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ABSTRACT

In this paper, we describe how to combine a parallel branch-and-
bound (B&B) algorithm and a strong heuristic to solve the Sequen-
tial Ordering Problem (SOP), which is an NP-hard optimization
problem. A parallel B&B algorithm is run in parallel with the Lin-
Kernighan-Helsgaun heuristic algorithm, which is known to be
one of the strongest heuristic algorithms for solving the SOP. The
best solutions found by each algorithm are shared with the other
algorithm, and each algorithm benefits from the better solutions
found by the other. With the better solutions found by B&B, LKH
can find even better solutions. With the better solutions found by
LKH, B&B will have a tighter upper bound that enables it to prune
at shallower tree nodes and thus complete it search faster. The com-
bined algorithm is evaluated experimentally on the SOPLIB and
TSPLIB benchmarks. The results show that the combined algorithm
gives significantly better performance than any of the B&B algo-
rithm or the LKH heuristic individually. Significant improvements
in both speed and solution quality are seen on both benchmark
suites. For example, the proposed algorithm delivers a geometric-
mean speedup of 10.17 relative to LKH on the medium-difficulty
SOPLIB instances. On the hard SOPLIB instances, it improves the
cost by up to 22% relative to B&B and up to 90% relative to LKH
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1 INTRODUCTION

We have recently proposed a parallel Branch-and-Bound (B&B)
algorithm for the Sequential Ordering Problem (SOP) [15, 16]. The
SOP is a generalization of the Traveling Salesman Problem (TSP),
which is a well-known NP-hard optimization problem. Given a
weighted graph and a dependence graph representing precedence
constraints among the vertices, the objective in the SOP is find-
ing a minimum-cost Hamiltonian path in the weighted graph that
satisfies the precedence constraints in the dependence graph.

Our parallel B&B algorithm is based on a previously proposed
sequential B&B algorithm for the SOP [22, 30, 34]. The parallel B&B
algorithm delivers significant speedup relative to the sequential
algorithm, but it fails to solve many hard SOPLIB and TSPLIB in-
stances. In this paper, we show how this parallel B&B algorithm can
be combined with a strong heuristic algorithm to produce signifi-
cantly better results than any of the two algorithms individually.

The heuristic algorithm used in this work is the Lin-Kernighan-
Helsgaun (LKH) algorithm [19-21], which has proven to be highly
effective at computing optimal or near-optimal solutions to the
TSP and the SOP quite fast. The main disadvantage of the LKH
algorithm is that it is a heuristic-based algorithm that may not find
an optimal solution.

In this work, we combine the LKH algorithm with our parallel
B&B algorithm to produce a hybrid algorithm that captures the
strengths of both algorithms. The strength of the B&B algorithm
is that it is an exact algorithm. So, it produces provably optimal
solutions if it terminates within a given time limit. The strength of
the LKH heuristic, on the other hand, is that it discovers optimal or
near-optimal solutions relatively quickly using a local search.

In the proposed algorithm, the best solution found by any algo-
rithm is shared between the two algorithms, thus allowing each
algorithm to benefit from the better solutions found by the other.
More specifically, the strong local-search technique used in LKH
to find near-optimal solutions early enables the B&B algorithm to
prune earlier and thus complete its exhaustive search earlier.

The search order of a B&B algorithm is an important factor
that determines its performance. With a better search order, better
solutions are discovered earlier, thus enabling pruning at shallower
nodes in the search tree, which leads to a faster search. Achieving
a good search order in a B&B algorithm is very challenging. In
the proposed algorithm, the power of LKH is used to find better
solutions early, and thus enable pruning in the B&B algorithm at
shallower tree nodes. Experimentally, using a strong heuristic in
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parallel with a B&B algorithm proved to be a more effective way
of finding near-optimal solutions early than optimizing the search
order of the B&B algorithm.

Our experimental evaluation using TSPLIB [31] and SOPLIB [29]
shows that the combined algorithm greatly improves both the execu-
tion time and the solution quality (the cost of the final solution) rel-
ative to any of the individual algorithms. On the medium-difficulty
instances, the geometric-mean speedup delivered by the combined
algorithm relative to the pure B&B algorithm is 1.19 on SOPLIB and
1.39 on TSPLIB. It also delivers a geometric-mean speedup of 10.17
relative to the LKH algorithm on the medium-difficulty SOPLIB
instances. On the medium-difficulty TSPLIB instances, however,
the combined algorithm under-performs the LKH algorithm, be-
cause the latter performs particularly well on these instances. The
combined algorithm tends to run faster than the LKH algorithm on
larger instances with heavier precedence constraints.

