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Abstract: Second harmonic generation (SHG) microscopy is a valuable tool for optical
microscopy. SHG microscopy is normally performed as a point scanning imaging method, which
lacks phase information and is limited in spatial resolution by the spatial frequency support of
the illumination optics. In addition, aberrations in the illumination are difficult to remove. We
propose and demonstrate SHG holographic synthetic aperture holographic imaging in both the
forward (transmission) and backward (epi) imaging geometries. By taking a set of holograms with
varying incident angle plane wave illumination, the spatial frequency support is increased and
the input and output pupil phase aberrations are estimated and corrected – producing diffraction
limited SHG imaging that combines the spatial frequency support of the input and output optics.
The phase correction algorithm is computationally efficient and robust and can be applied to any
set of measured field imaging data.

© 2023 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

Imaging with second harmonic generated (SHG) light enables label free imaging of non-linear
structures. This intrinsic contrast mechanism, which relies on the lack of inversion symmetry,
allows selective imaging of particular features, while eliminating background. Leveraging this
advantage, SHG microscopy is continuously growing as a valuable resource for the study of
biomedical and material systems [1–3]. In biological tissues, light undergoes second harmonic
scattering when interacting with non-centrosymmetric molecules that are ordered spatially so that
coherent nonlinear second harmonic scattering from the tissues add constructively to produce a
measurable SHG signal [4–8]. SHG has proven to be a valuable method for identifying a wide
range of diseases [9,10], including to quantify the alignment of collagen surrounding tumors to
grade metastatic potential [11]. SHG microscopy has even been used for mapping cell lineage in
embryos by tracking cell division using SHG generated by the mitotic spindle during mitosis
[12]. SHG microscopy has found significant use in materials science [13] and investigating
two-dimensional materials [14].

Standard SHG imaging is based on laser scanning microscopy, in which an incident laser
beam at the fundamental wavelength is focused tightly into a sample. A portion of the SHG
power is collected in either the forward- or backward-scattered direction at each focal point
[15]. An SHG image is built from assigning the measured power to a location in a matrix
corresponding the spatial location of the focused fundamental beam. Unfortunately, this leads to
slow image formation, since each point in the image must be collected sequentially. The signal
to noise ratio (SNR) also suffers because the signal is collected from each spatial point in an
image only for the time that the laser beam dwells on each focal point. The SHG signal power
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is proportional to |χ(2) |2, where χ(2) is the nonlinear susceptibility responsible for SHG signal
generation. Conventional SHG microscopy does not directly reveal the desired spatial map of
χ(2), with only the magnitude of the susceptibility that depends both on the spatial distribution
and sign of the susceptibility distribution within the focal volume of the focused fundamental
beam. Complex image information, notably the sign of χ(2), which indicates the orientation of the
SHG-active molecules, can be obtained by interferometric single-pixel detection SHG imaging
[16,17]. However, the lack of a stable reference phase from a repeated set of measurements
prevents an improvement in the image SNR that would be possible with averaging the image
fields, rather than the image intensity [18].

While such conventional nonlinear laser scanning microscopy benefits from the non-linear
spatial filtering that helps with forming three-dimensional images and imaging within scattering
media, optical aberrations degrade this imaging method. The SNR, image quality, and spatial
resolution of SHG imaging are affected by these optical aberrations introduced by the imaging
system itself and from specimen variations in the refractive index [19–21]. In SHG microscopy,
the distortions introduced by the optics, particularly the objective lens, and the specimen broaden
the size of the focused beam, worsening the ability of the microscope to image fine spatial
features and reducing the signal level. Adaptive optics methods [20] have been applied to improve
imaging with point-scanning nonlinear microscopy [22,23], including wavefront shaping for
polarization-resolved SHG imaging within tissues [24].

Imaging speed and SNR are significantly improved with widefield SHG holographic imaging
[25–31]. Speed is increased with SHG holography for two reasons. The first is that widefield
images are recorded on a camera, so that each pixel benefits from signal being recorded for the
entire imaging time. Thus, even for faster imaging, the SNR of the image is improved. Secondly,
the hologram is formed from the interference of a signal and a reference beam, producing a
heterodyne signal amplification that allows for optimization of the SHG imaging speed [30].
This amplification allows even very weak SHG signal fields to be detected at the shot noise limit.
Additionally, holography allows for extraction of the complex field, so that amplitude and phase
information is available, and the nonlinear susceptibility can be extracted by solving the inverse
scattering problem [31]. Widefield SHG imaging speed can be further increased using a laser
with very high pulse energy (lower repetition rate) enabling the capture of an image per pulse
[32].

Widefield SHG imaging has been restricted to a trans-illumination geometry because generally
SHG fields that are scattered in the forward direction are much stronger than the backward
direction in biological tissues. Point scanning images that are collected in the backscattered
direction consist of a combination of directly backscattered SHG radiation [1,33] and forward-
scattered SHG light that is re-directed in the backward direction so that it can be collected in a epi
configured microscope [34]. The ratio of forward and backward scattered SHG power of ex-vivo
tissues has proven useful as a biomarker for distinguishing healthy and cancerous tissues [9,35].
While conventional laser scanning SHG microscopy can be deployed favorably in biological
tissues that highly scatter fundamental and SHG light, widefield SHG imaging has been degraded
by optical scattering, which is dominated by randomization of the phase of the SHG field [30].

Measuring widefield SHG holographic images in a transmission and epi configuration would
be extremely valuable for imaging collagen and muscle in tissues in a minimally invasive manner.
While point scanning SHG imaging can be performed in an epi direction, such a conventional
approach suffers from very weak signals [33,34], limiting practical use. Holographic widefield
SHG in a epi configuration will enable improved detection of weak backscattered signals as a
result of heterodyne amplification. Furthermore, imaging in a backscattered configuration would
allow for direct optically-sectioned imaging because the low-coherence interferometry will gate
only backscattered SHG light over an axial depth of the coherence length of the SHG light –
exactly analogous to depth sectioning achieved with optical coherence tomography.
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In this Article, we demonstrate the first epi collected widefield SHG images leveraging
the heterodyne signal enhancement provided by holographic measurements to mitigate the
weak backscattered signal strength. Additionally, we exploit phase information to coherently
superimpose measured fields obtained from a set of illumination angles to implement synthetic
aperture coherent nonlinear holographic imaging for second harmonic generation (SHG) scattering
from samples. In synthetic aperture holography, [36–38] complex spatial frequency information
from multiple field measurements is combined to produce a net complex field image with
spatial frequency support that is expanded up to a factor of two, improving imaging resolution.
Aberrations, represented as a phase variation across the pupil, can severely distort the synthetic
aperture image [37].

We introduce a robust and computationally efficient algorithm to estimate and correct the
pupil phase distortions responsible for aberrations in SHG imaging. The acquired data contain
sufficient redundancy to allow estimation of the imaging system aberrations directly from the
recorded data. Redundancy in the field was used to identify conserved coherent field amplitudes
to selectively suppress noise in the estimated image. When phase corrections are applied, we
observe drastic improvements in SNR and image quality of the SHG images. Utilizing the linear
properties of wave propagation and synthetic time reversal, the pupil phase distortions of both the
input and imaging pupil planes can be compensated, thereby correcting system as well as sample
induced aberrations. The result is a diffraction limited SHG image with a spatial frequency
support twice that present in a single holographic SHG image, or four times the spatial frequency
support of the fundamental field. Finally, we demonstrate synthetic aperture SHG holography
on transmitted SHG fields in addition to the first back scattered SHG fields collected in the epi
direction of the SHG holographic microscope.

2. Theory

The experiments described here involve imaging a thin SHG-active sample when illuminated
with a fundamental plane wave. The SHG scattered fields are captured in both the transmitted
and epi directions as the input plane wave propagation direction is varied across the aperture of
the condenser lens. Referring to Fig. 1, we see that microscope consists of a pair of matched
objective lenses. The illumination for both the epi and transmission configurations thus pass
through the same condenser objective lens with a pupil phase ϕ1(xi) at the fundamental beam
wavelength λ1. Plane wave illumination means that the fundamental beam passes through a
small point in the input pupil plane located at xi, which maps to an input spatial frequency of
ui = (λ fc)−1 xi with wavenumber ∥ui∥ = 1/λ and fc denoting the condenser lens focal length. As
SHG scattering is driven by the square of the fundamental illumination beam, the effective input
pupil phase is ϕi = 2 ϕ1. These input aberrations are transmitted to the scattered field and distort
the image. In the case of synthetic aperture holography, these distortions are replicated across
the image field spatial frequency distribution, as illustrated in Fig. 1(d).

