
Orbital Support and Evolution of Flat Profiles of Bars (Shoulders)

Leandro Beraldo e Silva1,2 , Victor P. Debattista2 , Stuart Robert Anderson2 , Monica Valluri1 , Peter Erwin3 ,
Kathryne J. Daniel4,5 , and Nathan Deg6

1 Department of Astronomy, University of Michigan, 1085 S. University Avenue, Ann Arbor, MI 48109 USA; lberaldo@umich.edu, lberaldoesilva@gmail.com
2 Jeremiah Horrocks Institute, University of Central Lancashire, Preston PR1 2HE, UK

3Max Planck Institut für Extraterrestrische Physik, Giessenbachstrasse, D-85748 Garching, Germany
4 Department of Astronomy & Steward Observatory, University of Arizona, Tucson, AZ 85721, USA

5 Center for Computational Astrophysics, Flatiron Institute, New York, NY 10010, USA
6 Department of Physics, Engineering Physics, and Astronomy, Queen’s University, Kingston, ON, K7L 3N6, Canada

Received 2023 March 7; revised 2023 June 27; accepted 2023 July 13; published 2023 September 14

Abstract

Many barred galaxies exhibit upturns (shoulders) in their bar-major-axis density profile. Simulation studies have
suggested that shoulders are supported by looped x1 orbits, occur in growing bars, and can appear after bar
buckling. We investigate the orbital support and evolution of shoulders via frequency analyses of orbits in
simulations. We confirm that looped orbits are shoulder-supporting, and can remain so, to a lesser extent, after
being vertically thickened. We show that looped orbits appear at theresonance (Ωj− ΩP)/ΩR= 1/2 (analogous
to the classical inner Lindblad resonance, and here called ILR) with vertical-to-radial frequency ratios
1 Ωz/ΩR 3/2 (vertically warm orbits). Cool orbits at the ILR (those with Ωz/ΩR> 3/2) are vertically thin and
have no loops, contributing negligibly to shoulders. As bars slow and thicken, either secularly or by buckling, they
populate warm orbits at the ILR. Further thickening carries these orbits toward crossing the vertical ILR [vILR,
(Ωj− ΩP)/Ωz= 1/2], where they convert in-planemotion to vertical motion, become chaotic, kinematically
hotter, and less shoulder-supporting. Hence, persistent shoulders require bars to trap new stars, consistent with the
need for a growing bar. Since buckling speeds up trapping on warm orbits at the ILR, it can be followed by
shoulder formation, as seen in simulations. This sequence supports the recent observational finding that shoulders
likely precede the emergence of BP-bulges. The python module for the frequency analysis, naif, is made
available.

Unified Astronomy Thesaurus concepts: Galactic bar (2365); Galaxy dynamics (591); Orbits (1184); Galaxy bars
(2364); N-body simulations (1083)

1. Introduction

Stellar bars are present in ≈60%–70% of nearby spiral
galaxies (Eskridge et al. 2000; Menéndez-Delmestre et al.
2007; Sheth et al. 2008; Nair & Abraham 2010; Erwin 2018).
Barred galaxies have surface-brightness profiles along the bar-
major-axis, which are traditionally classified as either expo-
nential or as having, on top of an exponential profile, a nearly
flat part in the bar outskirts (on both sides)—hereafter the
“shoulders” (e.g., Elmegreen & Elmegreen 1985; de Carvalho
& da Costa 1987; Elmegreen et al. 1996; Prieto et al.
2001;Gadotti et al. 2007; but see Erwin et al. 2023 for an
updated classification scheme).
Elmegreen et al. (1996), Regan & Elmegreen (1997), and

Elmegreen et al. (2011) found that shoulders are generally
present in profiles of early-type barred spiral galaxies, while
late-type galaxies normally have bars with exponential profiles.
In a sample of 144 barred galaxies from the Spitzer Survey of
Stellar Structure in Galaxies (S4G; Sheth et al. 2010), Kim et al.
(2015) found that massive and bulge-dominated galaxies tend
to have flat bar profiles, while bulgeless galaxies tend to have
exponential profiles, in accordance with early predictions based
on N-body simulations (Combes & Elmegreen 1993). The same
trends were found by Kruk et al. (2018) in a sample of 3461

barred galaxies from SDSS, while Erwin et al. (2023) found
that the presence of shoulders is more strongly correlated with
stellar mass. Shoulders in the bar-major-axis profile have also
been observed in M31 (Athanassoula & Beaton 2006) and in
several simulation studies (e.g., Athanassoula & Misiriotis
2002; Bureau & Athanassoula 2005; Anderson et al. 2022,
hereafter Paper I).
Figure 1 shows examples of bar-major-axis profiles for the

galaxies NGC 3681 and NGC 4340 from S4G (Sheth et al.
2010) and for the simulation SD1 (described in Section 2) at
7 Gyr (dotted black/red) and at 10 Gyr (dashed–dotted blue/
orange). The bars are aligned with the x-axis and for the
simulation we select all star particles within |y|/abar< 0.145,
where abar is the bar length—see Section 2 for details. For the
observed galaxies, we show 1 pixel wide profiles along the bar-
major-axis from Spitzer 3.6 μm images. NGC 3681 has a pure-
exponential profile, while NGC 4340 and the model SD1 have
profiles with shoulders (red), as detected by Paper I.
The galaxy NGC 4340 was chosen as an example of a bar

profile with particularly pronounced shoulders, and these look
much more pronounced than the ones in the model SD1 at
7Gyr. The shoulder strength, estimated as the excess mass of
the shoulder over a purely exponential profile, normalized by
the total mass within the shoulder region, typically grows over
time, as shown in Paper I. In fact, we see that the shoulders of
SD1 get stronger at 10 Gyr (blue/orange dashed–dotted lines),
although its length (in units of abar) is approximately constant
and smaller than in the observed galaxy NGC 4340.
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In principle, profiles with shoulders might simply signal the
presence of a strong and long bar. However, exploring a diverse
set of simulations, Paper I found only a weak dependence on bar
strength or bar length, while Erwin et al. (2023) found no
evidence of such correlation in their observational sample.
Importantly, Paper I demonstrated that shoulders tend to be
present in galaxies with growing bars, although their results
suggest that this is a necessary but not a sufficient condition.
Furthermore, Paper I found that in secularly evolving (nonbuck-
ling) bars, once formed, shoulders tend to persist. On the other
hand, in bars that buckle, shoulders tend to appear right after the
buckling, and to be erased (at least temporarily) if a second
buckling happens. Finally, Paper I suggested that shoulders are
mostly supported by looped x1 orbits.

In this paper, we further investigate the shoulders in bar-
major-axis profiles of galaxies, focusing on their orbital support
and the time evolution of these orbits. The main questions we
aim to answer are: how and why do some bars develop
shoulders? Which orbits support the shoulders? Why do bars
need to grow in order to retain the shoulders once formed?
What is behind the role of buckling events in creating or
erasing shoulders?

We answer these questions by selecting particles from N-body
simulations, integrating their orbits in the “frozen” potentials of
different snapshots, and performing frequency analyses of these
orbits. The N-body simulations are described in Section 2. In
Section 3, we explain the procedures for orbit integration and
frequency analyses. The resulting frequency maps and stacked
density profiles for different orbital groups, as well as their time
evolution, are presented in Section 4. We demonstrate the
somewhat surprising result that, once shoulders have formed,
vertical resonances act as the main culprit for erasing them,
shedding light on the suggestion of Paper I that, in order for
shoulders to be present for long times, the bar needs to be
growing and trapping new stars. In Section 5 we discuss our
results, and the conclusions are summarized in Section 6.

2. Simulations

Here we describe the N-body simulations explored in this
paper. These simulations are chosen to represent a diverse

subset of the models analyzed in Paper I. Briefly, one model
(SD1, our fiducial model) has clear and persistent shoulders
appearing around 4Gyr; one model (SD1S) does not develop
shoulders; model HG1 is a fully self-consistent star-forming N-
body+SPH simulation with weak shoulders; and Model 4 has a
bar that buckles around 3.8 Gyr, developing persistent
shoulders after that. These simulations are described in detail
in Paper I, but we summarize them here—see Table 1.
Model SD1 is a pure N-body model, built using a modified

version of GALACTICS (Kuijken & Dubinski 1995; Widrow &
Dubinski 2005) that generates disks using a Sérsic surface
density profile:
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where Md is the disk mass, Rd is the scale length, n is the Sérsic
index, and Γ is the gamma function. The Sérsic disk has
Md= 5.74× 1010Me, Rd= 0.265 kpc, zd= 0.25 kpc and
n= 2.05. The model has a Hernquist dark matter (DM) halo,
defined with GALACTICS parameters σh= 550 km s−1,
Rh= 30 kpc, α= 1, and β= 4. It has 5× 106 DM particles and
4.4× 106 disk particles. In this, and in the other pure N-body
simulations described below, the softening length is ò= 50 pc
and ò= 100 pc for star and DM particles, respectively.
Model SD1S suppresses most secular bar growth by setting

the halo of model SD1 in full prograde rotation (Debattista &
Sellwood 2000; Long et al. 2014; Collier et al.2018). This
results in a large halo spin (λ; 0.091), rare in cosmological
simulations (Bullock et al. 2001). Our goal is to contrast this
model with its counterpart SD1 whose bar is growing, so we
are not concerned by its fully rotating halo being unrealistic.
HG1 is a star-forming simulation described in Cole et al.

(2014), Gardner et al. (2014), and Debattista et al. (2017). It
starts out with a gas corona but no stars; hence, the evolution is
totally self-consistent. It is evolved with the smooth particle
hydrodynamics code GASOLINE (Wadsley et al. 2004). The
simulation uses high resolution (ò= 50 pc for the gas, and gas
particles with initial mass 2.7× 104Me) and after being
evolved for 10 Gyr has ∼1.1× 107 stellar particles, and a
total stellar mass of ∼6.5× 1010Me. It uses the gas cooling,
star formation, and stellar feedback prescriptions of Stinson
et al. (2006). The DM halo consists of 5× 106 particles with
ò= 103 pc, where 4.5× 106 of them have mass 8.5× 104Me,
and 1.7× 106Me for the remainder.
Finally, Model 4 is a disk N-body model (no gas or star

formation)—see also Debattista et al. (2020). It is a baryon-
dominated disk Milky Way–like model, again set up using

Figure 1. Normalized observed bar-major-axis brightness profiles for the
Spitzer 3.6 μm band for NGC 3681 and NGC 4340, in arbitrary units (S4G;
Sheth et al. 2010). Also shown are the bar-major-axis surface density profiles
for simulation SD1 at 7 Gyr (dotted black) and at 10 Gyr (dashed–dotted blue)
—see Section 2 and Figure 3. NGC 3681 has a pure-exponential profile, while
NGC 4340 and model SD1 have shoulders (red and orange), as detected in
Paper I.