On the hard SOPLIB and TSPLIB instances, the combined algo-
rithm finds better solutions relative to the pure B&B algorithm for
24 instances and better solutions relative to LKH for 18 instances.
The maximum cost improvement is 22% relative to B&B and 90%
relative to LKH. So, the final costs computed by the combined algo-
rithm are significantly better than those computed by either pure
B&B or LKH.

Yet, the results show that more work is needed on improving the
the combined algorithm’s ability to prove the optimality of the best
solutions found by either the B&B algorithm or the LKH algorithm.
This will be the focus of our future work.

2 PROBLEM DEFINITION

An instance of the Sequential Ordering Problem (SOP) consists of
a cost graph G = (V, E) and a precedence graph P = (V, R) defined
on the same set of vertices V, as well as a start vertex s and a final
vertex f that both belong to V.

The cost graph is a complete weighted directed graph in which
each edge (i, j) in E is assigned a weight w(i, j). A path in the graph
is a sequence of edges from E. The cost of a path is the sum of
the weights of the edges that constitute that path. A Hamiltonian
path is a path that visits every vertex in the graph exactly once. A
Hamiltonian path is guaranteed to exist in a complete graph.

The precedence graph P is a directed graph in which an edge (x,
y) in R indicates that vertex x must appear before vertex y in any
feasible path. If the precedence constraints in P imply that vertex
n cannot appear immediately after vertex m in any feasible path,
the weight of edge (m, n) in G will be irrelevant, and we follow the
convention of setting this weight to -1.

The SOP is the problem of finding a minimum-cost Hamiltonian
path in G that starts with s, ends with f and satisfies the precedence
constraints imposed by P.

3 PREVIOUS WORK

Since its introduction in 1988 [9], several sequential and parallel
algorithms have been proposed to solve the SOP, also known as the
Precedence-Constrained Traveling Salesman Problem. Sequential
approaches utilize different heuristic techniques, including particle
swarm optimization [1], ant colony optimization [11, 35] and the
Lin-Kernighan-Helsgaun algorithm [21]. Various exact methods
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have also been proposed, including the cutting plane [2, 17], the
Lagrangian relaxation [10], dynamic programming [27, 32], branch-
and-cut [3, 18], branch-and-bound [22, 28, 34] and constraint pro-
gramming [23].

Different parallel B&B approaches have been proposed for solv-
ing different optimization problems [6, 12, 13]. However, exact
parallel algorithms for the SOP are understudied. The only pub-
lished algorithms that we are aware of in this area are the algorithm
of Salii and Sheka [33] and our parallel B&B algorithm [15, 16].

Various kinds of parallel B&B algorithms have been used to
solve other combinatorial optimization problems, such as the Trav-
eling Salesman([8], Quadratic Assignment [6, 13], Knapsack [24],
Maximum-Clique [26], Flow-Shop Scheduling [5, 13, 14], N-Queens
[13], Blocking Job Shop Scheduling [7] and Optimal Batch Plants
Design [4]. These algorithms utilize different parallel architectures,
including processor networks [8], GPUs [4, 24], multi-core CPUs
[4, 14, 26], clusters [4] and hybrid platforms that use a combination
of GPUs and multi-core CPUs [5, 7, 13].

The SOP is similar to other permutation-based optimization
problems like the TSP and Flow-Shop Scheduling. However, it is
more complex than these problems since it involves precedence
constraints, which make developing a parallel B&B algorithm more
challenging, due to harder load balancing and load estimation.

4 ALGORITHM DESCRIPTION

In this section, we first summarize the parallel B&B algorithm and
the LKH algorithm, and then we describe the combined algorithm
proposed in this paper. The details of the B&B algorithm and the
LKH algorithm may be found in the original papers that we cite
below. They are only summarized here.

4.1 Sequential B&B Algorithm

The parallel B&B algorithm is based on the sequential B&B al-
gorithm that was originally proposed by Shobaki and Jamal [34]
and later enhanced by Jamal et al. [22]. The enhanced algorithm
uses a lower bound (LB) that is based on relaxing the SOP into a
Minimum-Cost Perfect Matching (MCPM) problem.

The B&B algorithm exhaustively explores the solution space by
constructing an enumeration tree. Each leaf in the tree represents
a complete feasible solution, and each internal node represents a
partial solution. A solution is constructed incrementally by adding
one vertex at a time to the current partial solution.

