note that the indexing of the matrices starts at 0 for simplicity. The
. A L_; Lyt ~ . . . .

solution to (33) reads @il (t, £) = eP € ADE{L (0, £), where the matrix exponential is computed numerically. For our test

case, we consider the following initial condition

u(t=0.xk = \/%_ne—‘”z/z 2c05(6/2) = \/%—ne_‘x‘zﬂ(ZﬁYo,o(& @) +24/7/3Y0.10,9)),
so that
2 /me2 for I=j=0,
fl,Lzﬂ-(f =0,6)=12/7/3e /2 for [=j=1,
0 otherwise.
Finally, an approximation of i, solution to (31), is given by

L 2

iE=0.8.6,9)= ) Y [ AN, g)]lzﬂy,,j,,(e, 9).

1=0 j=0

For numerical comparisons with our MC method, we introduce a discretization of the unit sphere S2 via the polar and
azimuthal angles (6)m and (¢m)m, with respective stepsize Af and Ag. We then compare

Om+1 P’ +1
al(t, €, 0m, @) ~ A6y / il(t, £,0, ¢)sin(@)dodp
Om P

with its MC approximation

~L N —iEXT, _(t)
ug(€,§,mm) = NOAGN Do e Lo O€Embmin). @] O G 4D)

n=1

where 9,;1,8 and (pg’e are respectively the polar and azimuthal angles for I?,’;’_g, and where (ngg)n = (Xﬂﬂg, I%,?_E)n is a sample
of Dy . introduced in Section 3.

In the following numerical illustrations we consider a = 0.002 in the RTE, and set A6 = Ap =0.05, ¢ =0.1 and h =
0.5/A, >~ 12.6 for the approximation parameters. Note that these choices for & and h are providing us with a good accuracy
at a very low computational cost as we will see. Such values may have to be decreased in other setups and when considering
different observables. For instance, in Section 5.2 where « is varying, smaller values of ¢ and h are needed to capture
correctly the solution.

Also, in the context of singular scattering kernels, the classical notion of scattering mean free time is not informative
since it is equal to O (see (3)). Instead, we define a characteristic time using the inverse of the second eigenvalue of Q, i.e.
the first non zero eigenvalue, and set t. = —1/11. We refer to Fig. 2 for the evolution of t. w.r.t. o.

In our setting, t. >~ 79.6 (for @ = 1), which is about six times the stepsize h needed to capture the diffusive correction.
Also, since ¢ is not too small, this correction plays a significant role in obtaining the correct dynamics.

In Fig. 3, we compare, for @ = 1, the real and imaginary parts of the observable

T 27T

u(t, &) = //ﬁL(t, &,0,@)sin(0)dode with 4w AOAg Z ﬂ,L\,(t, £,m,m),
00

m,m’

for three values of t. In Fig. 4, we compare the real and imaginary parts of

12
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Fig. 2. [llustration of the evolution of t, w.r.t. «.
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12 1 t = t,, analytic t = t,, analytic
—t=t,MC —t=t,MC
t = 3t analytic t = 3t., analytic
t = 3t., MC t = 3t., MC
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~
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Fig. 3. Comparisons of the real and imaginary parts of i1(t, ) for three observation times and for o = 1. The grid in & range from —0.2 to 0.2 with 100
discretization points and we run N = 2.4 x 10° particles. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this
article.)

2
ly(t,£,0):= / it(t.£.0. 9)dpsin@)  with 47 A Y ag(t.£,m.m'),
0 m’

for three values of &.
In Fig. 5, we compare

2
u3(t =2tc, £ =0.02,0) ::/ﬁL(t:2tc,§ =0.02,0, p)dpsin(f) with 4m A(pZﬁfv(t:Ztc,E =0.02,m),
0 m’

for three values of «.
In all these illustrations, and despite somewhat fairly large values for & and h, we observe a very good agreement
between the Monte Carlo results and the semi-analytic calculations.

4.2. Role of the correction
In this section, we highlight the role of the correction provided by the diffusion over the unit sphere w.r.t. the k-variable.

To this end, we compare the following observables obtained from the semi-analytic solution

3tc
Ug(x3) = /ﬁL(t,xL,)g,Q, @) sin(@)dtdx, dodyp, X:=(X1,x3) € R? x R,
0

with the ones obtained with our MC method, with and without this diffusive correction, and for various values of «, € and
h. The grid in z range from —300 to 300 with size 28 and we run N = 300 x 10° particles. According to (26) and (27), the

13
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Fig. 4. Comparisons of the real and imaginary parts of i, (t, £, 0) for o = 1, for three values of & if t =t,, and for & =0 if t = 10t,. We run N =2.4 x 106
particles for the top two pictures and N = 24 x 106 for the third one.
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Fig. 5. Comparisons of the real and imaginary parts of the observable fi3(t = 2t, £ = 0.02, §) for three values of o. We run N = 24 x 10° particles.

number of samples N is taken large enough so that the RMSE (24) of the MC estimation is of order 10~ and the relative
MC error (25) is of order 0.03% where uy4 takes values of order as low as 10~3. With this choice of N, we can focus our
attention on the role played by ¢ and h in the approximation. In Fig. 6, we represent the relative error

[ug(z) — ugmc(2)]
max; u4(z)

for various sizes of the cutoff &, and where u4 pmc(z) is the MC approximation to u4(z). The left picture illustrates the
evolution of the relative error for various &. The blue curve corresponds to the corrected MC with ¢ = 0.1 (with still a
fairly large stepsize h = 0.5/A.) providing at most a relative error slightly larger than 1%. The other curves correspond
to the noncorrected MC method for several values of €. The corrected MC consistently yields a better accuracy than the
noncorrected version, and even in weakly singular cases where « is less than one, a very small value of ¢ (red and green
curves) is necessary to match the accuracy of the corrected method. The right picture illustrates the evolution of the relative

Errg o := max
z

14
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Fig. 6. Illustration of the relative error Errg o and running time of the MC method with and without a diffusive correction. The reference time in the right
picture is the one of corrected method with ¢ =0.1.
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Fig. 7. Illustration of the relative error Erre o and running time of the (corrected) Monte Carlo method.
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Fig. 8. Illustration of the relative error Err , and running time of the (corrected) MC method.

running time of the noncorrected method w.r.t. the corrected one. For values of « less than 0.7 (weakly singular kernels),
corrected and noncorrected methods have similar computational times for comparable accuracy, while in the case of singular
kernels with o > 1, the noncorrected methods yield a much larger cost and a much lower accuracy.

