

1 **Long-term nitrogen deposition enhances microbial capacities in soil carbon stabilization but
2 reduces network complexity**

3

4 Xingyu Ma^{1,2†}, Tengxu Wang^{1,3†}, Zhou Shi⁴, Nona R. Chiariello⁵, Kathryn Docherty⁶, Christopher B. Field⁵,
5 Jessica Gutknecht^{7,8}, Qun Gao¹, Yunfu Gu⁹, Xue Guo¹, Bruce A. Hungate¹⁰, Jiesi Lei¹, Audrey Niboyet^{11,12},
6 Xavier Le Roux¹³, Mengting Yuan^{4,14}, Tong Yuan⁴, Jizhong Zhou^{4,15*} and Yunfeng Yang^{1*}

7

8 ¹ State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment,
9 Tsinghua University, Beijing 100084, China. ² China Urban Construction Design & Research Institute Co.,
10 Ltd, Beijing 100120, China. ³ North China Municipal Engineering Design & Research Institute Co., Ltd., the
11 Beijing Branch, Beijing 100081, China. ⁴ Institute for Environmental Genomics and Department of
12 Microbiology and Plant Biology, University of Oklahoma, Norman, OK 73019, USA. ⁵ Department of
13 Global Ecology, Carnegie Institution for Science, Stanford, CA 94305, USA. ⁶ Department of Biological
14 Sciences, Western Michigan University, Kalamazoo, MI 49008, USA. ⁷ Department of Soil Ecology,
15 Helmholtz Centre for Environmental Research – UFZ, 06120 Halle, Germany. ⁸ Present address: Department
16 of Soil, Water, and Climate, University of Minnesota, Twin Cities, Saint Paul, MN 55104, USA. ⁹
17 Department of Microbiology, College of Resource, Sichuan Agricultural University, Chengdu 611130,
18 China. ¹⁰ Center for Ecosystem Science and Society, and Department of Biological Sciences, Northern
19 Arizona University, Flagstaff, AZ 86011, USA. ¹¹ Sorbonne Université, Université Paris Cité, UPEC, CNRS,
20 INRAE, IRD, Institut d’Ecologie et des Sciences de l’Environnement de Paris, iEES-Paris, Paris, France. ¹²
21 AgroParisTech, Paris, France. ¹³ Microbial Ecology Centre LEM, INRAE, CNRS, University of Lyon,
22 University Lyon 1, VetAgroSup, UMR INRAE 1418, 43 boulevard du 11 novembre 1918, 69622
23 Villeurbanne, France. ¹⁴ Department of Environmental Science, Policy and Management, University of
24 California Berkeley, Berkeley, CA 94720, USA. ¹⁵ Earth Sciences Division, Lawrence Berkeley National
25 Laboratory, Berkeley, CA 94720, USA.

26

27 **Abstract**

28

29 **Background:** Anthropogenic activities have increased the inputs of atmospheric reactive nitrogen (N) into
30 terrestrial ecosystems, affecting soil carbon stability and microbial communities. Previous studies have
31 primarily examined the effects of nitrogen deposition on microbial taxonomy, enzymatic activities, and
32 functional processes. Here, we examined various functional traits of soil microbial communities and how
33 these traits are interrelated in a Mediterranean-type grassland administrated with 14 years of 7 g m⁻² year⁻¹
34 of N amendment, based on estimated atmospheric N deposition in areas within California, USA, by the end
35 of the twenty-first century.

36 **Results:** Soil microbial communities were significantly altered by N deposition. Consistent with higher
37 aboveground plant biomass and litter, fast-growing bacteria, assessed by abundance-weighted average rRNA
38 operon copy number, were favored in N deposited soils. The relative abundances of genes associated with
39 labile carbon (C) degradation (e.g., amyA and cda) were also increased. In contrast, the relative abundances
40 of functional genes associated with the degradation of more recalcitrant C (e.g., mannanase and chitinase)
41 were either unchanged or decreased. Compared with the ambient control, N deposition significantly reduced
42 network complexity, such as average degree and connectedness. The network for N deposited samples
43 contained only genes associated with C degradation, suggesting that C degradation genes became more
44 intensely connected under N deposition.

45 **Conclusions:** We propose a conceptual model to summarize the mechanisms of how changes in above- and
46 belowground ecosystems by long-term N deposition collectively lead to more soil C accumulation.

47

48 **Keywords:** Soil microbial community, Nitrogen deposition, High-throughput sequencing, GeoChip, Global
49 change

50

51 **Background**

52 Anthropogenic activities have dramatically increased the production of reactive N worldwide, likely at levels
53 exceeding all of the natural terrestrial N sources combined [1]. Increased N inputs into the environment have
54 many consequences, including marine and freshwater changes in ecosystem functioning and composition [2,
55 3]. Several studies have shown that soil microbial taxonomic diversity is either unaltered or decreased with N
56 eutrophication, marine acidification, air pollution, and deposition, often with a higher relative abundance of
57 *Proteobacteria* and a lower relative abundance in *Acidobacteria* [4–7]. N depositions, especially those at high
58 levels ($> 50 \text{ kg ha}^{-1} \text{ year}^{-1}$ of N) or over long durations, often decrease microbial biomass [8, 9] and soil
59 respiration [10]. However, the activities of hydrolases can increase with N deposition, showing preferential
60 degradation of labile C pools [11, 12]. By contrast, recalcitrant C-degrading enzymes such as phenol oxidases
61 remain unchanged [5, 11] or decrease [13, 14], suggesting that an increase in labile C pools might ameliorate
62 microbial requirements for obtaining N from recalcitrant C pools, which are richer in the N content than labile
63 C [15]. Additionally, N deposition often increases N cycling rates, as reported for gross N mineralization, gross
64 and potential nitrification or ammonia and nitrite oxidation, and potential denitrification [16–18]. N deposition
65 can also alter the abundances of key microbial groups involved in N cycling, stimulating some bacterial but
66 not archaeal ammonia oxidizers and increasing the abundance of some nitrite oxidizers such as *Nitrobacter* but
67 not *Nitrospira* [19–23]. However, N deposition can increase, decrease, or do not change the abundances of N
68 fixation groups in different environments such as cold region soils, forest soils, and rhizosphere [24–26].

69 Plant growth is generally N limited in annual grasslands of California, USA [27]. Thus, N deposition typically
70 induces large changes in plant and soil microbial community composition [7, 28–30]. Although many studies
71 have examined the responses of below- and aboveground ecosystems to N addition, much remains unknown
72 how responses of a broad range of microbial functional groups and interactions are related to soil C and N
73 dynamics, which restricts our understanding of the effect of longterm N deposition on soil microbial
74 communities and soil functioning in natural grasslands. To address it, we carried out a 14-year N (in the form
75 of $\text{Ca}(\text{NO}_3)_2$) deposition experiment in a multifactor field study in a California annual grassland located near
76 Stanford, CA, USA (Jasper Ridge Global Change Experiment, JRGCE) [31], which is one of the longest
77 experiments of N deposition. The JRGCE is designed to assess grassland responses to single and multiple
78 drivers of global changes, including elevated CO_2 , warming, atmospheric nitrate deposition, and enhanced
79 precipitation. Each experimental plot at the JRGCE is circular, 2 m in diameter, and equally divided into four
80 quadrants of 0.78 m^2 [31]. The C O_2 and warming treatments are applied at the plot level, and N and water
81 treatments are applied at the quadrant level in a full factorial design, resulting in 16 treatments with eight
82 replicates of each. However, an experimental fire burned four replicate blocks in 2011. Therefore, only the
83 four unburned blocks (a total of 64 samples) are used in this study.

84 We used 16S rRNA gene amplicon sequencing (Illumina MiSeq) and functional gene array (GeoChip 4.6)
85 to compare the microbial community compositions (both taxonomic diversity and functional diversity)
86 between control and N deposited samples. Our objectives are to assess the long-term effect of N deposition on
87 a broad range of soil bacterial taxa, major functional genes associated with C and N cycling, and how these
88 genes are co-occurring. We also aim to analyze how the changes in the taxonomic and functional gene
89 compositions are related to the changes in environmental attributes. Since N deposition typically stimulates
90 the primary productivity of plants and consequently fresh C input to soil [8, 32, 33], we hypothesize that fast-
91 growing bacteria would be enriched and that functional genes associated with labile C degradation would be
92 stimulated by N deposition, leading to higher metabolic capacities for soil C stabilization. Accordingly, we
93 hypothesize that N deposition will affect associations among functional groups as characterized by network
94 analysis. Since previous results at our study site have shown that soil ammonium concentrations increase with
95 Ca(NO₃)₂ deposition over the long term owing to N turnover and enhanced N mineralization [17, 22, 34], our
96 third hypothesis is that functional microbial groups associated with N cycling would be stimulated. More
97 precisely, we postulate that microbial groups that perform better under higher N availability, e.g., bacterial
98 ammonia oxidizers and *Nitrobacter*-like nitrite oxidizers [19–21], would be particularly stimulated.
99

100 **Materials and methods**

101 **Site and soil description**

102 The experiment was conducted at the Jasper Ridge Global Change Experiment (JRGCE) site in coastal central
103 California, USA. It has been operated on an annual grassland under a Mediterranean-type climate at the Jasper
104 Ridge Biological Preserve (37° 24' N, 122° 13' W) beginning in October 1998. The plant community comprises
105 annual and perennial grasses and forbs [29]. The soil is a fine Haploxeralf developed from Franciscan complex
106 alluvium sandstone.

107 Soil samples were collected in April 2012, i.e., 14 years after the experiment began. On April 26 and 27,
108 2012, we collected soil cores (5 cm diameter × 7 cm deep) to generate each of 32 control samples and 32 long-
109 term N deposited samples. Soil samples were thoroughly mixed and sieved through a 2-mm mesh to remove
110 visible roots and rocks and stored at -80 °C before DNA extraction, or at -20°C before a range of soil
111 geochemical measurements.