The propagation of light being linear, we can describe the relationship of a given light field
from one plane to another with a simple matrix operation (reflection or transmission matrix
depending on the configuration). The choice of input and output planes, and thus the basis of this
matrix, is chosen to be the input and output pupil planes, Pi and Po shown in Fig. 1. A given
input angle conveniently corresponds to a point, ui, in the input pupil plane. At the output pupil
plane, the input plane wave is scattered by the sample into many angles, each given by a point
in the output pupil, uo. This scattered field is proportional to the spatial frequency map of the
second order susceptibility χ̂(2)(q) of the sample, where the object spatial frequency, q, will also
be used to denote the scattering vector.

The imaged SHG field can be described in the output spatial frequency plane with coordinates
uo. By invoking the assumption of a thin specimen and assuming that the fundamental field is
not depleted appreciably in the nonlinear scattering process, we may write the scattered field in



Research Article Vol. 31, No. 20 / 25 Sep 2023 / Optics Express 32437

the output pupil plane as

ESHG(uo, ui) =

∫
H(uo, r) χ(2)(r)G(r, ui) d2r (1)

for a given input spatial frequency, ui.
The thin specimen is described by a two-dimensional second order nonlinear susceptibility

distribution, χ(2)(r), that lies in the sample plane with coordinates r. Light is scattered at the
second harmonic frequency of the incident fundamental beam at frequency ω1, with a Green’s
function, G(r, ui), describing the square of the fundamental field incident on the sample. This
function maps input spatial frequencies for each point ui to the SHG driving term at the sample
plane. The scattered field is collected by the objective and mapped from the sample plane r to the
output imaging pupil uo with the Green’s function, H(uo, r), for the SHG field at optical frequency
ω2 = 2ω1. This Green’s function can be used to describe imaging of the forward-scattered
field in a trans-SHG holographic microscope or to image the back-scattered field in an epi-SHG
holographic microscope.

Within an isoplanatic spatial imaging region, the imaging point spread function is spatially
invariant, which allows the transfer function to be modelled with the pupil function, P(u) =
|P(u)| exp [i ϕ(u)], where the spatial frequency support is |P(u)| and ϕ(u) accounts for aberrations.
In addition to aberrations, there are random phase shifts due to air currents and mechanical
vibrations inherent in the measurement process which must also be accounted for in the synthetic
image reconstruction. This perturbation adds another phase term for the input pupil function
Pi(ui) = |Pi(ui)| exp [i ϕi(ui)] exp [i ϕd(ui)], where ϕd(ui) is the experimental phase drift, with
total phase ϕt(ui) = ϕi(ui) + ϕd(ui).

As shown in Appendix A, for a thin specimen, the illumination and SHG fields propagate
through free space, so that input and output Green functions read G(r, ui) = Pi(ui) e−i 2π ui · r and
H(uo, r) = Po(uo) e−i 2π uo · r, respectively. Under the conditions outlined here, the SHG field for
a given input frequency ui, measured in the output pupil plane is given by

ESHG(uo, ui) = Po(uo) χ̂
(2)(q)Pi(ui), (2)

where that scattering vector is given by q = uo + ui. We have defined the spatial frequency
spectrum of the second order optical susceptibility as χ̂(2)(q) = F {χ(2)(r)}, where F {·} defines
the Fourier transform operator as specified in Appendix A.

A reflection or transmission matrix, for backscattered or transmitted SHG fields, respectively,
is defined by sampling the continuous scattering operator in Eq. (2) over the discrete input and
output spatial frequency coordinates. The reflection matrix defined for the epi imaging condition
can be written as the product of three matrices, Ruo,ui = Po χ̂

(2)
q Pi. The input and output

pupil matrices are defined by the discrete form of the pupil functions, Pi = diag{Pi(ui)} and
Po = diag{Po(uo)}, respectively. The object susceptibility spectrum is a Toeplitz structure that is
given by χ̂(2)q = χ̂

(2)(q) taking the form χ̂(2)q = χ̂
(2)(uo + ui). This matrix can alternatively be

constructed with χ̂(2)q = F diag{χ(2)(r)} F−1, where the susceptibility matrix has been flattened
into a one-dimensional vector before being placed on the matrix diagonal. Here, F and F−1 are
the discrete Fourier and inverse Fourier transforms operators, respectively.

These reflection and transmission matrices map the input spatial frequency coordinate, ui, to
the output spatial frequency coordinate, uo. Scattering from the object probes the object spatial
frequency so that in the output pupil plane the scattered field is proportional to the complex spatial
frequency distribution of the second order susceptibility of the sample, but is shifted according
to the tilt of the input plane wave. Once the transmission or reflection matrix is constructed, we
can obtain the synthetic SHG image field from a shifted form of the matrix.

The synthetic SHG image field can be constructed by shifting the columns of the reflection
matrix to line up the scattered fields, ESHG(uo, ui), with respect to χ̂(2)(q). This shifted operator
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reads
S(q, ui) = Po(q − ui) χ̂

(2)(q)Pi(ui). (3)
This form of the operator corresponds to replacing uo → q− ui. In matrix form, this is written as
Sq,ui , and the shifted matrix is obtained by shifting the columns of the reflection (or transmission)
matrix Ruo,ui , as is illustrated in Fig. 3. The synthetic SHG field is obtained by integration over
the input spatial frequencies Es

SHG(q) =
∫

S(q, ui) dui, which becomes a discrete sum over the
input spatial frequency elements of the matrix Sq,ui . This estimate of the object spectrum is
sampled on the same grid that defines in output spatial frequency coordinates.

Similarly, as illustrated in Fig. 2, a reversal synthetic aperture object spectrum can be formed
in the input pupil coordinates by first taking the transpose of the reflection matrix Ruo,ui (i.e., by
swapping the input and output spaces) and then shifting the columns again in the same manner as
discussed above. This operation will will produce the operator

S(q, uo) = Pi(q − uo) χ̂
(2)(q)Po(uo), (4)

that is written as Sq,uo in matrix form. This operator form arises by the replacement ui → q − uo.
The structure of these matrices are shown pictorially in Fig. 3.

Optical aberrations appearing in the form of phase aberrations in the input pupil, ϕi(ui), and the
output pupil, ϕo(uo), lead to distortions in the synthesized image. These phase distortions can be
estimated and corrected using redundancy in the reflection and transmission matrices. Previous
work in linear scattering has demonstrated that correlations of the output spatial frequency
spectrum between closely spaced input spatial frequency measurements provides a good estimate
of input pupil phase difference at the mean of the two input spatial frequency points [39–41].

Here, we present a straightforward and effective algorithm that estimates and corrects aberrations
in the synthetic aperture holographic images by determining the input and output pupil phase.
The estimation of pupil phase involves utilizing the singular value decomposition (SVD) of the
matrices Sq,ui and Sq,uo . The formation of these matrices introduces strong correlations among the
columns over a wide range. Consequently, the SVD is well-suited for this scenario as it identifies
the eigenvectors of the correlation matrices [41]. The SVD is given by D = U ΣV† =

∑︁
j σj uj v†j .

The left singular vectors, vj, are columns in V, and are eigenvectors of the correlation matrix
D†D. Similarly, uj, are columns in U, and are the right eigenvectors of the other correlation
matrix DD†. These singular vectors are paired with the singular values, σj, which are listed in
decreasing order along the diagonal of Σ = diag{σj}, with eigenvalues given by (σj)

2.
The matrices Sq,ui and Sq,uo are arranged such that the synthetic aperture spectrum is

reconstructed (in either the forward or reversed direction) by simply summing the columns.
Unfortunately, each field (column) of the raw experimental data is out of phase with one another
according to both Po and Pi, as illustrated in Fig. 1. Choosing two neighboring columns of Sq,ui :
dq,u1

i
= Po(q + u1

i ) χ̂
(2)(q)Pi(u1

i ) and dq,u2
i
= Po(q + u2

i ) χ̂
(2)(q)Pi(u2

i ), if the difference in input
angle between the two columns is sufficiently small such that Po(q + u1

i ) ≈ Po(q + u2
i ), then the

phase difference between the two columns is approximately just a piston phase shift set by the
phase difference between Pi(u1

i ) and Pi(u2
i ). This then nearly isolates the input and output pupils

and allows for the problem to be written as a simple matrix operation: Sq,uia = Es
SHG(q), which

gives an explicit expression of the discrete summation form of synthetic SHG field spectrum
with phase correction imparted by a so that the phase of each column is shifted to eliminate
aberrations: a = eiφc(ui), with ϕc being the phase correction. We would like to find a such
that it maximizes the total intensity of Es

SHG(q). When the total intensity is maximum, all the
columns (fields) are in phase. This occurs when a = Pi(ui)

∗, implying that ϕc = −ϕt(ui), thereby
correcting the aberrations imparted by the input pupil. A comparison of the performance of the
cross correlation approach and the SVD phase estimate is provided in Appendix D.