In Fig. 7, we illustrate the precision and running time sensitivity of the (corrected) MC method w.r.t. the stepsize h =
ho/A¢. As expected, we obtain a better precision for smaller stepsizes but at the price of a longer running time. These
effects are amplified as o increases due to the increasing strength of the diffusion correction. In what follows, we select
ho = 0.3 since this yields a relative error less than 1% for a wide range of «’s while not changing significantly the running
time.

15
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Fig. 9. Illustration of the numerical setting.

In Fig. 8, we depict the precision and running time sensitivity w.r.t. the cutoff parameter &, and observe the same
phenomena as in the case of the stepsize h. The parameter & defines not only the accuracy of the diffusion correction, but
also the average number of jumps, and as a consequence the running time increases as € decreases as in the case of the
noncorrected Monte Carlo method.

5. Numerical illustrations
5.1. The role of

In this section, we highlight the effects of the kernel singularity on the energy density. We consider a constant o, with
a=0.002 in this section. Our setting is depicted in Fig. 9. The spatial variable x is decomposed into a main propagation axis
x3 and a transverse plane x|, i.e. x = (x|, x3) € R? x R. The same notation holds for the direction variable k= (IAQ_, IA<3) eS2.
We choose an initial condition for (1) of the form

uo(x, k) = 8(x)8(k —ko),  ko=1(0,0,1),

modeling a source located at x =0 and embedded in the random medium, and emitting in the forward xs3-direction. We
set a function A of the form A(x) = 1(_s5 40)(x3), that defines a scattering layer between x3 = —5 and x3 = 40. In such a
configuration, both transmitted and reflected quantities at x3 =40 and x3 = —5 are of interest. With our particular choice
for ko, what is obtained at x3 = —5 is purely due to backscattering.

In the following two subsections, the MC estimations are obtained using N = 1 x 10° particles and a diffusion stepsize
h=0.3/As. We set & =0.01 for the calculation of transmitted quantities, and & = 0.1 for the reflected ones. For any value
of o, the observation time we consider is T = 4t., for t. the critical time computed for o = 1.

In the transmission case and when ¢ is too large, the mean free time is large as well and it is possible that particles
escape the slab without undergoing any jumps, leading to inaccurate results. Hence the choice ¢ =0.01. A larger value of
¢ is acceptable in the calculation of the reflected quantities since the particles exiting early would not have traveled to the
plane located at x3 = —5, and the error is reduced compared to the transmission case.

The running times for the time-integrated transmitted (¢ = 0.01) and reflected (¢ =0.1) signals for different values of o
are the following:

running time (s) | « =03 | =07 | «a=0.1 | =13 | a=1.5
£=0.01 9.38 15.21 24.54 42.74 65.39
e=0.1 3.61 3.72 412 4.92 6.01

All these running time measurements account also for the transfer of the resulting arrays from the device to the host.
We clearly observe a significantly larger running time for smaller values of ¢ and large values of «. This is due to the
increase in scattering events as the mean free time decreases. These computational times correspond to the cost for the
MC method to reach the expected accuracy for fixed &'s and «’s. With our choice of N = 10°, the RMSEs (24) are of order
104 (resp. 102) for the transmitted (resp. reflected) observables, and the relative errors are of order 1% (resp. 0.1%) for
the transmitted (resp. reflected) observables taking values of order 10~ (resp. 10~4 upto 1072).

5.1.1. Energy at the boundaries of the transverse plane
In what follows, the (time-integrated) transverse reflected and transmitted energy are defined by

T T
Frx)) ::/dt/a(dlz)u(t,xl,&:40,12) and  Fl(x1) ::/dt/a(dlz)u(t,xl,)g:—5,/2).
0 s? 0 s?

The MC estimators for these quantities are given respectively by
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X2 = 10 (dotted line) for the right one. The RMSEs (24) are less than 6.5 x 10~ (resp. 2.6 x 107°) on the left picture (resp. right picture), while the relative
errors (25) are less than 0.6% for the left picture (resp. 1.3% for the right picture) for values of the observables as low as 10~3 (resp. 1073).

Fig. 10. Illustration of the energy at the boundaries FtTr(x ) and FT f(x 1) W.r.t. X1 with x, =0 (solid line) and x; =1 (dotted line) for the left picture and
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Fig. 11. Illustrations of the evolution w.r.t. « of A defined by (14) and o, defined by (10). Here, a = 0.002 and € = 0.01.
N 1 N
ﬁ[Tr(m,n)::—Zl it el xi i ,ﬁrref(m,n)::—ZI it riven] j i
AXLN o (K DD, X, (e)~40) AXLN o (0 DD, X (7<)
where

v/ =inf(te[0,T]: XJ, ,(0>40 or XJ, (t)<-5),

is the first time the j-th particle exits the slab. Note that once a particle escapes, it cannot reenter it since it propagates
freely. Above, (Omn)m.n is @ uniform square grid of the traverse plane to the x3-axis. All squares in the grid have area Ax;.
Note that the grid can be different for the transmitted and reflected signals. We have considered for the transverse variable
of the transmitted energy a uniform grid over a detector of size [—10, 10] x [—10, 10] centered around the x3-axis, and
over a detector of size [—50, 50] x [—50, 50] for the reflected energy. For both cases, we chose 128 x 128 grid points. The
principle of these estimators is simply to count the number of particles that exit the slab before time T and to record their
position in the transverse plane.

In Fig. 10, we illustrate the transmitted and reflected energy flux, for several values of . We represent the variations
w.r.t. the first coordinate of x; = (x1, x2), and for two values of x,.

One can observe that at fixed times, the larger the «, the more diffuse are the signals. Indeed, as « increases, the jump
intensity A, (in other words the number of scattering events) increases as well as the strength of the diffusive correction
o (see Fig. 11).

5.1.2. Time evolution of the exiting energy
Here, we are interested of the time evolution of the energy exiting the slab, and we define the (integrated) reflected and

transmitted energy by
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Fig. 12. Time evolution of the energy at the boundaries F,(t) and Fres (t). The RMSE (24) are less than 8 x 10~4 (resp. 4 x 10~>) on the left picture (resp.
right picture), while the relative errors (25) are less than 0.7% for the left picture (resp. 0.5% for the right picture) for values of the observables as low as
1073 (resp. 1074).

