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Abstract. We introduce in this work an efficient numerical method for the
simulation of the quantum Liouville-BGK equation, which models the diffusive
transport of quantum particles. The corner stone to the model is the BGK

collision operator, obtained by minimizing the quantum free energy under the
constraint that the local density of particles is conserved during collisions. This

leads to a large system of coupled nonlinear nonlocal PDEs whose resolution is
challenging. We then define a splitting scheme that separates the transport and
the collision parts, which, exploiting the local conservation of particles, leads to
a fully linear collision step. The latter involves the resolution of a constrained
optimization problem that is handled with the nonlinear conjugate gradient
algorithm. We prove that the time semi-discrete scheme is convergent, and as

an application of our numerical scheme, we validate the quantum drift-diffusion
model that is obtained as the diffusive limit of the quantum Liouville-BGK
equation.

1. Introduction. This work is concerned with the numerical resolution of the
quantum Liouville-BGK equation of the form

iℏ∂tϱ = [H, ϱ] + iℏQ(ϱ), (1)

where ϱ is a density operator, i.e. a trace class self-adjoint nonnegative operator
on some Hilbert space, [·, ·] denotes the commutator between two operators, H is a
given Hamiltonian, and Q is a BGK-type collision operator [4] of the form

Q(ϱ) =
1

τ
(ϱe[ϱ]− ϱ).

Above, τ is a given relaxation time, and ϱe[ϱ] is a quantum statistical equilibrium
that will be discussed further. This problem is motivated by a series of papers by
Degond and Ringhofer on the derivation of quantum hydrodynamical models from
first principles. In [12], their main idea is to transpose to the quantum setting
the entropy closure strategy that Levermore used for kinetic equations [24]. As
in the kinetic case, an infinite cascade of equations for the local moments of ϱ
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can be derived from (1), and this cascade cannot be closed since moments of a
given order depend on moments of higher order. The local moments of ϱ can
be defined in terms of the Wigner transform W (x, p) of ϱ, see e.g. [25], and by
computing moments with respect to p, yielding then functions of the spatial variable
x such as the local density of particles, the local current, and the local energy. By
analogy with the classical case, Degond and Ringhofer then introduce a quantum
statistical equilibrium ϱe[ϱ] that is used to close the moments hierarchy. Depending
on the number of moments accounted for in the closure procedure, several quantum
macroscopic models can be obtained: Quantum Euler, Quantum Energy Transport,
Quantum Navier-Stokes, or Quantum Drift-Diffusion in the diffusive regime, we
refer to [9, 8, 7, 11, 10, 22, 21, 20] for more details about these models and other
references on quantum hydrodynamics. The quantum Liouville-BGK equation is
the “mother” of all of these quantum hydrodynamical models, and is therefore an
important equation to study and to develop numerical methods for. Note that there
are several models in the literature referred to as Quantum Drift-Diffusion models,
we use here the terminology of the references above and not that of e.g. [1, 32]
where the Quantum Drift-Diffusion model is different.

As in e.g. [9, 10], we consider in this work the case where ϱe[ϱ] is obtained by
minimizing the quantum free energy F, which is defined by, for appropriate density
operators σ,

F(σ) = kBT0Tr (σ log σ − σ) + Tr (Hσ), (2)

under the constraint that the local density of particles of σ is the same as that of ϱ,
where ϱ ≡ ϱ(t) is the solution to (1). In other words, if Wσ and Wϱ are the Wigner
transforms of σ and ϱ, then this constraint is expressed mathematically as

nσ :=

∫
Wσ(x, p)dp =

∫
Wϱ(x, p)dp = nϱ,

(we will use more a convenient form for the definition of nσ later). In (2), Tr(·)
denotes operator trace, kB is the Boltzmann constant, and T0 is the temperature.
This model gives rise, in the diffusion limit valid at time scales much larger than τ ,
to the Quantum Drift-Diffusion model, see e.g. [7]. The latter is a generalization
of the classical drift-diffusion model that accounts for quantum effects in a non-
perturbative manner.

At the mathematical level, (1) is studied in [28] in a one-dimensional spatial
domain, and the minimization of F under various configurations is addressed in
[26, 27, 14, 16, 15, 13, 17]. Note also that the equilibrium ϱe[ϱ] is central in the
work of Nachtergale and Yau in their derivation of the Euler equations of fluid
dynamics from many-body quantum mechanics, see [29].

Our main motivation in this work is to develop an efficient numerical method for
the resolution of the quantum Liouville-BGK equation (1). As the minimizer of F
under the density constraint, the equilibrium operator ϱe[ϱ] depends nonlinearly and
nonlocally on ϱ, and (1) can then be seen as an infinite system of coupled nonlinear
nonlocal PDEs. The main difficulty in the derivation of a numerical scheme is
naturally to properly handle ϱe[ϱ]. We propose here a simple and effective way to
proceed by using a splitting scheme, and treat the transport term [H, ϱ] and the
collision term iℏQ(ϱ) separately. The key point is, by construction, that the local
density nϱ is a collision invariant, and as a consequence the solution to the collision
step

∂tϱ = Q(ϱ), ϱ(t0) = σ,
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satisfies nϱ(t) = nσ for all t ≥ t0. This yields that Q(ϱ) takes the form Q(ϱ) =
ϱe[σ] − ϱ and is linear in ϱ. There is still a constrained optimization problem to
solve at each time step to obtain ϱe[σ], but the originally nonlinear problem is now
linear. The treatment of [H, ϱ] is standard and poses no particular difficulty.

While the method generalizes immediately to two and three dimensional spatial
settings, we will for simplicity implement and study this splitting scheme in a one-
dimensional framework. One-dimensional models are revelant for instance in the
study of quantum heterostructures formed by stacking layers of different materials
along one direction, here x: electrons in the conduction band see sharp changes
in the potential along x, while variations are small in the transverse plane; the
transport properties in the bulk of the material are then calculated by imposing
periodic boundary conditions in the transverse plane. We will explain informally
how to derive a 1D model from a 3D one in this context in the Appendix.

Our main contributions in this work are the following: (i) implementation and
analysis of a splitting scheme for (1); we will prove that the splitting solution con-
verges to the original solution, and a by-product of the proof is the uniqueness of
solutions to (1) while only existence was obtained in [28]; (ii) as an application
of the numerical method, we validate the Quantum Drift-Diffusion model (QDD)
defined further; we compare the solutions to (1) for various collision strengths with
those of QDD and show an excellent agreement in the regime of validity of QDD.

The paper is structured as follows: we define in detail in Section 2 the quantum
Liouville-BGK equation and its diffusive limit, the QDD model. We present in
Section 3 our numerical method for the resolution of the quantum Liouville equation:
we introduce the temporal and spatial discretizations, and show that the unique
time-discrete solution given by a Strang splitting scheme converges to the unique
solution to the Liouville equation. The resolution of the QDD model is addressed
in Section 4. The numerical simulations and some algorithmic details are offered in
Section 5. Finally, an Appendix collects various technical results needed throughout
the article.

2. Models. We introduce in this section the Quantum Liouville-BGK equation
and the Quantum Drift-Diffusion model.

2.1. The Quantum Liouville-BGK equation (QLE). We first write a density
operator ϱ in terms of its spectral elements,

ϱ =
∑

p∈N

ρp|ψp⟩⟨ψp|,

where we used the Dirac bra-ket notation, and where {ρp, ψp} are the p−th eigen-
value and eigenfunction pair for ϱ, eigenvalues counted with multiplicity. In our
problem of interest, the density operators are typically full-rank, that is all eigenva-
lues are strictly positive, and form then a sequence {ρp}p∈N decreasing to zero. This
is a consequence of the fact, proved in [26], that the equilibrium ϱe[ϱ] is full-rank.
With this notation, the local density nϱ associated to ϱ is defined by

nϱ :=
∑

p∈N

ρp|ψp|2.

The local density can also be equivalently defined by duality in terms of the trace
operator Tr(·), i.e., with [0, L] our spatial domain,
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(nϱ, ψ) :=

∫

[0,L]

nϱψdx = Tr(ϱψ),

for all smooth function ψ (we identify ψ with the corresponding multiplication
operator).

In the context of particle transport in nanostructures, the Hamiltonian H in (1)
is given by

H = H0 − eVext − eV, with H0 = − ℏ
2

2m∗
∆,

where ∆ = d2/dx2, m∗ is the effective mass of the electron (assumed for simplicity
to be constant in the domain; considering a varying m∗ would only require minor
modifications), and −e is the electron charge. In H, Vext is a bounded externally
applied potential, and V is electrostatic potential solution the Poisson equation

ϵ0∆V = nϱ, V(0) = V(L) = 0.