112 **DNA extraction, purification, and quantification**

113 DNA was extracted from 5 g of well-mixed soil using a freeze grinding mechanical lysis method as previously
114 described [35]. DNA was then purified by agarose gel electrophoresis, followed by extractions with phenol
115 and chloroform and precipitation with butanol. DNA quality was determined by light absorbance ratio at
116 wavelengths of 260/280nm and 260/230nm using a Nanodrop (NanoDrop Technologies Inc., Wilmington, DE,

117 USA). Then, DNA concentrations were quantified with PicoGreen [36] using a FLUOstar Optima microplate
118 reader (BMG Labtech, Jena, Germany).

119 **16S rRNA gene amplicon sequencing and data processing** To study the diversity of the bacterial community,
120 we targeted the V4 hypervariable region of 16S rRNA genes. Briefly, we carried out PCR amplification using
121 the primer pair 515F (5'-GTG CCA GCMGCC GCG GTAA3') and 806R (5'-GGA CTA CHVGGG TWT
122 CTAAT-3') [37] and then sequenced the PCR products by 2 × 250 bp paired-end sequencing on a MiSeq
123 instrument (Illumina, San Diego, CA, USA). We processed raw sequence data on the Galaxy platform with
124 several software tools [36]. First, we carried out demultiplexing to remove PhiX sequences and sorted
125 sequences to the appropriate samples based on their barcodes, allowing for 1 or 2 mismatches. These sequences
126 were then trimmed based on quality scores using Btrim [38], and paired-end reads were merged into full-length
127 sequences with FLASH [39]. After removing sequences of less than 200 bp or containing ambiguous bases,
128 we discarded chimeric sequences based on the prediction by Uchime [40] using the reference database mode.
129 We clustered sequences with Uclust [41] at the 97% similarity level. Final OTUs were generated based on the
130 clustering results, and taxonomic annotation of individual OTU was assigned based on representative
131 sequences using RDP's 16S rRNA gene classifier [42]. The rRNA operon copy number for each OTU was
132 estimated through the rrnDB database based on its closest relative with a known rRNA operon copy number
133 [43]. The abundance-weighted mean rRNA operon copy number of each sample was then calculated according
134 to a previous publication [36].

135 **GeoChip hybridization and raw data processing**

136 We carried out DNA hybridization with GeoChip 4.6, as previously described [44, 45]. In brief, DNA was
137 labeled with Cy-3 fluorescent dye using a random priming method, purified, and dried at 45 °C (SpeedVac,
138 ThermoSavant, Milford, MA, USA). DNA was hybridized with GeoChip 4.6 at 42 °C for 16 h on an MAUI
139 hybridization station (BioMicro, Salt Lake City, UT, USA), which was scanned with a NimbleGen MS 200
140 Microarray Scanner (Roche, Basel, Switzerland).

141 As previously described [44, 45], we processed raw GeoChip data using the following steps: (i) removing
142 the spots with a signal-to-noise ratio (SNR) less than 2.0; (ii) log-transforming the data and then, on each
143 microarray, dividing them by the mean intensity of all the genes; and (iii) removing genes detected only once
144 in four replicates.

145 **Network analyses**

146 Using microbial functional genes associated with C and N cycling, we constructed association networks by an
147 in-house pipeline (<http://ieg2.ou.edu/MENA>) for both control and long-term N deposited samples. Only
148 genes detected in more than 24 of the 32 biological replicates were kept for network construction. We used
149 random matrix theory (RMT) to automatically determine the similarity threshold (St) among genes before
150 network construction since RMT can distinguish system-specific, nonrandom associations from random gene

151 associations [46]. Similarity matrices were calculated based on Spearman rank correlation. The network
152 topological properties, including the total number of nodes, the total number of links, the proportion of positive
153 and negative links, average degree (avgK), centralization of degree (CD), average clustering coefficient
154 (avgCC), harmonic geodesic distance (HD), centralization of betweenness (CB), centralization of stress
155 centrality (CS), and network density and modularity, were computed. The networks were graphed using Gephi
156 v. 0.92 [47].

157 **Measurements of vegetation and soil attributes** We collected plant aboveground biomass from a 141-cm²
158 area of each 7853 cm² quadrant 1 day before soil sampling in April 2012. The biomass of individual plant
159 species was combined into functional groups, including the biomass of annual grasses (AG), perennial grasses
160 (PG), annual forbs (AF), and perennial forbs (AP), plus total aboveground litter mass. We estimated root
161 biomass by separating roots from two soil cores (2.5-cm diameter by 15-cm depth) taken in the same area used
162 for the aboveground biomass harvest.

163 We measured hourly soil temperature during 2012 using thermocouples installed at a depth of 2 cm. Soil
164 moisture was measured by drying 10 g of freshly collected soil in a 105°C oven for 1 week, and soil pH using
165 5 g of soil dissolved in distilled water. The total soil C (TC) and N (TN) concentrations were determined by
166 combustion analysis on a Carlo Erba Strumentazione Model 1500 Series I analyzer at the Carnegie Institution
167 for Science, Department of Global Ecology. To measure soil NH₄⁺ and N O₃⁻ concentrations, we suspended
168 5 g of soil in a 2 M KCl solution and then measured filtered extracts colorimetrically using a SEAL Automated
169 Segmented Flow analyzer in the Loyola University, Chicago, IL, USA. We measured soil CO₂ efflux of each
170 sample three times by a closed chamber method in April 2012 as previously described [48], where a LiCOR
171 LI-6400 portable photosynthesis system and LI6400-09 Soil Flux Chamber (LiCOR, Lincoln, NE, USA) were
172 used.

173 Statistical analyses

174 We used a permutation paired *t*-test to determine statistically significant differences between relative
175 abundances of the taxonomic markers, relative abundances of functional genes, and environmental attribute
176 measurements. We compared the composition of microbial communities using three non-parametric
177 dissimilarity tests, including permutational multivariate analysis of variance (Adonis), analysis of similarities
178 (Anosim), and multiresponse permutation procedure (Mrpp). Shannon index (H') was used to estimate the
179 taxonomic or functional gene diversity. We performed detrended correspondence analysis (DCA) to assess
180 overall changes in the microbial community composition and Mantel tests to detect correlations between
181 quantitative measures of microbial community dissimilarity and environmental attributes. To examine the
182 effect of N deposition on individual taxonomic group, functional gene category, or family, we used response
183 ratios to quantify the abundance change by treatment. We used the R package “DESeq2” [49] to calculate the
184 differential abundance (log₂-fold change in the relative abundance of each OTU) for N deposition samples as

185 compared with the control samples. We filtered out OTUs that were sparsely represented across all of the
186 samples (i.e., OTUs for which the DESeq2normalized count across all of the samples (“baseMean”) was <
187 0.8). Given the high number of mean comparisons and correlations tested, we adjusted the *P*-values with the
188 Benjamini and Hochberg correction method. We considered adjusted *P* < 0.050 to be statistically significant
189 unless otherwise indicated. All statistical analyses were performed by R version 3.0.1 (R Core Team 2013).

190

191 Results

192 **Taxonomic composition of bacterial communities** The N deposition treatment in the form of $\text{Ca}(\text{NO}_3)_2$ has
193 been applied twice per year throughout the duration of the experiment. Specifically, 2 g N m^{-2} as a $\text{Ca}(\text{NO}_3)_2$
194 solution was applied at the first rains (November) to mimic a periodic N flush, then $5 \text{ g m}^{-2} \text{ N}$ as the slow-
195 release pellet was applied in January to mimic constant atmospheric N deposition [29, 31, 50, 51]. Earlier
196 studies showed that N deposition produced the largest effects on the JRGCE ecosystem [50, 51]. Therefore,
197 we focused on the microbial responses to N deposition applied on top of other climate change drivers after 14
198 years since the experiment began. The main N effects on microbial communities were largely similar between
199 $n = 32$ and $n = 4$ (see the rest of the “Results” and “Discussion” sections for details), so we used all samples to
200 improve statistical power.

201 A total of 482,081 sequence reads of the 16S rRNA gene amplicons were obtained from all 64 samples,
202 ranging from 29,275 to 82,066 reads per sample. After resampling at 29,275 sequence reads for all samples,
203 26,997 operational taxonomic units (OTUs) were generated at the threshold of 97% nucleotide identity. Using
204 three non-parametric statistical analyses (Anosim, Adonis, and Mrpp), we found that N deposition induced
205 significant changes in the overall taxonomic composition of soil bacterial communities (Table 1, Additional
206 file 1: Table S1). Additionally, N deposition increased the estimated abundance-weighted average rRNA
207 operon copy number of significantly changed OTUs for each sample from 2.98 ± 0.21 to 3.16 ± 0.17 (*P* <
208 0.001, Fig. 1a). However, the α -diversity of the bacterial community was unaltered by N deposition (Additional
209 file 1: Table S2). The responses of the relative abundances of the bacterial phyla to N deposition across the
210 eight factorial combinations of CO₂, warming, and precipitation ($N = 32$) were generally similar to those
211 observed when considering only N deposition under ambient CO₂, no warming, and ambient precipitation (N
212 = 4, Additional file 1: Fig. S1).

213 The most abundant bacterial taxa were *Proteobacteria*, *Acidobacteria*, *Actinobacteria*, *Verrucomicrobia*,
214 *Planctomycetes*, and *Bacteroidetes*, in decreasing order of relative abundance (Fig. 1b). The relative
215 abundances of *r-Proteobacteria* and *Bacteroidetes* were significantly increased with N deposition (Fig. 1c and
216 Additional file 1: Fig. S2), with a higher estimated rRNA copy number (3.96 ± 0.82 in N deposited samples
217 vs. 3.55 ± 1.29 in control samples, Fig. 1d). In contrast, the relative abundances of *Delta**proteobacteria*,
218 *Planctomycetes*, and most classes of *Acidobacteria* decreased with N deposition (Additional file 1: Fig. S2),

219 with their estimated rRNA copy number (1.56 ± 0.17) being much lower than the average rRNA copy number
220 of all OTUs (2.51 ± 1.28) (Fig. 1d). At the finer taxonomic resolution, relative abundances of *Mycobacterium*
221 and *Anaeromyxobacter* significantly decreased with N deposition, while OTUs affiliated with *Pseudomonas*
222 and 99 out of 124 *Bacteroidetes* OTUs significantly increased (Additional file 1: Table S3).