Table 1
Selection Times (ts), Bar Speed Parameter = R aCR bar, Bar Length abar,
Number of Selected Star Particles and Whether the Model Has Gas or a

Strongly Buckling Bar

Model ts  abar kpc N Gas? Buckling?

SD1 7 Gyr 1.99 6.58 106032 N N
SD1S 7 Gyr 1.31 3.78 46973 N N
HG1 8 Gyr 1.15 2.46 177426 Y N
4 5 Gyr 1.60 6.85 136488 N Y, 3.8 Gyr

Notes. Model SD1 and model 4 have reasonably strong shoulders. Model HG1
has weak shoulders, and SD1S has a barely evolving bar and no shoulders. The
simulation naming convention is the same as in Paper I.
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GALACTICS. It has a Navarro–Frenk–White DM halo (Navarro
et al. 1996), and an exponential disk with an isothermal vertical
profile. The disk has a central radial velocity dispersion of
128 km s−1, a disk scale radius of 2.4 kpc, and a scale height of
150 pc. It has 6× 106 particles in the disk and 4× 106 in
the halo.

All N-body models were evolved using PKDGRAV (Stadel
2001) for 10 Gyr. In what follows, we take model SD1 as our
fiducial model, because of its clear trends illustrating the main
results of this paper, although model HG1 may be more
realistic.

2.1. Simulation Global Properties

We use PYNBODY (Pontzen et al. 2013) to read, center, and
align the simulations such that, at each snapshot analyzed, the
bar is initially along the x-axis. We estimate the gravitational
potentials Φ and integrate orbits using AGAMA (Vasiliev 2019).
Smooth potentials due to star and gas particles (when present)
are separately modeled as triaxial distributions and estimated
with the “cylspline” potential type, while the halo contribution
is assumed to be axisymmetric and is estimated with the

“multipole” type. For each snapshot analyzed, we then estimate
the total potential.
We compute the bar length (radius) abar as the mean of the

cylindrical radius at which the amplitude of the m= 2 Fourier
moment of the (x, y)-plane surface density distribution reaches
half its maximum value after its peak, and the radius at which
the phase of the m= 2 component deviates from a constant by
more than 10°—see Paper I for further details. We fit a straight
line to the bar length as a function of time and use the fitted
function to represent abar at each snapshot. Both estimated and
fitted bar lengths are shown in the upper panel of Figure 2 as
thin and thick lines, respectively, and we see that a straight line
is a reasonable fit.
The bar pattern speeds ΩP are computed as the time

derivative of the phase angle of the m= 2 Fourier mode of star
particles, as done by Debattista & Sellwood (2000). We use 21
snapshots spaced by 5 Myr around the snapshots of interest.
We then fit a straight line to the bar phase angle as a function of
time in each of these time intervals, where the phase is assumed
to increase monotonically with time. The pattern speeds are
shown in Figure 2 (bottom panel) as functions of time. As often
observed in simulations (e.g., Hernquist & Weinberg 1992;
Debattista & Sellwood 1998; O’Neill & Dubinski 2003;
Athanassoula 2003), the bars slow down significantly over
the time span of the simulation—see also Fragkoudi et al.
(2021) for a recent study of cosmological simulations and
Hamilton et al. (2023) for a recent theoretical treatment.
The bar in the Model SD1 starts with a slightly higher ΩP in

comparison to Model 4, but the pattern speeds in both models
evolve to very similar, almost constant, values toward the end
of the simulations. The model HG1 has a very centrally
concentrated mass distribution, with a steep rotation curve in
the central parts. Thus it has a very fast bar, which decelerates
quickly without increasing in length significantly. However,
these differences do not seem to alter the general trends of the
shoulders we investigate.
Figure 3 shows edge-on (top row) and face-on (middle row)

views of the four models at the times when particles are
selected for orbit integration. The coordinates are normalized
by the respective bar lengths. Colors represent surface densities
in log-scale. The x–y (x–z) contours show nine (seven) equally
spaced percentiles, from the 85th–99th (84th–99th). The edge-
on view shows clear signs of a BP-bulge in all models,
although the “X” shape is weaker in models SD1S and HG1.
In the face-on view, we see the bars along the x-axis, and

hints of density excess at their outskirts (except for SD1S, and
barely for HG1) shown by the contours. The shaded rectangles
represent the shoulder region, defined as |y|/abar< 0.145 and x-
edges detected with the algorithm of Paper I. Model SD1S has
no shoulders, and we define its shoulder region using the same
fractions of the bar length as those of SD1. In all models with
shoulders, these are detected in the transition region between
the thick and thin parts of the bar. The bottom row shows the
surface density along the stripe defined by |y|/abar< 0.145 in
each model, with red snippets showing where shoulders are
detected.
Table 1 shows the number of star particles selected in the

shoulder region, the bar length abar and bar speed parameter
= R aCR bar, where RCR is the corotation radius (Debattista

& Sellwood 2000) at the selection times, and whether the
model has gas or a strongly buckling bar (and when it buckles).

Figure 2. Evolution of bar lengths (top) and pattern speeds (bottom) for our
simulations. In the upper panel, thick lines show the linear fit to the bar length
evolution (thin), which provides abar used in our analysis. In all models, the
bars slow down (but less significantly for SD1S and Model 4), and grow (but
less significantly for models SD1S and HG1). For HG1, the values are shifted
down by 100 km s−1 kpc−1.
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Models SD1S and HG1 have fast bars ( 1.4 ) at these
snapshots, while SD1 and Model 4 have slow bars ( 1.4 ).

2.2. Epicyclic Frequencies, Resonance Names, and Selection
Region

Figure 4 shows the rotation curve Ω(R) (solid black), and the
curves Ω(R)− κ(R)/2 (dashed) and Ω(R)− κ(R)/4 (dotted),
where

( ) ( )W º
¶F
¶

R
R R

1
, 2

and

( ) ( )k º
¶ F
¶

+
¶F
¶

R
R R R

3
3

2

2

is the radial epicyclic frequency (Binney & Tremaine 2008),
evaluated along the bar-major-axis, at the times when star
particles are selected. The times are chosen when clear and stable
shoulders are present (except for SD1S, which does not have
shoulders), and which are far from buckling events (in Model 4).

The bar pattern speeds at these times are shown as thin red
lines, with the thick part representing the bar length. Gray
rectangles show the area within the mean shoulder x-edges, as
detected in Paper I, within which particles are selected. For
simulation SD1S, we adopt the same fraction of the bar length
as that of the shoulder extent of SD1 at the same time.

It is interesting to note that for all simulations with
shoulders, these start outside the outer Inner Lindblad radius
(where Ω− κ/2=ΩP). This is the region where the (main bar-
supporting) x1 orbits can start developing loops at their
ends (Contopoulos & Papayannopoulos 1980; Binney &
Tremaine 2008), and this is the first hint of the importance of

these orbits to shoulders, as we confirm below. On the other
hand, this might suggest that the frequency ratio (Ωj−
ΩP)/ΩR= 1/2, where Ωj and ΩR are the azimuthal and radial
frequencies for each orbit, is not relevant for the shoulders.
Conversely, Figure 4 shows that the shoulders typically appear
near the ultraharmonic radius (where Ω− κ/4=ΩP),
which might suggest an important role of the resonance
(Ωj− ΩP)/ΩR= 1/4. However, our frequency analysis
(Section 4) reveals a fundamental role for the resonance
(Ωj− ΩP)/ΩR= 1/2 in supporting the shoulders, and no
important role for the resonance (Ωj− ΩP)/ΩR= 1/4.
The resonance (Ωj− ΩP)/ΩR= 1/2 is the analog of the

classical inner Lindblad resonance (ILR), but applies to orbits of
arbitrary eccentricity. Keeping in mind that resonances are
defined in the space of frequencies (rather than physical space), in
this paper we will use actual frequency ratios to define the main
resonances. For instance, the resonance (Ωj− ΩP)/ΩR= 1/2
will be called the ILR, and the resonance (Ωj− ΩP)/ΩR= 1/4
will be called ultraharmonic resonance (UHR). When identifying
the approximate locations of these resonances, based on the
epicyclic frequencies, we will refer to their radii, e.g., the inner
Lindblad radius and the ultraharmonic radius—see Athanassoula
(2003) for a discussion on the pros and cons of different ILR
definitions.
With the bar aligned with the x-axis, we select star particles

within |y|/abar< 0.145 and in the x-intervals where shoulders
are identified (with no cut in z)—see Figures 3 and 4. Since the
detected shoulders are not exactly symmetric around x= 0, we
define the “shoulder region” averaging their edges on the x< 0
and x> 0 sides. This selection is convenient for identifying
orbits supporting the shoulder, but also because, being in the
bar outskirts, this region is in the transition to the disk, and
particles supporting both structures are selected. Table 1 shows
the total number of star particles selected in each model.

Figure 3. Edge-on (top row) and face-on (middle row) normalized surface density maps for the four simulations at the selection times. Shaded rectangles show the
shoulder regions |y|/abar < 0.145 and x-edges identified in Paper I (except for SD1S, which does not have detected shoulders), where particles are selected. The
bottom row shows the surface density along the stripe |y|/abar < 0.145, with the red snippets showing the shoulders (where detected).

4

The Astrophysical Journal, 955:38 (25pp), 2023 September 20 Beraldo e Silva et al.



Figure 5 illustrates the selection (shoulder) region in terms of
the effective potential in the rotating frame,

( )F = F - W x
1

2
, 4eff P

2 2

evaluated along the bar-major-axis x. The points show the
Jacobi integral

( )= - WE E L , 5zJ P

which is conserved in the frame rotating with angular speed
ΩP, where E is the energy in the inertial frame and Lz is the
angular momentum. These points are color-coded by the
eccentricity ecc≡ (rapo− rper)/(rapo+ rper), where rapo and rper
are the apo- and pericenter radii. These quantities are calculated
after the orbit integration explained in Section 3.1. The
horizontal lines show the effective potential evaluated at the
corotation radius, RRC (solid thin), at the ultraharmonic radius
(dotted), and at the outer inner Lindblad radius, RILR (dashed).
In agreement with Figure 4, the selected particles have
EJ> Φeff(RILR). We note that for the simulations with
shoulders, the most bound orbits have high eccentricities (thus
small rper) and these orbits extend right up to the ultraharmonic
radius. Additionally, there are orbits with EJ> Φeff(RCR) and
reasonably large eccentricities, which can visit both the disk
and the bar regions—see Section 4.1.3.