To motivate this algorithm, we consider an infinitesimal scattering point on axis. Such a
scatterer produces a uniform spatial frequency distribution χ̂(2)(q) = 1. Consequentially, the
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Fig. 1. Conceptual diagram of SHG synthetic aperture holography represented in a
transmission geometry, but which equally applies to a reflection geometry. a) The input
fundamental field is focused to a point in the input pupil plane at the input spatial frequency
coordinate ui. When this illumination is at the origin of the input pupil plane coordinates,
the fundamental illumination beam is a normally incident plane wave. The scattered
field, analogous to a linear transillumination field, is collected by the output pupil and
the complex signal field is recorded. b) A second input field example shows an SHG
darkfield configuration in which the fundamental beam is incident on the sample at an angle
determined by ui. c) The input illumination angle is scanned across the input pupil to
collect SHG scattered fields from a range of object spatial frequency distribution with each
scattered spectra aligned to χ̂(2)(q) showing an enhanced frequency support. d) The full
spatial frequency spectrum of the object, χ̂(2)(q), is estimated from the coherent sum of the
recorded spectral field. Aberrations from the input, Pi(ui), and output, Po(uo), pupils distort
the estimated object spectrum and must be corrected to produce aberration-free images.

reflection matrix is rank one and formed by the outer product Ruo,ui = Po Pi
T , where the pupils

are represented as vectors after flattening with suitable lexicographic ordering. For this simple
case, the right singular vector is associated with the input pupil function and the left singular
vector is associated with the conjugate of the output pupil function. It is evident in this case that
the input and output pupils can be obtained directly from the SVD. A more complex scattering
spectrum prevents such clean separation of the input and output pupils from the reflection matrix
so that we have to use the shifted reflection matrices to highlight the correlations.

Using the method of Lagrange multipliers it can be shown that the vector a, that maximizes
the total intensity of Es

SHG(q) (subject to the constraint that a is a unit vector), is the left singular
vector of Sq,ui corresponding to the largest singular value. As shown in Appendix C, if v1 is the
dominant left singular vector of Sq,ui then optimal phase conjugate occurs for a = v1. This proof
clarifies the role of the SVD algorithm in providing an excellent phase correction for the input
pupil. We find that this algorithm performs extremely well, even under very low SNR conditions,
which are difficult to avoid when measuring backward generated SHG; see Appendix D. To find
the phase correction for the output pupil, the same process is carried out, except we transform
Sq,ui to Sq,uo and then take the dominant left singular vector of Sq,uo as the estimate of the output
pupil correction.

Because the input and output pupils are only approximately separable using the shifted
representations of the reflection matrix, the algorithm proceeds iteratively, with iteration index
denoted by k. At each iteration, the reflection matrix, R(k)

uo,ui , is corrected with the input and
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output pupil phase estimated obtained in this iterative step. For the first iteration, the reflection
matrix is initialized with the reflection matrix obtained from the data, R(0)

uo,ui = Ruo,ui . Then, the
input pupil phase is estimated by taking the phase argument of the dominant left singular vector
given by the SVD of the shifted reflection matrix Sq,ui . The estimated input pupil phase is taken
from the phase of the dominant left singular vector of Sq,uo , δϕ̃

(k)
c,i = ∠v1. The estimated phase

correction is then applied and then the matrix is transformed from Sq,ui to Sq,uo . The output pupil
phase is then estimated similarly by the dominant left singular vector of Sq,uo , δϕ̃

(k)
c,o = −∠v1.

Transforming Sq,uo back to Ruo,ui after applying the output pupil phase correction provides the
corrected reflection matrix R(k+1)

uo,ui . This pair of steps is counted as one iteration. These operations
are shown graphically in Fig. 3. The total phase correction is estimated from ϕ̃c,i =

∑︁
k δϕ̃

(k)
c,i

and similarly, ϕ̃c,o =
∑︁

k δϕ̃
(k)
c,o for the input and output pupils, respectively. A stopping criterion

for the number of iterations is established once a maximum total intensity for the reconstructed
image is reached. Other metrics have been investigated such as sharpness, but it was found this
these reach a peak at the same point.

3. Methods

The strategy outlined above was implemented experimentally after validation and testing of
the algorithm through simulations. The experimental system allows for epi and transmission
synthetic SHG holograms to be recorded. The SHG field is extracted from the set of holographic
intensity patterns and used to build the reflection (and transmission) matrices. These data are then
processed according to the algorithm discussed in the previous section to synthesize an enhanced
SHG spectrum that is free from optical aberrations, producing aberration-free SHG field images
in forward and backscattered configurations with resolution higher than the diffraction limit.

3.1. Experimental setup

The experimental system, as shown in Fig. 4, is driven by a home built Yb:fiber-amplifier system
that produces ultrafast laser pulses at a 62 MHz repetition rate that are centered at a 1050-nm
wavelength, with a bandwidth that supports <35-fs transform-limited pulses and an average power
of 3.5 − 4 W (56 − 64 nJ pulse energy). Power in the beam is split into signal and reference arms
with a combination of a half waveplate and a polarizing beam splitter. The signal arm is sent
through two galvanometric mirrors (Nutfield QS-7) that are relay imaged to one another with a 4-f
telescope (1.33× magnification). Finally the beam is brought to a focus in the back focal plane of
a condenser lens with another lens (f = 200 mm) to generate a plane wave incident on the sample.
To avoid damage in the back focal plane of the lens, as we observed with a microsope objective,
an aspheric lens (New Focus 5726, NA = .16) serves as the condenser. In the epi direction, the
same lens is used to collect the backscattered SHG light. An identical aspheric lens is used in
transmission. In both the epi and transmission arms, the SHG signal is isolated with a dichroic
optical filter (Semrock FF875-Di01) – rejecting the pump pulse. Typically 3 − 3.4 W of average
power is used for illumination in the fundamental arm. The beam is focused to a collimated
beam, i.e., approximately a plane wave, with a transverse width of 500 µm. The polarizer in
front of the camera is a Meadowlark GPM-150-UNC broadband polarizer. Specimens used for
the experiments include a sparse field of ∼ 80 − 100-nm diameter Bismuth ferrite, or BiFeO3,
(BFO) nanoparticles and a 10µm thick section of sheep tendon. The BFO nanoparticles have an
average particle size of 80-100 nm and were purchased from Nanoshel and used without any
further purification. BFO nanoparticles are suspended in DI water to make 0.5 mg/mL colloidal
solutions and sonicated for 15 minutes. A small portion (<10µL) of the colloidal solution is then
drop cast onto a glass slide and left to dry in ambient conditions before imaging. The result is
that the BFO particles are well dispersed on the slide, but still in a high enough density to see
constellations of BFO nanoparticles in the images, see Fig. 5. To eliminate the possibility of
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reflections coming back into the camera on the epi side, the samples are mounted on a glass slide
without a coverslip and oriented so that the sample lies on the distal side of the glass relative to
the condenser lens.

Fig. 2. Conceptual diagram of SHG synthetic aperture holography. a) The input fundamental
field is focused to a single point in the input pupil plane. This field produces plane wave
illumination of the sample. The optical imaging system filters the SHG field spatial frequency
support by the output pupil, Po(uo), which is applied to a portion of the SHG object spectrum
centered on ui. b) Each measured SHG spectrum is flattened into a vector and stacked into a
matrix Ruo,ui . c) The conjugate transpose of Ruo,ui behaves conceptually as a time-reversal
experiment. This time-reversal matrix describes a scenario interpreted as an SHG field from
the output pupil that backpropagates through the system to the input pupil plane. d) The
time-reversal of the data can be realized by taking the conjugate transpose of Ruo,ui .