223 Regarding nitrifiers, we identified a total of 76 ammonia-oxidizing bacterial OTUs belonging to the genera
224 *Nitrosomonas* (1 OTU) and *Nitrosospira* (75 OTUs) and 77 nitrite-oxidizing bacteria belonging to the genera
225 *Nitrobacter* (48 OTUs) and *Nitrospira* (29 OTUs). Relative abundances of *Nitrosospira* and *Nitrospira* were
226 both significantly increased by N deposition, while the relative abundance of *Nitrobacter* remained unchanged
227 (Additional file 1: Fig. S3).

228 **Functional composition of microbial community**

229 We detected a total of 60,887 microbial functional genes by GeoChip. Similar to observations at the taxonomic
230 level, N deposition induced significant changes in overall functional compositions of the soil microbial
231 communities (Table 1, Additional file 1: Table S1), but the α -diversity of the soil microbial community based
232 on functional genes remained unaltered (Additional file 1: Table S2). The responses of the relative abundances
233 of the functional genes to N deposition treatment across the eight factorial combinations of C O₂, warming,
234 and precipitation ($N = 32$) were generally similar to those observed when considering only N deposition under
235 ambient CO₂, no warming, and ambient precipitation ($N = 4$) (Fig. 1). **C cycling**

236 We detected a total of 20,079 genes associated with C cycling. Most of the C fixation genes that significantly
237 responded to N deposition increased in relative abundance except *mcm* encoding methyl malonyl-CoA mutase
238 and *mmce* encoding methyl malonyl-CoA epimerase (associated with 3-hydroxypropionate bicycle), which
239 decreased in relative abundance (Additional file 1: Fig. S4).

240 C degradation genes associated with different substrates showed disparate responses. The relative
241 abundances of *amyA* encoding α -amylase, *cda* encoding cytidine deaminase associated with starch degradation,
242 and *xylA* encoding xylose isomerase associated with hemicellulose degradation increased with N deposition
243 (Fig. 2). In contrast, the relative abundances of *mannanase* gene associated with hemicellulose degradation,
244 *cellobiase* gene associated with cellulose degradation, and *chitinase* gene associated with chitin degradation
245 decreased with N deposition. Genes associated with lignin degradation, such as *glx* encoding glyoxal oxidase,
246 *ligninase*, *mnp* encoding manganese peroxidase, and *phenol oxidase*, remained unchanged. That is, N
247 deposition increased the relative abundances of genes associated with chemically labile C degradation, while
248 it either decreased or had no effect on the relative abundance of genes associated with more chemically
249 recalcitrant C degradation.

250 The methanogenesis gene *mcrA* decreased with N deposition (Additional file 1: Fig. S5). In contrast, the
251 abundance of the methane-oxidation gene *pmoA* increased with N deposition, while other methaneoxidation
252 genes *mmoX* and *hdrB* remained unchanged.

253 **N cycling**

254 Relative abundances of several functional genes associated with N cycling were reduced by N deposition (Fig. 255 3), including *nirK* encoding Cu-like nitrite reductase and denitrification gene *nosZ1* encoding nitrous oxide 256 reductase, along with nitrate reduction gene *napA* encoding nitrate reductase. In contrast, *amoA* encoding 257 ammonia monooxygenase increased in relative abundance with N deposition. The significantly increased 258 *amoA* genes included archaeal *amoA* derived from *Crenarchaeota* (GeneID 218938119, 82570877, 146146994, 259 164614053, and 124294977) and bacterial *amoA* derived from the *Nitrosomonadaceae* and *Nitrospiraceae* 260 (GeneID 124514869, 161729059, and 78057472) (Additional file 1: Fig. S6). The relative abundance of N₂ 261 fixation gene *nifH* encoding nitrogenase also increased with N deposition.

262 **P cycling**

263 The relative abundance of polyphosphate kinase gene *ppk* associated with polyphosphate synthesis, phytase 264 genes associated with phytic acid hydrolysis, and exopolyphosphatase gene *ppx* associated with polyphosphate 265 degradation remained unchanged (Additional file 1: Fig. S5).

266 **The network analysis of C and N cycling genes**

267 Association networks were constructed to de-convolute complex relationships for functional genes involved 268 in C degradation, C fixation, and N cycling (Fig. 4). The gene networks for both control and N deposited 269 samples had general topological properties of scale-free (power-law R^2 of 0.747~0.914), small world (average 270 path distance of 2.94~3.28), and hierarchy (average clustering coefficient of 0.39~0.51, Additional file 1: Table 271 S4). Although the nodes and links in the network for control samples outnumbered those in the network for N 272 deposited samples (Additional file 1: Table S4), positive links accounted for over half of all links in both 273 networks, suggesting that more microbial C and N cycling genes tended to be co-occurring rather than co- 274 excluding. Although we used the same similarity threshold to construct both networks, topological properties, 275 including average degree and connectedness, were lower in the network of N deposited samples than that of 276 control samples, revealing a less connected network structure. Compared to the network of control samples 277 that contained diverse microbial functional genes associated with C degradation, C fixation, and N cycling, the 278 network of N deposited samples contained only genes associated with C degradation (Fig. 4), suggesting that 279 C degradation genes were intensely connected under N deposition. Consistently, the modularity of the N 280 deposited network was lower than that of the control network (Additional file 1: Table S4), implying fewer 281 coherently changing functional units with N deposition.

282 **Linkages between environmental attributes and microbial community**

283 Long-term N deposition increased the growth of aboveground biomass and the amount of litter but had no 284 significant effect on belowground biomass (Additional file 1: Table S5). N deposition also increased soil CO₂ 285 efflux rates in April 2012 from 5.04 to 6.03 $\mu\text{mol m}^{-2} \text{ s}^{-1}$ ($P = 0.019$). Soil temperature was decreased owing 286 to the shading effect from higher aboveground biomass. Soil pH was increased ($P = 0.012$) from 6.20 to 6.34

287 by N deposition. Soil NO_3^- was also increased from 79.7 to 612 mg/L and soil N H_4^+ was increased from 666
288 to 1001 mg/L, in addition to the increase of soil TC and TN ($P = 0.001$).

289 Soil pH and the biomass of annual grasses correlated with quantitative measures of taxonomic composition
290 dissimilarity (Additional file 1: Table S6). By contrast, perennial forb biomass and plant litter correlated with
291 quantitative measures of functional composition dissimilarity. Additionally, soil TC marginally correlated with
292 quantitative measures of both taxonomic and functional composition dissimilarity.

293

294 **Discussion**

295 In the present study, the observed alteration of soil and plant attributes in response to N deposition led to
296 significant changes in the above- and belowground communities. On the one hand, higher aboveground
297 biomass and litter increased soil nutrient input (mechanism i in Fig. 5). On the other hand, overall taxonomic
298 and functional compositions of the belowground soil bacterial communities were also significantly changed,
299 even when considered across different levels of CO_2 , warming, and precipitation (Table 1 and Additional file
300 1: Fig. S1). Therefore, the 32 samples used here both improve the statistical power and identify trends that are
301 valid across the range of climate change scenarios tested at Jasper Ridge.

302 **Long-term N deposition alters the bacterial taxonomic composition**

303 Our results verify previous findings from long-term N amendment experiments in a Minnesota semiarid
304 grassland and Michigan agricultural land showing significant changes in the 16S rRNA gene-based soil
305 microbial community composition [5, 7]. More particularly, the rRNA operon copy number is used as a
306 functional trait related to the maximal bacterial growth rate [52, 53]. Our results concerning the estimated
307 rRNA operon copy number support our hypothesis that N deposition shifts the bacterial community from slow-
308 to fast-growing taxa (Fig. 1) [7]. It is consistent with richer soil nutrients induced by long-term N deposition
309 [54], leading to increased litter mass, soil TC, TN, and NO_3^- concentrations (mechanism ii in Fig. 5 and
310 Additional file 1: Table S5). Similarly, a previous study has shown that ammonium nitrate deposition also
311 decreases the relative abundances of many taxa from *Acidobacteria*, which have low rRNA copy numbers (Fig.
312 1d) and are thought to be slow-growing [55]. Furthermore, previous reports have shown that ammonium or
313 urea depositions increase the relative abundances of taxa such as *Bacteroidetes* and *r-Proteobacteria* [3, 7, 56]
314 characterized by higher estimated rRNA copy number (Fig. 1d) regarded as fast-growing taxa [57]. Together,
315 it seems that the effects of long-term N deposition on microbial taxonomic composition are independent of N
316 form, likely due to the overall N cycling in the soil-plant system so that the long-term N deposition treatment
317 in an N form may ultimately increase the availability of other N forms as well. For instance, nitrate deposition
318 in the JRGCE has been reported to increase soil ammonium concentrations (this trend was observed here, but
319 the effect was insignificant), reflecting N turnover and increased N mineralization [17, 22, 34].

320 **The effect of long-term N deposition on microbial functional genes for soil C cycling**

321 N deposition can significantly accelerate chemically labile C decomposition [58, 59]. Consistently, we have
322 observed a significant increase in the relative abundance of the *amyA* gene (Fig. 2), which is among the most
323 abundant genes, providing evidence for the preferential microbial utilization of labile C with N deposition. The
324 significantly increased soil CO₂ efflux (Additional file 1: Table S5), mediated by higher net primary
325 productivity, was consistent with more labile C [48]. Additionally, N deposition can stabilize or even inhibit
326 the decomposition of chemically recalcitrant C in soil [14, 60]. For instance, N deposition increases the activity
327 of labile C-degrading enzymes but has no effect on or inhibits the activity of lignin-degrading enzymes [11].
328 Increased use of labile C and decreased use of recalcitrant C can result in soil C accumulation [5, 61]. Here,
329 we observed that N deposition increased the relative abundance of genes associated with chemically labile C
330 degradation but either decreased or had no effect on the relative abundance of genes associated with chemically
331 recalcitrant C degradation (mechanisms ii and iii in Fig. 5). Therefore, N deposition at the JRGCE site is
332 unlikely to induce a priming effect, i.e., fresh C input stimulating recalcitrant old soil organic C degradation
333 [62], which would decrease soil C [63]. Overall, our results reveal a shift in the functional composition of the
334 soil microbial community, which is likely favorable to soil C accumulation.