Above, ϵ0 is the permittivity of the material (assumed once more to be constant
for simplicity), and the maximum principle shows that V is negative. The Hamilto-
nians H and H0 are equipped with Neumann boundary conditions and are defined
on the following domain

D(H) = D(H0) =

{
φ ∈ H2(0, L) :

d

dx
φ(0) =

d

dx
φ(L) = 0

}
, (3)

where H2(0, L) is the usual Sobolev space. With such boundary conditions, the
total number of particles in the system is fixed, and there is no particle current
at the boundary. We will then model the inflow of particles by using superpo-
sitions of wave packets located away from the boundary as initial conditions. A
better way to include particle flow into the domain is to use transparent boundary
conditions as e.g. in [3, 30], but this is quite technical and beyond the scope of
this work. Neumann boundary conditions are chosen over homogeneous Dirichlet
boundary conditions since they ensure that the density nϱ is strictly positive over
the domain. Spatial points where nϱ vanishes (i.e. where there is no particle) are
problematic when solving the minimization problem, and are then avoided with
Neumann conditions, see e.g. [28] for a discussion of this matter.

Regarding the calculation of the equilibrium and the minimization of the free
energy, it is shown formally in [12, 7] (and rigorously in [26, 16]), that ϱe[ϱ] takes
on the form of a so-called “quantum Maxwellian”,

ϱe[ϱ] = e−(H0+A[ϱ])/kBT0 , (4)

where A[ϱ](t, x) is the chemical potential obtained as the Lagrange multiplier asso-
ciated with the local density constraint nσ = nϱ. It is moreover shown in [12] that
the constrained optimization problem can be reformulated as the unconstrained
minimization of the following convex functional of A:

J(A) = kBT0 Tr
(
e−(H0+A)/kBT0

)
+

∫

[0,L]

nϱ A dx. (5)

As for the density operator, we can represent the quantum Maxwellian in terms
of the spectral elements {λp[Aϱ], ϕp[Aϱ]}p∈N of the Hamiltonian HA = H0 + A[ϱ],
Aϱ ≡ A[ϱ] so we have

ϱe[ϱ] =
∑

p∈N

e−λp[Aϱ]/kBT0 |ϕp[Aϱ]⟩ ⟨ϕp[Aϱ]|.
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Following the scalings used in [6], we nondimensionalize QLE in a manner that
incorporates the relevant physical constants. The characteristic length is determined

by the size of the device, x̄ = L; the relaxation time is τ = m∗µ
e , where µ is the

(supposed constant) mobility of the electrons in the material; the reference time

is given by t̄ = L2e
µkBT0

; voltages are scaled with respect to the thermal potential

V̄ = kBT0

e , and densities with respect to the uniform density n̄ = L−1. Using these
reference values, we can now define the following dimensionless quantities:

x′ =
x

x̄
, n′ =

n

n̄
, t′ =

t

t̄
, V′ =

V

V̄
, A′ =

A

eV̄
, (6)

to obtain the scaled QLE coupled with the Poisson equation (omitting the primes):



iε∂tϱ =

1√
2β

[H, ϱ] +
i

ε
(ϱe[ϱ]− ϱ), x ∈ (0, 1)

α2∆V = nϱ, V(0) = V(1) = 0.

Above, the Hamiltonian is given by

H = −β2∆− V− Vext =: H0 − V− Vext.

The equilibrium operator ϱe is

ϱe[ϱ] = e−(H0+A[ϱ]),

and the dimensionless constants are

α =

√
ϵ0kBT0
e2L2n̄

=
λd
L
, β =

√
ℏ2

2m∗L2kBT0
=
λdB
L

, ε =

√
kBT0τ2

m∗L2
=
λmfp

L
,

where λd is the Debye length, λdB is the de Broglie length, and λmfp is the mean
free path. We will consider moderate values ε = 0.1 to small values of ε = 0.0025 to
validate the QDD model. The parameter β controls the oscillations in the solution.
Interesting (and more computationally involved) regimes correspond to small β,
where particles travel large distances in the device and have wavelengths comparable
with variations in the potentials. Note that small values of β allow for a significant
number of modes in the quantum Maxwellian, which justifies the use of mixed
states. The parameter α has a relatively weak influence on the solutions. We refer
the reader to [6] for more details about the scalings.

We now turn to the Quantum Drift-Diffusion model.

2.2. The Quantum Drift-Diffusion model (QDD). QDD is obtained as the
diffusive limit of QLE, i.e. in the limit as ε → 0, see [6] for a derivation. The
dimensional quantities in QDD are scaled in the same way as QLE. In addition
to the scaling relationships defined in (6), an additional reference is needed for the

current, we choose j̄ = µkBT0n̄
Le and set j′ = j/j̄. Using these conventions, the scaled

QDD model has the following form (again, omitting the primes on the dimensionless
variables): with ∇ = d/dx,





∂tn+∇(n∇(A+ V+ Vext)) = 0

α2∆V = n, V(0) = V(1) = 0,

n = n[e−HA(t) ] =
∑

p∈N

e−λp[A(t)]|ϕp[A(t)]|2,
(7)
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where {λp[A(t)], ϕp[A(t)]}p∈N are the spectral elements of the Hamiltonian HA(t) =

−β2∆+ A(t) = H0 + A(t). As with QLE, the Hamiltonian is equipped with Neu-
mann boundary conditions. Finally, insulating boundary conditions are specified
for the electrochemical potential A+ V+ Vext, i.e.

d

dx
(A+ V+ Vext)|x=0,1 = 0.

With such conditions, the total number of particles is preserved in the domain
and there is no current at the boundary, as for QLE. The relationship with the
solution ϱ(t) to QLE is that ϱ(t) ≃ exp(−HA(t)) as ε→ 0.

Maybe counterintuitively, QDD is probably best seen as an evolution equation
on the chemical potential A and the Poisson potential V rather than on the density
n. The mathematical analysis of (7) is quite difficult, and an existence result in a
one-dimensional periodic domain is obtained in [31].

3. Numerical method for QLE. We introduce in this section the numerical
scheme for QLE. We start with the time discretization, and prove the convergence
of a semi-discrete Strang splitting scheme to the solution to QLE. We then define
the spatial discretization in a second step, and detail the resolution of the transport
and collision parts.

3.1. Time discretization: Strang splitting. We first consider a semi-discrete
model by discretizing the time variable. As already mentioned, the main difficulty
in the resolution of QLE is the calculation of the nonlinear term ϱe[ϱ] in the collision
part. The problem is considerably simplified by using a splitting approach: writing

iε∂tϱ = L(ϱ) + iQ(ϱ) :=
1√
2β

[H, ϱ] +
i

ε
(ϱe[ϱ]− ϱ),

we define two subproblems by splitting the operator on the right-hand-side into a
transport part, L(ϱ), and a collision part, Q(ϱ). The collision subproblem is given
by

ε∂tϱ1 = Q(ϱ1), ϱ1(t = 0) = ϱ
(0)
1 , (8)

and the transport subproblem by

iε∂tϱ2 = L(ϱ2), ϱ2(t = 0) = ϱ
(0)
2 . (9)

Note that both problems are nonlinear since H involves the Poisson potential,
and we have actually H ≡ H[ϱ(t)]. The latter is not difficult to handle compared
to ϱe[ϱ], and this is why it is included in the Hamiltonian part.

The crucial observation here is that (8) preserves the local density (we write
n[ϱ] for nϱ when it is more convenient): indeed, by construction of the equilibrium
ϱe[ϱ1], we have n[ϱe[ϱ1]] = n[ϱ1], and as a consequence, by linearity of the trace,

ε∂tn[ϱ1] = n[Q(ϱ1)] =
1

ε
(n[ϱe[ϱ1]]− n[ϱ1]) = 0.

Hence, n[ϱ1(t)] = n[ϱ1(0)] = n[ϱ
(0)
1 ], and the collision subproblem then becomes

the linear equation

∂tϱ1 =
1

ε2
(ϱe[ϱ

(0)
1 ]− ϱ1), ϱ1(t = 0) = ϱ

(0)
1 .

We explain in Section 3.3.1 how this problem is solved numerically.
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We now express the Strang splitting scheme. The solution to each subproblem
(8) and (9) can formally be represented in terms of an evolution operator, i.e.

ϱ1(t) =W (t)ϱ
(0)
1 , and ϱ2(t) = U(t)ϱ

(0)
2 .

For h > 0, let tk = kh for k = 0, 1, 2, · · · . For a given initial condition ϱ0, the
semi-discrete Strang solution at time t+tk−1, denoted ϱs(t+tk−1), is then obtained
from the solution at tk−1 by, for k ≥ 1,

ϱs(t+ tk−1) = U(t/2)W (t)U(t/2)ϱk−1
s , t ∈ [0, h], ϱ0s = ϱ0,

with ϱk−1
s = ϱs(tk−1). Thus, the Strang solution at time tk is given by

ϱks = U(h/2)W (h)U(h) · · ·W (h)U(h)︸ ︷︷ ︸
k−1 times

W (h)U(h/2)ϱ0.

We show in the next section that this scheme is well-defined and converges to the
continuous solution as h → 0. The important point to check is that the collision
subproblem (8) can indeed be solved at each time step. This amounts to verify that
the solution ϱks satisfies adequate conditions at each k.