3. Orbits

The coordinates of particles selected at each snapshot set the
initial conditions for orbit integration in the frozen potential
rotating with the corresponding pattern speed (see Athanassoula
2013). This means that in the rotating frame the potential is static
for the whole integration time. We then estimate the frequencies
of motion in the three directions (as detailed below), producing a
frequency map for each snapshot analyzed.

3.1. Orbit Integration

For particles selected at a time ts, we integrate orbits in the
frozen potentials of five snapshots, [ts− 2, ts− 1, ts, ts+ 1,
ts+ 2] Gyr, with a relative error tolerance of 10−15 for each
coordinate, which is the best we could achieve for all particles
at all snapshots. When plotting orbits, we use coordinates in the
bar rotating frame, but the frequency analysis uses coordinates
in the inertial frame, as detailed below.
We integrate orbits for a (pseudo)time of 5 Gyr (storing 105

points per orbit), which is a good compromise between two
limiting time scales: a lower limit of, at least, tens of orbital
periods for precise frequency estimates (Valluri & Merritt
1998), and an upper limit given by the predictability horizon
for chaotic orbits with finite precision integration (e.g.,
Roy 1991). Note that this is not the real time of the simulation,
but a parameter in the determination of instantaneous orbital
properties in the frozen potential. This integration time
represents at least 20× Tcirc(E), where Tcirc(E) is the period

Figure 4. Rotation curves Ω(R) (solid black), Ω(R) − κ(R)/2 (dashed), and Ω(R) − κ(R)/4 (dotted) for the different simulations at the time when star particles are
selected. Gray areas show the average radial interval where shoulders are detected (SD1S has no shoulders, and we define this region using the same fractions of the
bar length as those of SD1), within which we select particles in the simulations. Horizontal red lines show the bar pattern speeds, with the thick part representing the
bar lengths, at the respective times. Model SD1 and Model 4 have slow bars ( 1.4 ), while models SD1S and HG1 have fast bars. The shoulder region is around
the ultraharmonic radius where Ω − κ/4 = ΩP.
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of a circular orbit with energy E, for almost all particles, and
this is typically the case for all selections. Furthermore, among
the cylindrical coordinates (R, j, z), the azimuthal period is
typically the longest, so the integration time is also large
enough for the other coordinates.

3.2. Frequency Analysis

We employ the Numerical Analysis of Fundamental
Frequencies (NAFF) algorithm originally proposed by Laskar
et al. (1992) and further developed by Valluri & Merritt (1998)
and Valluri et al. (2010) to extract the leading frequencies of
orbits. Regular orbits are quasiperiodic, so the time-series of
each coordinate q can be approximated by

( ) ( )å= w

=

q t a e , 6
k

k

k
i t

1

k
max

where ak is a complex amplitude, and ωk is an integer
combination of the fundamental frequencies Ω1, Ω2, and Ω3

(time-derivatives of the canonical angle variables). The power
spectrum of a discrete Fourier transform (DFT) of a regular
orbit has discrete peaks at frequencies ωk (spectral lines; see
Binney & Spergel 1982). Typically, although not always, the
frequency with the largest amplitude (hereafter the leading
frequency) corresponds to the fundamental frequency.

In nonintegrable potentials, quasiperiodicity cannot be
assumed a priori, which might hinder the extraction of
meaningful fundamental frequencies. However, most realistic
galactic potentials, although nonintegrable, still host a large

number of regular or weakly chaotic orbits, a picture (formally)
supported by the KAM theorems (Kolmogorov 1954;
Arnol’d 1963; Moser 1962). Additionally, in nonintegrable
potentials, resonance trapping significantly affects the system’s
dynamical evolution. Once the fundamental frequencies are
identified, resonances stand out in a plot showing ratios of the
frequencies, i.e., a frequency map (Laskar 1990, 1999), such as
the one shown in Figure 6.
We have written a new pure-python implementation of the

NAFF algorithm, which we dub naif,7 based on the
FORTRAN implementation of Valluri & Merritt (1998). A
summary of the algorithm is presented in Appendix A. Variants
of this method have been developed and applied in different
contexts (e.g., Binney & Spergel 1982; Carpintero &
Aguilar 1998; Price-Whelan et al. 2016; Valluri et al. 2016;
Beraldo e Silva et al. 2019; Dodd et al. 2022; Lucey et al.
2023). The analysis involves important decisions on imple-
mentation details, such as the coordinate system (e.g., Cartesian
or cylindrical), the use of real or complex time-series, the
reference frame, and the window function. In the study of bars
(e.g., Portail et al. 2015; Valluri et al. 2016; Gajda et al. 2016;
Parul et al. 2020; Smirnov et al. 2021; Sellwood &
Gerhard 2020), it is common to adopt Cartesian coordinates
(or mixed Cartesian and cylindrical) in the bar rotating frame,
where the frequency of oscillation along the major axis, Ωx, is
used as a proxy for the azimuthal frequency Ωj–ΩP.
Furthermore, spatial coordinates as (real) time-series are often

Figure 5. Effective potential along the bar-major-axis (thick black solid) and Jacobi integral (points) of the particles selected in the shoulder region from the different
simulations, at the selection time. Also shown are the effective potential values at L1 (corotation, thin solid), at the ultraharmonic radius (dotted), and outer inner
Lindblad radius (dashed).

7 The documentation and installation instructions can be accessed at http://
naif.readthedocs.io/en/latest/index.html.
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used. See Section 5.1 for a discussion on different choices and
techniques.

To get some guidance in these decisions, and to test our
algorithm, in Appendix B we compare our frequency estimates
with analytical expressions for orbits in the isochrone potential.
We compare the use of real and complex time-series
(Appendix A), and show that the radial frequency Ωr is
estimated with relative errors |δΩr/Ωr|≈ 10−6 in both cases.
For the azimuthal frequency Ωj, we show that the complex
time-series ∣ ∣ ( )j j= +jf L i2 cos sinz (Papaphilippou &
Laskar 1996, 1998), where Lz is the z-component of the
angular momentum, does offer advantages, compared with
fj= j: it improves the accuracy, and it does not require setting
sign(Ωj)= sign(Lz), which is the case for the real time-series.
After excluding the precessing frequency Ωr− Ωj, which is
the leading one for orbits with large apocenter, we estimate Ωj
with relative errors |δΩj/Ωj| 10−3 for almost all orbits.

All frequency estimates in this paper use the Hanning
window, i.e., p= 1 in Equation (A2). In the following analysis,
for an easier identification of important known resonances, we
use cylindrical coordinates (R, j, z) stored in the inertial frame
of the galaxy, rather than the bar rotating frame. This allows for

identification of the corotation resonance, which would require
an infinite integration time in the rotating frame—see
Appendix C. Based on the discussions above, we use as input
in the frequency analysis the complex time-series:

∣ ∣ ( )
( )

j j

= +

= +

= +
j

f R iv

f L i

f z iv

2 cos sin

, 7

R R

z

z z

where vR and vz are the radial and vertical velocities,
respectively. For the radial and vertical components, we take
the absolute value of the leading frequency, while we retain the
original sign for Ωj. Since our cuts do not select particles with
significantly large apocenter distances, we expect the number
of orbits with misidentified fundamental frequencies to be
negligible.

4. Results

4.1. Frequency Maps: Overview

Having demonstrated the accuracy of our numerical
procedure, we move on to the analysis of orbits in the frozen
potentials of our N-body simulations. Figure 6 shows the
frequency map obtained for star particles selected in the
shoulder region of model SD1 at 7 Gyr (see Figures 3 and 4).
The upper panel is color-coded by the normalized Jacobi
integral (see Figure 5)

( )
( ) ( )

( )- F
F - F

E

R

0

0
, 8J eff

eff CR eff

where Φeff and EJ are defined in Equations (4) and (5),
respectively, and RCR is the corotation radius. The bottom
panel is color-coded by the eccentricity, and numbered stars
indicate the example orbits presented in Figures 7, 9, and 10.
Given the typical shape of rotation curves (see Figure 4), we

can anticipate that orbits with high (Ωj− ΩP)/ΩR in Figure 6
are typical of the galaxy central regions. Moving down in
Figure 6, we go toward the end of the bar. For fast bars, this
happens near the corotation, at Ωj− ΩP= 0, and transitioning
to the disk we have Ωj− ΩP 0, corresponding to retrograde
stars in the bar frame. Evaluating the functions Ω(R) and κ(R),
Equations (2)–(3), for this model at the average outer shoulder
edge (the outermost region of our selection), we obtain
(Ω− ΩP)/κ≈ 0.25, in broad agreement with the lower values
(≈0.15) on the y-axis of Figure 6, and with the fact that the
shoulder outer edge in this model matches the ultraharmonic
radius—see Figure 5.
The ratio Ωz/ΩR is a proxy for the vertical thinness of the

orbit: it is significantly larger than unity for typical orbits in the
disk (in the solar neighborhood, Ωz/ΩR≈ 2; Binney &
Tremaine 2008), and can be Ωz/ΩR 1 in thicker or more
spheroidal regions. Thus, the upper-left corner in Figure 6 is
dominated by typical orbits that can visit the very central
regions of the galaxy, and orbits get more disk-like when we
move toward the lower-right corner, in agreement with the
eccentricity trends seen in the bottom panel. With the radial κ
(R), Equation (3), and vertical ( )n º ¶ F ¶R z2 2 epicyclic
frequencies evaluated at the outer shoulder edge, we get
ν/κ≈ 1.70, also in broad agreement with the rightmost limit of
Figure 6 (neglecting orbits at the ILR, which are well inside the

Figure 6. Frequency map for the shoulder region of model SD1 at 7 Gyr, with
dashed lines showing prominent resonances. We indicate the ILR, the vertical
ILR (vILR) and the 3D resonance ΩR + 4(Ωj − ΩP) − 2Ωz = 0. The upper
panel is color-coded by the normalized Jacobi integral, Equation (8). The
upper-left corner is dominated by typical orbits in the central region, and
moving toward the lower-right corner, orbits get more disk-like. The vILR
cloud is the high-eccentricity region around the vILR. Numbered stars are the
sample orbits shown in Figures 7, 9, and 10.
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bar region and thus less well approximated by the linear
expressions).