At each tree node, a partial path has been constructed by select-
ing a sequence of vertices. The sub-problem to be solved at that
node is finding the optimal order for the remaining vertices. The
LBs of all possible next vertices at that node are computed and the
vertex with the lowest LB is added to the current partial path. The
feasible solutions in a sub-problem’s solution space (sub-space) are
the leaves of the sub-tree below that node.

To speed up the search, pruning techniques are applied at each
node. If a pruning technique indicates that no better solution than
the current best solution can be found below the current node,
the algorithm backtracks to the previous node, thus pruning the
sub-tree below the current node.

The two pruning techniques used in the sequential B&B algo-
rithm are history-based domination and the MCPM LB. History
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domination stores information about previously visited nodes in a
history table and then uses them to quickly process all the similar
nodes that are visited later [34].

The second pruning technique is relaxing the SOP into a MCPM
problem and then solving it using the dynamic Hungarian algorithm
[22]. History domination is always applied before the dynamic
Hungarian algorithm, because it is much faster.

4.2 The Parallel B&B Algorithm

Our recently-proposed parallel B&B algorithm is a pool-based algo-
rithm that uses asynchronous multi-threading [16]. It consists of a
collection of techniques that are designed to effectively search the
solution space using multiple parallel threads. These techniques
include thread restart, parallel history-based domination, history-
table memory management, a global-pool assignment technique
and a work-stealing technique for load balancing. The details may
be found in the original paper [16].

In the parallel B&B algorithm, Breadth-First-Search (BFS) is ini-
tially used to split the problem into smaller sub-problems that are
stored in a global pool. The sub-problems (tree nodes) in the global
pool are then assigned to threads. Each thread explores the sub-tree
below its assigned tree node as in the sequential algorithm. When
a thread completes exploring its assigned tree node, it is assigned a
new node from the global pool. If the global pool is empty, a thread
that has completed exploring its assigned node will steal part of
the load of an active thread [16].

4.3 The LKH Algorithm

The LKH algorithm [19, 20] is an extension of the original Lin-
Kernighan (LK) algorithm [25]. It is a local-search algorithm in
which better solutions are found by applying edge-exchange op-
erations to a given solution. Exchanges continue until a certain
termination condition is reached. The algorithm does not prove
optimality unless it finds a solution at a pre-computed lower bound.
In the TSP, a solution is a tour, which is a simple cycle in which
every vertex appears exactly once.

Given a feasible but non-optimal solution S, a better solution
S’ can be constructed by changing k edges x1, x2,x3...x; in S. A
tour is said to be k-optimal (or k-opt for short) if it is impossible to
obtain a better solution (a shorter tour) by replacing k of its edges
with other edges. The number of operations to test all k-exchanges
increases rapidly as the number of cities increases. Thus, the values
k = 2 and k = 3 are the most commonly used values in practice.
The LKH algorithm is based on a variable k-opt where the k value is
changed in each iteration until a termination condition is reached.

The LKH algorithm repeatedly performs edge exchanges that
reduce the length of the tour until it finds a k-opt tour. Since its
initial introduction, many updates have been made to the LKH
algorithm to further enhance its performance and extend it to solve
more complex problems. The latest LKH algorithm (LKH3) added
support for precedence-constrained problems, such as the SOP [21].

4.4 The Combined Algorithm

In the combined algorithm proposed in the current paper, the LKH
algorithm is run in parallel with our parallel B&B algorithm. One
thread is used to run the LKH algorithm, while the rest of the threads

run the parallel B&B algorithm. In the experimental evaluation,
32 threads are used. One thread runs LKH, and the remaining 31
threads run B&B.

The best solution found so far and its cost are shared by the B&B
threads and the LKH thread. Both the B&B algorithm and the LKH
algorithm benefit from this shared best solution. Whenever a better
solution is found by one of the two algorithms, it is shared with
the other algorithm, thus increasing the other algorithm’s chances
to find even better solutions more quickly.

On the LKH side, the shared best solution is used as the initial
solution of the next LKH iteration. This solution can potentially be
better than the solution formed using LKH’s construction heuristic.
Recall that LKH is based on performing edge exchanges to improve
a given initial solution.

On the B&B side, a better solution found by the LKH thread
and shared with the B&B threads may enable pruning at shallower
tree nodes. Pruning at a shallower node eliminates a larger sub-
space, thus speeding up the B&B search. Since LKH is not an exact
algorithm, the combined algorithm is terminated when the parallel
B&B algorithm completes searching the enumeration tree.