3.2. Convergence analysis. We do not prove optimal estimates in the time step
parameter h since the optimal regularity of the map ϱ 7→ ϱe[ϱ] is still an open
problem. It is known so far that the map has Hölder regularity 1/8 in the space
of Hilbert-Schmidt operators (it is though presumable that the map is Lipschitz),
which is enough for our purpose of showing convergence of the scheme. Moreover,
we are not interested here in the asymptotic properties of the scheme as ε→ 0, and
will therefore set ε = 1 in the proof to simplify notation. The constant C in the
estimate of our convergence Theorem 3.4 further then depends on ε and grows as ε
decreases to 0.

We first recall the existence result of [28] for the quantum Liouville-BGK equa-
tion. Note that the result therein is stated for the free Schrödinger operator, that is
without any potentials. We will therefore set the Poisson and the external potentials
to zero in this section to be consistent with [28]. We believe though that the result
of [28] can be directly adapted to include these potentials (and as a consequence so
does our convergence result below), but this is beyond the scope of this work.

Before stating the result, we need to introduce a few functional spaces. The space
J1 is the space of trace class operators on L

2(0, 1) with norm ∥ϱ∥J1 = Tr(|ϱ|), where
|ϱ| = √

ϱ∗ϱ for ϱ∗ the adjoint of ϱ; and J2 is the space of Hilbert-Schmidt operators
on L2(0, 1) with norm ∥ϱ∥J2

= (Tr(ϱ∗ϱ))1/2. The space H is defined as

H = {ϱ ∈ J1, such that H0|ϱ|H0 ∈ J1},

where H0|ϱ|H0 denotes the extension of the operator H0ϱH0 to L2(0, 1), it is a
Banach space when equipped with the norm

∥ϱ∥H = Tr(|ϱ|) + Tr(H0|ϱ|H0).

In the same way, E is the space

E = {ϱ ∈ J1, such that
√

H0|ϱ|
√
H0 ∈ J1},

and is Banach when equipped with the norm

∥ϱ∥H = Tr(|ϱ|) + Tr(
√
H0|ϱ|

√
H0).
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We will drop the extension sign in the sequel for simplicity. The space E+ is
the space of nonnegative operators in E , and we recall that a density operator is a
self-adjoint, trace class, nonnegative operator. The result of [28] is the following:

Theorem 3.1. Suppose that the initial density operator ϱ0 is in H, is such that
ϱ0 = f(H0)+ δϱ, f(H0) ∈ E+, δϱ self-adjoint in E, and that there exists n > 0 such
that

n[f(H0)](x) ≥ n, ∀x ∈ [0, 1], and ∥δϱ∥E ≤ n/4.

Then, for any T > 0, the QLE equation admits a solution ϱ in C0([0, T ],H) ∩
C1([0, T ],J1) satisfying the integral equation

ϱ(t) = e−tU(t)ϱ0 +

∫ t

0

e−(t−s)U(t− s)ϱe[ϱ(s)]ds, (10)

where U is the solution operator to the free Liouville equation (with V = Vext = 0)
introduced in the previous section. Moreover, the density verifies

n[ϱ(t)](x) ≥ e−Tn/2, ∀(t, x) ∈ [0, T ]× [0, 1].

Note that the above result only provides us with the existence of solutions. We
will actually prove the uniqueness further, by comparing any solution to the inte-
gral equation (10) to the unique density operator obtained by the splitting scheme.
Theorem 3.1 is actually stated in [28] in the context of periodic boundary condi-
tions, and holds for the Neumann boundary conditions considered here with minor
modifications.

To obtain the integral representation of the splitting solution and compare it with
the original solution, we use the fact that the solution to the collision subproblem
(8), ϱ1(t) =W (t)σ is given by

ϱ1(t) =W (t)σ = e−tσ +

∫ t

0

e−(t−s)ϱe[σ]ds.

Given T and h ≤ 1 positive, we denote by NT the largest integer such that
NTh ≤ T . Thus, denoting by ϱks and ϱk the splitting solution and a solution to the
integral equation at time tk = kh, respectively, we have, for t ∈ [0, h],

ϱs(tk + t) = U(t/2)W (t)U(t/2)ϱks = e−tU(t)ϱks +

∫ t

0

e−(t−u)U(t/2)ϱe[U(t/2)ϱks ]du,

(11)
and

ϱ(tk + t) = e−tU(t)ϱk +

∫ t

0

e−(t−s)U(t− s)ϱe[ϱ(tk + s)]ds. (12)

For t ∈ [0, h], let ek(t) := ϱ(tk + t)− ϱs(tk + t), where again ϱ is any solution to
the integral equation (10). Note that we have by definition ek+1 = ek(h).

The result below, proved in Section B, shows that the splitting solution is well-
defined and bounded in H.

Lemma 3.2. Under the conditions of Theorem 3.1 on ϱ0 ∈ H, the splitting scheme
admits a unique nonnegative solution in H with the following bound

∥ϱks∥H ≤ eCkh∥ϱ0∥H, ∀k ≥ 0, (13)

where C is a constant independent of k and h. Furthermore, the splitting scheme
preserves the trace, i.e.

∥ϱks∥J1 = ∥ϱ0∥J1 , ∀k ≥ 0,
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and the local density n[U(τ)ϱks ] verifies

n[U(τ)ϱks ] ≥ e−Tn/2, ∀τ ≥ 0.

The next lemma, proved in Section C, provides us with a local error estimate.

Lemma 3.3. Under the conditions of Theorem 3.1, the local error ek between a
solution to (12) and the splitting solution satisfies, for each k and all t ∈ [0, h],

∥ek(t)∥J2
≤ ∥ek∥J2

+ C(h
1

1−γ + h1+γ + h2),

where γ = 1/8 and the constant C is independent of h and k.

Iterating the local estimate of Lemma 3.3, we arrive at the following result.

Theorem 3.4. Under the condition of Theorem 3.1 on ϱ0 ∈ H, we have, for any
solution ϱ to the integral equation (10),

∥ϱNT − ϱNT
s ∥J2

≤ C(h
γ

1−γ + hγ + h),

where γ = 1/8, C is independent of h, and ϱs is the splitting solution.

Indeed, according to Lemma 3.3,

∥ϱNT − ϱNT
s ∥J2

≤ ∥eNT−1∥J2
+ C

(
h

1
1−γ + h1+γ + h2

)
,

and iterating yields the desired estimate

∥ϱNT − ϱNT
s ∥J2

≤ C(h
1

1−γ + h1+γ + h2)NT ≤ C(h
γ

1−γ + hγ + h).

At that point, we have therefore obtained that the unique splitting solution is
close to any solution to the QLE for small h. Note that the error estimate of
Theorem 3.4 is by no means optimal, as mentioned at the beginning of the section.
We have checked numerically that the scheme is of order 2 as is expected with
Strang splitting (see Section E), and this is a clue that indeed the map ϱ 7→ ϱe[ϱ] is
Lipschitz.

Uniqueness for the continuous equation. A by-product of Theorem 3.4 is the
uniqueness of solutions of (10). Fix indeed some t > 0 and t > h > 0, and write
t = Nth+ rh, with Nt ∈ N and rh ∈ [0, h). Consider then two possible solutions to
(10), denoted ϱ1 and ϱ2. The associated splitting solution ϱs is unique and verifies,
according to Theorem 3.4 and Lemma 3.3,

∥ϱj(t)− ϱs(t)∥J2 = o(1), j = 1, 2.

Hence, by the triangle inequality,

∥ϱ1(t)− ϱ2(t)∥J2
= o(1),

and since both t and h are arbitrary, this means that ϱ1 = ϱ2 for all t. Uniqueness
for nonlinear PDEs is often obtained under a Lipschitz condition on the nonlinearity,
which, as mentioned, has not been established here. Uniqueness for our problem is
a consequence of three factors: (i) the fact that the minimizer ϱe[ϱ] is unique for a
given ϱ, yielding a unique splitting solution, (ii) the equation for the collision part
of the splitting scheme becomes linear, and (iii) the Hölder regularity of the map
ϱ 7→ ϱe[ϱ].

Since the exact solution is now unique, we then conclude from Theorem 3.4 that
the splitting solution converges to the unique solution to (10).

We now turn to the spatial discretization of QLE.
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3.3. Spatial discretization. Since we will compare the solutions to the QLE and
QDD equations, we use the same spatial discretization for both, and adopt the one
proposed for QDD in [18]. We discretize the (nondimensionalized) spatial domain
[0, 1] with N+2 points xp = p∆x for p = 0, 1, . . . , N+1 and ∆x = 1/(N+1). For a
smooth function φ, integrating Hφ over the interval [xp−1/2, xp+1/2] for 1 ≤ p ≤ N
yields

1

∆x

∫ xp+1/2

xp−1/2

Hφ(x)dx

= −
β2

∆x

(

φ
′(xp+ 1

2
)− φ

′(xp− 1
2
)
)

−
1

∆x

∫ xp+1/2

xp−1/2

(V+ V
ext)(x)φ(x)dx

= −
β2

∆x2
(φ(xp+1)− 2φ(xp) + φ(xp−1))− (V+ V

ext)(xp)φ(xp) +O(∆x
2).