335 **The effect of long-term N deposition on microbial functional genes linked to soil N cycling**

336 N deposition has previously been shown to increase potential soil nitrification rate, gross N mineralization,
337 and nitrifier abundances at the JRGCE [16, 17, 30]. Our study shows that some changes in the soil microbial
338 community are consistent with increased nitrification, in particular with higher relative abundances of
339 ammonia-oxidizing bacteria from the genera *Nitrosospira* and *Nitrosomonas* and the nitrite-oxidizing bacteria
340 *Nitrospira* (Additional file 1: Fig. S2). Similarly, N deposition also increases the relative abundances of the
341 *amoA* gene involved in ammonia oxidation (Fig. 3), the rate-limiting step of nitrification in natural grassland
342 [64]. Nitrification is often viewed as a process carried out by phylogenetically restricted microbial groups [65]
343 and as an obligate activity for nitrifiers to derive energy for maintenance and growth. It explains the previous
344 observation that changes in nitrification were associated with the abundances of nitrifiers [66], though such
345 linkage was not detected elsewhere [19]. Generally, the correlation with nitrification holds for nitrifier
346 abundances assessed either by quantitative PCR [67, 68] or by GeoChip [69, 70]. However, it is noticeable
347 that the relative abundances of the *hao* gene encoding hydroxylamine oxidoreductase decreased with N
348 deposition, which could be explained by the fact that conversion of hydroxylamine to nitrite is not the
349 ratelimiting step of nitrification and that a partial decoupling between this step and other steps is possible.

350 Potential denitrification rates, measured as in situ N₂O emission from the soil, increase with N deposition at
351 our study site [71]. However, relative abundances of denitrification genes *nirK* and *nosZ* and nitrate reduction
352 gene *napA* decreased with N deposition (Fig. 3), consistent with previous studies unveiling no correlation
353 between denitrification rates and denitrifier abundances [68, 72]. Indeed, denitrification is a facultative process

354 driven mostly by heterotrophs when they are under anaerobic conditions and with sufficient nitrate availability.
355 However, denitrifiers are selected for different reasons than their denitrification capacity under other
356 environmental conditions, often leading to weak activityabundance relationships [73]. Moreover, the
357 decoupling between denitrification and gene abundance might arise from the saturation of N supply (70 kg h
358 a^{-1} year $^{-1}$ of N) at our study site, since grasslands under Mediterranean climate type are saturated at N loads
359 of 20 kg h a^{-1} year $^{-1}$ of N and nitrification and denitrification show nonlinear responses to N supply [74].
360 Furthermore, denitrification is a broad process carried out by phylogenetically diverse microbial groups [65],
361 which may not be fully represented on GeoChip.

362 **Long-term N deposition reduces microbial network complexity**

363 Microbial functional genes and the microorganisms that harbor these genes carry out C and N cycling processes
364 [75], and associations among these functional genes could partly, though hardly extensively, be captured by
365 their abundance correlation-based networks [76]. In abundance correlation-based networks of functional genes,
366 correlations can result from multiple mechanisms [77], including (i) metabolic dependence of the linked genes
367 (e.g., links between C and N genes reflecting C/N coupled processes or links between N mineralization and
368 nitrification genes resulting from stepwise N metabolism); (ii) their similar response to environmental variation
369 or substrate availability (e.g., links between different C degradation genes associated with parallel
370 mineralization of soil organic substrates of different molecular forms, or unified response of soil organic matter
371 degradation to edaphic conditions); and/or (iii) their co-dependence on other factors (e.g., soil mineral Fe and
372 Al) instead of direct association. These mechanisms are difficult to be teased apart only based on correlations.
373 In our case, all of the above mechanisms are ecologically meaningful when considering the changes in
374 microbial functional capacities and associations following N deposition. All of these mechanisms are hence
375 potential causes of changes in sample variance that might influence connections and connectedness.

376 Our results showed that different microbial functional genes associated with C degradation, C fixation, and
377 N cycling formed positive associations in the network of control samples (Fig. 4a), suggesting that microbial
378 C and N processes were likely highly coupled when soil N availability was limited. Considering that growth
379 conditions without N deposition were not optimal, degradation of soil organic matter represented an important
380 source of N to microorganisms. As N availability increases, bacteria become less N and energy (electron
381 acceptor) limited and thus preferentially mineralize progressively more bioavailable soil organic C [78].
382 Consistently, genes involved in C degradation remained more connected, without clear association with N-
383 related genes (Fig. 4b).

384 Furthermore, increased N availability could diminish plant dependence on the mycorrhizal supply of organic
385 N monomers [75], leading to more N allocation into plant tissues rather than microbes. As a result, associations
386 among microbial genes involved in N cycling might be reduced. N deposition generally reduces N retention in
387 the soil while increasing N leaching in different ecosystems [79, 80], which could also suppress soil N cycling

388 processes mediated by microbial communities. Our results suggested that soil N availability might have an
389 important role in shaping microbial networks of nutrient cycling and tends to decrease the coupling between
390 N- and C-related functional genes.

391 **Environmental filters for the soil microbial community**

392 We have identified significant correlations between quantitative measures of microbial community
393 dissimilarity and a set of key soil and plant properties using Mantel tests (Additional file 1: Table S6). The
394 close linkage between soil pH and bacterial community taxonomic composition provides support to a growing
395 body of literature showing that soil pH is the best predictor of soil bacterial diversity and composition, at least
396 from kilometer to continental scales [81–83]. At smaller scales (e.g., in our study), soil pH is rather stable as
397 compared to other soil environmental attributes like moisture or N availability. However, even slight deviations
398 can result in marked changes in microbial communities in response to anthropogenic disturbances that can
399 alter pH (here longterm N deposition) [84, 85].

400 Our results showed that aboveground plant biomass and litter correlated with quantitative measures of
401 functional composition dissimilarity (Additional file 1: Table S6). Similarly, previous studies in grassland
402 ecosystems have shown that at least 20% of the variation in soil microbial community composition was
403 explained by plant attributes [44, 45]. Much of this variation may be caused by the indirect influence of
404 aboveground plant biomass on microbial communities through enhanced production of dissolved organic C
405 and the promotion of rhizosphere microbial populations [86, 87].

406

407 **Conclusions**

408 Overall, our results highlight the importance of investigating the joint responses of microbial functional groups
409 involved in soil C and N dynamics to N availability. In response to long-term N deposition, the soil microbial
410 community shifted toward a higher capacity to use chemically labile C (higher relative abundance of labile C
411 degradation genes) in parallel with a higher relative abundance of fast-growing taxa. In contrast, genes
412 associated with chemically recalcitrant C degradation remained unaltered or decreased. Additionally, the
413 relative abundance of the *amoA* gene, characteristic of the first and rate-limiting step of nitrification in
414 grasslands, increased as did plant biomass, whereas functional genes characterizing the denitrification process
415 decreased with N deposition. It could give rise to a nitrification/denitrification balance favorable for N retention
416 in the plant-soil system. As illustrated in the conceptual model presented in Fig. 5, our results suggest that N
417 deposition favored soil C and N accumulation through three mechanisms: (i) increasing the nutrient source
418 from plants by stimulating plant growth, as shown by increased aboveground biomass and litter; (ii) increasing
419 the potential nutrient availability through the increased relative abundance of nutrient cycling genes and
420 increased fast-growing bacteria; and (iii) reducing the utilization of chemically recalcitrant C through
421 decreased recalcitrant C degradation genes. Our results demonstrate that a detailed and comprehensive analysis

422 of the response of the soil microbial community, in particular its functional traits and interactions, can help
423 understand and predict the effects of N deposition on soil biogeochemical processes.

424

425 **Abbreviations**

426 N: Nitrogen; C: Carbon; rRNA: Ribosomal ribonucleic acid; JRGCE: Jasper Ridge Global Change
427 Experiment; DNA: Deoxyribonucleic acid; PCR: Polymerase chain reaction; SNR: Signal-to-noise ratio;
428 RMT: Random matrix theory; St: Similarity threshold; avgK: Average degree; CD: Centralization of degree;
429 avgCC: Average clustering coefficient; HD: Harmonic geodesic distance; CB: Centralization of
430 betweenness; CS: Centralization of stress centrality; AG: Annual grasses; PG: Perennial grasses; AF: Annual
431 forbs; AP: Perennial forbs; TC: Total soil carbon; TN: Total soil nitrogen; Anosim: Analysis of similarities;
432 Mrpp: Multi-response permutation procedure; DCA: Detrended correspondence analysis; OTUs: Operational
433 taxonomic units; CO₂: Carbon dioxide; N₂O: Nitrous oxide.

434

435 **Acknowledgements**

436 The authors wish to thank the staff of the Jasper Ridge Global Change Experiment for site preservation and
437 sampling assistance.

438

439 **Authors' contributions**

440 NRC, CBF, and YY designed the study. XM, YY, XG, JL, BAH, XLR, and JZ wrote the manuscript. KD,
441 JG, YG, AN, and TY performed the experiments. XM, TW, QG, ZS, and MY analyzed the data. All authors
442 have reviewed and agreed with the manuscript. The authors declare that they have no competing interests.

443

444 **Funding**

445 This study was funded by grants from the National Natural Science Foundation of China
446 (32161123002/41825016/41877048), the US Department of Energy, the US National Science Foundation
447 (DEB-2129235/DEB0092642/0445324), the Packard Foundation, the Morgan Family Foundation, the
448 Second Tibetan Plateau Scientific Expedition and Research (STEP) program (2019QZKK0503), and the
449 French EC2CO Program (project INTERACT).

450

451 **Availability of data and materials**

452 GeoChip data are available online (www.ncbi.nlm.nih.gov/geo/) with the accession number GSE107168.
453 MiSeq data are available in the NCBI SRA database with the accession number SRP126539.

454

455 **Declarations**

456 **Ethics approval and consent to participate** Not applicable.

457 **Consent for publication** Not applicable.