Fir(t) := /de /o(dlAc)u(t,xL,xg =40, IA<) and Fref(t) :== /dxl/a(dlz)u(t,xb)g = —5,IA<).
R2 S? R2 S2
The MC estimators for these two quantities are given by

N

A 1
Fr(n) =

N
T Zl(ij(tn,thr]],X;hg(tj)>40) and - Frep(m) :=
j=1 "

dtN Zl 1(tfe(tn,tn+1],Xihys(rj)<75)'
]:

Here, (t;)n is a uniform grid of the time interval with stepsize dt. For the transmitted signal, we have considered the time
interval [40, 45] with a stepsize dt = 0.02, and have set [0, 4t.] with a stepsize dt = 0.4 for the backscattered signal. Note
that the time interval starts at 40 for the transmitted energy, which is the travel time of the wave (traveling at speed co = 1)
from the source to the plane x3 = 40. These estimators count the number of particles that exit the slab in the time interval
(tn, tn+1] at each side of the slab. In Fig. 12, we illustrate the evolution of the transmitted and reflected energy, for several
values of «.

In the case of the transmitted signal (left), and for small values of o, we see the arrival of the coherent wave at the
proper travel time followed by the coda. When « increases, one notices the stronger impact of scattering and of the diffusive
correction that smooths the signal out and damps its amplitude. For the largest ¢, we only observe a coda. Regarding the
reflected signal (right), there is only a coda for all @ due our choice of IA((), and one can observe two stages in the dynamics:
backscattering increases up to a time of order t., about which exponentially decay due to the operator Q takes over.

5.1.3. Comparison with the Henyey-Greenstein scattering kernel

In this section, we compare the solutions to the RTE with Henyey-Greenstein scattering kernel (6) for an anisotropy
factor g close to one with the solutions to (9) with singular kernel derived from (7), that is by setting a = (1 — g)/(27) and
a =1 in (4). Note that the value of the constant a changes with g, and as a consequence Ag, h, and o, vary accordingly. To
illustrate this approximation, we still consider the setting depicted in Fig. 9 and the various observables introduced in the
previous sections, but now at a time T = 300.

We observe in Fig. 13 the very good agreement between the two solutions. The reflected signal is well captured by
our method despite fairly large values of ¢ and h. Also, let us mention that the computational cost is decreasing as the
anisotropic parameter g is getting close to 1, as the overall jump intensity decreases in this case in the highly peaked
regime g — 1. Regarding the transmitted signal, ¢ (and then h) needs to be lowered for an accurate approximation, as
explained at the beginning of Section 5.1.

The RTE with a Henyey-Greenstein scattering kernel is simulated with a standard MC method. Compared to our method,
its computational costs to achieve RMSEs of order 10~# and 10~> for respectively the transmitted and reflected observables
are the following:

running time (s) g=097 | g=098 | g=0.99
HG kernel 8.3 7.6 6.0
singular kernel, € =0.01 | 13.9 6.7 2.0
singular kernel, € =0.1 2.5 1.5 0.7

Here, ¢ =0.01 is considered for the transmitted observables, while we set € = 0.1 for the reflected ones. According to this
table, lower computational times are observed with our method for the three considered g's compared to standard MC
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Fig. 13. Comparison of the observables obtained using the Henyey-Greenstein scattering kernel and our singular kernel with & =1, T =300, ¢ =0.01 for
the transmitted observables (left panels), and € = 0.1 for the reflected ones (right panels). The RMSEs (24) and relative errors (25) are similar to those of
Figs. 10 and 12.

Ty

Oézzl

T3 =

Fig. 14. Illustration of the setting with A = 1{x,¢(—540)} and @ (x) = a11xep + 1 1x¢p Where B is a ball centered at 0 with radius 3.

methods for the Henyey-Greenstein scattering kernel. Our MC method provides therefore an efficient tool to simulate an
RTE with a Henyey-Greenstein kernel. For transmitted observables, g needs to be quite close to one to provide a significant
advantage to our method.

5.2. Varying a function

In this section, we investigate the influence of a varying o function that characterizes the strength of the singularity.
We consider two situations, one inspired from optical tomography, and the second one from wave propagation through
atmospheric turbulence.

5.2.1. A two-stage model with a sphere

We keep the setting introduced in Section 5.1, and add a defect with a different value of o to the setting. This defect
is modeled by ball of radius 3 centered at the origin and where « is equal to «;. We set o =1 in the exterior of the ball,
corresponding to the peak forward regime of the Henyey-Greenstein scattering kernel. See Fig. 14. This situation models a
biological tissue in which statistical properties are changing and define a region of interest for imaging.
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Fig. 15. lllustrations the transmitted (left-hand-side) and reflected (right-hand-side) observables with T =300, and & = 0.01. For the top two pictures we
set x = 0 (solid lines) and x = 1.5 for the top-left and x, = 0.5 for top-right picture (dotted lines).
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Fig. 16. Illustration of a three stages «-profile for a non-Kolmogorov phase function.

We illustrate in Fig. 15 the impact of the introduction of the defect on the observables introduced in Section 5.1. The
impact is stronger on transmitted observables and quite significant, giving then the possibility to identify the defect with
o = o1 inside the scattering medium. Reflected quantities tend to be less sensitive to the presence of the defect since a
fraction of the signal is backscattered before reaching it.

5.2.2. Non-Kolmogorov turbulences
In this section, we keep once more the setting introduced in Section 5.1, with the difference that « takes three different

large values depending on the altitude parametrized by x3, see Fig. 16:

a(X3) =5/3 - Lix3<2) +4/3 - 12<x3<8) + 1.9 - 18y}
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Fig. 17. lllustrations the transmitted (left-hand-side) and reflected (right-hand-side) observables with T =300, and & = 0.01. For the top two pictures we
illustrate x, = 0 (solid lines) and x, = 2 for the top-left and x, =5 for top-right picture (dot line).

The value 5/3 corresponds to standard Kolmogorov turbulences, while other values are associated with non-Kolmogorov
turbulence models [4,52,55]. In these models, it is considered that for altitudes higher than 8 km, the atmospheric tur-
bulence yields larger statistical patterns (which tend to be created by singular kernels) than around the ground (0-2 km).
Hence, we set o = 1.9 for altitudes greater than 8 km. The function a is no longer constant in these models, and for our
illustrations we chose

a(r) = 0.002 - exp(—r? /(2 x 0.8%)).
In Fig. 17, one can notice that non-Kolmogorov turbulence yields quite different signals compared to Kolmogorov turbu-

lence, in particular for reflected quantities. As we saw in Section 5.1, the higher the «, the more diffuse is the signal which
then enhances reflected signals. This explains the increased reflections in the non-Kolmogorov case.