Meanwhile, the reference beam is generated by frequency doubling approximately 35 − 70
mW of the laser power by placing the BBO crystal in the center of a telescope with magnification
equal to one. The power of the reference beam can be further attenuated with a half-wave plate
before being combined with the signal field at the beam splitter. The telescope also collimates
the SHG reference beam and a dichroic filter beamsplitter as well as several filters (Semrock
FF875-Di01 Dichroic beam splitter, Semrock 720 short pass filter and a BG39 filter) that are
used to isolate the reference beam from the residual un-converted fundamental beam. The same
models of dichroic beam splitter and filters are used to isolate the fundamental and SHG field
generated at the sample plane before imaging. The reference beam is sent through a mechanical
delay line that allows for adjustment of the arrive time of the reference SHG pulse to gate the
holographic measurement to a particular depth. The signal SHG field is combined with the
reference beam with a non-polarizing beam splitter. An image of the SHG field is formed with
a tube lens (f = 200 mm) in the epi arm and (f = 250 mm) in the transmission arm. Off-axis
holographic images are captured with a Hammamatsu ORCA Quest C15550 in the epi arm and a
Teledyne prime 95B in the transmission arm.

3.2. Constructing the reflection matrix

For synthetic aperture SHG holography, we record a sequence of M SHG holograms, from which
we extract the SHG field in the output spatial image plane for a sequence of input illumination
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Fig. 3. Conceptual diagram of operations needed to find pupil phase corrections. a) Taking
the constructed reflection matrix and aligning the output spectra (aligning the columns of
Ruo,ui ) constructs the matrix Sq,ui . The aberrated input pupil phase is estimated from the
phase of the dominant left singular vector of SVD of Sq,ui , giving ϕi(ui) ≈ ∠v1. b) Similarly
for the output pupil phase correction first the conjugate transpose of Ruo,ui is taken, then
the spectra are again aligned (aligning the columns of R†

uo,ui ) to form Sq,uo . The output
pupil phase is estimated from the phase of the dominant left singular vector of SVD of Sq,uo ,
which reads ϕo(uo) ≈ −∠v1.

Fig. 4. Diagram of the experimental layout for measuring the SHG reflection and transmis-
sion matrix for a set of plane wave illuminations at different angles set by the galvanometric
scan mirrors.
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Fig. 5. Experimental results for SHG synthetic aperture with aberration correction in the epi
and transmission configurations for a field of BFO nanoparticles. a) uncorrected synthetic
aperture SHG image intensity in transmission. b) corrected synthetic aperture SHG image
intensity in transmission. c) estimated input and output pupil phase. Because each input
angle is a separate measurement, there is a uniformly distributed random phase on top of the
optical pupil phase of the illumination condenser optic. d) uncorrected synthetic aperture
SHG image intensity in reflection. e) corrected synthetic aperture SHG image intensity
in reflection. f) estimated output and input pupil phase in reflection. The estimated SNR
from uncorrected to corrected for transmission is 5dB to 27dB respectively. Similarly for
reflection the estimated SNR values go from 4dB to 37dB. Scale bar is 50µm

angles, denoted by ui. Each of the M holograms are captured for a distinct point in the input
pupil plane, ui, which corresponds to a particular incident angle on the specimen. The pair of
galvanometer scan mirrors are used to control the incident angle of the fundamental beam by relay
imaging the surface of the second galvanometer mirror to the sample plane. The incident angle
is controlled by setting the voltage on each galvanometer. A calibration of voltage to resulting
plane wave tilt in spatial frequency units is implemented by finding the voltage applied to each
galvanometric-mirror required to reach each edge of the pupil. This voltage then corresponds to a
spatial frequency of ui = NA/λ1, that also outlines the condenser lens pupil boundary. The offset
voltage needed to center the illumination path on the objective pupil plane is determined. The
pupil boundary voltages are then used to map the control voltages to the input spatial frequency
values for each measured hologram that is acquired for a specific set of galvanometer control
voltages. The knowledge of the input spatial frequency decoded from the control voltage applied
to the galvanometer is used to compute the required shift to align each of the output SHG spectra.

Holograms of the scattered SHG field are recorded for each incident fundamental illumination
angle. The holograms are captured with a planar off-axis reference beam, so that the SHG field
is extracted with a conventional holographic processing algorithm [25]. The extracted field is
spatially cropped to limit the image field of view to a total number of pixels N. Each cropped
output SHG field is transformed to the output pupil plane, with coordinates uo. These measured
fields are flattened according to lexicographic order into a linear vector truncated to length N in
order to manage computer memory usage. Each SHG field (now represented as a vector) is stored
in the columns of a transmission or reflection matrix for the transmission and epi SHG fields,
respectively. The columns of the matrix are filled with the input spatial frequencies ordered in the
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same lexicographic order as the flattened output spatial frequency vectors. In this way, a column
of the reflection matrix corresponds to a measured output field due to a certain input spatial
frequency. A row corresponds to the detected scattered complex-valued SHG field of a certain
output spatial frequency (pixel) according to the input spatial frequency. Remapping a row of R
to a 2D array in the correct ordering yields the spatial frequency spectrum corresponding to the
reversal of a plane wave through the system. In other words, mimicking the process of sending a
second harmonic plane wave from the output pupil plane to the input pupil plane. The resulting
matrix is of size N × M, with columns mapping the output spatial frequency coordinates and the
rows indicating the input spatial frequency for illumination.

4. Results

Both samples were imaged in epi and transmission and configurations. In all cases, the SHG field
reflection or transmission matrix is recorded for a set of input spatial frequencies, corresponding
to a sweep of incident angle of the fundamental beam. These data are then processed to estimate
and correct for the input and output pupil phases after which aberration-free synthetic SHG
spatial frequency spectrum and images are obtained.

The scattered SHG field from sub-wavelength particles is of similar power in the forward and
backward directions. In contrast, for sheep tendon the scattered SHG power is reduced by at
least an order of magnitude in the backward direction as compared to forward scattered SHG.
As SHG scattering is already a weak process, the scattered SHG fields are relatively weak, and
particularly weak in the backscattered direction from the sheep tendon samples. Thus, measuring
the backward scattered SHG field is a challenge. On average, the signal in the epi direction from
sheep tendon is about 2000 to 4000 photons per second. Whereas in the transmission direction is
is around 30000 to 60000 photons per second. These numbers where arrived by taking widefield
intensity images and converting the gray scale value (ADU) to number of photons according
to the specs of each camera. Fortunately, SHG holography allows for the measurement of a
weak field by leveraging the heterodyne enhancement from a strong reference beam [30]. This
enhancement enabled us to record SHG widefield holograms in the epi direction. Coherent
addition of the fields also aids in increasing the SHG scattered field strength. The synthetic
summation of SHG scattered field spectra (over the illumination angles) enables the SHG signal
to grow linearly with the number, M, of coherent fields added together.

4.1. Coherent averaging

While these strategies enable measurement of backward emitted SHG from the sample in a
widefield imaging configuration, the signal is still quite low. We can take another step to further
boost this signal by exploiting phase information in hand. Normally, to increase a signal measured
on a camera one could just take the average of many measurements or increase the exposure time
on the camera. Unfortunately, in the case of holography, increasing exposure time usually fails
because the signal of interest is retrieved by analyzing the fringe pattern produced on the camera
due to the interference of the signal and reference beam. This fringe pattern is extraordinarily
sensitive to air currents, vibrations, and other perturbations to the accumulated relative phase
between the reference and signal fields in the non-common path regions of the reference and
signal arms. The fringe visibility, and thus the signal, degrades when averaging several holograms
or increasing the exposure time due to the fluctuation in the relative phase over the integration
timescale.