458 **Competing interests**

459 The authors declare no competing interests.

460

461 **References**

462 1. Gruber N, Galloway JN. An Earth-system perspective of the global nitrogen cycle. *Nature*.
463 2008;451(7176):293–6.

464 2. Townsend AR, Howarth RW, Bazzaz FA, Booth MS, Cleveland CC, Collinge SK, et al. Human health
465 effects of a changing global nitrogen cycle. *Front Ecol Environ*. 2003;1(5):240–6.

466 3. Nemer gut DR, Townsend AR, Sattin SR, Freeman KR, Fierer N, Neff JC, et al. The effects of chronic
467 nitrogen fertilization on alpine tundra soil microbial communities: implications for carbon and
468 nitrogen cycling. *Environ Microbiol*. 2008;10(11):3093–105.

469 4. Allison SD, Hanson CA, Treseder KK. Nitrogen fertilization reduces diversity and alters community
470 structure of active fungi in boreal ecosystems. *Soil Biol Biochem*. 2007;39(8):1878–87.

471 5. Ramirez KS, Craine JM, Fierer N. Consistent effects of nitrogen amendments on soil microbial
472 communities and processes across biomes. *Glob Chang Biol*. 2012;18(6):1918–27.

473 6. Campbell BJ, Polson SW, Hanson TE, Mack MC, Schuur EA. The effect of nutrient deposition on
474 bacterial communities in Arctic tundra soil. *Environ Microbiol*. 2010;12(7):1842–54.

475 7. Fierer N, Lauber CL, Ramirez KS, Zaneveld J, Bradford MA, Knight R. Comparative metagenomic,
476 phylogenetic and physiological analyses of soil microbial communities across nitrogen gradients.
477 *ISME J*. 2012;6(5):1007–17.

478 8. Liu L, Greaver TL. A global perspective on belowground carbon dynamics under nitrogen enrichment.
479 *Ecol Lett*. 2010;13(7):819–28.

480 9. Treseder KK. Nitrogen additions and microbial biomass: a meta-analysis of ecosystem studies. *Ecol
481 Lett*. 2008;11(10):1111–20.

482 10. Janssens IA, Luyssaert S. Carbon cycle: nitrogen's carbon bonus. *Nat Geosci*. 2009;2(5):318–9.

483 11. Henry HA, Juarez JD, Field CB, Vitousek PM. Interactive effects of elevated CO₂, N deposition and
484 climate change on extracellular enzyme activity and soil density fractionation in a California annual
485 grassland. *Glob Chang Biol*. 2005;11(10):1808–15.

486 12. Gutknecht JLM, Henry HAL, Balser TC. Inter-annual variation in soil extracellular enzyme activity in
487 response to simulated global change and fire disturbance. *Pedobiologia*. 2010;53(5):283–93.

488 13. Carreiro MM, Sinsabaugh RL, Repert DA, Parkhurst DF. Microbial enzyme shifts explain litter decay
489 responses to simulated nitrogen deposition. *Ecology*. 2000;81(9):2359–65.

490 14. Saiya-Cork KR, Sinsabaugh RL, Zak DR. The effects of long term nitrogen deposition on extracellular
491 enzyme activity in an *Acer saccharum* forest soil. *Soil Biol Biochem*. 2002;34(9):1309–15.

492 15. Craine JM, Morrow C, Fierer N. Microbial nitrogen limitation increases decomposition. *Ecology*.
493 2007;88(8):2105–13.

494 16. Barnard R, Le Roux X, Hungate BA, Cleland EE, Blankinship JC,

495 17. Barthes L, et al. Several components of global change alter
496 18. nitrifying and denitrifying activities in an annual grassland. *Funct Ecol.* 2006;20(4):557–64.
497 19. Niboyet A, Le Roux X, Dijkstra P, Hungate BA, Barthes L, Blankinship JC, et al. Testing interactive
498 effects of global environmental changes on soil nitrogen cycling. *Ecosphere.* 2011;2(5):art56.
499 20. Niboyet A, Barthes L, Hungate BA, Le Roux X, Bloor JMG, Ambroise A, et al. Responses of soil
500 nitrogen cycling to the interactive effects of elevated CO₂ and inorganic N supply. *Plant Soil.*
501 2010;327(1):35–47.
502 21. Simonin M, Le Roux X, Poly F, Lerondelle C, Hungate BA, Nunan N, et al. Coupling between and
503 among ammonia oxidizers and nitrite oxidizers in grassland mesocosms submitted to elevated CO₂
504 and nitrogen supply. *Microb Ecol.* 2015;70(3):809–18.
505 22. Ma W, Jiang S, Assemien F, Qin M, Ma B, Xie Z, et al. Response of microbial functional groups
506 involved in soil N cycle to N, P and NP fertilization in Tibetan alpine meadows. *Soil Biol Biochem.*
507 2016;101:195–206.
508 23. Le Roux X, Bouskill NJ, Niboyet A, Barthes L, Dijkstra P, Field CB, et al. Predicting the responses of
509 soil nitrite-oxidizers to multi-factorial global change: a trait-based approach. *Front Microbiol.*
510 2016;7:628.
511 24. Docherty KM, Balser TC, Bohannan BJM, Gutknecht JLM. Soil microbial responses to fire and
512 interacting global change factors in a California annual grassland. *Biogeochemistry.* 2012;109(1):63–
513 83.
514 25. Assémien FL, Pommier T, Gonnety JT, Gervaix J, Le Roux X. Adaptation of soil nitrifiers to very low
515 nitrogen level jeopardizes the efficiency of chemical fertilization in West African moist savannas. *Sci
516 Rep.* 2017;7(1):10275.
517 26. Compton JE, Watrud LS, Porteous LA, Degrood S. Response of soil microbial biomass and
518 community composition to chronic nitrogen additions at Harvard forest. *For Ecol Manag.*
519 2004;196(1):143–58.
520 27. Kolb W, Martin P. Influence of nitrogen on the number of N₂-fixing and total bacteria in the
521 rhizosphere. *Soil Biol Biochem.* 1988;20(2):221–5.
522 28. Jung J, Yeom J, Kim J, Han J, Lim HS, Park H, et al. Change in gene abundance in the nitrogen
523 biogeochemical cycle with temperature and nitrogen addition in Antarctic soils. *Res Microbiol.*
524 2011;162(10):1018–26.
525 29. Harpole WS, Potts DL, Suding KN. Ecosystem responses to water and nitrogen amendment in a
526 California grassland. *Glob Chang Biol.* 2007;13(11):2341–8.

527 30. Zavaleta ES, Shaw MR, Chiariello NR, Mooney HA, Field CB. Additive effects of simulated climate
528 changes, elevated CO₂, and nitrogen deposition on grassland diversity. *Proc Natl Acad Sci U S A.*
529 2003;100(13):7650–4.

530 31. Zavaleta ES, Shaw MR, Chiariello NR, Thomas BD, Cleland EE, Field CB, et al. Grassland responses
531 to three years of elevated temperature, CO₂, precipitation, and N deposition. *Ecol Monogr.*
532 2003;73(4):585–604.

533 32. Horz H-P, Barbrook A, Field CB, Bohannan BJM. Ammonia-oxidizing bacteria respond to
534 multifactorial global change. *Proc Natl Acad Sci U S A.* 2004;101(42):15136–41.

535 33. Shaw MR, Zavaleta ES, Chiariello NR, Cleland EE, Mooney HA, Field CB. Grassland responses to
536 global environmental changes suppressed by elevated CO₂. *Science.* 2002;298(5600):1987–90.

537 34. Xia J, Wan S. Global response patterns of terrestrial plant species to nitrogen addition. *New Phytol.*
538 2008;179(2):428–39.

539 35. LeBauer DS, Treseder KK. Nitrogen limitation of net primary productivity in terrestrial ecosystems is
540 globally distributed. *Ecology.* 2008;89(2):371–9.

541 36. Niboyet A, Brown JR, Dijkstra P, Blankinship JC, Leadley PW, Le Roux X, et al. Global change
542 could amplify fire effects on soil greenhouse gas emissions. *PLoS One.* 2011;6(6):e20105.

543 37. Ma X, Zhang Q, Zheng M, Gao Y, Yuan T, Hale L, et al. Microbial functional traits are sensitive
544 indicators of mild disturbance by lamb grazing. *ISME J.* 2019;13(5):1370–3.

545 38. Wu L, Yang Y, Chen S, Jason Shi Z, Zhao M, Zhu Z, et al. Microbial functional trait of rRNA operon
546 copy numbers increases with organic levels in anaerobic digesters. *ISME J.* 2017;11(12):2874–8.

547 39. Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Lozupone CA, Turnbaugh PJ, et al. Global
548 patterns of 16S rRNA diversity at a depth of millions of sequences per sample. *Proc Natl Acad Sci U S*
549 *A.* 2011;108:4516–22.

550 40. Kong Y. Btrim: a fast, lightweight adapter and quality trimming program for next-generation
551 sequencing technologies. *Genomics.* 2011;98(2):152–3.

552 41. Magoč T, Salzberg SL. FLASH: fast length adjustment of short reads to improve genome assemblies.
553 *Bioinformatics.* 2011;27(21):2957–63.

554 42. Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R. UCHIME improves sensitivity and speed of
555 chimera detection. *Bioinformatics.* 2011;27(16):2194–200.

556 43. Edgar RC. Search and clustering orders of magnitude faster than BLAST. *Bioinformatics.*
557 2010;26(19):2460–1.

558 44. Wang Q, Garrity GM, Tiedje JM, Cole JR. Naive Bayesian classifier for rapid assignment of rRNA
559 sequences into the new bacterial taxonomy. *Appl Environ Microbiol.* 2007;73(16):5261–7.

560 45. Stoddard SF, Smith BJ, Hein R, Roller BR, Schmidt TM. rrnDB: improved tools for interpreting
561 rRNA gene abundance in bacteria and archaea and a new foundation for future development. *Nucleic
562 Acids Res.* 2015;43(D1):D593.

563 46. Yang Y, Wu L, Lin Q, Yuan M, Xu D, Yu H, et al. Responses of the functional structure of soil
564 microbial community to livestock grazing in the Tibetan alpine grassland. *Glob Chang Biol.*
565 2013;19(2):637–48.