Above, we used the midpoint rule for the integral. Note that we make sure when
setting the discretization that the exterior potential Vext is smooth in each interval
(xp−1/2, xp+1/2). Since Vext typically has jumps, the discretization is chosen such
that the jumps occur at some of the midpoints xp+1/2 and not in (xp−1/2, xp+1/2).

As in [18], we adopt a first order discretization of the Neumann boundary condi-
tions, resulting in φ(x0) = φ(x1) and φ(xN ) = φ(xN+1), and in the discrete N ×N
Neumann Laplace operator

∆Neu =
1

∆x2




−1 1 0 · · · 0

1 −2 1 · · · 0
...

. . .
. . .

...

0 · · · 1 −2 1

0 · · · · · · 1 −1




.

The overall order of the spatial scheme is therefore one. The discrete Dirichlet
Laplace operator used for the calculation of the Poisson potential has the same
expression as ∆Neu, with the first and last entries on the diagonal replaced by
−2/∆x2.

Integrals are approximated in the same manner as in [18] as follows:

∫ 1

0

φ(x)dx =

∫ x1/2

0

φ(x)dx+

∫ xN+1

xN+1/2

φ(x)dx+

N∑

p=1

∫ xp+1/2

xp−1/2

φ(x)dx

=

∫ x1/2

0

φ(x)dx+

∫ xN+1

xN+1/2

φ(x)dx+∆x
N∑

p=1

φ(xp) +O((∆x)2)

= ∆x

N∑

p=1

φ(xp) +O(∆x).

The boundary integrals above are discarded since the Neumann boundary con-
ditions are accounted for at first-order only. The discrete inner product on C

N is
then, for two vectors u, v,

⟨u, v⟩ = ∆x

N∑

p=1

ūpvp.
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With the discrete Laplacian operator, we can now define the discrete analogs of
the different Hamiltonian operators:

H0 = −β2∆Neu, H = H0 − diag(V + V ext), HA = H0 + diag(A),

where diag(w) for w ∈ R
N denotes the diagonal matrix with vector w on the

diagonal (we will just write H0+W for H0+diag(W ) to simplify) and V ext, V , and
A are the discrete counterparts to the exterior, Poisson, and chemical potentials,
respectively. The Poisson equation becomes

α2∆DirV = nϱ, (14)

with

nϱ =

N∑

p=1

ρp|ϕp|2 ∈ R
N ,

for {ρp, ϕp}1≤p≤N the eigenvalues and eigenvectors of the positive matrix ϱ. All
discrete eigenvectors are normalized such that ⟨ϕp, ϕp⟩ = 1.

Since the convergence of the semi-discrete splitting has already been established,
and this is the most difficult part, it is a standard matter to prove that the fully
discretized scheme is convergent. We omit the details.

3.3.1. The collision subproblem. In this section, we detail the resolution of the col-
lision subproblem (8). We recall it has the following form:

∂tϱ1 =
1

ε2
(ϱe[ϱ

(0)
1 ]− ϱ1), ϱ1(t = 0) = ϱ

(0)
1 , (15)

where ϱe[ϱ] denotes the minimizer of the discrete free energy

F (σ) = Tr (σ log σ − σ) + Tr (H0σ),

over nonnegative matrices σ such that nσ = nϱ. Note that compared to (2), it is
enough to consider Tr (H0ϱ) in F instead of Tr (Hσ) since Tr (Hσ) = Tr (H0σ) −
⟨V +V ext, nσ⟩, and the second term is fixed as nσ = nϱ. The equilibrium is actually
not calculated by minimizing F under constraints, but rather by exploiting the form
of the minimizer (4), and by the unconstrained minimization of the nondimensional
discrete equivalent of the functional J(A) defined in (5), that is

J(A) =

N∑

p=1

e−λp[A] + ⟨A, nϱ⟩, (16)

where {λp[A]}1≤p≤N is the set of eigenvalues of HA. It is proved in [18] that the
functional J(A) is strictly convex and admits therefore a unique minimizer. The
minimization procedure for J(A) is described in detail in the next section.

Once A[ϱ
(0)
1 ] is obtained by the minimization procedure, and therefore the equi-

librium operator ϱe[ϱ
(0)
1 ] = exp(−(H0 + A[ϱ

(0)
1 ])) is known, the now linear collision

problem (15) is reduced to a set of coupled ODEs that describe the evolution of the
operator ϱ1. The solution is easily found to be

ϱ1(t) = e−
t
ε2 ϱ

(0)
1 + (1− e−

t
ε2 )ϱe[ϱ

(0)
1 ].

From a practical viewpoint, the matrices ϱ
(0)
1 and ϱe[ϱ

(0)
1 ] are defined on different

basis of RN . We then express them both in the canonical basis to form ϱ1(t), and
diagonalize the resulting matrix to store the spectral elements of ϱ1(t).

We describe in the next section the minimization of the functional J(A).
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3.3.2. Minimization procedure. We use the Polak-Ribière variant of the nonlinear
conjugate gradient algorithm to minimize J(A). For a given local density n (replace
nϱ by n in (16)), the unique minimizer A⋆ is such that ne−HA⋆

= n. We start with

an initial guess A(0), and must find an initial search direction s(0) and step length
b(0) to initialize the algorithm. We set s(0) = −∇AJ(A

(0)) ∈ R
N , with, see e.g.

[18],

∆x−1∇AJ(A) = n− ne−HA = n−
N∑

p=1

e−λp[A]|ψp[A]|2,

for {λp[A], ψp[A]}1≤p≤N the spectral elements of HA = H0 + A. We find the step
length via a line search

b(0) = argmin
b∈R

J(A(0) + b s(0)).

We will see further that it is possible to obtain a very good initial guess for the
line search, and, as consequence, a simple method avoiding the calculation of the
Hessian such as the secant method proves to be efficient. Once b(0) is found, we
update the chemical potential as A(1) = A(0) + b(0)s(0).

The nonlinear conjugate gradient algorithm is then as follows:
While ∥Ak −Ak−1∥ℓ2/∥Ak∥ℓ2 > tolerance:

• Compute the steepest descent direction, dA(k) = −∇AJ(A
(k)),

• Compute c = max{0, cPR} where cPR = ⟨dA(k),dA(k)−dA(k−1)⟩
⟨dA(k−1),dA(k−1)⟩

,

• Update the search direction s(k) = dA(k) + c s(k−1),
• Perform line search bk = argmin

b∈R

J(A(k) + b s(k)),

• Update chemical potential A(k+1) = A(k) + b(k)s(k).

We explain in Section 5 how the algorithm can be accelerated by exploiting some
particular regimes of parameters, in particular one where β is small.

We consider next the resolution of the transport part (9) of the splitting scheme.

3.3.3. The transport subproblem. We recall that the spatially discrete version of (9)
is

iε∂tϱ2 =
1√
2β

[H, ϱ2], ϱ2(t = 0) = ϱ
(0)
2 =

N∑

p=1

γp|vp⟩⟨vp|,

where H = −β2∆Neu − V ext − V , for V ≡ V [ϱ2] the Poisson potential and

{γp, vp}1≤p≤N the spectral elements of ϱ
(0)
2 . The solution to the above system

is given by

ϱ2(t) =
N∑

p=1

γp|vp(t)⟩⟨vp(t)|,

where vp(t) is the solution to the nonlinear Schrödinger equation

i∂tvp(t) =
1√
2βε

Hvp(t) =
1√
2βε

(
−β2∆Neu − V ext

)
vp(t)−

1√
2βε

V (t)vp(t)

=: HLvp(t) +B(t)vp(t),

with initial condition vp(t = 0) = vp. The above equation is nonlinear because
of V (t) ≡ V [ϱ2(t)], and becomes linear when using Strang splitting for the time
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discretization as for the collision term. The approximate Strang solution v
(1)
p for

the above nonlinear Schrödinger equation at time t = h is then given by

v(1)p = e−ihHL/2S(h)e−ihHL/2vp,

where wp(t) := e−itHLw
(0)
p is the solution to the linear Schrödinger equation

i∂twp(t) = HLwp(t) =
1√
2βε

(−β2∆Neu − V ext)wp(t), for p = 1, . . . , N, (17)

with wp(0) = w
(0)
p , and where the second subproblem zp(t) := S(t)z

(0)
p is reduced

to the following set of ODEs

i∂tzp(t) = − 1√
2βε

V (t)zp(t), for p = 1, . . . , N. (18)

In terms of the density operator ϱ2, the splitting scheme yields at t = h the
approximate solution

ϱ
(1)
2 = e−ihHL/2S(h)e−ihHL/2ϱ

(0)
2 eihHL/2S∗(h)eihHL/2.