We have developed a simple strategy to mitigate these relative phase fluctuations – enabling a
significant boost in the signal-to-noise ratio of the SHG holographic field measurement. This
strategy again leverages coherent field summation. To implement the coherent sum boost, a
sequence of holograms with short camera exposure times is taken for each incident angle, i.e., the
same input spatial frequency, for the fundamental illumination beam. The SHG field is extracted
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using standard off-axis holographic processing [25]. These fields are cropped, flattened, and
stacked into the columns of a matrix, A. Since these measurements are all taken at the same
input spatial frequency, their output spatial frequency spectra are already aligned. Thus, each
SHG spectrum is nominally identical, except for the changes in overall phase that arises as a
result of the shot-to-shot changes in relative signal-reference beam phase. Taking inspiration
from the algorithm we developed for aberration correction, we find the phase offset between
each measured SHG field them using the SVD. The phase correction vector, c = v1/|v1 |, is
taken from the dominant singular vector v1, of the SVD of A. Further improvement in the SNR
can be obtained by filtering out noise in A with a truncated SVD. The coherent sum of the
SHG spectra for each input angle is given simply by A c∗, which boosts the SHG signal field
by the number of hologram measurements. To obtain an equivalent enhancement in signal by
averaging the intensity on the camera would require perfectly stable fringes. With the approach
outlined here, we are able to form a widefield image while also correcting aberrations even
with an extraordinarily weak signal, highlighting the power of this technique. This coherent
averaging process is repeated for each fundamental beam illumination angle, i.e., each input
spatial frequency ui, and the coherently summed SHG field for each angle is stacked into a matrix
to build the reflection/transmission matrix Ruo,ui .

4.2. Imaging conditions

For the data collection of SHG synthetic aperture imaging of the sheep tendon the imaging
conditions are as follows. For both the epi and transmission data a total of 2601 holograms were
recorded which evenly sampled the full support of the illumination aperture. The exposure time
on the camera was .1 s for both configurations. The signal is much weaker in the epi direction so
for each angle 15 holograms were coherently summed. For the transmission data 5 holograms
were coherently summed for each angle. Under these conditions the total acquisition time for epi
collection was 65 minutes for epi and 22 minutes for transmission. We stress that this system was
not optimized for speed. To increase the speed, the exposure time could be reduced if a laser
with a very high pulse energy were used as in [32]. The number of acquired holograms can also
be reduced using compressed sensing techniques. Similarly, the conditions used for the BFO
nanoparticle data were the same in the epi and transmission directions. The exposure time set to
.1sec and 10 holograms were coherently summed for each angle with a total of 2601 holograms
evenly sampling the input aperture. This leads to a total acquisition time of 43 minutes for both
the epi and transmission data for the BFO particles.

4.3. Reconstructions

Before and after images illustrating the correction of aberrations are shown in Fig. 5 for SHG-
active BFO nanoparticles and Fig. 6 for thin sheep tendon slices. The input and output pupil
phase estimates are also shown. Due to experimental phase drifts in the system (air currents,
mechanical vibrations), each measurement is dephased with each other measurement by a random
offset phase. With no correction of the relative random phase fluctuation, the resulting synthetic
aperture reconstruction has very low SNR (shown in Figs. 5 and 6). This experimental phase
drift is corrected along with the input pupil phase correction simultaneously. The resulting input
pupil phase map is the superposition of the optical aberrations and the phase drift.

BFO nanoparticles were used to validate the performance of the estimation and correction
of the input and output pupil phases. In addition, these BFO nanoparticles are well below the
imaging resolution, and thus isolated BFO nanoparticle images serve to report the amplitude
spread function of the synthetic aperture SHG holographic imaging, highlighting improvements
as we correct aberrations. Fig. 5(a) shows the uncorrected synthetic aperture SHG image intensity
when the input and output pupil phases are not corrected for the transmission image of BFO
nanoparticles and Fig. 5(d) shows corresponding image obtained in the epi direction. The
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Fig. 6. Experimental results for SHG synthetic aperture with aberration correction in the
epi and transmission configurations for a 10µm thick section of sheep tendon. Images a-d
correspond to the epi configuration and e-h in transmission. Images a) and e) show the
reconstruction before any corrections are applied. Images b) and f) show the intensity after
correction with the input and output pupil phase corrections inset. Panels c) and g) show
the phase of the synthetic aperture reconstructions after the corrections are applied. The
reconstructed spectrum in images d) and h) have white dashed outlines showing the original
spatial frequency support of the system shifted to different positions stitching together an
expanded spatial frequency support containing more information. The dashed circles only
show a few example positions, in reality there were 2601 measurements taken. For the
synthetic aperture reconstruction in the transmission configuration (images e and f) the
estimated SNR goes from 12.3dB to 35.8dB after correcting for experimental phase drift
and aberrations. Similarly for the epi configuration (a and b) the SNR goes from 13.5dB
to 34.8dB. SNR estimates were made by considering the singular values up to an optimal
truncation point as signal and the rest noise. The optimal truncation point is determined
using the convention established by Gavish and Donahoe [42]. Scale bar is 50µm

aberration-free images obtained by estimating and correcting for the input and pupil phases are
shown in Figs. 5(b) and 5(e) for the transmitted and backscattered SHG field, respectively.

The uncorrected and corrected aberration corrected synthetic aperture reconstructions of thin
sheep tendon samples in the epi and transmission directions are shown in Fig. 6. The results
show a dramatic improvement in image quality after processing with the SVD-based aberration
correction algorithm. While the estimation of SNR from an image is a difficult problem, the
distribution of SVD values have been shown to provide a robust strategy for SNR estimation [42].
The SNR values of the images are estimated based on this strategy, with results shown in the
caption of Fig. 6.

The results of complex aberration-free synthetic aperture SHG fields recovered from SHG
synthetic aperture holographic imaging imaging of a thin sheep tendon in transmission and
reflection geometries of the same region are shown in Fig. 6. We display the estimated input and
output pupil phases inset within the corrected intensity images Figs. 6(b) and 6(f). Note that
these measurements were taken in independent data runs, so there is no correlation between the
shot-to-shot random phase fluctuations of the input pupil phases. These results show extremely
robust performance of synthetic aperture SHG holographic imaging.
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4.4. Resolution

We compare the resolution shown in Fig. 7 with the expected resolution based on the properties
of the optical imaging system and the wavelengths used in the experiment. In our experiment, we
have a numerical aperture of a input condenser lens NAi = .16 and a fundamental illumination
wavelength λ1 = 1.05 µm and an output objective lens with numerical aperture NAo = .16 and
an imaging second harmonic wavelength λ2 = λ1/2 = .525 µm. The NA for this system is low
partly to have a large working distance to add large samples and for future experiments imaging
in deep tissue.

Fig. 7. Spatial frequency maps comparing the resolution of a single hologram on axis a),
the synthesized aperture without phase corrections b), and the aberration corrected synthetic
aperture image c) for the sheep tendon sample in transmission. The dashed lines show
the approximate location of the cutoff frequency for each case. This demonstrates that the
resolution is increased by a factor of two for the synthesized aperture.

For a single hologram image, the spatial frequency support of the image, and thus the spatial
resolution, are set by ∆uo = 2 NAo/λ2 and δxo = 1/∆uo = λ2/(2 NAo), respectively. The radial
spatial frequency support for a single hologram image is given by ∆uo/2 = NAo/λ2. In our
experimental setup, these number evaluate to ∆uo = .61 µm−1, with radial spatial frequency
support of .305 µm−1 (this is the radius of the image spectral amplitude) and a spatial resolution
of δxo = 1.6 µm. As can be seen in the data shown in Fig. 7, we obtain the expected spatial
frequency support and resolution. A calibration was done for the magnification of the system
using a Ronchi ruling of a known line spacing in order to have a calibrated pixel size.

By scanning the input angle, we can collect portions of the object spectrum which are higher
than this cutoff to record synthetic aperture holography data. In the case of a synthetic aperture
experiment, the input spatial frequency support of the input fundamental beam can be scanned
over a range of ±NAi/λ1 of the input fundamental wavevector, but this effect is doubled in the
SHG scattering process. Thus, the spatial frequency support for the synthetic aperture SHG
image spans ∆uo = 2 NAo/λ2 + 4NA2/(4λ1). The experimental spatial frequency support for the
synthetic aperture SHG field image evaluates to ∆uo = 1.22 µm−1, with radial spatial frequency
support of .61 µm−1, and a spatial resolution of δxo = .8 µm. We see that the aberration-corrected
image in Fig. 7(c) matches the expected resolution criterion, whereas the uncorrected, and thus
aberrated, image does not provide full spatial frequency support or achieve the minimum spatial
resolution. This is a result of the overlapping portions of the spectrum for each hologram being
added are out of phase.