566 47. Yang Y, Gao Y, Wang S, Xu D, Yu H, Wu L, et al. The microbial gene diversity along an elevation
567 gradient of the Tibetan grassland. *ISME J.* 2014;8(2):430–40.

568 48. Yang Y, Harris DP, Luo F, Xiong W, Joachimiak M, Wu L, et al. Snapshot of iron response in
569 *Shewanella oneidensis* by gene network reconstruction. *BMC Genomics.* 2009;10:131.

570 49. Bastian M, Heymann S, Jacomy M. Gephi: an open source software for exploring and manipulating
571 networks. In: Third international AAAI conference on weblogs and social media. May 17-20 2009.
572 San Jose: DBLP; <https://doi.org/10.13140/2.1.1341.1520>.

573 50. Strong AL, Johnson TP, Chiariello NR, Field CB. Experimental fire increases soil carbon dioxide
574 efflux in a grassland long-term multifactor global change experiment. *Glob Chang Biol.*
575 2017;23(5):1975–87.

576 51. Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data
577 with DESeq2. *Genome Biol.* 2014;15(12):550.

578 52. Gutknecht JLM, Field CB, Balser TC. Microbial communities and their responses to simulated global
579 change fluctuate greatly over multiple years. *Glob Chang Biol.* 2012;18(7):2256–69.

580 53. Dukes JS, Chiariello NR, Cleland EE, Moore LA, Shaw MR, Thayer S, et al. Responses of grassland
581 production to single and multiple global environmental changes. *PLoS Biol.* 2005;3(10):e319.

582 54. Roller BR, Stoddard SF, Schmidt TM. Exploiting rRNA operon copy number to investigate bacterial
583 reproductive strategies. *Nat Microbiol.* 2016;1(11):16160.

584 55. Lee ZM, Bussema C 3rd, Schmidt TM. rrnDB: documenting the number of rRNA and tRNA genes in
585 bacteria and archaea. *Nucleic Acids Res.* 2009;37(Database issue):D489–93.

586 56. Zhu K, Chiariello NR, Tobeck T, Fukami T, Field CB. Nonlinear, interacting responses to climate
587 limit grassland production under global change. *Proc Natl Acad Sci U S A.* 2016;113(38):10589–94.

588 57. Uksa M, Schloter M, Endesfelder D, Kublik S, Engel M, Kautz T, et al. Prokaryotes in subsoil—
589 evidence for a strong spatial separation of different phyla by analysing co-occurrence networks. *Front
590 Microbiol.* 2015;6:1269.

591 58. Li C, Yan K, Tang L, Jia Z, Li Y. Change in deep soil microbial communities due to long-term
592 fertilization. *Soil Biol Biochem.* 2014;75(Supplement C):264–72.

593 59. Fierer N, Bradford MA, Jackson RB. Toward an ecological classification of soil bacteria. *Ecology*.
594 2007;88(6):1354–64.

595 60. Waldrop MP, Zak DR, Sinsabaugh RL, Gallo M, Lauber C. Nitrogen deposition modifies soil carbon
596 storage through changes in microbial enzymatic activity. *Ecol Appl*. 2004;14(4):1172–7.

597 61. Bragazza L, Freeman C, Jones T, Rydin H, Limpens J, Fenner N, et al. Atmospheric nitrogen
598 deposition promotes carbon loss from peat bogs. *Proc Natl Acad Sci U S A*. 2006;103(51):19386–9.

599 62. Neff JC, Townsend AR, Gleixner G, Lehman SJ, Turnbull J, Bowman WD. Variable effects of
600 nitrogen additions on the stability and turnover of soil carbon. *Nature*. 2002;419(6910):915–7.

601 63. Geisseler D, Scow KM. Long-term effects of mineral fertilizers on soil microorganisms – a review.
602 *Soil Biol Biochem*. 2014;75:54–63.

603 64. Bingeman CW, Varner J, Martin W. The effect of the addition of organic materials on the
604 decomposition of an organic soil. *Soil Sci Soc Am J*. 1953;17(1):34–8.

605 65. Fontaine S, Bardoux G, Abbadie L, Mariotti A. Carbon input to soil may decrease soil carbon content.
606 *Ecol Lett*. 2004;7(4):314–20.

607 66. Shen J, Zhang L, Di H, He J. A review of ammonia-oxidizing bacteria and archaea in Chinese soils.
608 *Front Microbiol*. 2012;3:296.

609 67. Schimel J. Ecosystem consequences of microbial diversity and community structure. In: Chapin FS,
610 Körner C, editors. *Arctic and alpine biodiversity: patterns, causes and ecosystem consequences*.
611 Ecological Studies, vol 113. Berlin, Heidelberg: Springer; 1995. p. 239–54. https://doi.org/10.1007/978-3-642-78966-3_17.

613 68. Reed HE, Martiny JB. Microbial composition affects the functioning of estuarine sediments. *ISME J*.
614 2013;7(4):868–79.

615 69. Petersen DG, Blazewicz SJ, Firestone M, Herman DJ, Turetsky M, Waldrop M. Abundance of
616 microbial genes associated with nitrogen cycling as indices of biogeochemical process rates across a
617 vegetation gradient in Alaska. *Environ Microbiol*. 2012;14(4):993–1008.

618 70. Le Roux X, Schmid B, Poly F, Barnard RL, Niklaus PA, Guillaumaud N, et al. Soil environmental
619 conditions and microbial build-up mediate the effect of plant diversity on soil nitrifying and
620 denitrifying enzyme activities in temperate grasslands. *PLoS One*. 2013;8(4):e61069.

621 71. Zhao M, Xue K, Wang F, Liu S, Bai S, Sun B, et al. Microbial mediation of biogeochemical cycles
622 revealed by simulation of global changes with soil transplant and cropping. *ISME J*. 2014;8:2045–55.

623 72. Liu S, Wang F, Xue K, Sun B, Zhang Y, He Z, et al. The interactive effects of soil transplant into
624 colder regions and cropping on soil microbiology and biogeochemistry. *Environ Microbiol*.
625 2015;17(3):566.

626 73. Brown JR, Blankinship JC, Niboyet A, van Groenigen KJ, Dijkstra P, Le Roux X, et al. Effects of
627 multiple global change treatments on soil N₂O fluxes. *Biogeochemistry*. 2012;109(1-3):85–100.

628 74. Philippot L, Hallin S, Börjesson G, Baggs EM. Biochemical cycling in the rhizosphere having an
629 impact on global change. *Plant Soil*. 2009;321(1):61–81.

630 73. Attard E, Recous S, Chabbi A, De Berranger C, Guillaumaud N, Labreuche J, et al. Soil environmental conditions rather than denitrifier
631 abundance and diversity drive potential denitrification after changes in land uses. *Glob Chang Biol*.
632 2011;17(5):1975–89.

633 75. Gomez-Casanovas N, Hudiburg TW, Bernacchi CJ, Parton WJ, DeLucia EH. Nitrogen deposition and
634 greenhouse gas emissions from grasslands:
635 76. uncertainties and future directions. *Glob Chang Biol*. 2016;22(4):1348–60.

636 77. Kuypers MM, Marchant HK, Kartal B. The microbial nitrogen-cycling network. *Nat Rev Microbiol*.
637 2018;16(5):263.

638 78. Zhou J, Deng Y, Luo F, He Z, Yang Y. Phylogenetic molecular ecological network of soil microbial
639 communities in response to elevated CO₂. *MBio*. 2011;2(4):e00122–11.

640 79. Zhou J, Deng Y, Luo F, He Z, Tu Q, Zhi X, et al. Functional molecular ecological networks. *MBio*.
641 2010;1(4):e00169–10.

642 80. Kopáček J, Cosby BJ, Evans CD, Hruška J, Moldan F, Oulehle F, et al. Nitrogen, organic carbon and
643 sulphur cycling in terrestrial ecosystems: linking nitrogen saturation to carbon limitation of soil
644 microbial processes. *Biogeochemistry*. 2013;115(1):33–51.

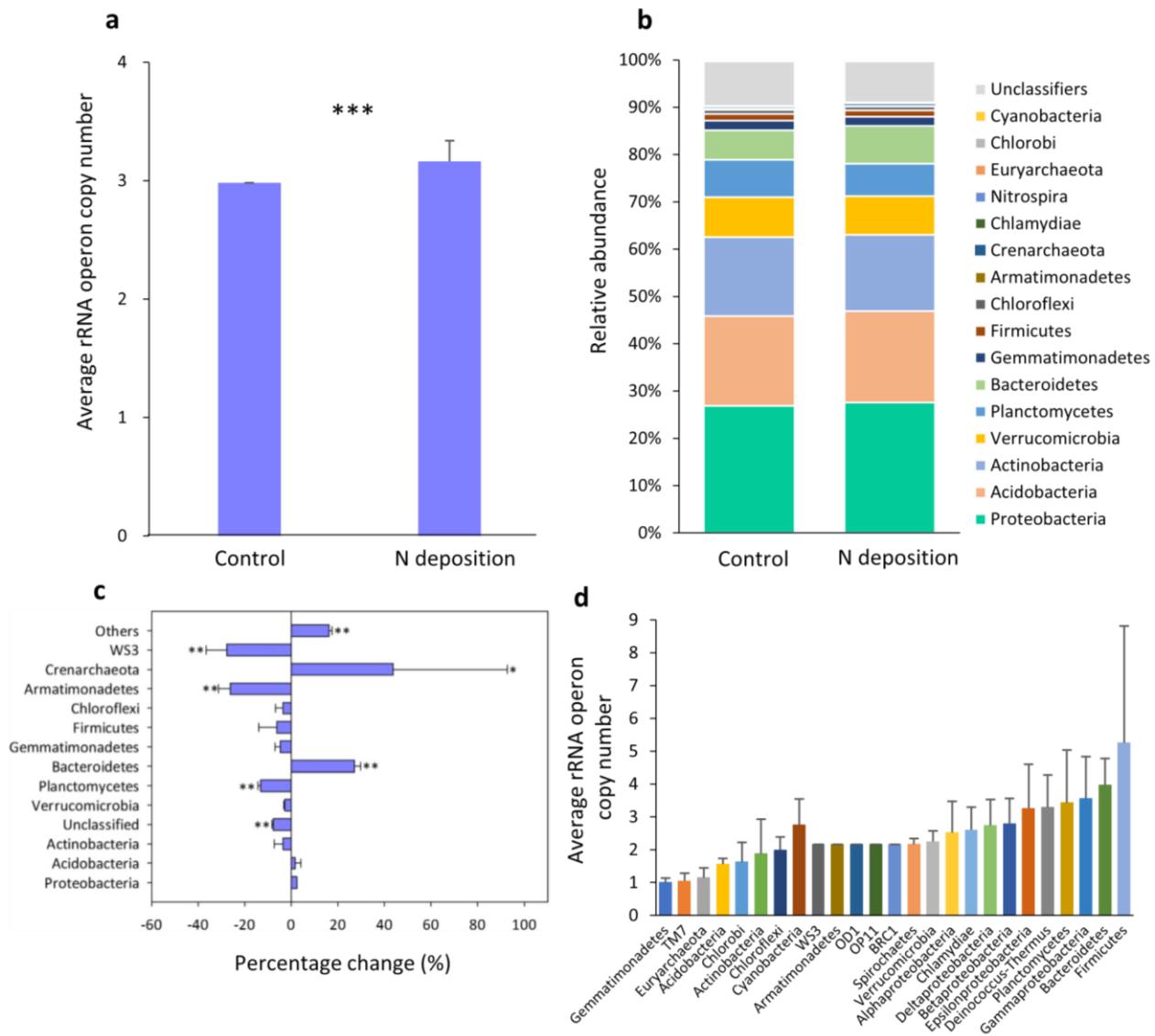
645 81. Pandey A, Suter H, He J-Z, Hu H-W, Chen D. Nitrogen addition decreases dissimilatory nitrate
646 reduction to ammonium in rice paddies. *Appl Environ Microbiol*. 2018;84(17):e00870–18.