The key point is that the equation (18) on zp preserves the absolute value of zp
since V is real-valued. This means that for a density operator σ, we have for all
t ≥ 0,

n[S(t)σS∗(t)] = n[σ].

Therefore, the Poisson potential V (t) in (18) is actually linear, equal to

V (t) = V [S(t)e−ihHL/2ϱ
(0)
2 eihHL/2S∗(t)] = V [e−ihHL/2ϱ

(0)
2 eihHL/2] = V (0),

and is the solution to α2∆DirV = n[e−ihHL/2ϱ
(0)
2 eihHL/2].

The solution to (17) at time t = h is obtained with the standard Crank-Nicolson
scheme (

iI− h

2
HL

)
w(1)

p =

(
iI+

h

2
HL

)
w(0)

p , (19)

where I denotes the N by N identity matrix.

4. Numerical method for QDD. We modify here the method introduced in
[18]. In [18], both the chemical potential A and the Poisson potential V are treated
implicitly. At a given time, the potential V is a minimizer of a given functional,
and A + V of another one. These two functionals are then combined in [18] in
a somewhat arbitrary manner to form a unique functional to minimize. While
from a purely theorical viewpoint this poses no problem, this creates unnecessary
difficulties in the minimization of this latter functional. A simple way to improve
efficiency is to treat V explicitly, and to keep an implicit scheme for A resulting in
the minimization of a functional acting only on A.

The spatial grid is identical to that of QLE. The fully discrete scheme adapted
from [18] is first-order both in time and space, and reads




nk+1 − nk

h
+

1

2
D̃−(n

kD+(A
k+1 +W k)) +

1

2
D̃+(n

kD−(A
k+1 +W k)) = 0

α2∆DirV
k = nk, W k = V k + V ext

nk+1 =
N∑

p=1

e−λp[A
k+1]|ψp[A

k+1]|2,

(20)
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where {λp[Ak], ψp[A
k]}1≤p≤N are the eigenvalues and eigenvectors of H0 +Ak, and

the N ×N matrices D+, D−, D̃+, D̃− are given by

D+ =
1

∆x




−1 1 0 · · · 0

0 −1 1 · · · 0
...

. . .
. . .

...

0 · · · · · · −1 1

0 · · · · · · 0 0




D− =
1

∆x




0 0 0 · · · 0

−1 1 0 · · · 0
...

. . .
. . .

...

0 · · · · · · 1 0

0 · · · · · · −1 1




and

D̃+ =
1

∆x




−1 1 0 · · · 0

0 −1 1 · · · 0
...

. . .
. . .

...

0 · · · · · · −1 1

0 · · · · · · 0 −1




D̃− =
1

∆x




1 0 0 · · · 0

−1 1 0 · · · 0
...

. . .
. . .

...

0 · · · · · · 1 0

0 · · · · · · −1 1




.

The Neumann boundary conditions are accounted for in the definition of the
above matrices, and the notation UV in (20) for two vectors U, V in R

N denotes the
term-by-term product, i.e. (UV )i = UiVi. Adapting [18], given nk (and therefore
V k), the solution Ak+1 to the implicit problem (20) is obtained as the unique
minimizer of the strictly convex functional

JQDD(A) =
h∆x

4

N∑

i=1

nki (D+(A+ V k + V ext))2i +
h∆x

4

N∑

i=1

nki (D−(A+ V k + V ext))2i

+

N∑

i=1

e−λi[A] +∆x

N∑

i=1

nk
iAi.

The minimization of the functional JQDD(A) is accomplished in the same manner
as the collision step of the QLE, that is by using a nonlinear conjugate gradient
method.

5. Numerical results.

5.1. Complexity. The resolution of the linear system (19) has to be repeated at
each time step for the significant modes in the density matrix; in the configurations
we consider, there are between 50-100 modes used to build the density operator,

and it turns out it is more effective to compute
(
iI− h

2HL

)−1 (
iI+ h

2HL

)
once and

for all and then simply do the matrix vector multiplications. We use Matlab’s

backslash operator both for the inversion of
(
iI− h

2HL

)−1
and the resolution of the

linear system (14) to obtain the Poisson potential V . The operator exploits the
tridiagonal structure of the matrix for a cost of order O(N).

The most expensive part of the simulation is the minimization of J(A), which
requires the (repeated) diagonalization of H0 + A. Since the matrices are fairly
small in our simulations, say 500× 500, it turns out it is actually faster to compute
all eigenvalues with Matlab’s eig function than using the function eigs, which
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computes only a small number of eigenvalues. Since eig is based on the QR method,
and H0 + A is already tridiagonal, the cost is O(N2) for each calculation of the
eigenvalues.

5.2. Initialization of the minimization algorithms. We need good initial guesses
for best convergence of the nonlinear gradient algorithm for both J(A) for QLE and
JQDD(A) for QDD. They are obtained as follows. As mentioned at the end of Sec-
tion 2.1, the parameter β is typically small in physically interesting regimes. It
is then natural to exploit this fact to approximate ϱe,0 = exp(−H0 + A0) using
semi-classical analysis. For the continuous problem, we show in Section D in the
Appendix that, for x away from the boundaries,

n[exp(−H0 +A)](x) =
1√
4πβ

e−A(x) + o(1), (21)

where o(1) refers to a term that is small in appropriate sense when β ≪ 1. As a con-

sequence, we set as initial guess for the discrete problem Aguess = − log(
√
4πβ)n0.

The latter provides a good approximation of the exact solution for x away from the
boundaries.

At the time step k, we simply use the result Ak−1 of the previous step as initial
guess.

5.3. Acceleration of the nonlinear conjugate gradient. Most of the compu-
tational time is spent in the diagonalization of the matrices H0+A, and we explain
here how to minimize the number of calls to the function eig in the minimization
of J(A) at each time step. As in the previous section, we exploit the fact that β is
small in our configuration of interest, and use (21) to get an approximate expres-
sion of the functional J(A). We then perform a line search with the approximate
functional in order to get a good initial guess for the exact line search. For two
vectors A and s given in R

N , this approximate functional is shown in Section D in
the Appendix to be equal to, for b ∈ R,

Gapprox(b) = Japprox(A+ bs) =
∆x√
4πβ

N∑

i=1

e−Ai+bsi + ⟨A+ bs, n⟩.

A straightforward Newton’s method is used to find the minimizer of Gapprox(b).
While the function Gapprox is not accurate for all values of b, it actually provides
an excellent approximation of the minimizer of G(b) = J(A + bs), even for values
of β up to 0.5, see figure 1. Note that the behavior reported on the figure is not
particular to the choice of A, s, and n, and holds for a large class of parameters.

5.4. Application: Validation of QDD. We compare in this section the solutions
to QDD and to QLE for various values of ε. We will see that the models agree when
ε is sufficiently small, which is the regime of validity of QDD. We consider three
situations: (i) in the first one, the initial condition is well-prepared in the sense that
it is a quantum Maxwellian associated with a given Hamiltonian. This prevents the
creation of initial layers as is customary in diffusion limits. We then switch at the
initial time the potential in this Hamiltonian and observe how the system converges
to a new equilibrium. (ii) The situation in the second case is slightly less favorable
in the sense that the initial density operator is function of an Hamiltonian, but not
a quantum Maxwellian. (iii) In the last scenario, we consider an ill-prepared initial
condition that is a combination of wave packets; in this case, there is an initial layer
and in order to minimize its effects and observe good agreement between QLE and
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Figure 1. Comparison G and Gapprox for A = cos(4x)3 + x, s =
1/(1 + x2), n = n[exp(−(H0 +A1))] with A1 = cos((cos(6x+ 1))).

QDD for earlier times, the parameter ε has to be decreased (ε = 0.0025 in the last
case versus ε = 0.01 in the first two).

In all simulations, we set the tolerance for the nonlinear conjugate gradient and
the associated line search to 10−7. The number of spatial discretization points is
N = 400. The parameter α is set to α = 1 for simplicity, which is of the order of
magnitude of values found for semiconductor devices such as the resonant tunneling
diode, for which α = 1.7 [6]. As already mentioned, β is small in interesting regimes,
and we set for instance β = 0.015.

In all density operators, we discard the modes associated with weights (i.e. ei-
genvalues) less than 10−7. This leaves approximately between 50 and 100 modes
in the quantum Maxwellian for instance, and improves computational time. With
β = 0.015, and considering the quantum Maxwellian with the free Neumann Hamil-
tonian, we have about 50 modes with weights greater than 10−3, and about 30 others
with weights between 10−3 and 10−7.

Quantum Maxwellian. We set for initial condition

ϱ0 =
e−(−β2∆Neu+V ext,0)

Tr
(
e−(−β2∆Neu+V ext,0)

) ,

where V ext,0 is the double barrier potential shown in figure 2, top left panel (the
width of the well and the barriers is 0.05, with height equal to 2). Such a potential
is characteristics of the resonant tunneling diode, and ispart of the setting used in
the seminal work [6]. The density associated to ϱ0 is depicted in the same panel.
At time t = 0−, the potential V ext,0 is switched to V ext = V ext,0 − 2x, which is
now the exterior potential used in the resolution of QLE and QDD and promotes
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particle transport from left to right. It is depicted in the other panels of figure 2.
The time stepsize is set to h = 10−4 for the calculations.