We identify the main regions in the frequency map that we
explore in detail below. The horizontal line at
(Ωj− ΩP)/ΩR= 1/2 characterizes the x1 orbits, which are
known to be the backbone orbits of bars (Contopoulos &
Grosbol 1989; Skokos et al. 2002; Athanassoula 2003). In
principle, x2 orbits, which are aligned with the bar minor-axis,
can also be present along this resonance. However, these orbits
are only expected within the inner Lindblad radius (or between
two inner Lindblad radii; see van Albada & Sanders 1982) and,
as Figure 4 shows, we select particles outside this region.

As already mentioned in Section 2.1, we refer to the frequency
ratio (Ωj− ΩP)/ΩR= 1/2 as the ILR (see, e.g., Athanassoula
2003; Weinberg & Katz 2007). We emphasize that this differs
from the classical definition of the ILR based on the epicyclic
frequencies, Equations (2)–(3), or on the existence of x2 orbits
(van Albada & Sanders 1982), but can be seen as their
generalizations, in the frequency space, to orbits of arbitrary
eccentricities. The UHR, (Ωj− ΩP)/ΩR= 1/4, is also well
populated in Figure 6. Also highlighted are the vertical ILR
(vILR), where (Ωj− ΩP)/Ωz= 1/2; the resonance Ωz/ΩR= 1;
and the 3D resonance ΩR+ 4(Ωj− ΩP)− 2Ωz= 0, denoted by
(1,4,-2).

We call the cloud of highly eccentric orbits that are to the left
and above the vILR the vILR cloud. We also note two other
diffuse populations more clearly identified in the bottom panel:
a large blue/green region with low eccentricities and permeated
by several resonances (the region of orbits 6 and 9), and an
orange stripe below the ILR, with 0.65 ecc 0.85 and
0.4 (Ωj− ΩP)/ΩR 0.45 (the region of orbit 8).
We now illustrate the orbital morphologies in these different

regions, noting that Figure 6 does not represent the whole bar
region, but only orbits that are selected at its outermost parts at
a particular time. The whole menu of orbits in bars has been
extensively studied in other works and is beyond the scope of
this paper (see, e.g., Athanassoula et al. 1983; Sparke &
Sellwood 1987; Combes et al. 1990; Patsis et al. 2002; Skokos
et al. 2002; Valluri et al. 2016; Patsis & Athanassoula 2019).
For a review, see Sellwood & Wilkinson (1993).

4.1.1. Orbital Shapes at the ILR

We first select orbits at the ILR by requiring
|(Ωj− ΩP)/ΩR− 1/2|< 0.0025. By inspection, this cut is a
good choice to ensure minimal contamination from neighbor-
ing orbits. Unless otherwise stated, we use the same tolerance
in selections of other resonances. Figure 6 suggests grouping
the orbits at the ILR into three groups, which we will refer to as
vertically cool, warm, and hot orbits at the ILR (in some
instances we will simply refer to them as cool, warm, and hot
orbits for conciseness). Vertically cool orbits are those at the
ILR and with Ωz/ΩR> 3/2. They are the least bound and are
generally less eccentric. A typical orbit from this group is
shown in the right column (first and third rows) of Figure 7. It
has an elliptical shape that is elongated in the direction of the
major axis, and it is vertically very thin (see third row).
Transitioning to the middle section of the ILR, the vertically

warm orbits have 1< Ωz/ΩR< 3/2. They are more bound
(lower EJ) and eccentric ( ecc≈ 0.85). The upper-middle panel
in Figure 7 shows a typical orbit in this region (orbit 2). These
orbits still avoid the center and have characteristic loops at their
ends, which have previously been identified in both analytical
(e.g., Contopoulos 1978; Papayannopoulos & Petrou 1983) and
numerical studies (e.g., Sparke & Sellwood 1987; Petersen
et al. 2021). In particular, Contopoulos (1988) found that these
orbits typically appear near the ultraharmonic radius, which
corresponds to our selection region—see Figure 4. We refer to
these as “looped” orbits.
Furthermore, for all simulations analyzed in this paper, we

find that this transition from elliptical-like to this looped shape
occurs at Ωz/ΩR≈ 3/2, suggesting some kind of influence of
vertical resonances. In fact, we note that the crossing of the ILR
with Ωz/ΩR= 3/2 is the convergence point of several 3D
resonances in Figure 6. In the Sections that follow, we
demonstrate the fundamental role of this looped morphology in
building the shoulders in the bar-major-axis density profiles.
Finally, the vertically hot orbits are those at the ILR and with

Ωz/ΩR< 1 (see Figure 6). They are slightly deeper in the
potential, and thus have slightly smaller rapo. Despite this, they
are significantly more eccentric ( ecc≈ 0.98; see also Figure 5),
because they can get very close to the center, as illustrated in
the upper-left panel in Figure 7 (orbit 1).
Figure 8 shows a normalized histogram of ( )rlog kpc10 per for

cool, warm, and hot orbits at the ILR of the model SD1 at
7 Gyr. It is clear that a significant fraction of the hot orbits can
get as close as 10–100 pc to the center. Moreover, Figure 7

Figure 7. First and third rows: three typical orbits at the ILR selected at
different Ωz/ΩR ranges from simulation SD1 at 7 Gyr. Orbits are color-coded
by time, with dots showing the initial and final locations. Numbered stars
identify these orbits in Figure 6. Second and fourth rows: stacked surface
density maps of all orbits at the ILR in the respective Ωz/ΩR ranges. The orbits
and stacked density maps are shown in the bar rotating frame, and the thick
gray lines show the bar size. Thin gray lines are the same contours shown in
Figure 3 for the total mass. The vertically warm orbits (1 < Ωz/ΩR < 3/2)
produce a marked density peak in the outskirts of the bar. A similar, but
diluted, shape is also produced by the hot orbits (Ωz/ΩR < 1).
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shows that typical orbits in this region do not have the coherent
shapes observed before, scattering more in the x–y plane (a
signature of their chaotic nature, as demonstrated in
Section 4.2). Finally, their vertical thickness is significantly
larger than in orbits 2 and 3.

The second and fourth rows in Figure 7 show the orbit-
averaged surface densities of orbits at the ILR in each of the
three groups in Ωz/ΩR. These plots are 2D histograms built by
stacking all points of a single orbit (a time average) and all
orbits (an ensemble average), normalized by the total number
of orbits in each region to emphasize characteristic shapes
rather than relative contributions of each group. We see that the
sample orbits are representative of the populations.

The thin gray lines in the second and fourth rows are the
same face-on and edge-on contours shown in Figure 3 for the
whole star-particle distribution. We anticipate the role of the
looped morphology of vertically warm orbits at the ILR to
produce the density excess in the bar outskirts. A similar
morphology is also present for the hot orbits at the ILR, but the
density excess appears more diluted—see Sections 4.4 and 4.6.
We also note the X-shape in the x–z plane of the orbit-averaged
density of the hot orbits, suggesting their contribution to the
BP-bulge visible in the contours.

4.1.2. Orbital Shapes at Vertical Resonances

We now select orbits at the three vertical resonances
highlighted in Figure 6 and mentioned before: the vILR, the
resonance Ωz/ΩR= 1, and the resonance (1, 4, –2). In this
selection we exclude the intersections with the ILR and orbits
above it by requiring (Ωj− ΩP)/ΩR− 1/2<−0.01. Typical
orbits (orbits 4, 5, and 6 in Figure 6) are shown in the first and
third rows of Figure 9, while the panels below show the stacked
density maps of all of the orbits selected along these
resonances. From right to left, we observe a similar trend of
orbits becoming more elongated, less regular, and vertically
thicker, with orbit 4 reaching all the way to the center. This
orbit, at the vILR, has the typical “banana” shape in the x–z
plane (Pfenniger & Friedli 1991). Overall, orbits along these
resonances imprint noticeable features in the x–z stacked

density maps, but not as distinctly concentrated in the x–y plane
as those shown in Figure 7.

4.1.3. Orbital Shapes at the vILR Cloud and Other Regions

Finally, we select orbits in three additional regions
previously mentioned: the vILR cloud (with sample orbit 7);
the stripe with intermediate eccentricities (with sample orbit 8),
requiring 0.65< ecc< 0.85 and not belonging to any of the
previously selected regions; and the low-eccentricity region
(with sample orbit 9), requiring ecc< 0.65 and not belonging
to any of the previously selected regions.
Figure 10 shows the sample orbits and the orbit-averaged

surface density maps for these regions. From right to left, i.e.,
in order of decreasing Ωz/ΩR, we note again the tendency of
orbits to become more elongated and less regular, finally
approaching the center and becoming significantly thicker.
Orbit 9 circulates a little bit farther out in the bar (in
comparison to orbits 6 and 3). Its orbital group has
(Ωj− ΩP)/ΩR 0.4, and these resemble disk orbits in the
vicinity of the bar. Orbit 8 has a peculiar shape, with a strong
resemblance to the looped orbits at the ILR (e.g., orbit 2), but
oscillating between this and a close-to resonant triangular
shape. Its orbital group has 0.4 (Ωj− ΩP)/ΩR 0.45, and
it produces an excess in the outskirts of the bar similar to that
produced by the looped orbits, but less prominent. These orbits
are located near the convergence of several 3D resonances
and near the ILR and, as will be demonstrated in Section 4.2,
are chaotic. These orbits have 0.4 (Ωj− ΩP)/ΩR 0.45,
similar to the location of a peak already observed by

Figure 8. Normalized histogram of ( )rlog kpc10 per for orbits along the ILR, in
the different Ωz/ΩR intervals, and for orbits at the vILR cloud—see the main
text. A large fraction of the vertically hot orbits at the ILR (and the vILR cloud
in general) can get as close as ∼10–100 pc from the center. The small
secondary peaks for cool and warm orbits at the ILR are due to cross-
contamination of these orbits near the edge Ωz/ΩR = 3/2.