5. Discussion

We have adapted methods that were first developed to improve imaging distorted by optical
aberrations and linear coherent scattering [37,39–41] for application to nonlinear holographic
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imaging. [25,27,29–31] Nonlinear scattering is dominated by forward scattering due to phase-
matching considerations [31]. As a result, the backward scattered field is quite weak – presenting
a significant challenge for detection of the SHG field imaged in an epi configuration. Our new
imaging strategy makes use of two coherent summations of the complex-valued SHG field
that is recovered from off-axis SHG holography in the forward-scattered (transmission) and
backward-scattered (epi) geometries. These coherent combining methods rely critically on the
ability to estimate phase differences between a set of measurements. The coherent summation
can overcome the inherently weak SHG field strength to produce aberration-free complex-valued
SHG field images with increased spatial frequency support, and thus improved spatial resolution.

We have successfully been able to form an aberration corrected synthetic aperture image
for the back-scattered as well as forward-scattered SHG from BFO nanoparticles and sheep
tendon. The detected signal is boosted using coherent amplification of the field that occurs from
heterodyne mixing between the signal field and a reference field in a holographic measurement
[30]. The epi-SHG holographic images shown here provide the first complex-valued nonlinear
bacskcattered optical field measurements. To ensure that there was no contamination from
forward-scattered SHG radiation that is directed in a backward direction, we eliminated all
material from the distal end of the sample to prevent Fresnel reflection of forward-scattered
SHG fields into the epi SHG holographic imaging system. In addition, the SHG signal and
reference fields are broad-bandwidth, with a cross-coherence length of ∼ 8.84µm. This epi
SHG image carries the advantage of gating out any stray reflections and will ultimately enable
three-dimensional imaging because the low-coherence interferometry provides optical sectioning
of the backscattered SHG field.

Even with the coherent heterodyne amplification provided by holographic imaging with a
strong reference field, the SNR of the field extracted from epi-SHG holography was relatively
low. One strategy to boost the SNR is to simply increase the integration time of the camera,
if there is still some dynamic range left of the camera sensor. Unfortunately, this strategy is
infeasible in our configuration because the signal and reference beams are not common path. The
lack of common path propagation leads to random relative phase fluctuations over the camera
integration time. These random fluctuations degrade the fringe visibility and thus the SNR of
the extracted SHG field. To combat this SNR degradation, we implemented a new coherent
summation strategy for the SHG field for a set of nominally identical SHG holograms. This
algorithm is based on estimating the random relative phase variations of the set of the SHG field
extracted from multiple holographic measurements. Implementation of this protocol provides
a significant boost in the SHG field SNR. We note that a similar strategy has been adopted for
linear holographic imaging through turbulent media [43].

Despite this boost in signal SNR, the SHG images are still quite degraded due to a combination
of aberration phases introduced by the input and output optics, as well as due to specimen-induced
aberrations from propagation of the fundamental and second harmonic fields in the sample.
The imaging distortion from aberrations is exacerbated by the fact that we use an aspheric lens
for imaging. While such aspheres are generally avoided due to the presence of strong optical
aberrations (off-axis), we used these optics since there are no optical components in the pupil
plane of the lens. As this plane is inside of conventional optical objectives, these objectives are
damaged when employing such a plane-wave illumination. Our synthetic aperture strategy, in
which we accurately extract the input and output pupil phase, allows for the use of low quality,
and less expensive, optics for imaging.

To accurately estimate the input and output pupil phases from a set of data, we need to introduce
some redundancy in the measurements. Such redundancy is attained by capturing data over
a range of input fundamental incident angles so that the set of SHG field measurements have
partially overlapping spatial frequency support. This set of data contains sufficient redundancy
(i.e., spatial frequency redundancy) to estimate the input and output pupil phases. These phases
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can be extracted with a cross-correlation algorithm that has been used for phase correction in
linear scattering based microscopy [39], however, we found that this cross-correlation algorithm
performed poorly in the limit of low SNR. A simulation of the robustness of cross-correlation
phase estimation as a function of data SNR is discussed in Appendix D. This same analysis
shows that our new algorithm for input and output pupil phase and correction based on the SVD
of suitably shifted reflection (or transmission) matrices performs extremely well in the presence
of low SNR data. Furthermore, we show in Appendix D. that the SVD-based algorithm discovers
the optimal phase correction to produce aberration-free SHG field imaging even in the presence
of high noise levels. In addition, the SVD algorithm is more computationally efficient than
computing the cross correlations for phase estimation. On average it requires about a factor
of two fewer iterations and in some cases finds the best phase corrections in a single iteration
according to SNR and sharpness metrics.

The application of our new aberration-free synthetic aperture imaging strategy to experimental
measurements shows excellent performance. The combination of the coherent signal enhancement
and large spatial frequency support allows for the un-distorted estimation of the spatial frequency
spectrum of the second-order nonlinear optical susceptibility that gives rise to the coherent
nonlinear SHG scattering. The corrections shown for sub-resolution nanoparticles exhibits
diffraction-limited image points. High quality amplitude and phase images of thin sheep tendon
slices illustrate the power of this new imaging modality. In contrast, for the conventional SHG
microscopy case where a focused beam is scanned through the system and the SHG power
is measured and assigned to that focal spot. The image formation in the conventional case
suffers from aberrations on the illumination because the point spread function is distorted – thus
distorting the image. There is no refuge in such a conventional measurement to correct this image
from information in the data as we demonstrate here. Furthermore, in our new synthetic aperture
imaging, we directly access the nonlinear SHG susceptibility. In contrast, conventional point
scanning SHG imaging probes information related to the intensity of scattering generated by
the focal volume of the fundamental focused field. The total power measured at each point is
related in a complicated way to the local spatial morphology of the nonlinear susceptibility and
the phase matching conditions.

Image formation in widefield coherent nonlinear imaging deviates from the conventional
strategy for nonlinear optical microscopy. While a full discussion of the novel facets of widefield
coherent nonlinear scattering are beyond the scope of this article, we will make a few remarks to
highlight the differences in the two approaches. Coherent nonlinear imaging is fundamentally an
inverse scattering problem that can be described with a model that is homologous to the first-Born
approximation model for linear scattering. For this homology to be valid, the optical interaction
must both satisfy the undepleted pump approximation, which requires a weak scattered field,
and linear scattering for the fundamental and harmonic fields must be negligible. Under these
conditions, the scattered field is driven by a source term that is proportional to the nth power of the
fundamental field, where n indicates the order of the optical nonlinearity [31]. For the case of an
incident fundamental plane wave, such as we present in this article, the information probed by the
object, i.e., the spatial variation of the nonlinear optical susceptibility χ(n)(r), in the holographic
measurement is determined by Q = k2 − 2 k1. Here k1 = 2 π ui is the incident fundamental
plane wave direction, with wavenumber ∥k1∥ = 2 π n1/λ1 ≡ β1, where n1 is the refractive index
(RI) of the sample at the fundamental wavelength λ1. There are a set of wavevectors of the
SHG field, k2 = 2 π uo, that are determined by the observation direction of the set of output
spatial frequencies uo. The unit vector describing the direction of observation is ŝ2 = k2/β2.
The wavenumber of the SHG field is ∥k2∥ = 2 π n2/λ2 ≡ β2, where λ2 = λ1/2 is the wavelength
of the SHG field. The unit vector describing the direction of illumination is ŝ1 = k1/β1. In a
linear scattering problem described in the first-Born approximation, measurement of the image
field samples of the object spatial frequency distribution as described by the Fourier Diffraction
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Theorem (FDT), which shows the measured information lies on a portion of the Ewald sphere
with the apex located at the origin where Q = 0.

In our experiment, we study the SHG scattered field. In this case, which we call the nonlinear
FDT, the information sampled for an input spatial frequency k1 and an observation spatial
frequency k2 sits at the transverse object spatial frequency value of Q⊥ = k2⊥ − 2 k1⊥. This is
the transverse component of the spatial frequency vector that satisfies Q⊥ · ẑ = 0, and where ẑ is
a unit vector along z. The fundamental and second harmonic transverse wavevectors, k2⊥ and
k1⊥, are similarly defined. The axial spatial frequency information collected for the forward
scattered is defined as Qz = Q − Q⊥ = Qz ẑ, where Qz =

√︂
β2

2 − ∥k2∥2 − 2
√︂
β2

1 − ∥k∥1
2. The

spatial frequency information of the object sampled by a holographic measurement is given by the
nonlinear FDT, χ̂(2)(Q⊥, Qz), Here, the spatial frequency spectrum of the nonlinear susceptibility
is defined by the Fourier transform, χ̂(2)(Q) = F {χ(2)(r)}. Similar arguments can be made for
the backward scattered fields collected in the epi direction. A full discussion of this analysis will
be featured in a future article.