We then represent in figure 2 the transition to the new equilibrium associated to
V ext, from time t = 0 to t = 0.1 (which is close to the time at which the equilibrium
is reached by QDD). We observe a remarkable agreement between QDD and QLE
with ε = 0.01, with an overall space-time relative ℓ2 error of about 2%. When
ε = 0.1, the diffusive regime is not valid and as a consequence QLE and QDD
produce different densities.

Function of an Hamiltonian. We set

ϱ0 =
f(−β2∆Neu + V ext,0)

Tr
(
f(−β2∆Neu + V ext,0)

) ,

with f(x) = (1 + x2)−1 and the same parameters as in the previous paragraph.
The situation is very similar as above with a very good agreement between QDD
and QLE with ε = 0.01 and an error again of the order of 2%. The densities are
depicted in figure 3.

Superposition of wave packets. We set

ϱ0 =
χγ0χ

Tr(χγ0χ)

where χ(x) is the function χ(x) = e−(x−x0)
2/σ2

+ η, and γ0 is the density operator

γ0 =
5∑

p=1

e−λp |ψp⟩⟨ψp|,

where λp = (8πβp)2 and ψp(x) = e8iπpx. The associated density is represented
in the top left panel of figure 4, along with the (fixed this time) double barrier
potential V ext = V ext,0 used in the calculations. In the localizing function χ, we
choose x0 = 0.42 and σ = 0.075. The parameter η = 5.10−3 acts as a regularization
since the gaussian function is very small away from its center. Small densities
create large chemical potentials A which generate numerical instabilities, and we
found that such an η improves the convergence of the minimization algorithms.

The simulations, represented in figure 4, show that ε = 0.1 is far too large to
capture the diffusive regime. When ε = 0.01, the comparison improves with a space-
time relative ℓ2 error of about 4%. In order to observe a very good agreement, we
decrease ε to ε = 0.0025. For the simulations with ε = 0.0025, the time stepsize is set
at 5.10−6 to obtain sufficient accuracy. This substantially increases the numerical
cost and makes the numerical method not effective for such small values of ε. The
relative error between QDD and QLE with ε = 0.0025 is now of order 1%. One
would need to resort to asymptotic preserving schemes to capture the ε≪ 1 regime
at an affordable cost, see e.g. [19, 23].

6. Conclusion. We have introduced in this work a time-splitting scheme for the
resolution of the quantum Liouville-BGK equation. The splitting allows us, exploit-
ing the local conservation of particles, to obtain a completely linear collision step.
The minimization problem involved in the latter is solved by using the nonlinear
conjugate gradient algorithm, and good initial guesses can be obtained by taking
advantage of some small parameters. We applied our numerical method for com-
paring the solutions to the quantum Liouville-BGK equation and to the quantum
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Figure 2. Comparison QDD and QLE for the quantum
Maxwellian initial condition. The initial double barrier potential
is shifted at t = 0− by −2x. The time t = 0.1 is close to the
equilibrium time for QDD. Observe the very good agreement when
ε = 0.01 (error of order 2%).

drift-diffusion, and obtained excellent agreement in the regime of validity of the
latter.

An important limitation of the method is the requirement that the time stepsize
be small compared to the rescaled mean free path ε for good accuracy. We plan
in the future on removing this restriction by designing an asymptotic preserving
scheme in the spirit of [19, 23]. This would allow us to capture the correct solution
for arbitrarily small values of ε at a reasonable computational cost.

Appendix A. Derivation of the 1D model. We derive in this section a 1D
model as a simplification of a 3D model. We consider a 3D domain of the form
(0, L)×Ω, where Ω is periodic as explained in the introduction, and we choose the
2-torus for simplicity. We then write

L2((0, L)× Ω) = L2(0, L)⊗ L2(Ω), (22)

in the sense that the two spaces are unitarily equivalent, and the 3D Hamiltonian
is expressed as

H3D = Hx ⊗ ✶+ ✶⊗H⊥,
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Figure 3. Similar as figure 2, with now the initial condition given
by a function of an Hamiltonian.

where (all physical constants are set to one),

Hx = − ∂2

∂x2
+W (x), x ∈ (0, L), H⊥ = − ∂2

∂y2
− ∂2

∂z2
, (y, z) ∈ Ω,

and ✶ denotes, with an abuse of notation, the identity operator in both L2(0, L) and
L2(Ω). Above, W is a given bounded potential. The operator Hx is equipped with
the domain defined in (3), and H⊥ with the domain consisting of H2(Ω) periodic
functions. The 3D Liouville-BGK equation is then

i∂tϱ = [H3D, ϱ] + i(ϱe[ϱ]− ϱ), ϱ(t = 0) = ϱ0, (23)

where ϱe[ϱ] is the unique minimizer of the 3D free energy

F3D(σ) = Tr (σ log σ) + Tr (H3Dσ),

under the constraint that nσ = nϱ. We set Tr (ϱ0) = 1, so that Tr (ϱ(t)) = 1 for
all t ≥ 0. Note that the traces above are taken w.r.t. L2((0, L) × Ω), and that we
removed linear term −Tr(σ) in the entropy since it is fixed to one by the constraint.
Let

ϱ⊥ =
e−H⊥

Tr⊥(e−H⊥)
,
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Figure 4. Comparison QDD and QLE for the wave packets initial
condition. The parameter ε has to be decreased to ε = 0.0025 to
obtain a strong agreement (error of order 1%).

where Tr⊥ denotes trace w.r.t. L2(Ω). It is clear that ϱ⊥ is the unique minimizer
of the “transverse” free energy

F⊥(σ) = S⊥(σ) + Tr⊥(H⊥σ),

under the constraint that Tr⊥(σ) = 1. The free energy F⊥(σ) is indeed, up to a
constant term, equal to the relative entropy between and σ and ϱ⊥ which vanishes
when σ = ϱ⊥. Above, S⊥ is the transverse entropy

S⊥(σ) = Tr⊥(σ log σ).

We will show that if the initial condition ϱ0 has the tensor form ϱ0,x⊗ϱ⊥ (ϱ0,x acts
on the space L2(0, L)), namely that the initial state of the system is at equilibrium
in the transverse plane, then the solution ϱ(t) remains in a similar form and reads
ϱ(t) = ϱx(t)⊗ϱ⊥. While it is direct to separate variables in H3D, it has to be proved
that the minimizer ϱe[ϱ(t)] for ϱ(t) = ϱx(t)⊗ϱ⊥ also admits a tensor form ϱe,x⊗ϱ⊥.
This is a consequence of (22) and of the subadditivity of the von Neumann entropy
−Tr (σ log σ). More precisely, we have the following lemma:

Lemma A.1. Let n(x, y, z) = n0(x)/|Ω| > 0, with ∥n0∥L1(0,L) = 1. Then, the

unique minimizer ϱ3D⋆ of F3D(σ) with constraint nσ = n has the form

ϱ3D⋆ = ϱ⋆[n0]⊗ ϱ⊥,
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where ϱ⋆[n0] is the minimizer of the 1D problem with constraint n0(x).

The 1D problem mentioned in the lemma consists in minimizing the 1D free
energy

Fx(σ) = Sx(σ) + Tr x(Hxσ),

under the constraint that nσ = n0. Above, Sx is the “longitudinal” entropy

Sx(σ) = Tr x(σ log σ),

where Tr x denotes trace w.r.t. L2(0, L).

Proof. That F3D(σ) admits a unique minimizer was established in [27] under ap-
propriate conditions on the constraint n. Furthermore, with the notations

σx = Tr⊥(σ), σ⊥ = Tr x(σ),

for the partial traces w.r.t. L2(Ω) and L2(0, L), respectively, and for any density
operator σ on L2((0, L)× Ω), the subaddivity of −S(ϱ) yields, see [2],

S(σ) ≥ Sx(σx) + S⊥(σ⊥).

Hence, for any density operator σ on L2((0, L)× Ω) with nσ = n,

F3D(σ) ≥ Sx(σx) + S⊥(σ⊥) + Tr x(Hxσx) + Tr⊥(H⊥σ⊥) = Fx(σx) + F⊥(σ⊥)

≥ Fx(ϱ⋆) + F⊥(ϱ⊥).

Above, ϱ⋆ denotes ϱ⋆[n0] for simplicity, and we used that nσ = n implies nσx
=

n0. Finally, since a direct calculation shows that F3D(ϱ⋆ ⊗ ϱ⊥) = Fx(ϱ⋆)+F⊥(ϱ⊥),
it follows that F3D(σ) ≥ F3D(ϱ⋆ ⊗ ϱ⊥) for any density operator σ satisfying the
constraint nσ = n. Since the eigenfunctions of H⊥ are complex exponentials as a
consequence of the periodic boundary conditions, it follows that nϱ⊥

= |Ω|−1, and
therefore that nϱ⋆⊗ϱ⊥

= n. Hence, ϱ⋆ ⊗ ϱ⊥ is the unique minimizer of F3D under
the local constraint n.