647 82. Niu S, Classen AT, Dukes JS, Kardol P, Liu L, Luo Y, et al. Global patterns and substrate-based
648 mechanisms of the terrestrial nitrogen cycle. *Ecol Lett*. 2016;19(6):697–709.

649 83. Fierer N, Jackson RB. The diversity and biogeography of soil bacterial communities. *Proc Natl Acad
650 Sci U S A*. 2006;103(3):626–31.

651 84. Shen C, Xiong J, Zhang H, Feng Y, Lin X, Li X, et al. Soil pH drives the spatial distribution of
652 bacterial communities along elevation on Changbai Mountain. *Soil Biol Biochem*. 2013;57:204–11.

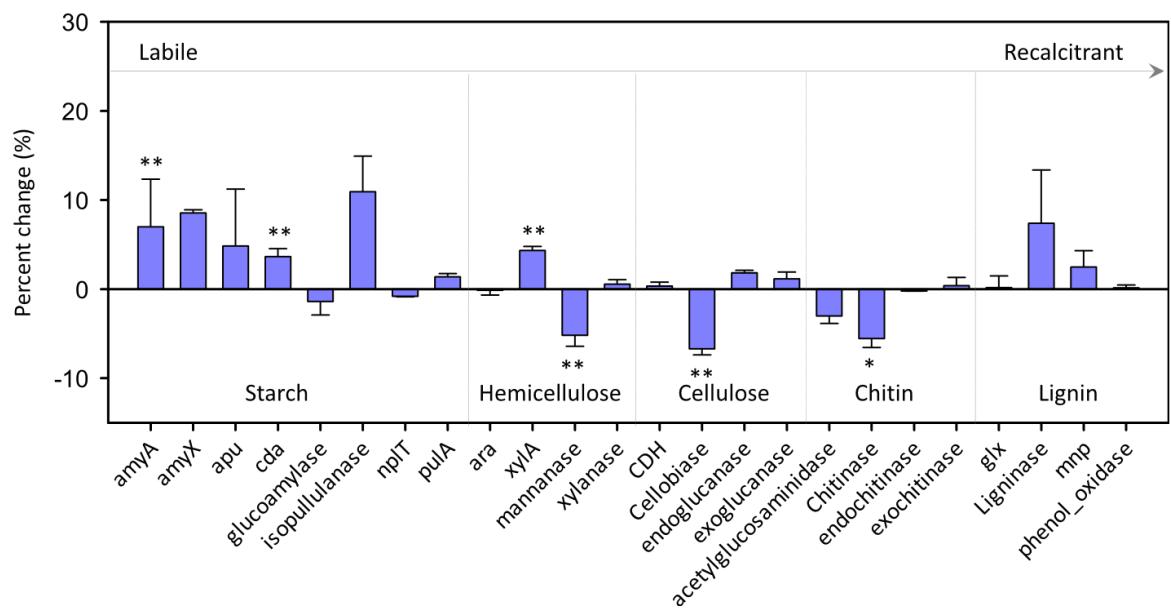
653 85. Lauber CL, Hamady M, Knight R, Fierer N. Pyrosequencing-based assessment of soil pH as a
654 predictor of soil bacterial community structure at the continental scale. *Appl Environ Microbiol*.
655 2009;75(15):5111–20.


656 86. Rousk J, Baath E, Brookes PC, Lauber CL, Lozupone C, Caporaso JG, et al. Soil bacterial and fungal
657 communities across a pH gradient in an arable soil. *ISME J*. 2010;4(10):1340–51.

658 87. Fernandez-Calvino D, Baath E. Growth response of the bacterial community to pH in soils differing in
659 pH. *FEMS Microbiol Ecol*. 2010;73(1):149–56.

660 88. Li H, Yang S, Xu Z, Yan Q, Li X, van Nostrand JD, et al. Responses of soil microbial functional
661 genes to global changes are indirectly influenced by aboveground plant biomass variation. *Soil Biol
662 Biochem.* 2017;104:18–29.

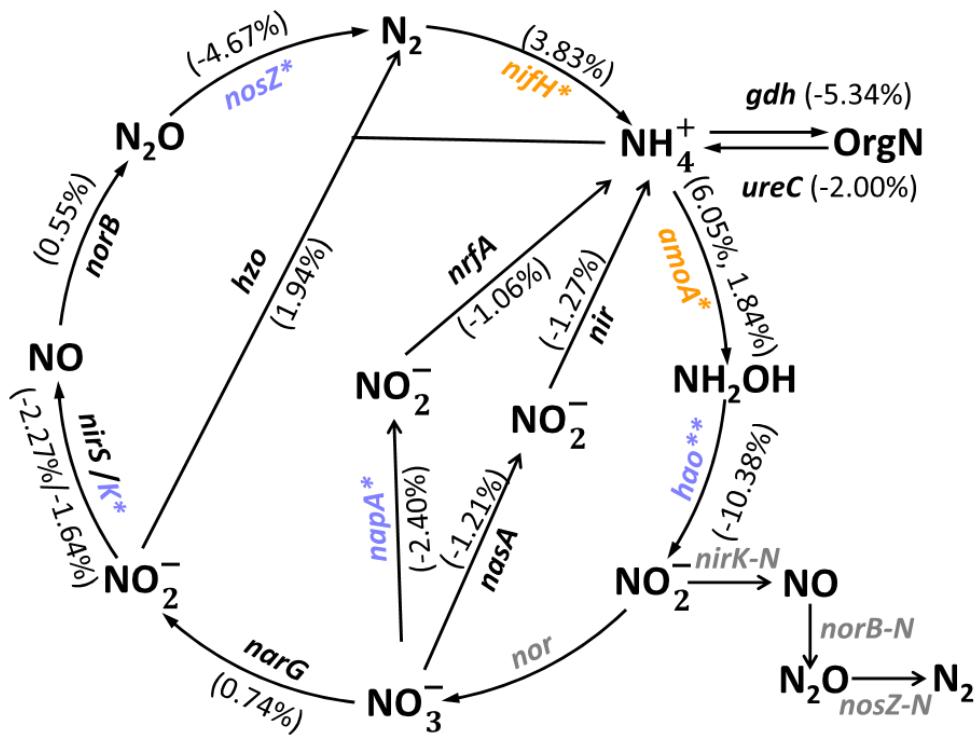
663 89. Hamilton EW, Frank DA. Can plants stimulate soil microbes and their own nutrient supply? Evidence
664 from a grazing tolerant grass. *Ecology.* 2001;82(9):2397–402.


665

666
667 **Fig. 1** **a** The abundance-weighted average rRNA operon copy number of significantly changed OTUs in
668 control and N deposited samples. **b** Relative abundance of bacterial phylum in control and N deposited
669 samples. **c** The percent change in relative abundances of microbial phyla induced by N deposition. **d** The
670 average estimated rRNA copy number of OTUs derived from each phylum. Error bars indicate standard
671 errors. Asterisks indicate significant differences. * $P < 0.050$; ** $P < 0.010$