Figure 9. Similar to Figure 7, but for typical orbits selected at three vertical
resonances (titles), and requiring (Ωj − ΩP)/ΩR < 1/2. The numbered stars
indicate these orbits in Figure 6.
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Martinez-Valpuesta et al. (2006) and Smirnov et al. (2021).
Some of these orbits (but not all) have EJ> Φeff(RRC) and
reasonably large eccentricities (see Figure 5), allowing them to
visit both the bar and the disk region, as those identified in N-
body simulations by Sparke & Sellwood (1987) and Pfenniger
& Friedli (1991). Figure 11 is similar to Figure 5, but only
shows points for the orbits in this group. We see that in models
SD1S and HG1, a large fraction of these orbits have
EJ> Φeff(RRC).
An interesting aspect of Figures 7, 9, and 10 is the similarity

of the orbit-averaged density maps in the left column of each
figure, especially regarding the X-shape in the x–z projection
supporting the BP-bulge (contours). All of these orbits
are within the vILR cloud, now specifically defined as
(Ωj− ΩP)/Ωz− 1/2>−0.01, i.e., including hot orbits at the
ILR. Figure 8 shows that approximately half of these orbits can
get as close as 10–100 pc to the galactic center.

Having shown the typical spatial distribution of orbits
selected in the shoulder region, we now compare the frequency
maps of the different simulations.

4.2. Frequency Maps: Comparing Simulations

Here we compare the frequency maps for orbits selected in
the shoulder regions for the four simulations (see Section 2), at
the snapshots where particles are selected (see Figure 4).
Figure 12 shows the results for the model SD1, with the same
data as in Figure 6, but with the upper panel color-coded by
zmax and the bottom panel by the frequency drift DWlog , where

( ) ( )
( )

( )DW =
W - W

W
=

T T

T
max , 9i

i i

i
1,2,3

2 1

1

and Ωi(T2) and Ωi(T1) are the frequencies estimated in two
separate halves of the time-series (Valluri et al. 2010). Since
regular orbits conserve frequencies, a large DWlog indicates a
chaotic orbit. The side-panels show histograms of the
frequency ratios color-coded by the mean zmax (or DWlog ) in
bins of width 0.0025.

Figures 13–15 show the equivalent frequency maps for the
models SD1S, HG1, and Model 4. The most noticeable feature
in the four models is the well-populated ILR, producing a very
prominent peak in the histogram to the right (note the
logarithmic scale). This strong prominence of the ILR could
be a selection effect since we chose particles that are
predominantly part of the bar. However, in a random selection
of 106 star particles in HG1 at 10 Gyr, we identify more than
half of the particles at the ILR; such a strong ILR has also been
observed in previous works (e.g., Athanassoula 2003). In our
selection, within ±0.0025 (±0.01) from the ILR, we identify
19.8% (22.2%) of the orbits for model SD1, 4.5% (4.5%) for
SD1S, 13.5% (18.3%) for HG1, and 15.1% (18.1%) for Model
4, meaning the ILR is well populated in all of the models,
except for model SD1S.

In the models SD1S and HG1, we identify the corotation
resonance at (Ωj− ΩP)/ΩR= 0. This is in agreement with
SD1S and HG1 having fast bars, and the selection region,
always in the outermost parts of the bar, being close to
corotation in these models–see Figure 4. We emphasize that
identifying the corotation is only possible when using
coordinates in the inertial frame—see Figure C1 for a
comparison with the bar frame. We also note, in all
simulations, big gaps around the corotation and ILR, testifying

to their influence: orbits that get too close may be trapped or
scattered by them.
Another remarkable feature in all models, except SD1S, is

the vILR cloud, with significantly large zmax and DWlog . In
HG1, which is the only model with gas, the zmax at the vILR
cloud is smaller than in the other models, although DWlog is
still comparably large. In a certain sense, the vILR clearly
separates the orbits that support the thin and thick parts of the
bar. The looped orbits at the (vertically warm) ILR mostly
support the thin part, and the orbits at the vILR cloud mostly
support the thick part—see also Figure 16.
Finally, we see a plethora of additional resonances,

particularly in HG1 (Figure 14). Orbits at the main resonances
(and away from any crossing resonances) tend to have smaller

DWlog , i.e., to be regular, as expected since these resonances
are stable. On the other hand, orbits in areas with multiple
strong resonances, such as the crossing of the ILR and the
vILR, or on the floor below the ILR (the group of orbit 8 in
Figure 6), tend to be chaotic, as is generally the case at
resonance crossings (Chirikov 1979). These results illustrate
the richness of the dynamics in the region between the bar and
the disk (see, e.g., Contopoulos 1981), and also the power and
precision of the frequency map technique we employ.

4.3. More on Morphologies along the ILR

We explore in greater depth the different morphologies for
orbits along the ILR. Figure 16 shows, for the different models,
the vertical excursion zmax (top panels) versus Ωz/ΩR for orbits
at the ILR (| (Ωj− ΩP)/ΩR− 1/2|< 0.01) at the selection

Figure 10. Similar to Figures 7–9, but for orbits in the vILR cloud and other
locations in the frequency map (see the main text). The numbered stars indicate
these orbits in Figure 6.
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times, color-coded by the eccentricity. All models (except
SD1S) show three distinct groups: the cool orbits
(Ωz/ΩR 3/2) have low zmax and low-eccentricity (blue
cloud)—the elliptical orbits in Section 4.1. The warm orbits
(1 Ωz/ΩR 3/2) have slightly larger zmax and relatively high
eccentricity (orange cloud)—the looped orbits. And the hot
orbits (Ωz/ΩR 1) have significantly larger zmax and eccen-
tricity (red cloud)—these are chaotic orbits within the vILR
cloud. We also see some hot orbits at the ILR (orbits with high
zmax) contaminating the Ωz/ΩR-interval of the warm orbits,
which is not surprising given the crowd of orbits around the
crossing of the ILR and the vILR—see, e.g., Figure 6.

As suggested by Figure 7 and demonstrated below, the loops
at the ends of warm orbits at the ILR play an important role in
producing the shoulders along the bar-major-axis density
profiles. As a consequence of these loops, these orbits spend
a considerable time in retrograde motion in the rotating frame
of the bar. The bottom panels of Figure 16 show the fraction of
time the orbits at the ILR are in retrograde motion, i.e., with
Lz< ΩPR

2. We see that this fraction is zero for all cool orbits,
except for some contamination of the warm orbits in model
HG1. In the range 1< Ωz/ΩR< 3/2 of the warm orbits, the
fraction of time in retrograde motion is typically high
(≈0.2–0.55), a signature of the loops developed by these
orbits. Finally, the vertically hot orbits also have large fractions
of time in retrograde motion, but slightly smaller than the warm
orbits.

Figure 16 demonstrates the common Ωz/ΩR-dependence of
the different morphologies seen in Section 4.1 for the models
with shoulders: vertically warm orbits at the ILR have loops
and spend a considerable time in retrograde motion; and hot
orbits at the ILR jump to large zmax and also spend a
considerable time in retrograde motion, but less than warm
orbits on average. The consequence of this for the shoulders is

discussed in Section 4.6. Moreover, in agreement with the
importance of the looped morphology to the shoulders, as
suggested in Paper I and confirmed in this work, we note that
this morphology is absent in the shoulder-less model SD1S.

4.4. The Orbital Support of Shoulders

Here we quantify the contribution of the main orbital groups
to the density profiles in the shoulder region. Since the ILR is
the main bar-supporting resonance, and inspired by the
morphological study in Sections 4.1 and 4.3, we investigate
three groups: the vertically cool and warm orbits at the ILR,
and the vILR cloud (which includes the hot orbits at the ILR).
Figure 17 (panel (a)) shows the N-body snapshot surface

density profile for SD1 at 7 Gyr, for particles in the shoulder
region. The density profile is calculated as the number of
particles in (x/abar)− bins of width 0.015 and within
|y|/abar< 0.145, divided by (δx/abar)(Δy/abar)N, where
Δy= 2 · 0.145, and N is the total number of selected particles.
Since these profiles are almost perfectly symmetric around
x= 0, for better visualization, we present them averaged
between the two sides x< 0 and x> 0. The gray areas show the
average shoulder region, where particles are selected. The black
solid curve shows the total density profile, and the colored solid
curves show the relative contribution of particles in the
different orbital groups, in the same colors as in the titles of
panels (b)–(d).
In this model, the contributions from particles at the vILR

cloud (red) and the warm ones at the ILR (green) are similarly
large. The black dashed curve shows the total density profile
excluding the contribution of the latter. Removing the warm
orbits significantly reduces the density profile in the shoulder
region, demonstrating their important role in the shoulders. The
dotted curve shows the profile after also subtracting particles at

Figure 11. Similar to Figure 5, but only showing EJ (points) for the particles selected in the group of orbit 8 in Figure 6. These orbits typically have
0.4  ( Ωj − ΩP)/ΩR  0.45 and in some simulations a significant fraction of these orbits have EJ > Φeff(RRC), i.e., can visit both the bar and the disk region, as
those identified by Sparke & Sellwood (1987) and Pfenniger & Friedli (1991).
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the vILR cloud, and we see that they mostly contribute to the
innermost parts of the shoulders. Together, these two groups
contribute so much to the density profile that their subtraction
produces significant deficits in it.

The picture provided by panel (a) in Figure 17 is limited
because it shows particles currently in the shoulder region. To
evaluate the global profile produced by these particles, one can
calculate the profile produced by them at a later time, allowing
the particles to phase-mix, as done in Paper I. However, in the
mean time, the bar pattern speed and the orbits themselves may
have evolved into different ones. For a global and instanta-
neous view of the density profiles, we stack the orbits
integrated for these particles in the frozen potential and plot
the surface density in the x–y plane in Figure 17, panels (b), (c),
and (d). To emphasize each group’s relative contribution rather
than the orbital shapes, we now normalize colors by the total
number of particles in the shoulder region.