6. Proofs

This section is dedicated to the proof of Proposition 2.1, describing the approximation of the RTE (1) by (9) where the
small jumps have been replaced by a diffusion term, Proposition 2.2, providing the probabilistic representation to (9), and
Theorem 3.1, justifying the overall MC method involving a discretization scheme for the diffusion part.

6.1. Proof of Proposition 2.1

Let v¢ :=u, — u, so that v¢(t =0) = 0. We have

d
i 1Ve Ol go g2, =2 < Dve(®), ve(®) > p@oxs?)
=2 < (02 Ag2 + LEVe (), Ve () > p(Roxs?) T2 < (02 Agz — LEU, V() > 2R3xs?) -
Since Ag2 is a nonpositive operator, we have
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< (02A§2 + LE)ve(t), ve(t) ~12(R3xS?)

// dxo(dp)a(d1<>21+§(i)/2 / x. P - k) (f(x. p) — f(x.k))?

]R3><S2><S2
<0.

We then obtain

sup. Ve 72 ®sys2) <2 / 102 Agz = LUD 1723 52,dE-
te

which concludes the proof using the following lemma.

Lemma 6.1. Let 0 < & < &g < 1. Then, for any f € L2(R3, le:(Sz)), we have
(L8 — 02 Ag2) fll2w3xs?) < €M/ E(f)

where, with ]’(x, v):= f(x,v/|v]) for v e R3,

) T 4%
E(f) -23(1_—8()51113)»51113‘1 sup |[Dy f(. - +Ml2m3xs?)

)° Ih|<re,
(34)
6 4 1"
+ (ﬁ supa—+2°"wr  sup |a (v)|) sup A ||Aszf||Lz(]R3XS2).
(1—¢&p) vel0,2+/2801
Proof. Before starting the proof, we introduce the retraction R, at k onto the sphere R;(h) := ‘;:::‘ and
B, =R ={h=piki +paky: B=(B1.p)eR* with |B]<re},
where (kL,kzl) stands for an orthonormal basis of k*. We also recall that re =+/1—(1—=¢)2/(1 — &), coming from the

relation tan(arccos(s)) = +/1 —s2/s and (8). In different terms, B ek is a ball centered at 0 with radius r. on the tangent

plane to the unit sphere at k, and the retraction R; holds from B, ; onto SE.
To prove the lemma, we start with the followmg change of varlables p=R; () in £, so that

L8 f(x b = W / P, Ry -l (f (x, Ri() = f (x, R(0))) | detJacRy ()| dh.
£,I<
Using that f(x,lz—l—h) = f(x, R,A((h)) and f(x, IA<) = f(x, IAc), one can decompose L% f as
L5 f(x,k) = D1 + D2 + D3 + Da,

where the terms D; follow with obvious notations from the Taylor expansion

v . v A 1 v 1 2v &
fx,k+h)— f(x,k) =D f(x,k)(h) + EDﬁf(x, k)(h,h) + yDﬁf(x, k)(h, h, h)

1
1 ..
+3 /(1 —$)3DR f (x, k4 sh)(h, h, h, h)ds.

The terms D1 and D3 Using that the ball B ek in the tangent plane is symmetric with respect to 0, we just make the change
of variables h — —h, so that D1 = —Dy and D3 = —Dj3 leading to D1 = D3 =0.

The term D4 We have

()

1
_W/d (1-s)3 /dhp(x Ri(h) - K)ID f (x, k + sh)|| |h|*| det]JacR; ()| dh.

0

[D4|
s.k
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: (B kth
Since R;(h) = R we have
R:(h) k= ! and  |detJacR;(h)| = !
¢ V1+IhP ¢ Vi+h?2

As a consequence, we find

1
IDalli2o xs?) = g5 supa(v) sup ID*F (o + M)l 2R3 xs2)

[h|<re

X sup A / Ll dh
21+a(x)/2 1-1/ 1+ [h|2)1+a®)/2

{lhl<re}
Changing to polar coordinates in the last integral gives

Te

4 5
/ il dh =27 / r dr
(1—=1/y/14+|h|2)1He®/2 ) (1 =1//1+12)1+e®/2

e/(1-¢)
=27 / vITOWR2Q 4 v)? (v + 1) 2y
0

{Ihl=r

where we used the change of variables v =+/1+7r2 —1 and that \/1+7r2 —1=¢/(1 — ¢). This gives finally
T 44 g2—am/2
||D4||L2(]R3 XSZ) < — Supa(v) hSUp ||D f( -+ h)||L2(R3 XSZ) SUPA.(X)W.
€B¢
The term D, For this last term, we have

= 22127)2)/2 / (*, Ry(u) - k)D f(x k)(h h)|detjacR (h)|dh,

B

Dy
ek
with

D f (e ky (. hy = 1 9., F e f) 13 00y, F (e + 2huha 9, F (x ),

and, accordingly, the following decomposition D, = D2 + D2 + 2D»3. Applying the change of variables h = (hy, hy) —
(—h1, hy) leads to D3 =0. Setting h = (h1, hy) — (hy, h1) leads to

A ~ VA
Dy = 2:«}4;:7)2)/2 / p(x, Rl;(h) -I<)|h|2| det]acRI;(h)ldh Trace(Hess f (x, k)),
B, i
where
Trace(Hessf(x k))_Apf< T |) .= Ag f(x, k)

Furthermore, with the change of variables p = Ry (h), we find

/ p(x, Ry(h) - folh|?| det JacRy (h)|dh = / p(x, - lIR (D)0 dp),

B S

ek

and note that for p - k= cos(f), we have |Rf<_1(f7)|2 =tan®(0). As a result, moving to spherical coordinates, and performing
the change of variables v = tan(6/2) together with the relation

/1 =52
arccos(s):Zarctan( 155 ) for se(-1,1],

we find, with 1, = /1 — (1 —¢)?/(2 —¢),
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arccos(1—¢)

/p(x,fa.12)|Rl§1(ﬁ)|zo(dﬁ)=2n / p(x, cos(9)) tan®(9) sin(0)do

se 0
e
_ -atorzy, [ A@VNTHV)A VAW
- (1 — v2)2Zye®-1 '
0
leading to

av/v1+v2)(1+v2)*®/2

1 V2)2 yax)—1

Dy = DyAg f(k) :=2"" W (x )/ dv Aga f (%, k).