With this introduction in hand, we are in a position to discuss the impact of phase mismatch on
the SHG holographic imaging process. Nonlinear optics is notoriously afflicted by the problem
of phase mismatch that is defined by ∆β = β2 − 2 β1. Often the phase mismatch is expressed
in terms of a coherence length, ℓc = π/∆β, which is the length scale at which new nonlinear
scattering interferes destructively with the nonlinear scattered light generated earlier in the
interaction. In classical nonlinear frequency conversion, a finite coherence length is a factor the
limits conversion efficiency of power from the fundamental to the nonlinear field. Normally in
nonlinear imaging, phase mismatch drastically impacts the spatial features that may be imaged.
In conventional point scatting nonlinear SHG microscopy, the power scattered from a small
volume from a small point focus is recorded for each focal point. The recorded power depends
sensitively on the phase matching conditions of the illumination volume in the sample [34].
Remarkably, widefield SHG holography behaves differently. Because each observation point on
the camera involves a particular scattered field direction, only the complex values amplitude of
the nonlinear susceptibility at Q⊥ and Qz are probed, but these values are faithfully measured in
the experiment. The impact of the phase mismatch can be seen as a high-pass filter of spatial
structure in the sample. To understand this filtering, consider the case of forward-scattered SHG
holography where the direction of observation, ŝ2 is the same as the direction of illumination, ŝ1.
The magnitude of the observed scattering vector of the sample is ∥Q∥ = ∥β2 ŝ2 − 2 β1 ŝ1∥ = ∆β.
This condition is fulfilled regardless of the direction of ŝj. As the point of the object spatial
frequency that is probed when ŝ2 = ŝ1 is the apex of a portion of the Ewald sphere, no points are
sampled inside of a circle with a radius of ∆β in the spatial frequency distribution of the sample
spectrum. Consequentially, we conclude that the phase mismatch serves as a high-pass spatial
frequency filter in the coherent nonlinear holographic imaging process. Moreover, above the
frequency ∥Q∥ = ∆β, any spatial frequency structure can be sampled up to a roughly 2 π/λ2 in
the forward direction.

In the epi (backscattered direction), the situation is slightly different. Here, we probe
the transverse spatial frequency components Q⊥ = −k2⊥ − 2k1⊥ and axial spatial frequency
components Qz = −

√︂
β2

2 − ∥k2∥2 − 2
√︂
β2

1 − ∥k1∥2. In the backscattering direction, we can
consider the scenario where ŝ2 = −ŝ1 to study the impact of phase mismatch. In this scenario,
the magnitude of the observed scattering vector of the sample is ∥Q∥ = β2 + 2 β1 = 2 β2 − ∆β.
As generally ∆β ≪ β2, we observe that the impact of the phase mistmatch on the backscattered
SHG field collected in the epi direction is negligible. The consequence of the scattering picture
is that signal is only collected for spatial structure that is on the order of the wavelength and
smaller. This is the same as the case for linear scattering (e.g., as is observed in linear holography
and OCT).
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Widefield imaging holds an advantage over point scanning microscopy in that since data is
collected on a camera, the data collection occurs over the entire time, T , over which the image is
acquired. Thus, each of the N pixels in the widefield camera image is integrated for the entire
image capture time. In contrast, with point scanning imaging, as is used in conventional nonlinear
microscopy, the data for each pixel is captured sequentially, and thus the dwell time for each
measured point in the image is reduced by the total number of image pixels to T/N. Assuming
the local illumination intensity is the same for each case, then the signal photon flux, ρs, is
identical for each scenario. It follows that in a shot-noise limited measurement, the SNR at each
pixel of the widefield image captured on a camera is SNR =

√
ρs T , whereas the point scanning

image signal-to-noise ratio is reduced to SNR =
√︁
ρs T/N because of the reduced data integration

time at each pixel. The widefield image SNR is higher by a factor of
√

N, demonstrating a clear
advantage.

Holographic widefield imaging is even more advantageous from an SNR perspective. In
the case of holographic imaging, the signal is formed through interference with a reference
field. Considering a rate of photon detection for the signal of ρs and the reference of ρr, then
the signal-to-noise ratio reads SNR = 2√ρr ρs T/

√︂(︁
ρr + ρs + 2√ρr ρ2

)︁
T . For the case of

nonlinear holographic imaging, where the signal is generally much weaker than the reference,
i.e., ρs ≪ ρr, then we reach the shot-noise limit for signal detection SNR ≈ 2

√
ρs T even for very

weak signal fields due to the heterodyne amplification captured by the signal term SNR = 2
√
ρs T .

A larger reference field means faster detection is possible, with a limit for this scaling is set by
the dynamic range of the camera [30].

6. Conclusions

We have presented the first epi SHG holographic images that were enabled by a combination
of heterodyne-enhanced signal amplification that is able to boost the weak backscattered SHG
signal field, along with a coherent summation strategy to boost the SNR of individual holographic
field measurements. The fundamental illumination beam is configured as a plane wave where the
incident angle is scanned. The full set of data from both transmission and epi SHG holograms
are collected into a scattering matrix. These data exhibit overlap in the measured SHG spatial
frequency distributions. This redundancy enabled the robust estimation and correction of the
input and output pupil phase that leads to a distortion of the SHG hologram images. Once the
scattering matrix is corrected, an aberration-free SHG image field spectrum is estimated with
an expanded, synthetic aperture. Results are shown for synthetic aperture SHG holography in
both the epi and transmission configurations. This demonstration of epi-collected widefield SHG
holographic imaging opens a new path for minimally invasive imaging in scattering media with
aberration-corrected SHG holography.

This new form of holography opens possibilities for imaging a wide range of samples and in
difficult experimental environments. The ability to estimate and correct for aberrations from
the measured field data opens the possibility of using less expensive, or generalized optics in
the design of widefield nonlinear imaging systems. Such design flexibility could significantly
expand the reach of nonlinear microscopy. In addition, distortion from optical scattering could
also be corrected with the approach presented here, opening the possibility of computational
correction for scattering in nonlinear optical imaging. Future work will expand aberration-free
SHG holography imaging to capture images of objects deep inside of scattering media, such
as biological tissues. In addition, this approach will be applied to other nonlinear interactions,
such as third harmonic generation (THG) and coherent anti-Stokes Raman scattering (CARS).
Moreover, the phase information obtained from coherent nonlinear interactions is relatively
unexplored and could prove valuable for a wide range of measurements in biological and materials
studies.
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A. Green’s function for SHG excitation and detection

Greens’s functions used in the formulae for the SHG field forward and backward scattering
configurations defined in Eq. (1) are derived. As is evident in Figs. 1 and 4, the input illumination
field Green’s function is obtained from a map from the input spatial frequency plane coordinates,
ui, to the coordinates in the sample plane, r and the output Green’s function is a map from the
sample plane coordinates to the output pupil plane spatial frequency coordinates, uo. In both
cases, the map from input coordinates to the sample plane coordinates and from the sample plane
coordinates to the output plane coordinates are accomplished with a 2-f optical system. The
relevant Green’s functions are defined below using the notation in the classic optical textbook by
Mertz [44]. Following this notation, we will use the wavenumber defined by κj = 1/λj, for a field
at the optical wavelength λj.