We are now in position to conclude. We need the following assumptions on
the solutions to (23): we suppose that (i) (23) admits a unique solution under
appropriate conditions on the initial condition ϱ0, and (ii) that this solution is
obtained as the limit in proper sense as k → ∞ of the sequence {ϱk}k∈N, that
satisfies the linear problem

i∂tϱk+1 = [H3D, ϱk+1] + i(ϱe[ϱk]− ϱk+1), ϱk+1(t = 0) = ϱ0, (24)

Items (i) and (ii) are established in 1D in [28] without the uniqueness result, the
latter being proven in Section 3.2 in the present paper. The 3D case is still open.

We proceed by induction to obtain that ϱk+1 = ϱx,k+1⊗ϱ⊥ where ϱx,k+1 verifies

i∂tϱx,k+1 = [Hx, ϱx,k+1] + i(ϱ⋆[nϱx,k
]− ϱx,k+1), ϱx,k+1(t = 0) = ϱx,0.

For k = 0, we have nϱ0 = nϱx,0 |Ω|−1 with ϱ0 = ϱ0,x⊗ϱ⊥, and therefore, according
to Lemma A.1, ϱe[ϱ0] = ϱ⋆[nϱx,0

] ⊗ ϱ⊥. Since (24) is linear and admits a unique
solution, it follows that ϱ1 = ϱx,1 ⊗ ϱ⊥ for an appropriate ϱx,1. Since the same
reasoning applies for any k, we obtain that ϱk+1 = ϱx,k+1 ⊗ ϱ⊥. Using assumption
(ii), it follows that the 3D solution ϱ reads ϱ(t) = ϱx(t)⊗ ϱ⊥, where ϱx verifies the
1D equation

i∂tϱx = [Hx, ϱx] + i(ϱ⋆[nϱx
]− ϱx), ϱx(t = 0) = ϱx,0.

Note that we considered a linear potential W (x) in this section, but the same
approach holds for the 3D Poisson potential V3D since the resolution of the Laplace
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equation α2∆V3D = nϱ = |Ω|−1nϱx with Dirichlet boundary conditions on (0, L)
and periodic on Ω yields V3D(x, y, z) = V3D(x).

This ends the justification of the 1D model.

Appendix B. Proof of Lemma 3.2. Given ϱks , we recall that one iteration of
the splitting scheme reads

ϱs(t) = U(t/2)W (t)U(t/2)ϱks , t ∈ [0, h],

where U(t)σ = e−iH0tσeiH0t, and ϱ1(t) :=W (t)σ is the solution to

∂tϱ1 = ϱe[σ]− ϱ1, ϱ1(0) = σ. (25)

Existence and uniqueness. We show first that the ϱs(t) above is well-defined and
unique. We proceed iteratively. First, if ϱ0s is a density operator in E , then so is
U(t/2)ϱ0s for all t ≥ 0 since U(t) preserves self-adjointness and positivity, and

∥U(t)ϱ0s∥E = ∥ϱ0s∥E .
Let σ := U(h/2)ϱ0s. Considering the collision subproblem ϱ1(t) = W (t)σ, we

recall that (25) preserves the local density, and a consequence the equation is linear
and admits as solution

ϱ1(t) = (1− e−t)ϱe[σ] + e−tσ, (26)

provided ϱe[σ] exists and is unique. According to [26, Theorem 2.1], the latter holds
when σ ∈ E , and when n[σ](x) > 0 for all x ∈ [0, 1], yielding a unique ϱe[σ] ∈ E+.
We already know that σ ∈ E+ from the previous step, and need to prove the lower
bound. Following the assumptions of Theorem 3.1, for any t ≥ 0,

n[U(t)ϱ0s] = n[f(H0)] + n[U(t)δϱ] ≥ n+ n[U(t)δϱ] (since e
itH0 commutes with f(H0)),

and, under again the assumptions of Theorem 3.1, we have

∥n[U(t)δϱ]∥L∞ ≤ ∥n[U(t)δϱ]∥W 1,1 ≤ 2∥U(t)δϱ∥E = 2∥δϱ∥E ≤ n/2.

This shows that n[U(t)ϱ0s](x) ≥ n/2 for all t, and therefore that ϱe[σ] exists in
E+ and is unique. Hence, ϱ1 is well-defined, and as a consequence so is ϱ1s = ϱs(h)
in E+. We now iterate over k. Since ϱe[U(t)ϱ0s] is nonnegative, we have from (26),
for all τ ≥ 0,

n[U(τ)ϱ1s] ≥ e−hn[U(τ + h)ϱ0s] ≥ e−hn/2,

which allows us to construct ϱe[U(h/2)ϱ1s] ∈ E+ and therefore ϱ2s. Iterating, we then
find ϱks ∈ E and, from the version of (26) at step k,

n[U(τ)ϱks ] ≥ e−hn[U(τ+h)ϱk−1
s ] ≥ e−khn[U(τ+kh)ϱ0s] ≥ e−khn/2 ≥ e−Tn/2, (27)

which proves the lower bound on n[U(τ)ϱks ] for all k and all τ ≥ 0. We have therefore
obtained a unique solution to the splitting scheme in E satisfying the lower bound
announced in the lemma. Uniform bounds. We derive now a bound in H that is
uniform in k and h. For this, we need first uniform bounds in J1 and in E . The one
in J1 is direct as U(t) is an isometry in J1 and (25) preserves trace, and therefore

∥ϱks∥J1 = ∥ϱ0s∥J1 .

For the bound in E , we remark that U(t) is an isometry in E , and that we have
the following bound from Proposition 2.2 in [28]:

∥ϱe[σ]∥E ≤ C + C∥
√
n[σ]∥2H1 ≤ C + C∥σ∥E ,

where C is independent of σ. With the above definition of ϱ1, this yields,

∥ϱ1(t)∥E ≤ (1− e−t)∥ϱe[σ]∥E + e−t∥σ∥E ≤ Ct(1 + ∥σ∥E) + e−t∥σ∥E ,
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since 1 − e−t ≤ t for t ≥ 0. Going back to the splitting solution ϱs, we therefore
obtain

∥ϱk+1
s ∥E ≤ Ch+ Ch∥ϱks∥E + e−h∥ϱks∥E ≤ Ch+ eCh∥ϱks∥E ,

Iterating, it follows that

∥ϱNT
s ∥E ≤ Ch

NT−1∑

k=0

eCkh + eChNT ∥ϱ0∥E ≤ CTeCT + eCT ∥ϱ0∥E ,

which provides us with a uniform bound in E . We move on now to the H bound, and
use the following result from [28]: let σ ∈ H, with ∥σ∥E ≤ α0 and n[σ] ≥ α1 > 0.
Then,

∥ϱe[σ]∥H ≤ Cα0,α1
∥σ∥H. (28)

With the above definition of ϱ1, this yields

∥ϱ1(t)∥H ≤ (1− e−t)∥ϱe[σ]∥H + e−t∥σ∥H ≤ Ct∥σ∥H + e−t∥σ∥H,
where the constant C is independent of k and h since the lower bound in (27) and
the bound in E are uniform in k and h. Going back to the splitting solution ϱs, we
therefore obtain

∥ϱk+1
s ∥H ≤ Ch∥ϱks∥H + e−h∥ϱks∥H ≤ eCh∥ϱks∥H,

Iterating, it follows that

∥ϱks∥H ≤ eCkh∥ϱ0∥H.
This ends the proof.

Appendix C. Proof of Lemma 3.3. Before proceeding with the proof, the fol-
lowing generalized Gronwall Lemma will be useful. The proof of the general result
can be found in [5].

Lemma C.1 (Gronwall). Let f : [0, T ] → R be continuous and satisfy the inequal-
ity,

f(t) ≤M +

∫ t

0

e−(t−s)(f(s))γds, γ ∈ (0, 1),

where M ≥ 0. Then, the following estimate holds

f(t) ≤ Φ−1
(
Φ(M) + 1− e−t

)
,

where Φ(u) = 1
1−γu

1−γ and Φ−1(w) = (1− γ)
1

1−γw
1

1−γ .

The following two Lemmas can be found in [28] and will be used in the proof.

Lemma C.2 (Lemma 6.4 in [28]). Let ϱ ∈ H, self-adjoint and nonnegative. Then,

∥U(t)ϱ− ϱ∥J1
≤ Ct∥ϱ∥H for all t ≥ 0.

The result below shows that the map ϱ 7→ ϱe[ϱ] is at least of Hölder regularity
1/8 in J2.

Lemma C.3 (Corollary 5.8 in [28]). Let ϱ1 and ϱ2 be two density operators in H.
Let M0 ∈ (0,∞) be such that

∥ϱ1∥H + ∥ϱ2∥H ≤M0, and M−1
0 ≤ nϱi , for all x ∈ [0, 1], i = 1, 2.