Now, let us introduce

G2(x) =21 "‘(")nk(x)/a(ZV/\/l—i-v )

ya®)— 1’
and remark that
r;

s 1
|D2 —62(x)| <3-237“Wri(x) supa(v)m/ v3TeWdy <3.227¢W ) (x) supa(v)
v —Te

,2
2—aym/2
(1—e)
> 2(1 — ). With the definition of o, given in (10), we obtain

<6m sup A(x) supa(v)

since 1, <+/26, 0<am <o) <oy <2and 1-— =21-2) 8)

using a’(0) =

162(x) — 02(x)| <2°mA(X)  sup |a”(\7)|/v3*0‘<">dv,
7€[0,24/2¢]

2% supa(x)  sup |a’(v)|g2>"om/2,
X ve[0,2v/2¢]

Collecting the various estimates on the D; and using that &€ < &g < 1 concludes the proof of Lemma 6.1 and therefore of
Proposition 2.1. O

6.2. Proof of Proposition 2.2
We first show that the infinitesimal generator of the Markov process D is Ag.
Infinitesimal generator for D, Let f be a smooth bounded function on R3 x S2. The goal of this section is to prove that
1
lim —(E[f(De(M)] - f(2)) = A f (2). (35)
h—0t h
To this end, we introduce the first jump time T; to obtain

Ez[f(De@)]=Ez[f(DeO)(1>0)] + Ez[f(De ()11, ]- (36)

Using conditional expectations, we find for the first term
Ez[f(De®) (0] =Bl fF (WG O (1y50] = E[ELF (UG O) (1,50 ¥5(5), 5 € [0, t]]]
=Eo[ FWFO) Po(T1 = t195(9), 5 € [0,6]) | = 2| Fwg(ee™ o Ao viienes]
With the following notations for the flow ¥z,
Wi = (X5 K = (X5 jo1.230 (KE ) jo123) € B3 x 82,
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together with f(x, k) = f(x, k/|k|) for (x,k) € R3 x R3, the Itd formula yields

df (WE(D) = df (WD) = Ve f WD) - dXXO) + Vi f (WED) - dKK ()

‘l o A N
+3 > O S VR () < K L0, K[ () >
jl=1,2,3

= I<£(t) V(D) dE + 02 (XX (D) Aga f(E (D) dt
+ V20 (X3 0)Vif (Y7 (©)) - (Ki (D) x AW (©)).

Above, we have used the fact that

Agf ) =Mf b — D" kkidd F oo =2 " kjow Fx. . (37)
ji1=1,2,3 j=1,2,3

Therefore, we have for n =0,

d((fWE®) = F@e I AV ) — (df (W) — Ac OIS WFO) — f(2)) ) Jo AeV5(as
so that
1 A ~
Jim 2B (fDem) = @ rm] =k-Vaf (@) + 070252 f (@), Vz=(x.k) €R® xS,
Regarding the second term in (36), we find, using the Markov property in the third line,

Ez[f(Ds(h))l(Tlsh)] = Ez[Ez[f(Ds(h)) | Tl]l(Tlsh)]

h
= EZI:/]EZ[f(DE(h)) | Tl = V] Ag(wé(v)) e—fov Ag(zpé(s))dsdv]
0
h
— EZ[/ / E [f(De(h —v))] Hg(lﬁé(v), dz) AS(\/IS(V)) o N Ag(xpg(s))dsdv]
0 R3xS?

h
= / / E xgtnw. iy LF (D WD (U = W), 5) 0 (dD) A (W h — wy) e~ Jo " A=50squy ],
0 S2

where the probability IT; and the density 7z are defined respectively in (16) and (17). As a consequence,

.1 N A N
,11er1+ E]Ez[f(Ds(h))l(ﬁgh)] = Ae(Z)/f(X, pP)7e(z, p)o (dp).
SZ
Moreover, we have
Po(Ty < h) = E,[Po(Ty <h|94(s), 5 € 0, h)] = B[ 1 — e~ Asvgones],
and it is then direct to see that
1
lim —-P,(T1 <h) = A:(2).
h—0h
This finally yields
.1 « A N N
hlmog EEZ[(f(Da(h)) = F@ON(1,<m] = Ae(2) /(f(x, p) — f(x, k)7 (z, p)o (dp),

S2

which gives (35) collecting all results.
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Proof of (18) Since D¢ is a solution to the martingale problem associated to 4. (see [15, Proposition 1.7 pp. 162]), we have,
for any smooth bounded function f on R3 x S2,

t

we(F) = to(f) + / Ws(Asf)ds,  where  pe(f) == Eyu LF (D (O)].
0
Let

ut(f):=_l / ug(t, x, k) f (x, k) dx o (dk).
uO]R3><S2

Since u, solves (9), we have
t
ug(t) =uo + /A;‘;ua(S)ds,
0

where A% stands for the adjoint operator of A in L2(R3 x S?). Then,

t
1 N ~ ~
vt(f)=M0(f)+L_l— / /Ajug(s,x,k)dsf(x,k)dxa(dk)
0]R3><S2 0
t

t
1 ~ ~ ~
=M0(f)+/% / us(s,x,k)Agf(x,k)dxa(dk)ds=Mo(f)+/vs(,48f)ds.
0 R3xS? 0

Therefore, according to [15, Proposition 9.18 pp. 251], we have w; = v; for any t > 0, which concludes the proof.
6.3. Proof of Theorem 3.1

The proof of this result is provided in three steps. The first step consists in rewriting the probabilistic representation (18)
for (9) in terms of a SDE with jumps. The second step concerns the error analysis of the solution to this later SDE with its
discretized version. Finally, the last step gathers all the error estimated and concludes the proof.

6.3.1. Step 1

We first introduce an equivalent formulation (in the statistical sense) for the process D, in terms of a stochastic differen-
tial equation (SDE) with jumps. This representation is useful when comparing with the discrete scheme. Let D, = (X, K¢)
be the solution to the following SDE with jumps:

dX.(t) = K (t) dt
AR (t) = V206 (Xe (67)) Ke(t7) x AW — 202 (X (t7))Ke (t7) dt
+ / R0, ¢, Dc(t™), v)P(dt,do, de, dv)
(0,7)%(0,27) % (0,1)
where the function R is defined by, for z = (x, IQ),

RO, 0. k)—k if  v<A(2)7(z, RO, 0.k)/Ac

ié =
0.9.2,v) i 0 otherwise.