The orbit-averaged density of the orbits at the vILR cloud
(panel (b)) resembles that of looped orbits, although it is more
diffuse in the x–y plane, which arises because of the chaotic
nature of orbits at the vILR cloud—see the bottom panels of
Figures 12 and 14, and 15. Furthermore, its orbit-averaged
density is less extended along the major axis, peaking outside
of the shoulder region. Panel (c) shows the orbit-averaged
density of the warm orbits at the ILR. We see that this profile is

more elongated and has a very pronounced peak in the shoulder
region. On the other hand, the cool orbits (panel (d)) do not
represent any visible excess in the shoulder region.
Panel (e) shows the density profiles of these stacked orbits

(for points within |y|/abar< 0.145) along the x-axis, analogous
to the left panel, and using the same color/style convention.
For a comparison with panel (a), these profiles are further
normalized by the number of points per orbit. The smaller
values, in comparison to panel (a), are due to the “dilution” of
each particle along its orbit out of the selection region.
In these orbit-averaged profiles, the warm orbits at the ILR

contribute much more significantly to the shoulder because: (i)
they are more elongated than those at the vILR cloud; (ii)
particles stay longer near apocenters; and (iii) the sharply
defined loops at their ends make them spend even more time
near apocenters. This confirms the important contribution of the
looped morphology of the warm orbits at the ILR to the
shoulders, but also demonstrates the importance of the vILR
cloud (compare the green and red curves in panels (a) and (e)).
Finally, the contribution of the cool orbits at the ILR is
negligible also in the orbit-averaged profiles.
Figures 18–20 show the corresponding profiles for models

SD1S, HG1, and Model 4, with the same color-normalization
as in Figure 17. Recall that model SD1S has no shoulders, and
that its “shoulder region” is set as the same fraction of the bar
length as in SD1 at the equivalent snapshot. The warm orbits at
the ILR (green) in this model do not develop loops, as already

Figure 12. Frequency map for orbits in the shoulder region of simulation SD1
at 7 Gyr. Smaller panels show histograms (in log-scale) with bin-widths of
0.0025. The upper panel is color-coded by the vertical excursion, and the
bottom panel is color-coded by the frequency drift (high values indicating
chaotic orbits). The ILR, ( Ωj − ΩP)/ΩR = 1/2, is the most prominent
resonance. Orbits in the vILR cloud, to the left and above the vILR
( Ωj − ΩP)/Ωz = 1/2, have significantly larger zmax and are strongly chaotic.

Figure 13. Similar to Figure 12, but for simulation SD1S (fast bar and no
detected shoulders). The most prominent resonances are the ILR, the
corotation, and Ωz/ΩR = 1. The ILR is not as strongly populated as in
Figure 12, and there is no vILR cloud. Orbits with Ωz/ΩR < 1 still have larger
zmax than the rest, but not anywhere as large as in Figure 12.
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shown in Figure 16, and these orbits’ contribution to the
density profile in the shoulder region is negligible, as is the
contribution from the vILR cloud. In fact, just a handful of
orbits populate the vILR cloud in this model (Figure 13).

Figure 19 shows analogous profiles for model HG1, which
has weak shoulders—see Paper I, Figure 11. In this case, the
contribution of the warm orbits is relatively small, and its
subtraction produces a profile (dashed) that is close to the total
one. On the other hand, in HG1 the vILR cloud orbits are very
numerous and produce an overall shape in the x–y plane that
resembles the looped morphology, contributing significantly to
the density in the shoulder region. Figure 20 shows the
equivalent profiles for Model 4. This model is intermediate
between SD1 and HG1 in terms of bar length and pattern speed
evolution (see Figure 2), and so are the relative contributions of
warm orbits at the ILR and of the vILR cloud. We also observe
significant contributions from the warm orbits and the vILR
cloud, with the latter producing a more diluted looped-like
shape in the x–y plane, in comparison with the warm orbits.

In summary, we have confirmed the important role of looped
orbits to the shoulders, as previously suggested in Paper I, and
have shown that this morphology is found in vertically warm
orbits at the ILR. We also demonstrate that, although individual
orbits in the vILR cloud are chaotic and do not have a well-
defined looped shape, they still produce an overall shape in the
x–y plane that can be seen as a diluted version of the shape
produced by the looped orbits. We note that the morphology of

vILR cloud orbits in SD1 is the most diffuse in the x–y plane,
and also has the largest zmax, among models with shoulders.
Conversely, the vILR cloud of HG1 produces the least diffuse
shape in the x–y plane, and the smallest zmax, while Model 4 is
intermediate between the two. This connection between zmax
and the looped shape is explored via the evolution of the
frequency maps presented in Sections 4.5 and 4.6.

4.5. Evolution of the Frequency Maps

Having discussed the orbital support for shoulders, and
having shown the frequency maps at the time of selection in
Section 4.2, we now show their time evolution, shedding light
on an important mechanism for the shoulders’ evolution. We
select the same particles from the model snapshots discussed
above and integrate their orbits at four additional snapshots,
with the corresponding frozen potentials and bar pattern
speeds, and using the particles’ coordinates at each snapshot
as initial conditions (for HG1, which has star formation, we
only use star particles born before the selection time). The
results are shown in Figures 21–24, with the selection times
shown in the central panels.
Figure 21 shows the evolution of the frequency maps for the

fiducial model SD1. The main trends, which also occur in the
other models with shoulders, are a global shift upward, i.e., to
higher (Ωj− ΩP)/ΩR, and to the left, i.e., to lower Ωz/ΩR.
One obvious reason for the shift upward is the decline in ΩP as
the bar slows down (see Figure 2), with its main resonances

Figure 14. Similar to Figure 12, but for model HG1, which has gas and a fast
bar. We see several well-populated resonances, particularly the ILR, the
corotation and the vertical resonances Ωz/ΩR = 1 and Ωz/ΩR = 3/2. The
vILR cloud is strongly populated with chaotic orbits and relatively high zmax,
but not as high as in the model SD1, Figure 12.

Figure 15. Similar to Figure 12, but for Model 4, whose bar buckles at 4 Gyr
and is slow at 5 Gyr. This figure is similar to that of model SD1, with zmax

values in the vILR cloud intermediate between those in SD1 and HG1,
Figures 12 and 14.
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sweeping the disk outward and trapping new particles. Once
trapped by the strong ILR, the orbits tend not to shift any
longer upward in the frequency maps.

The ratio Ωz/ΩR is a proxy for the vertical thinness of the
orbit (Section 4.1). Loosely speaking, the net shift to the left in
the frequency maps indicates evolution to thicker orbits, which
is confirmed by their large zmax (colors). While the thickness
grows gradually for decreasing Ωz/ΩR, the vertical motion is
amplified when orbits reach the vertical resonance Ωz/ΩR= 1,
and a more dramatic amplification happens at the vILR. This is
particularly important near the crossing point of these two
resonances and the ILR. While large vertical excitation by the
vILR for orbits close to the ILR [(Ωj− ΩP)/ΩR= 1/2] has
been predicted by Binney (1981) and confirmed by, e.g.,

Figure 16. Top: vertical excursion vs. Ωz/ΩR for particles selected in the shoulder region and at the ILR for all models. Bottom: the fraction of time spent in
retrograde motion (in the rotating frame). The horizontal dashed line is at 0.5. The different morphologies identified in Section 4.1 are clearly seen here (except for
SD1S): cool orbits at the ILR have low zmax, low eccentricity, and are almost exclusively prograde; warm orbits at the ILR have slightly larger zmax, relatively high
eccentricity, and spend a significant time in retrograde motion (a symptom of the strong loops at their ends); hot orbits at the ILR have significantly larger zmax and
eccentricity, and moderate fractional time in retrograde motion. The looped morphology is not detected in the shoulder-less model SD1S. We also note the overall
lower zmax for the SPH model HG1, in comparison to models SD1 and Model 4.

Figure 17. Surface density of particles in the shoulder region (gray shaded areas)
of model SD1 at 7 Gyr, with coordinates normalized by the bar length at 7 Gyr.
Panel (a): instantaneous density profile along the major axis (|y|/abar < 0.145) in
the simulation. The solid black curve shows the total profile, and colored curves
show contributions from the groups in panels (b)–(d) (see the main text). The
dashed curve is the total profile after subtracting the warm orbits at the ILR
(1 < Ωz/ΩR < 3/2), and the dotted one results from also subtracting orbits at the
vILR cloud. Panels (b), (c), and (d) show the 2D orbit-averaged maps for the
respective orbital groups, with colors normalized by the total number of particles
in the shoulders. Panel (e) shows the 1D density profile, similar to panel (a), but
for the orbits, and restricting to |y|/abar < 0.145. In this panel, the large
contribution of warm orbits to the profile in the shoulder region becomes more
evident, with a smaller but considerable contribution from the vILR cloud. The
contribution from the cool orbits (blue) is negligible.

Figure 18. As in Figure 17, but for model SD1S, with no detected shoulders. In
this case, warm orbits at the ILR do not have loops, and their contribution to
the density profile (solid green) is much smaller than in the model SD1,
Figure 17.
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Pfenniger & Friedli (1991), Figure 21 demonstrates this in a
particularly transparent way. A comparison with Figure 12 also
suggests that, once orbits cross the vILR, their quasiperiodicity
is destroyed, in agreement with Valluri et al. (2016), who found
that “banana” orbits are commonly chaotic—see also Manos
et al. (2022).

Note that Figure 21 shows the evolution of a fixed set of
particles selected in the shoulders at 7 Gyr, instead of the
evolution of the shoulders themselves. In particular, starting
from ≈4 Gyr, this simulation persistently manifests shoulders
that move outward following the bar growth—see Figure 8 of
Paper I.

Figure 22 shows the frequency map evolution for the model
SD1S. In this case, a small overall shift upward and to the left

is barely noticeable, in agreement with the very slow bar
evolution in this simulation (Figure 2). We also note a
significant increase in zmax for orbits crossing to Ωz/ΩR< 1,
but the vILR seems relevant only very close to the crossing
point with the ILR in this model, and there is no vILR cloud.
For HG1, the evolution of the frequency map is shown in

Figure 23. Once more, we note a shift upward and to the left. In
this case, the resonance Ωz/ΩR= 1 also seems more effective in
producing large vertical excursions. In the vILR cloud, zmax is
not as significantly amplified as in the model SD1 (Figure 21).
However, the vILR cloud is more populated in this model.
Finally, Figure 24 shows the frequency map evolution for

Model 4. The bar in this model buckles slightly before 4 Gyr,
and shoulders are observed right after that—see Section 2. The
abrupt shift to lower Ωz/ΩR from 3 to 4 Gyr is a consequence
of this buckling, which vertically thickens the bar region
significantly. This interpretation and the frequency map at
4 Gyr itself must be considered with caution, since this is too
close to the buckling, and the gravitational potential may lack
the triaxial symmetry we assume in order to estimate it. On the
other hand, the main features in the frequency map at 4 Gyr are
still observed at 5 Gyr, by which point the potential is more
symmetric, and therefore our fit is more reliable, with the same
trend of a shift upward and to the left. This suggests that the
frequencies at 4 Gyr are reasonably accurate, despite the
disturbance from the buckling. In this model, the strong role
of the vILR in exciting vertical motion is again observed,
producing a well-populated vILR cloud with high zmax.