Then,

∥ϱe[ϱ1]− ϱe[ϱ2]∥J2 ≤ C∥ϱ1 − ϱ2∥1/8J2
,
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where C is independent of ϱ1 and ϱ2.

We can now proceed with the proof. According to (11) and (12), the error
ek(t) := ϱ(tk + t)− ϱs(tk + t) for t ∈ [0, h], with the notation ek := ek(0), verifies

ek(t) = e−tU(t)(ϱk − ϱks)

+

∫ t

0

e−(t−u)
(
U(t− u)ϱe[ϱ(tk + u)]− U(t/2)ϱe[U(t/2)ϱks ]

)
du,

where ϱk = ϱ(tk) and ϱ
k
s = ϱs(tk). Taking the J2 norm and using the fact that U(t)

is an isometry on J2, we find for t ∈ [0, h],

∥ek(t)∥J2
≤ e−t∥ϱk − ϱks∥J2

+

∫ t

0

e−(t−u)∥U(t− u)ϱe[ϱ(tk + u)]− U(t/2)ϱe[U(t/2)ϱks ]∥J2
du

≤ e−t∥ek∥J2

+

∫ t

0

e−(t−u)∥U(t− u)ϱe[ϱ(tk + u)]− U(t− u)ϱe[U(t/2)ϱks ]∥J2
du

+

∫ t

0

e−(t−u)∥U(t− u)ϱe[U(t/2)ϱks ]− U(t/2)ϱe[U(t/2)ϱks ]∥J2du

=: e−t∥ek∥J2 + I1(t) + I2(t).

First, consider the integral given by I2. We have, since U is an isometry on J2,

I2(t) =

∫ t

0

e−(t−u)∥U(t/2− u)ϱe[U(t/2)ϱks ]− ϱe[U(t/2)ϱks ]∥J2
du

≤ C

∫ t

0

e−(t−u)|t/2− u|∥ϱe[U(t/2)ϱks ]∥Hdu

≤ C

∫ t

0

e−(t−u)|t/2− u|∥ϱks∥Hdu

≤ Ct2∥ϱ0∥H.

The first inequality is thanks to Lemma C.2 and the fact that J2 ⊂ J1. The
second inequality is due to the sublinear estimate ∥ϱe[U(t/2)ϱks ]∥H ≤ C∥U(t/2)ϱks∥H
stated in (28), which holds provided n[U(t/2)ϱks ] ≥ α > 0 and U(t/2)ϱks is bounded
uniformly in E . These two facts are obtained in Lemma 3.2 as H ⊂ E . The last
inequality is due to estimate (13) in Lemma 3.2.

Now, consider the integral term I1. We apply Lemma C.3 as both ϱ and U(t/s)ϱks
belong to H and their respective local densities are uniformly bounded from below
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according to Theorem 3.1 and Lemma 3.2. Then, with γ = 1/8,

I1(t) =

∫ t

0

e−(t−u)∥ϱe[ϱ(tk + u)]− ϱe[U(t/2)ϱks ]∥J2
du

≤ C

∫ t

0

e−(t−u)∥ϱ(tk + u)− U(t/2)ϱks∥γJ2
du

≤ C

∫ t

0

e−(t−u)∥ϱ(tk + u)− ϱs(tk + u)∥γJ2
du

+ C

∫ t

0

e−(t−u)∥ϱs(tk + u)− U(t/2)ϱks∥γJ2
du

=: T1(t) + T2(t).

The term T1 will be handled further with the Gronwall Lemma. For T2, we
remark first that from (11) and Lemma 3.2,

∥ϱs(tk + u)− U(u)ϱks∥J2
≤ Ch, ∀u ∈ [0, h].

Then, using again Lemma 3.2 and Lemma C.2, we find, for t ∈ [0, h],

T2(t) ≤ Ch1+γ +

∫ t

0

e−(t−u)∥ϱks − U(t/2− u)ϱks∥γJ2
du

≤ Ch1+γ + C

∫ t

0

e−(t−u)|t/2− u|γ∥ϱks∥γHdu

≤ Ch1+γ .

Collecting all estimates, we have for t ∈ [0, h],

∥ek(t)∥J2 ≤ e−h∥ek∥J2 + Ch1+γ + Ch2 +

∫ t

0

e−(t−u)∥ek(u)∥γJ2
du

=:Mk,h +

∫ t

0

e−(t−u)∥ek(u)∥γJ2
du.

The generalized Gronwall Lemma then yields, using that (x+y)β ≤ Cβ(x
β +yβ)

for x, y ≥ 0 and β ≥ 1, for t ∈ [0, h],

∥ek(t)∥J2 ≤ (1− γ)
1

1−γ

( 1

1− γ
M1−γ

k,h + 1− e−t
) 1

1−γ

≤Mk,h + Ch
1

1−γ = e−h∥ek∥J2 + C(h1+γ + h2 + h
1

1−γ ).

This ends the proof.

Appendix D. Semi-classical approximation. We obtain relation (21) by using
pseudo-differential calculus, and need for this to extend the problem to the whole
R. We remain at a formal level. Let then χβ be a smooth function over R such that
0 ≤ χβ ≤ 1, with χβ(x) = 0 for x /∈ [0, 1], and χβ(x) = 1 for x ∈ [βγ , 1 − βγ ], for
some γ < 1. Denoting by o(1) quantities that are negligible in appropriate sense
when β ≪ 1, we have, for any smooth function φ,
∫ 1

0

n[e−(H0+A)](x)φ(x)dx = Tr(e−(H0+A)φ) = Tr(χβe
−(H0+A))χβφ) + o(1), (29)
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since the size of the support of 1 − χ is less than βγ . Next, we remark that the
function exp(−(H0 + A))χβφ is equal to the function u(t = 1, x), with u solution
to

∂tu = −(H0 +A)u, u(t = 0, x) = χβ(x)φ(x).

Consider then the operator β2∆ − Ae defined on R, with Ae = A on [0, 1] and
Ae(x) = x2 for x /∈ [0, 1]. With v = χβu, we find that

∂tv = −(H0 +A)v +Rβ = (β2∆−Ae)v +Rβ , v(t = 0, x) = χ2
β(x)φ(x),

where
Rβ = −β2 u∆χβ − 2β2∇χβ∇u,

and the hypotheses on χβ yield Rβ = o(1). This shows that

χβe
−(H0+A)χβφ = e(β

2∆−Ae)χ2
βφ+ o(1),

and as a consequence, with (29),
∫ 1

0

n[e−(H0+A)](x)φ(x)dx =

∫ 1

0

n[e(β
2∆−Ae)](x)χ2

β(x)φ(x)dx+ o(1). (30)

We are now in position to use pseudo-differental calculus and find an approxima-

tion for n[e(β
2∆−Ae)], which is well-defined since e(β

2∆−Ae) is trace class because of
the confining potential Ae. It is shown in [10] that

n[e(β
2∆−Ae)](x) =

1√
4πβ

e−Ae(x) + o(1), ∀x ∈ R,

and therefore, according to (30),

n[e−(H0+A)](x) = n[e(β
2∆−Ae)](x)χ2

β(x) + o(1) =
1√
4πβ

e−A(x)χ2
β(x) + o(1).

This gives (21). Regarding the approximate functional, we set φ = 1 and find
∫ 1

0

n[e−(H0+A)](x)dx =
1√
4πβ

∫ 1

0

e−A(x)χ2
β(x)dx+ o(1)

=
1√
4πβ

∫ 1

0

e−A(x)dx+ o(1).

The functional Japprox is finally obtained by spatial discretization. This ends this
section.

Appendix E. Numerical order of convergence. We substantiate here the
claim made in Section 3.2 that the splitting scheme is of order two in the time
variable. We consider a wave packet initial condition, a zero exterior potential, and
vary the number of discretization points for the spatial variable. The results are
presented in the table below.

h N = 401 N = 201 N = 101

10−5 1.998 1.999 1.992

10−3 2.0003 1.998 1.999

Table 1. Order of convergence of the splitting scheme with respect
to h, for different values of ∆x = 1/(N + 1).
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[22] A. Jüngel, D. Matthes and J. P. Milǐsić, Derivation of new quantum hydrodynamic equations
using entropy minimization, SIAM J. Appl. Math., 67(2006), 46-68.

[23] M. Lemou and L. Mieussens, A new asymptotic preserving scheme based on micro-macro
formulation for linear kinetic equations in the diffusion limit, SIAM Journal on Scientific

Computing, 31 (2008), 334-368.
[24] C. D. Levermore, Moment closure hierarchies for kinetic theories, J. Statist. Phys., 83 (1996),

1021-1065.
[25] P.-L. Lions and T. Paul, Sur les mesures de Wigner, Rev. Mat. Iberoamericana, 9 (1993),

553-618.
[26] F. Méhats and O. Pinaud, An inverse problem in quantum statistical physics, J. Stat. Phys.,

140 (2010), 565-602.
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