A.1. Input Green’s function

The input fundamental field, with wavelength λ1, is focused within the input pupil spatial
coordinates xi. Suppose that this field is incident on the front focal plane of the illumination
condenser lens with focal length fc and is denoted by Ei(xi). The fundamental field in the sample
plane that is incident on the sample placed in the back focal plane is given by

E1(r) = −i
κ1
fc

∫
Pi(xi)Ei(xi) exp

(︃
−i 2 π

κ1
fc

xi · r
)︃

d2xi. (5)

The fundamental field at the sample plane excites a second-order dipole oscillation that drives
scattering at the second harmonic frequency of ω2 = 2ω1, which appears at a wavelength of
λ2 = λ1/2. Synthetic aperture holographic imaging uses an illumination with a point focus in the
input pupil Pi(xi) at a spatial coordinate xs with a field that is approximated as a 2-D Dirac delta
function, Ei(xi) = δ

(2)(xi − xs). With this input field, we have a fundamental plane wave incident
on the sample of

E1(r) = Pi(xi) exp
(︃
−i 2 π

κ1
fc

xs · r
)︃

. (6)

The scattered SHG field is driven by the square of the incident fundamental field, E2
1(r), from

which we define the input Green’s function

G(r, ui) = Pi(ui) e−i 2 π ui ·r, (7)

where we have defined the effective input pupil spatial frequency ui = 2 xs/(λ1 fc) = xs/(λ2 fc)
and we have assumed that the amplitude support of the input pupil is binary. Here we have
suppressed scaling factors in favor of compact notation.

A.2. Output Green’s function

The output SHG field, with wavelength λ2, is mapped from the sample plane to the output pupil
plane with coordinates xo using an objective lens with focal length fo. The form of the Green’s
function for this mapping is independent of whether we collect forward or backward scattered
light. This output field is given by

E2(xo) = Po(xo)

∫
χ(2)(r)G(r, ui) exp

(︃
−i 2 π

κ2
fo

r · xo

)︃
d2r, (8)

where again we have suppressed constants of proportionality for brevity. Identifying the output
pupil spatial frequency at the second harmonic optical frequency as uo = xo/(λ2 fo), then we
define the output Green’s function for the SHG field as

H(uo, r) = Po(uo) e−i 2 π uo ·r. (9)
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B. Scattered SHG field operators

To establish the scattering field operators, we apply Eq. (1) to the Green’s function derived in
the previous section. Using the explicit form of the Green’s functions given in Appendix A, we
compute the scattering matrix in transmission and reflection in continuous operator form, for
which we find identical expressions.

The set of scattered fields that are mapped to the output pupil, uo, as a function of the
input spatial frequency define the SHG reflection operator R(uo, ui) that is also identical to the
transmission operator T(uo, ui). Inserting Eq. (7) and Eq. (9) into Eq. (1) leads to the integral
definition of the SHG scattering operator in transmission

R(uo, ui) ≡

∫
Pi(ui) e−i 2 π ui ·r χ(2)(r)Po(uo) e−i 2 π uo ·r d2r = T(uo, ui). (10)

Defining the scattering vector in transmission as q = uo + ui allows for a compact representation
of the scattering operator as

R(uo, ui) = Po(uo) χ̂
(2)(q)Pi(ui), (11)

where the spatial frequency spectral distribution of the nonlinear susceptibility is χ̂(2)(q) =
F {χ(2)(r)}(q). Here we have defined the Fourier transform as

F {f (x)}(u) =
∫ ∞

−∞

f (x) e−i 2 π u·x d2x.

The corresponding inverse transform is given by

F −1{F(u)}(x) =
∫ ∞

−∞

F(u) ei 2 π u·x d2u.

C. Optimal pupil phase estimation through the singular value decomposition

The estimation and removal of the input and output pupil phases to produce an aberration-free
synthetic aperture SHG spectrum can be viewed as a constrained optimization problem to produce
an undistorted image. By using the method of Lagrange multipliers to find the optimal correction
of the reflection and transmission matrices, we show that the dominant eigenvector of the shifted
scattering matrix operators, Sq,ui and Sq,uo , corresponds to the optimal correction. As shown
above, since the structure of the matrices Sq,ui and Sq,uo approximately decouples the input and
output pupils, the phase shifting problem problem can be written as a simple matrix operation:
Sq,uia = Es

SHG(q), where Es
SHG(q) is the reconstructed synthetic aperture spectrum and a is a unit

vector that shifts the phase of each column: a = eiφc(ui), with ϕc being the phase correction. We
would like to find a such that it maximizes the total intensity of Es

SHG(q) with the constraint that
a† a = 1. When the total intensity is maximum this corresponds to the condition that all the
columns (fields) in S are in phase. This optimal condition occurs when a = Pi(ui)

∗, implying
that ϕc = −ϕi(ui), thereby correcting the aberrations imparted by the input pupil. As the total
intensity as a function of the vector a is given by

f (a) = [Es
SHG(q)]

†[Es
SHG(q)] = a† S†S a, (12)

the optimization problem can then be written in the form of a constrained optimization problem,

maximize f (a) s.t. a† a = 1. (13)

Using the method of Lagrange multipliers, the maximum or minimum of a function f is the
solution to ∇f = λ∇g where g is a constraint function, in this case g(a) = 0 = a†a− 1. Written in
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a different way, the Lagrangian is L = a† S†S a− λ (a†a− 1), where ∇L = 0. Since the matrices
and vectors here are complex valued, care is needed to properly calculate these derivatives using
Wirtinger calculus. Conveniently, the expressions for the derivatives we need are in appendix A
of [45]. Taking the Wirtinger derivatives gives the gradient of the Lagrangian as

∂L

∂a = 0 = (S†S)T a∗ − λ a∗. (14)

Rearranging Eq. (14) provides the expression

(S†S)∗a∗ = λ a∗. (15)

By taking the complex conjugate of Eq. (15), we obtain an the formula

(S†S) a = λ∗ a, (16)

which is an eigenvalue equation where a is an eigenvector of S†S, with eigenvalue λ∗. Since S†S
is a Hermitian matrix, it has real eigenvalues, which implies that λ∗ = λ. It is evident that the
eigenvectors of S†S are the left singular vectors of S with

√
λ representing the corresponding

singular values. The unit vector a which maximizes the total intensity of the synthetic aperture
image is the left singular vector of S corresponding to the largest singular value, which is the
dominant singular vector. When the total intensity is maximized, this corresponds to the condition
in which each field is added coherently in phase with one another.

D. Comparison of the robustness of phase estimation algorithms

The critical aspect of aberration-free synthetic aperture SHG holographic imaging is to robustly
estimate the correct input and output pupil phase and use those to correct the data and estimate
an undistorted SHG object spatial frequency spectrum. This process becomes difficult when
signal levels are low, which certainly is the case for epi directed SHG from biological samples.
Not only is the signal low, but exposure times must be kept short due to the instabilities of the
interferometer. Finding and correcting for aberrations amounts to finding phase differences
between scattered fields originating from similar input angles. These measurements contain
phase information so the phase difference between two fields can be found by taking their
cross-correlation. The cross-correlation strategy works well when signal to noise levels are high,
but as SNR decreases, noise disrupts this the estimation of the phase from the cross-correlation.
Our SVD approach has a distinct advantage as it takes the entire dataset into consideration at once
instead of finding phase differences between two neighboring field vectors. As a consequence, we
anticipate superior performance for the SVD algorithm under conditions of low SNR. To test the
robustness of our new SVD-based algorithm, we have run simulations with varying noise levels
to compare the fidelity of estimating the pupil phase with our new SVD algorithm as compared
to the cross-correlation algorithm used previously to great effect for linear scattering [39].

In the simulation, a reflection matrix is generated and then a pupil phase distortion is applied.
A phase distortion is applied by applying random weights to the first 30 elements of the Zernike
basis. Then varying levels of noise were applied to each field so that the noise is uncorrelated
from one field to another. The noise was added to the fields in the spatial domain with a
uniformly distributed random amplitude and a uniformly distributed random phase from −π to
π. The noise level was changed by varying the amplitude. To quantify the error of the phase
map reconstruction, the recovered pupil map is first transformed into the spatial domain by an
inverse Fourier transform. Then each reconstruction is compared to the actual phase distortion
using a normalized mean squared error calculation: NMSE = [∥xref − x∥] /[∥xref − mean(xref)∥].
Inspection of Fig. 8 indicates more robust performance of theSVD algorithm at low SNR values.
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Fig. 8. Performance of the SVD algorithm compared to the cross-correlation algorithm for
estimating the pupil phase under varying levels of SNR. The actual pupil phase is shown
in the top left with a black border. At selected SNR levels the recovered pupil phase maps
for each technique are shown. The result using the cross-correlation method is shown with
dashed red borders and dashed blue borders for the SVD method.
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