672

673

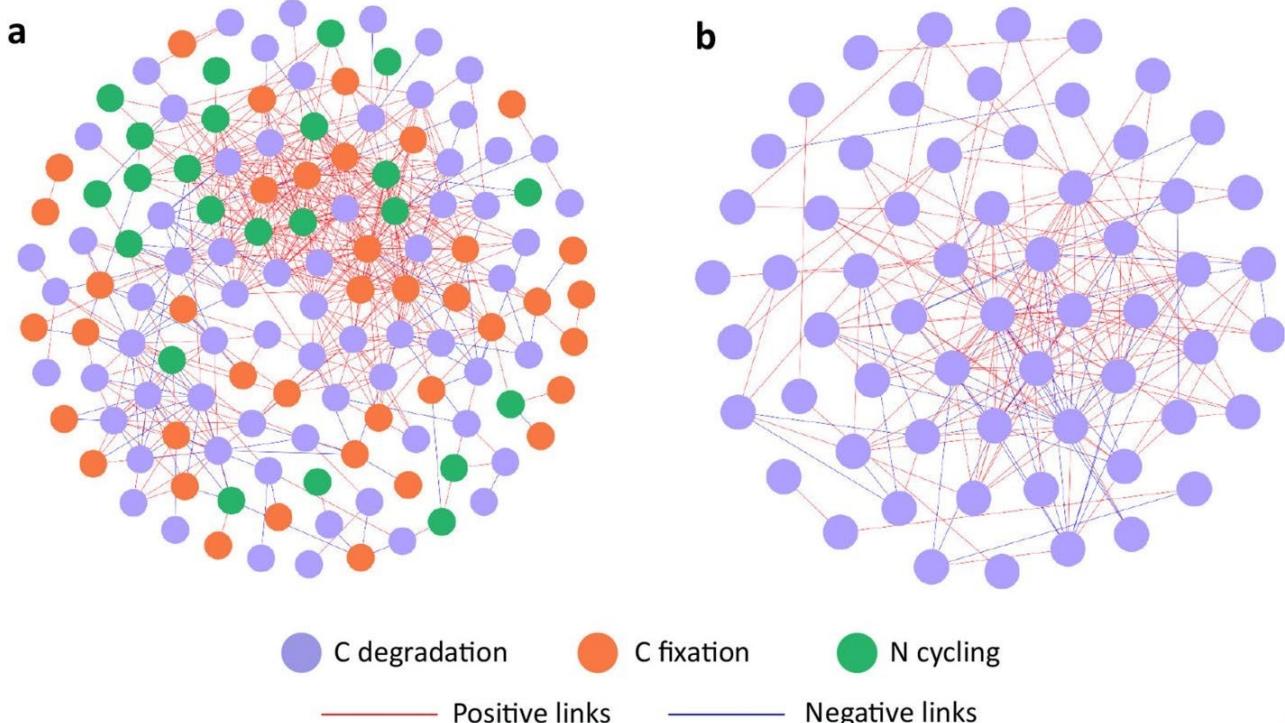

674

675

676 **Fig. 2** Changes in C cycling gene abundances. The percent change in the relative abundance of C
 677 degradation genes by N deposition is calculated as $100 * ((\text{mean value in N deposited samples} / \text{mean value in})$
 678 control samples) – 1). Mean values and standard deviations are presented. Asterisks indicate significant
 679 differences. * $P < 0.050$; ** $P < 0.010$

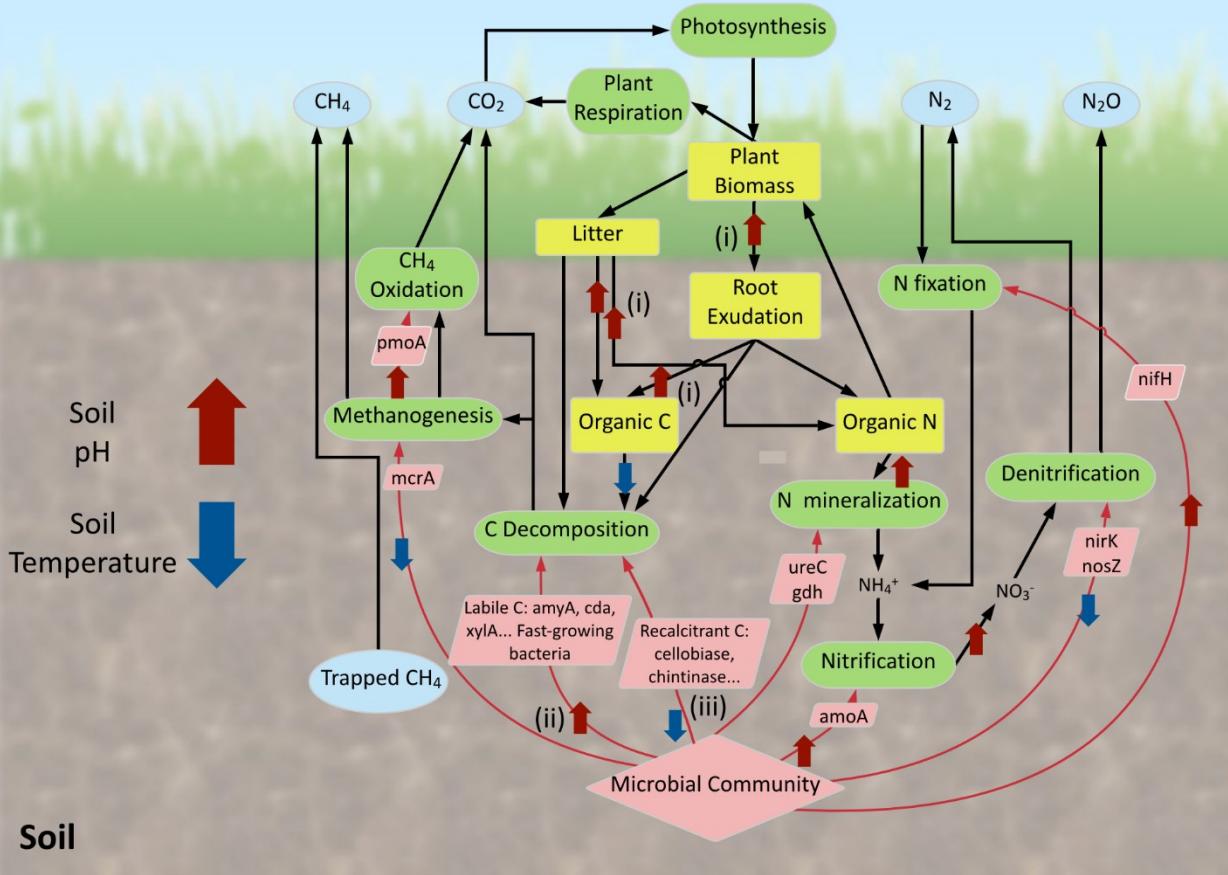
680

681



682

683


684 Fig. 3 Changes in N cycling gene abundances. The percent change in brackets is calculated as
 685 $100 * ((\text{mean value in N deposited samples} / \text{mean value in control samples}) - 1)$. Orange and blue represent
 686 increases and decreases in gene relative abundance in response to N deposition, respectively. Gray-colored
 687 genes are not targeted by GeoChip. Asterisks indicate significant differences. * $P < 0.050$; ** $P < 0.010$.

688

692 **Fig. 4** Association networks of microbial functional genes associated with C degradation, C fixation, and N
 693 cycling in **a** control samples and **b** N deposited samples. C degradation genes are shown in green circles, C
 694 fixation genes are shown in blue circles, and N cycling genes are shown in red circles. Positive links between
 695 genes are in red and negative links are in blue.

Atmosphere

696

697 **Fig. 5** A conceptual model of the effects of N deposition on the terrestrial ecosystem processes. Blue oval
 698 frames represent greenhouse gas pools, yellow square frames represent material pools, green frames
 699 represent biological processes, pink rhomboid frames represent microbial functional genes, and pink
 700 rhombus frames represent microbial communities. Thick black arrows indicate material flows. Microbial
 701 mediation of soil biogeochemical process is marked by thin arrows in red and labeled with a “+” or “-” if
 702 increases or decreases in gene abundance are observed in this study. “?” represents uncertain microbial
 703 feedback. The pink upward arrow indicates the increase of soil pH, and the blue downward arrow indicates
 704 the decrease of soil temperature. The (i), (ii), and (iii) mechanisms are labeled near the pathway
 705

706 **Table 1** The effects of N deposition on taxonomic and functional compositions of microbial communities,
707 calculated with Bray-Curtis distance

Statistical approaches		Taxonomic	Functional
Anosim	<i>R</i>	0.264	0.048
	<i>P</i> [§]	0.001 [§]	0.025
Adonis	<i>F</i>	0.074	0.031
	<i>P</i>	0.001	0.054
Mrpp	δ	0.463	0.256
	<i>P</i>	0.001	0.035

708 [§] Significantly ($P < 0.050$) changed values are shown in bold

709

710 **Additional file 1:**

711 **Table S1.** Comparison of taxonomic and functional β -diversity between and within treatments. **Table S2.**
712 Effects of N deposition on microbial taxonomic and functional diversity, as assessed by Shannon index. **Table**
713 **S3.** Significantly changed representative OTUs calculated by difference analyses. **Table S4.** Topological
714 properties of microbial functional gene networks. **Table S5.** Summary of soil and vegetation attributes in
715 control and N deposited samples. **Table S6.** Mantel tests for correlations between a range of environmental
716 attributes and quantitative measures of microbial community dissimilarity. **Fig. S1.** Comparison of the
717 percentage change by N deposition for (a) microbial phyla; (b) N cycling genes; and (c) C cycling genes
718 between using 32 and 4 samples as biological replicates. **Fig. S2.** The percentage change in relative abundances
719 of microbial class induced by long-term N deposition. Asterisks indicate significant differences. *, $P < 0.050$;
720 **, $P < 0.010$. **Fig. S3.** The percentage change in the relative abundance of major microbial genera induced by
721 long-term N deposition treatment. All selected genera are significantly changed by N deposition treatment as
722 calculated by the response ratio analysis. **Fig. S4.** The percentage change in the relative abundance of genes
723 associated with C fixation induced by N deposition, calculated as $100*((\text{mean value in N deposited samples}) / (\text{mean value in control samples}) - 1)$. Mean values and standard deviations are presented. Asterisks
724 indicate significant differences. *, $P < 0.050$; **, $P < 0.010$. The numbers in the figure represent the pathways
725 of C fixation. (i) 3-hydroxypropionate bicyclic, (ii) Bacterial microcompartments, (iii) Calvin cycle, and (iv)
726 Reductive tricarboxylic acid cycle. **Fig. S5.** The percentage change in the relative abundance of genes
727 associated with methane and phosphorus cycling genes induced by N deposition, calculated as $100*((\text{mean value in N deposited samples}) / (\text{mean value in control samples}) - 1)$. Mean values and standard deviations are
728 presented. Asterisks indicate significant differences. *, $P < 0.050$; **, $P < 0.010$. **Fig. S6.** N deposition effects
729 on *amoA* gene. The relative abundance of *amoA* is presented as the signal intensity difference between control
730 and N deposited samples. Error bars represent standard errors. Blue bars represent genes derived from archaea
731 (AOA), and pink bars represent genes derived from bacteria (AOB). Asterisks indicate significant differences.
732 *, $P < 0.050$; **, $P < 0.010$.