4.6. Evolution of Shoulder-supporting Orbits

In Section 4.5 we showed that orbits selected in the shoulder
region were either already trapped by the ILR at previous
snapshots or previously had smaller (Ωj− ΩP)/ΩR, with the
latter evolving toward larger (Ωj− ΩP)/ΩR, until possibly
being trapped by the ILR. The orbits also evolve toward
smaller Ωz/ΩR, until possibly crossing the vILR, thereby being
excited to high zmax and becoming chaotic (e.g., Figure 12). In
Section 4.4 we demonstrated the important role of vertically
warm orbits at the ILR, and of the vILR cloud, in building the
shoulders. We now analyze the morphological evolution of
these warm orbits.
Figure 25 shows, for the model SD1, the orbit-averaged

surface density maps at different times for the same star
particles selected to be warm orbits at the ILR at 7 Gyr, with the
central column representing the selection time. The upper
(middle) row shows the maps in the x–y (x–z) plane, with
coordinates normalized by the bar length at the selection time.
Here again, colors are normalized by the total number of star
particles in the shoulder region. The shaded areas show the
normalized shoulder region at the selection time. The bottom
panels show the same orbits in frequency maps.
The upper row shows that the warm orbits at the ILR at 7 Gyr

mostly come from less elongated orbits, which gradually become
more elongated, until being trapped by the ILR. A fraction of
these orbits had Ωz/ΩR> 3/2 before the selection time, and
either before or after being trapped by the ILR. Before they cross
the vILR (t< 7 Gyr), these trends are accompanied by negligible
evolution in the x–z plane. Once they cross the vILR (7–8 Gyr),
these orbits occupy the whole vILR cloud region, with large
zmax. This is accompanied by a dissolution of the density excess
in the x–y plane. Additionally, the orbits start to shrink along the
major axis, and become confined to the inner parts at 9 Gyr, no

Figure 19. As in Figure 17, but for model HG1. The contribution from warm
orbits at the ILR (solid green) to the density profile is much smaller than in
SD1. However, in this case the number orbits at the vILR cloud is much larger,
and they produce an orbit-averaged density in the x–y that resembles the one
produced by looped orbits.

Figure 20. As in Figure 17, but for Model 4. The contributions from warm
orbits at the ILR (green) and the vILR cloud (red) are comparable, and a
looped-like morphology is produced by both groups, as in the model HG1,
Figure 19.
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longer falling in the original (7 Gyr) shoulder region. This is
closely connected to the abrupt change in the x–z plane from 7 to
8 Gyr. As shown in Figure 12, this is associated with the chaotic
nature of the orbits in the vILR cloud, which dilutes the density
distribution in the x–y plane and weakens their contribution to
the shoulders. But perhaps most importantly, we see that, to the

extent that the vILR increases the vertical excursion, it decreases
the in-plane amplitude, converting in-plane motion to vertical
motion, like a pole vaulter.
For completeness, Figure 26 shows the corresponding plot for

model SD1S. However, since the bar barely evolves in this
model (see Figure 2), we see no significant evolution in this plot.

Figure 22. Similar to Figure 21, but for model SD1S. In this case, we do not observe a significant time evolution of the frequency map, in agreement with the very
mild evolution of the bar parameters—see Figure 2.

Figure 23. Similar to Figure 21, but for model HG1. We observe the same trends as in model SD1, i.e., a net shift upward and to the left. Orbits crossing the vertical
resonances Ωz/ΩR = 1 and the vILR have their vertical motion significantly amplified.

Figure 24. Similar to Figure 21, but for Model 4. In addition to the same trends observed for SD1, we note the abrupt shift from 3 to 4 Gyr toward smaller Ωz/ΩR.
This is produced by the buckling bar, slightly before 4 Gyr, and after which shoulders are detected in the model.

Figure 21. Time evolution of the frequency map for the same set of star particles selected at 7 Gyr in the shoulder region of model SD1. Points are color-coded by the
vertical excursion zmax. We see an overall shift upward in this plot mainly due to the bar slowing down, i.e., decreasing ΩP, and to the left, with orbits becoming
vertically thicker over time. Orbits crossing the vILR from right to left have vertical motion dramatically amplified.
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Figure 27 shows a corresponding plot for the model HG1,
where we observe the same trends. However, in HG1, the vILR
is less vigorous in exciting vertical motion and, accordingly,
the orbit-averaged density in the x–y plane is less disturbed for
particles crossing the vILR to the vILR cloud. Figure 28 shows
the equivalent plots for Model 4, and we see the same
connection between the dilution of the density excess in the x–y
plane and the increase in the vertical motion after the orbits
cross the vILR, populating the vILR cloud.

These results demonstrate the role of the vILR in perturbing
the shoulder-supporting orbits: once these orbits cross this
resonance, their in-plane motion is converted to vertical motion
and they become chaotic, contributing to diluting the shoulders.

5. Discussion

5.1. Comparison with Different Techniques

We have performed frequency analyses for orbits integrated
in frozen potentials of barred galaxy simulations. Frequency
analysis of the coordinates in ongoing N-body simulations
(without introducing frozen potentials) has also been proven
possible (e.g., Ceverino & Klypin 2007; Gajda et al. 2016;
Parul et al. 2020; Smirnov et al. 2021). While this has the
apparent advantage of tracking the orbital evolution in a more
self-consistent manner, the short time-series (typically ≈1 Gyr),
the unavoidable changes in the potential in the considered time
interval, and all sources of noise in N-body potentials introduce

uncertainties in the estimated frequencies. On the other hand,
orbit integration in frozen potentials provides instantaneous
orbital properties, and it allows for the use of densely sampled
time-series (allowing investigation of higher frequencies), with
the narrowness of the main resonances in the frequency maps
testifying to the high accuracy of our procedure.
The frequency analysis involves the choice of the coordinate

system, the reference frame, and the use of real or complex
time-series. Regarding the last point, Hunter (2002), using
Cartesian coordinates for a few orbits, reported no improve-
ments in the accuracy of estimated frequencies when using
complex time-series. Here, we chose cylindrical coordinates for
their easier interpretation, given the approximate symmetries of
the potential, and complex time-series. In particular, we use the
complex Poincaré polar coordinates for the azimuthal angle.
Difficulties in estimating the azimuthal frequency Ωj have

been reported in several works (e.g., Athanassoula 2002, 2003;
Ceverino & Klypin 2007), but often not in explicit terms. In
Appendix B, exploring the isochrone model, we show how to
overcome these difficulties, demonstrating that the use of the
complex Poincaré polar coordinates improves the accuracy of
the azimuthal frequency and facilitates its extraction. The
accuracy of estimated frequencies in more generic potentials
with (semi)analytic expressions for the fundamental frequen-
cies deserves further investigation.
Unlike the common practice of performing frequency

analysis in the rotating frame of the bar, we opted to store

Figure 25. Evolution of the orbit-averaged density maps in the x–y (top) and x–z planes (middle) for star particles selected to be on warm orbits at the ILR at 7 Gyr in
model SD1. The coordinates are normalized by the bar length at the selection time. Vertical shaded gray areas show the shoulder region at the selection time. The
bottom row shows the same orbits in the frequency map. Those that at 7 Gyr have the loop-shape, and support the shoulder morphology, evolve from less elongated
orbits and typically away from smaller Ωz/ΩR. Once they cross the vILR, they spread in the vILR cloud, with much larger zmax, diluting the overdensities in the x–y
plane.
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the coordinates in the inertial frame of the galaxy. As
demonstrated in Appendix C, this choice allows for a precise
identification of the corotation resonance, which is not possible,
at least with the techniques employed in this work, if the
rotating frame of the bar is adopted.

5.2. Implications for the Evolution of Shoulder Profiles

Paper I demonstrated that shoulders are present in the density
profiles of growing bars. It also suggested the important
contribution of looped orbits to the shoulders, which is
confirmed with the detailed orbital study performed here
(Section 4.4). We now return to the questions that motivated
this work and that we posed in Section 1.

The evolution of the density profile is complex and must
depend to some extent on all orbital groups, but we draw a
simple picture that is based on the evolution and prevalence of
looped orbits along the ILR. In Section 4.4 we demonstrated
that the looped morphology in the x–y plane is very well
defined for vertically warm orbits at the ILR (but not in the
model SD1S, where orbits are not looped), while cool orbits at
the ILR are more elliptical and contribute negligibly to the
shoulders. Hot orbits at the ILR (and at the vILR cloud) are
chaotic and do not share the same looped morphology of warm
orbits, but overall still spend a considerable amount of time in
retrograde motion and produce a similar, more diluted, looped-
like shape in the x–y plane. Their contribution to the shoulders
depends on the strength of the vILR in exciting vertical motion.

Thus, in order for shoulders to emerge in the density profiles,
the ILR needs to trap a significant number of orbits as the bar

slows and its resonances sweep through the disk. Additionally,
a significant fraction of these orbits need to develop loops at
their ends, which typically happens in the warm orbits at the
ILR (1 Ωz/ΩR 3/2). Since orbits in the disk and in the
bar’s thinnest parts typically have Ωz/ΩR> 3/2, to support
shoulders these orbits need to decrease Ωz/ΩR, either before or
after being trapped by the ILR, which occurs when the orbits
thicken vertically. While the bar thickens, either via secular
processes or via buckling, the shoulder-supporting warm orbits
at the ILR can sooner or later be populated. This is compatible
with the findings of Paper I that shoulders can appear in either
buckling or nonbuckling bars and that, in buckling bars,
shoulders commonly appear just after a buckling event—see
their Figure 7.
Once shoulders have emerged in the density profile, their

supporting orbits can depart from the looped morphology in the
x–y plane if they move out of the range 1< Ωz/ΩR< 3/2. This
typically happens with further bar thickening and orbits at the
ILR crossing the vILR toward Ωz/ΩR 1—see Figures 25–28.
Once more, this thickening can happen either secularly or via a
secondary buckling. Thus, if the bar is not replenished with
looped orbits, the shoulders can eventually be erased. This
explains why Paper I noted several instances of sudden erasure
of shoulders after a secondary buckling. It is worth noting that
the newly vertically excited orbits will contribute to a thicker
potential, thus decreasing the ratio Ωz/ΩR of nearby orbits,
bringing them toward the vILR, in a positive feedback process.
Thus, the common thickening of orbits in the bar region

would make shoulders transient features, unless new orbits are
trapped at the ILR with the appropriate Ωz/ΩR range and

Figure 26. Similar to Figure 25, but for model SD1S. As the bar barely evolves in this model, the morphology of the warm orbits selected at 7 Gyr at ILR does not
change significantly.
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develop the looped morphology, a process that seems to
happen often for bars evolving secularly—see Figure 8 of
Paper I.