Above, R is defined in (28), A, in (14), A¢ in (21), 7 in (17), and P is a random Poisson measure with intensity measure

wu(dt,do, de, du) = As1(0.00)x(0.7)x (0.2)x(0.1) (£, 8, @, v) sin(@)dt de do / (47). (39)

See e.g. [2, Chapter 2] for more details on Poisson random measures. The notation ¢t~ is standard and refers to the left limit
when approaching t before a jump. With this construction, the infinitesimal generator for the Markov process D is

Acf@) =k-Vif(2) +02(X) A2 f(2) + Ae / (F,k+ R, 9,2,v)) — f2)odp)dv,
(0,1)x(0,2)%x(0,1)

and we have the following result.
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Lemma 6.2. The processes D and D, have the same distribution.

Proof. D, and D, are both Markov processes and are therefore characterized by their generators. We just have then to

prove that A.g = Agg for any bounded smooth function g. This is a direct consequence of the definition to R. Indeed,
denoting by 7, and Z, the integral operators in respectively Ae and Ag, we have with z = (x, k)

Le@=h [ (e0k+RO.9.2.v) - 8@ sin@) dpdodv/am)
(0,1)x(0,2r)%(0,1)

Ae(@)me(2,RO.9.0)/Re

=Ag / / dv (g(x, R(6, ¢, k) — g(2)) sin(6) dp do/(4m)
(0,m)x(0,2m) 0
_ A s ) R R
Ae / W@(x, p) — 8(2)) o (dp) = T 8(2),
&
SZ

which concludes the proof. O

6.3.2. Step 2

The goal is now to prove that the discretized process Dy . approximates D, in a statistical sense. We use for this the
notations of Section 3.2 for X m, Kpm and I?n,m. For simplicity, we suppose that the Gaussian vectors (W, m) in (22)
are obtained from a single 3D standard Brownian motion W as follows: for n >0 and m =0,...,m,, we set Wy m =
(W (Ta,m +hn,m) — W (Tnm))/+/hn.m. In the sequel, we will use the following process, defined by, for t € [Tn,m, Tn,m + hn.m],
m=0,...,my,

t
Xam(@®) = Xnm + / IA{n,mdS
Tn.m
t t
Knm(t) = IA(n,m -2 / O'S(Xn,m)f(n,mds + ‘/5 / e (Xn,m) kn,m x dW (s).
T”,Wl Tn.m

For t > 0, we then combine the (X, Kpn ) into

oo My

D () = Xne ) e ) =Y > At T thnm) (O Wnm ©),

n=0m=0

where W, m(t) = (Xnm(t), KCnm(t)) is the solution to (40) with initial condition Wy m(Tn,m) = (Xnm, I%n,m). Note that ©j ¢
is simply an interpolation of Dy ¢ in the intervals [Tp m, Tnm -+ hn,m] that will allow us to use the It formula.
For any smooth function f, we now introduce b the (smooth) solution to the following backward RTE,

~ A A “ A A~
otb+k-Vyib+ zlﬂgi)((z)/z /p(x, k-p)(b(p) —bk))o(dp) =0, (41)
S?

with terminal condition b(T, x, IAc) = f(x, IAc) and use the notation E(t,x, k) = b(t, x, k/|k]), (t,x k) €[0,T] x R3 x R3. We
have the following result.

Proposition 6.1. For any T > 0, any smooth bounded function f on R3 x S2, and any (x, k) € R3 x S2, we have

|E iy Lf Die (TN] = E , 1, [F(De(T)]| < €22 2T Eno(b) + hF1 (b),

where Eo(b) is defined as in (34) with L% norms replaced by L® norms in all variables, and where F(b) is an explicit function
independent of € and h that depends on derivatives of b up to order 4.

The notation IE above indicates that the process under the expectation starts at the point (x, k)

Proof. The proof consists in analyzing the discretization error of the diffusion process in a weak sense following the ideas
of [53].
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We first write

Ene :=Ez[f(Dhe(T)] — E[f (De(T))] = E,[b(T, Dp ¢ (T))] — E,[b(T, De(T))],
with z = (x, IAc). Using the It formula, see e.g. [2, Th 4.4.7 p. 226], together with the expression of Ag> given in (37), we
have
T
E;[b(T, De(T))] = b(0,2) = Ez[ / 3b(t, De () + K (£) - Vib(t, De (£))
0
+02(Xe () Agab(t, Do (0) + T2 (0t

where

AMXe (D)

)= ——"—
~® 21+a(Xe()/2

/ p(Xe (), Ke(t) - P)(b(t, Xe (1), p) — b(t, Xe(t), Ke (D))o (dP).
se
Using the fact that b satisfies (41), we find
T
E:[b(T, De(T)] =b(0,2) + E;| / 02 (Xe () Agab(t, Do (0) — T2 (0t ],
0

where Z¢ is as Z¢ with S¢ replaced by S¢. Following the lines of the proof of Lemma 6.1, we obtain

IE[b(T, D¢ (T)] — b(0, 2)| < &>~ *M/2 T Eo(b),

where E.(b) is defined as in (34) with L? norms replaced by L% norms. We move now to the term E,[b(T, Dy, o(T))]
which requires more work. Decomposing the interval [0, T] according to the grid (Ty,m), we have

b(T, Dpe(T)) — b(0,2) = b(T, Dy £ (T)) — b(0, 2)
=3 b(Tams1 AT, Dpe(Tnm1 AT)) = B(Tam AT, Dpe(Tam AT))

n>0m=>0
+b(Tpm AT, Dpe(Tm AT)) = b(Tpm AT, Dhe(Tpm A T7))
=: B1 + By,

with obvious notations and where B is meant to capture the dynamic between jumps while B; captures that at the jumps.
The double sum and the T, m AT are only here to simplify the proof. Note that in order to define the sum for all m > 0, we
set Ty,m =T for m > my, and note also that there is only a finite number of terms in the sums. We are then led to estimate
the differences in By and B; for which we will use the process ©j .. We introduced b since Rh.¢ is not necessarily on the
sphere between the grid points. Since T is on the grid, we have by definition Dy ¢(Tym A T) = ®p ¢(Tn,m A T). Consider
now the notation

ée,h = Xen, ﬁa,h) with -&E,h =

By construction, the process f)h,.g is continuous at the times T, , that do not correspond to jump times, so that

b(Tnm, Oh.e(Tnm)) = b(Tn.m, On.e (Tnm)) = b(Tnm. On e (Tp ) = b(Trm, One (Trm)

for those T, m. As a consequence, By indeed only accounts for jumps. We will then estimate B; using the It6 formula for
Dp.e between Tp;m and Ty my1, and the properties of Poisson random measures for B;. For the latter, we notice that we
have by construction Dh,e(T,T) = éh,e(f{)- Using then the random Poisson measure P with intensity measure p introduced
n (38) and (39), we can write