Finding quality solutions early speeds up a B&B algorithm, as it
enables pruning at shallower tree nodes. In a pure B&B algorithm,
finding quality solutions early requires optimizing the search or-
der. However, optimizing the search order is one of the greatest
challenges in designing a B&B algorithm, and parallelization makes
this even more complicated [16]. In a parallel B&B algorithm, the
difficulty of finding a good search order increases with the size
and the complexity of the instance at hand. A parallel algorithm
involves significant overhead, especially the overhead of synchro-
nizing access to shared variables by multiple threads. This overhead
increases with the number of threads. Therefore, running a strong
metaheuristic in parallel with a B&B algorithm is a more effective
way of finding quality solutions early than trying to optimize the
search order of the parallel B&B algorithm.

By running the metaheuristic algorithm in a separate thread,
we better utilize the available computational resources. The simple
best-solution sharing mechanism that we use ensures that the syn-
chronization overhead is minimized and that the algorithm scales
up well as the number of threads is increased. Additionally, using a
separate metaheuristic thread with best-solution sharing simplifies
the integration process and helps reduce the complexity and avoid
the potential pitfalls associated with an intricate parallel algorithms.

In summary, augmenting the B&B algorithm with a separate
metaheuristic algorithm, along with an optimized mechanism for
sharing the best solution, offers a practical and efficient strategy
for enhancing the performance of a parallel B&B algorithm. This
approach capitalizes on the advantages of parallel computing while
mitigating the challenges associated with optimizing the search
order.

5 EXPERIMENTAL RESULTS

5.1 Experimental Setup

The proposed parallel algorithm was tested on both the TSPLIB
[31] and the SOPLIB [29] benchmark suites. The tests were run on
a 32-core AMD Threadripper 2990WX processor with 128GB of
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memory. The operating system is Ubuntu 20.04. Thirty two threads
were used in all experiments.

As in previous work [16], the TSPLIB and SOPLIB instances
were classified into easy, medium, and hard based on the sequential
algorithm’s running time. An easy instance is an instance that the
sequential algorithm solves within 10 seconds. A medium-difficulty
instance is an instance that the sequential algorithm solves in more
than 10 seconds but in less than an hour. An instance that the
sequential algorithm cannot solve within an hour is classified as a
hard instance. Easy instances are not considered in this paper. The
number of instances in each difficulty category is shown in Table 1.

The proposed algorithm, as well as the pure B&B algorithm
[16] and the LKH algorithm were applied to the medium and hard
instances in SOPLIB and TSPLIB. The results are shown in the next
subsections.

Table 1: Instance classification

Benchmark Total Easy Medium Hard
Suite Instances | Instances | Instances | Instances
SOPLIB 48 13 21 14
TSPLIB 41 12 7 22

5.2 Medium-Difficulty Instances

In Table 2, the proposed algorithm is compared to each of the pure
B&B algorithm and the LKH algorithm on the medium-difficulty
instances in SOPLIB (the upper sub-table) and TSPLIB (the lower
sub-table). On SOPLIB, the proposed algorithm runs faster than the
pure B&B algorithm on 8 instances and at the same speed on 13
instances. On those 13 instances, the solution times are not exactly
the same, but they are within random variation. Running a parallel
algorithm multiple times on the same instance does not produce
exactly the same result each time. The results reported here are
based on repeating each test three times and taking the median of
the three measurements. Random variation is discussed in greater
detail in our previous work [16].

In aggregate, the geometric-mean speedup of the proposed al-
gorithm relative to the pure B&B algorithm on medium SOPLIB
instances is 1.19, i.e., the proposed algorithm runs 19% faster, on
average, on these instances. The maximum speedup on any instance
is 2.79.

The results in Table 2 show that the proposed algorithm runs
faster than LKH on 16 SOPLIB instances and slower than LKH on 5
SOPLIB instances. LKH tends to perform well on smaller instances
and less-constrained instances. In this comparison, it is important to
take into account that the proposed algorithm is an exact algorithm
while LKH is a heuristic algorithm. An exact algorithm does not
only find an optimal solution, but it also proves the optimality of
that solution. So, it may spend a significant amount of time proving
optimality after finding an optimal solution.

The geometric-mean speedup of the proposed algorithm relative
to LKH on the medium SOPLIB instances is 10.17. The maximum
speedup on any instance is 356. However, there is an instance on
which the proposed algorithm runs 4 times slower than LKH.

Now, we discuss the comparison of the three algorithms on the
medium-difficulty TSPLIB instances. The proposed algorithm runs
faster than the pure B&B algorithm on 4 instances. In geometric
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mean, the proposed algorithm is 1.39 faster than pure B&B. In the
best case, it runs 3.60 faster on one instance. In the worst-case,
the proposed algorithm runs slightly slower on one instance. The
proposed algorithm may run slower than the pure B&B algorithm,
because the loss of resources from assigning a thread and a hard-
ware core to the LKH algorithm may over-weigh the benefit from
the better solutions found by LKH. The results in Table 2 show that
this is unlikely to happen. On the vast majority of the instances,
the proposed algorithm runs significantly faster than the pure B&B
algorithm.

The results show that LKH runs much faster that the proposed
algorithm on the medium TSPLIB instances. We noticed that LKH
runs very fast on smaller TSPLIB instances with light precedence
constraints.

Table 2: Comparison on medium-difficulty instances

SOPLIB relative to pure B&B relative to LKH
Faster instances 8 16
Equal-speed instances 13 0
Slower instances 0 5
Geo-mean speedup 1.19 10.17
Max speedup 2.79 356.18
Min speedup 1.00 0.24
TSPLIB relative to pure B&B relative to LKH
Faster instances 4 2
Equal-speed instances 3 0
Slower instances 0 5
Geo-mean speedup 1.39 0.08
Max speedup 3.60 4.36
Min speedup 0.94 0.0001

5.3 Hard Instances

In this subsection, we compare the proposed algorithm with the
the pure B&B algorithm and LKH on the hard instances. With a
time limit of 1 hour, the pure B&B algorithm finds the optimal
solutions to 8 out of 14 hard SOPLIB instances and 2 out of 22 hard
TSPLIB instances. The proposed algorithm optimally solves one
more SOPLIB instance within an hour. Since both the proposed
algorithm and the pure B&B algorithm time out on some hard
instances, the comparison in this section focuses on the quality of
the best solution (the final cost) computed by each algorithm. The
results are shown in Table 3.

On the hard SOPLIB instances, the proposed algorithm finds
better-cost solutions for 4 instances relative to pure B&B. Recall
that the pure B&B algorithm solves 8 hard instances optimally, and
thus the proposed algorithm cannot produce a better cost for these
8 instances. The proposed algorithm does not produce a worse cost
for any instance. The geometric-mean improvement in cost relative
to pure B&B is 4.49%. The maximum cost improvement on any
instance is 22.11%.

The proposed algorithm finds better-cost solutions for all 14 hard
SOPLIB instances relative to LKH. The geometric-mean improve-
ment in cost is 33.14%, and the maximum cost improvement on any
instance is 90.48%. These results show that the proposed algorithm
takes advantage of the shared good solution produced by LKH and
uses these solution to produce significantly better solutions.

It is noted that on the hard SOPLIB instances, the improvement
of the proposed algorithm relative to LKH is much greater than
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the improvement relative to pure B&B, while on the hard TSPLIB
instances, the opposite is true. This is attributed to the fact that the
pure B&B algorithm performs much better than LKH on SOPLIB
and much worse than LKH on TSPLIB. The combined algorithm
successfully captures the strengths of both algorithms and produces
significantly better overall results relative to any of them used
individually.

Table 3: Comparison on hard instances

SOPLIB relative to pure B&B relative to LKH
Instances with lower cost 4 14
Instances with equal cost 10 0
Instances with higher cost 0 0
Geo-mean cost improvement 4.49% 33.14%
Max cost improvement 22.11% 90.48%
Min cost improvement 0.00% 5.49%
Extra instances solved optimally 1 9
TSPLIB relative to pure B&B relative to LKH
Instances with lower cost 20 4
Instances with equal cost 2 18
Instances with higher cost 0 0
Geo-mean cost improvement 6.91% 0.16%
Max cost improvement 21.75% 2.46%
Min cost improvement 0.00% 0.00%
Extra instances solved optimally 0 0

6 CONCLUSIONS AND FUTURE WORK

In this paper, we propose a hybrid algorithm that combines a par-
allel B&B algorithm and the LKH heuristic to solve the SOP. Our
experimental evaluation using TSPLIB and SOPLIB shows that the
combined algorithm greatly improves both the execution time and
the quality of the solutions (the cost of the final solution) relative
to each individual algorithm.

In future work, we will continue to work on enhancing the
proposed algorithm to better utilize the shared best solution. In
particular, we will focus on improving the proposed algorithm’s
ability to prove optimality if an optimal solution is found by either
B&B or LKH.
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