T
By = / ((b(t, Dpe(t7)) + RO, 9. Dp e (t7), V) — b(t, Dp (7)) P(dt, d6. dg, dv),
0

so that, together with the fact that P — i is a measure-valued martingale, see e.g. [2, Chapter 2],
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Toma AT
Bapal =Y Y B[ [ Zwd]
nom TomAT
with
. AXpe(t . o o ¥ .
I8 () = wg&%/l)(%h,s(t),ﬁh,s(t)'p)(b(taxh,s(t)»p)_b(t7xh,s(t)aﬁh,s(t))a(dp)~
s

For B1, we have from the Itd formula

Tamaa AT

BalBil= L B [ OB D 0) + S (Tam) - bl Dy 0) 4 02 s T 01

TamAT

where

BE i (6) = Agb(t, Dp ¢ (6)) — Re (Tnm) T DEB(E, D e (6) R (Trm) — 28, (Tam) - Vieb (£, Do (1)).

As a result,
Tn4m+1AT
E,[B1+Ba]=) Z]Ez[ / 3b(t, D¢ () + Rpe (Tnm) - Vab(t, Dpe (1))
nom TumAT

+ 02 (X e (Tam) By (©) + T2 (D e () d .
Using again the fact that b satisfies (41), we have

8tb(t, gh,g(Tn,m)) + ﬁh,e(Tn,m) . be(t’ Qh,s(Tn,m)) + Qb(ts :Dh,e(Tn,m)) =0,

which also holds true for b since the variable Rp.e(Tn,m) has norm 1 at the grid points Tj . As a consequence,

7
E[b(T. Dpe(TH]=b©0,2)=3 > > Ei,
nom j=1
where
Tnm1 AT
Elni=Be] [ a6 De©) ~ 9 D (T
Tn.mAT
To,manT
B =B [ e (T - (T D) = Vbt Dy Tam) ]
TnmAT
Tnm+1AT
Eoni=Be] [ 2 e Tam) (A D1 ) = Aub( Dy (T
TpmAT
Tnmia AT
E@ '—IE[ —62(Xp (T T (p2F _n2f,
nm -— Lz ° h,a( n,m))ﬁh,a(Tn,m) (Dkb(tvgh,a(t)) Dkb(tvgh,a(Tn,m)))ﬁh,a(Tn,m)dt
Tn.mAT
Tnm+1AT
Efoh =4 / ~202(Xn e (Tam)) fi,e (Tam) - (Veb(E, D e (0) = Vib (€, D e (Trm))) e
TnmAT
Tnma AT
Efn =2 / 02 (X (Tam) Agab(t, Dne (Tnm)) — 72 (n o (Tam)) e

TnmAT
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Tnmai AT
Ein =E| / 22 (@6 (©) — 2 Ope(Tam)) e
TnmAT
with
~ AXp et A Y N ¥ A
T @ne0) = oot [ P00 R 0 YO i 00, B) ~ B Do ()7 @) (42)
s

In the estimates below involving b, derivatives involving k — k= k/|k| produce terms of the form 1/|k|P for some p > O.
These terms are due to the fact that K, n does not stay on the sphere at all times. However, these terms can be bounded
uniformly thanks to the following lemma.

Lemma 6.3. We have for any n > 0 and m < my,

1
in Knm(s)| = (1 —2ha? ) > =,
SE[Tn.man.m‘Fhll.m)' ”,m( )l - ( 8’00) 2

for h and & small enough, and

sup E[|Kn,m($)1* | Tnm, Tnomt1] < 1+4ho?  <2.
s€[Tnm, Tn,m+hn,m)

Proof. For s € [Tn.m, Tnm + hn.m], Kn,m can be rewritten as the sum of two orthogonal components

Knm(s) = (1= 2(t = Tom)02 (Xnm)Kn.m + v20¢ Xn.m) Knm x (W (s) = W (Tom))
so that
IKnm($)1* = (1 —2ho2 )%
Now for the upper bound, using that W, and P are independent, we have
E[|Knm($)* | Tom, Tams1] < (1 +2ho2 ) +202 L E[IW(S) = W (Tam)* | Tam, Tnme1]
<1+4ho?
<2,

where we used that 4ho? , < 1. This concludes the proof. O

For E,(f,)n Using the Itd formula between Ty, and Ty m+1, we find

E[0ib (€, D (©) = db(t, Dpe (Ta)) | Tam, Trms |
t
= / e (Tam) - Vadeb(t, D e (5))

Ta,m

+ 02 X e (Tam)) (AkOD(E D (9)) = R (Tam)" DFOB(E, D e () e (Tom)
= 28h¢ (Tam) - Vidb (¢, Dp,e () )ds,
so that
|Efinl <h (||D?,XB||OQ +202 ,(ID3 ) bllo + ||D%,k5||oo)),

where 0 ¢ = supy 0 (x). When & < &g, we have 0 ¢ < 0 ¢, Since 1 is an increasing function of ¢. As a result, we obtain

S IEM =T (1D Blloe +202 4, (IDF) (Bl + D2 Bllo) ) = hF2(b).
m

n
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For E,(ﬂm with j=2,...,5 Following the same lines as above, we have

ZZZ [Enl < 20 T (103 Bl + 202, o, (103 Blloc + D2 Blloc))

mjz

+4hT 02, o (ID2Bllos + 1D} i Blloo + 202 4, 2IDE g Blloe + 1D} s kbllow + 1DF Blloc))
=:hF3(b).

For E,f,)n For this term, we follow the proof of Lemma 6.1 and find

SO IESR < T2 M2 B ),
n m

where E(b) is defined as before.

For E,(J,)n Starting from (42), we have
= A(ZXne () P ok A ¥ ~ .
I @ne®) = S0 / P e (O, R (©) - PYB(E, X o (0, P) = D(t, X o (0, B, ()0 (dD)

sé‘
MEne®) |
t
= 21+a(;:€([))/2 /dgo/dslo(:{h £(),s)

x (Bt Xine 0,556 O + V1= 52G(@, Ric(©) = B(t, X e (0), R 0))

where the last line is obtained by changing to spherical coordinates with s = cos(6), and

G(p, k) := cos((p)IAcf‘ + sin((p)IAczl.

Above, (kl kJ-) forms an orthonormal basis of the plane k*. Note that the choice of (k kzl) does not play any role since
the variable ¢ is integrated. Now, writing

2 1
= A(Xp,e (1))
Ii(:Dh,S(t)) = 21_,’_0[(%:8([))/2 /d(ﬂ / ds/dvlo(xh S(t) S)
0
X ((s = DRne (O +V1—52G(g, fn e ()
Vb (£, e (6), (1+ V(s — 1) Fpe (6) + vV 1 = 52G(9, Rps (1)),
and using that G(¢ + 7, k) = —G(p, k), we just have to focus on

1

AXp e (t i
ze (fohg(t))—z]fa(;:f@))f/z / ¢ / ds / dv p(Xn e (0, ) — DRn e (0

0
Vb (£, e (6), (1+ V(s — 1) Fpe (O + vy 1 =52 G(9, Rne (1))
Before applying the It6 formula to this term, we rewrite G as
G(p. 8 = (I3 +sin(@) Q (&) + (1 = cos(@) Q% ) 1

where I3 is the 3 x 3 identity matrix, Q is defined by (29), and where

1 ks 1 ks
| -k | = V— —k1 ],
Vi +k2 \ o JKki+k \ 0
which is orthogonal to k= k/\k|. In fact, G(p, IA<) corresponds to the rotation of H; (IA<) ekt with angle ¢ and axis k. This
choice simplifies calculations. Now, note that

Hq (IA<) =
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1-¢ 1

21-1m/2
/p(x,S)(S—1)d55/p(x,5)(5—1)5IIGIIOOW

m/2
4 4

so that E,Qn does not depend on ¢. Applying the 1td formula, we obtain

S OSIE M <hT A+ +27 302, ) |l 217/ (1+ ! )
kA ol T 2\ T = w2

X (IViklloo + Moo + IVx@lloo) (I Dgblloo + 11D} kblloc) =: hFa(b)
Setting finally Fq := F, + F3 + F4 and gathering all previous results concludes the proof of Proposition 6.1. W

6.3.3. Step 3 and conclusion A
We remark first that the error bound in Proposition 6.1 does not depend on the starting point (x, k). Then, from this
pointwise result, we find

|Epio[f (Dp,e (T)] = Epio [f (De(T)]] < / |E iLf (Dne(T)] = E, t[f (D& (T)]| po(dx, k),
R3xS?
where g is the probability measure given by (19). Let now
pep= [ uexbiehaod and ) =Ewlf 001
R3xS?

Using Propositions 2.1 and 6.1, and that fR3XS2 u. (T, x, IAc)f(x, IA<) dxcr(dlz) =K, [f(De(T)] = Euo[f(f)g(T))] according to
Lemma 6.2, we have

e (T, f) — (T, )] < €272 V2TEW) | fll 23 xs2) + €2~ %M/? 2T Eso(b) + hF1(b).

In order to end the proof of Theorem 3.1, it suffices to remark now that

N he(T, ) — (T, OI <N ne (T, ) = pne (T, O+ tne (T, ) — w(T, £,
so that

by
P (1w (T, ) = (T, )] > ”?fv + M2 Fo(u, b, f) + 62N/ 2T Eqo(b) +h Fr (b))

by
<P (Inne (T ) = (T, )] = 28 + 22 R, b, £) 4 RE1B) — (T, f) = (T 1)
>0
NZh,e
<P (e (T, ) = pine (T, Pl = 222

where

Fo(u,b, ) :=~v2TEW)| fl 2®3xs?) + 2T Eso(W).

We conclude by applying the central limit theorem [16] together with the Portmanteau theorem [6, Theorem 2.1 pp.16]. W
7. Conclusion

We have derived an efficient MC method for the resolution of the RTE with non-integrable scattering kernels. It is based
on a small jumps/large jumps decomposition that allows us to simulate the small jumps part at a low cost by solving a stan-
dard SDE. The large jumps are obtained by using the stochastic collocation technique with a candidate distribution function
that captures the singular behavior of the kernel. We have moreover demonstrated the necessity to include the small jumps
component in order to obtain a good accuracy at a manageable computational cost, and investigated practical situations in
optical tomography and atmospheric turbulence where the singular RTE is of interest. We in particular highlighted the role
of the singularity strength « on the qualitative behavior of the solution.

Future investigations include the estimation of the scattering kernel, with an emphasis on the parameter «, from either
simulated or experimental data obtained e.g. from light propagation in biological tissues. This problem is of practical interest
in biomedical applications and will require the development of appropriate inverse techniques.
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Fig. 18. Illustration of the polynomial approximation to G with 5 (left picture) and 10 (right picture) interpolations points. We use the library Jacobi.jl to
compute these quadrature points.
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Appendix A. Stochastic collocation

In this section, we describe the stochastic collocation method, see e.g. [28], and consider the situation of Section 5.2.2
as an illustration. The goal is to simulate a real-valued random variable W (for which direct simulation is not possible or
too costly) from an auxiliary variable V that can be generated efficiently. In our context, we want to simulate W with
probability density function (PDF)

a(+/2w)
CWW1+a/2

where Cy is a normalization constant. As already noticed in Section 3.4, a direct method is available when a = 1. Therefore,
we take V with PDF

fw(w) = 12 (w),

1
fv(v):= Wl(s,m(v),
that can be simulated with
V=F,'(U)y=e(—(1-(e/2*HU)~2/,

where U ~1(0,1) and where Fy is the cumulative distribution function (CDF) of V. The stochastic collocation method is
based on the following three observations. First, we have Fy (V) ~ (0, 1). Second, denoting by Fy the CDF of W, we note
that W can be (theoretically) simulated with

Fi' (U) = F (Fy (V) =: G(V),

with G = FV_\,l o Fy and U = Fy (V). Last, we only need to approximate G and not F;', and with a good candidate V, G
behaves better than F ‘],1. In order to approximate G, we use Gauss polynomial interpolation and only need to invert Fy, at
a small number of points.

In our example, V captures the “singular” behavior of W, and is as a consequence a good candidate. The function G
is then direct to approximate with just a few quadrature points for a reduced computational cost. Because G needs only
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to be approximated over (g, 2), with known values at the extremes, we rather use a Gauss-Lobatto-Jacobi quadrature rule.
In Fig. 18, we illustrate the polynomial approximation of G, with 5 and 10 interpolation points for « = 5/3, ¢ = 0.01,
and a(r) = exp(—r2/(2 x 0.82)). Because of our choice for V, one can observe that the overall behavior of the PDF fy is
well captured with just 5 quadrature points, even for strongly singular kernels with o =5/3. However, the fast decay of
the function a, which is the main source of error between Fy and Fy, requires more quadrature points for an accurate
approximation and 10 points seem sufficient.
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