The fact that the looped morphology tends to appear in orbits
at the ILR and with 1 Ωz/ΩR 3/2 suggests some
connection with the vertical motion. This is intriguing since
those orbits were first found in 2D bars (Contopoulos 1988).
An interesting possibility is that this looped morphology might
be somehow triggered by vertical resonances—for instance,
comparing Figures 12–15, we see that the model SD1S, the
only one without looped orbits or shoulders, is particularly
unpopulated in the region near the crossing of the ILR and
Ωz/ΩR= 3/2.

5.3. Connection with Bulges

Investigating mechanisms for bar thickening, Sellwood &
Gerhard (2020) contrasted three scenarios: a bar that buckles,
one in which orbits are vertically excited by staying trapped for
significant times at the vILR (Quillen 2002), and another one in
which orbits cross the vILR, get vertically heated, and remain
that way after leaving the resonance (Quillen et al. 2014).
Having found evidence for the long-lasting trapping mech-
anism only in an artificially vertically symmetrized model,
Sellwood & Gerhard (2020) concluded that the third mech-
anism is probably more relevant in real galaxies without bar
buckling.

Our results, in particular, e.g., Figures 21 and 25 (bottom
row), confirm the rapid crossing of the vILR, as opposed to a
long trapping time, and the rapid vertical excitation with a

long-lasting X-morphology. It is worth mentioning that the
orbits at the vILR cloud, after crossing and being perturbed by
the vILR, can get very close to the galactic center (Figure 8),
possibly within the sphere of influence of a supermassive black
hole (SMBH). This can potentially represent an important
mechanism to persistently replenish the sphere of influence of
an SMBH with new stars. This possibility is even more
interesting if galactic bars can coevolve in harmony with black
holes, as recently demonstrated by Wheeler et al. (2023).
In Section 4, we showed that orbits crossing the vILR

populate what we call the vILR cloud, characterized by chaotic
orbits with large zmax and X-shapes in the x–z plane. This
morphology being produced by the vILR agrees with several
previous works (e.g., Pfenniger & Friedli 1991), where the
contribution of the “banana” orbits to BP-bulges has been
emphasized. On the other hand, Portail et al. (2015) found that
these orbits only contribute in the bulge’s outermost regions,
while orbits with Ωx/Ωz≈ 3/5 (“brezel” orbits) are more
relevant for the bulge as a whole (in their study, Ωx is the
frequency of oscillation about the bar-major-axis and can be seen
as a proxy for our Ωj− ΩP)—see also Abbott et al. (2017).
Sections 4.3 and 4.6 demonstrate that after crossing the

vILR, the banana orbits can also retain, to a certain extent, the
loops near apocenters inherited from warm orbits at the ILR. In
fact, these loops have already been found in orbits supporting
either the thin (Patsis & Katsanikas 2014) or the thick (Combes
et al. 1990) parts of bars.
Altogether, our results suggest that: (i) the banana orbits can

simultaneously contribute to the outskirts of the bulge peanut

Figure 27. Similar to Figure 25, but for model HG1. For orbits crossing the vILR, the amplification of zmax and the dilution of the overdensities in the x–y plane are
smaller than in SD1, but we still observe the vertical heating by the vILR.
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shape (in the x–z plane) and, depending on the strength of the
vertical perturbation, to the shoulders (in the x–y plane)—see,
e.g., Figure 27 (9 Gyr); (ii) in the study of the orbital support of
box-peanut (BP) bulges, the importance of the vILR may be
underestimated if we are restricted to orbits trapped at it and
exclude the vILR cloud, since the latter is populated by orbits
crossing the vILR and acquiring a long-term BP-morphology.

In a detailed observational study with the S4G survey (Sheth
et al. 2010), Erwin et al. (2023) found some cases of galaxies
with shoulders but no BP-bulge, and no clear case of bars with
BP-bulges and no shoulders, suggesting that shoulders appear
before BP-bulges. Given the role of the vILR in producing BP-
bulge-supporting orbits and the evolution of shoulder-support-
ing orbits along the ILR, from the vertically warm ones to the
vILR cloud after crossing the vILR, the suggestion of Erwin
et al. (2023) emerges as a natural outcome.

The presence of shoulders has been found to correlate with
massive (classical) bulges, or centrally concentrated halos (Kim
et al. 2015; Kruk et al. 2018; Athanassoula & Misiriotis 2002).
Furthermore, Athanassoula (1992) found that looped orbits
tend to appear in galaxies with massive bulges (or high central
concentration, in general), and with more elongated and slowly
rotating bars (looped orbits in a slow bar have also been
detected by Chaves-Velasquez et al. 2017). This is in
agreement with the important contribution of looped orbits to
shoulders, suggested by Paper I and confirmed here. Addition-
ally, among our three models with shoulders, two (SD1 and
Model 4) have slow bars and one (HG1, with weak shoulders)
has a fast bar, suggesting that shoulders are not restricted to
slow bars, but can also be present, with varying strength, in fast

bars. All models have clear signs of BP-bulges, although they
are weaker for models SD1S and HG1, which suggests that the
correlation shoulder-bulge is not restricted to either BP- or
classical bulges.
A possible interpretation of the shoulder-massive bulges

correlation might be that massive bulges induce thicker orbits
in their outskirts, facilitating occupation of the shoulder-
supporting warm orbits at the ILR, while bars in bulgeless
galaxies would tend to trap stars in thinner orbits, i.e., with
larger Ωz/ΩR such as the cool orbits at the ILR, with a
morphology that does not support shoulders—see Figure 7.
This line of thought would shift a massive bulge toward being
the cause for shoulders, which would be in contradiction with
the apparent precedence of shoulders with respect to BP-bulges
suggested by Erwin et al. (2023).
On the other hand, warm orbits at the ILR crossing the vILR

are vertically excited and change into chaotic orbits. As we
have shown, this is accompanied by these orbits shrinking in
the x–y plane and passing close to the center (see, e.g.,
Figure 17, panels (b) and (c)), overall increasing the density of
the central regions. This may explain the sudden increase in the
central surface density after buckling events observed in
simulated galaxies (Raha et al. 1991; Debattista et al. 2006),
since this brings orbits toward the vILR—see Figure 24.
Therefore, this mass transfer to the center may contribute to the
growth of massive bulges, which, instead of causing the
appearance of shoulders, would be the consequence of the
evolution of shoulder-supporting orbits toward the vILR.
Kim et al. (2015) suggested that shoulders are indicative of

dynamically evolved bars, which should be formed with

Figure 28. Similarly to Figure 25, but for Model 4. We see the same trends observed in the models SD1 and HG1, but with the abrupt change from 3 to 4 Gyr due to
the buckling bar.
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exponential profiles inherited from the disk. They also suggest
that this might explain the correlation with the galaxy’s stellar
mass and Hubble type, with more-massive early-type spirals
forming bars earlier. Although the eventual erasure of
shoulders found by Paper I complicates this narrative, this
would agree with the strong dependence of shoulders on stellar
mass found by Erwin et al. (2023). Our finding that the most
shoulder-supporting morphology appears in orbits at the ILR
with intermediate thickness (thus requiring a minimum
thickness) is also in line with shoulders being associated with
dynamically evolved bars. Additionally, the evolution of these
orbits toward vertically thicker orbits supporting bulges also
agrees with the suggestion of Erwin et al. (2023) that shoulders
seem to precede BP-bulges.

5.4. Shoulder Definition and Possible Observational
Implications

Our results show that the most relevant orbits to shoulders
are the looped ones at the vertically warm ILR. In this way, one
can expect shoulders to be restricted to the region where these
orbits are present. Similarly to Figure 5, in Figure 29 we show
the effective potential in the bar-major-axis, as well as the
approximate locations of the corotation, UHR, and the ILR. We
also show the Jacobi integral, but now restricting to warm
orbits at the ILR.

It is clear that these orbits are restricted to the region inside
the ultraharmonic radius. In Figure 5, we see that for the model
SD1, the outer edge of the shoulder approximately coincides
with the ultraharmonic radius. However, for the other
simulations, the shoulder outer edge (as detected in Paper I)
can be significantly outside this radius.

This observation is relevant for two reasons: on one hand,
this suggests that identifying the outer edge of the shoulders
based on a minimum of the curvature radius of the density
profile (as implemented in Paper I) might be overestimating the
shoulder extent, if this is to be identified with the region of
looped orbits at the ILR. If that is the case, our current selection
may be contaminated by a significant number of orbits that are
not associated with the shoulders. Thus, the contribution of the
looped orbits to shoulders we inferred in Section 4.4 represents
a lower bound to their true importance to shoulders. On the
other hand, if we can infer that the shoulders should end at the
ultraharmonic radius, this can potentially be translated
into constraints on the mass distribution and/or bar pattern
speed of galaxies where shoulders are detected, or even in the
Milky Way.

6. Summary

In this paper, we explored three pure N-body models and one
N-body+SPH model, which form bars self-consistently. Three
of these models, including the one with gas, develop shoulders
in the bar-major-axis density profile. Among these, one has a
bar that buckles. We select star particles in snapshots and
regions where shoulders are identified, and integrate their orbits
at different times in frozen potentials rotating with the
corresponding bar pattern speeds. We perform frequency
analysis of these orbits, using cylindrical coordinates in the
inertial frame and selecting the leading frequency, presenting
results in the frequency space (Ωj− ΩP)/ΩR versus Ωz/ΩR.
We evaluate the contribution of different orbital types to the
density in the shoulders region, and follow their evolution. Our
main conclusions are as follows:

Figure 29. Similar to Figure 5, but only showing EJ (points) for warm orbits at the ILR. These orbits are confined to within the UHr.
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1. We confirm the suggestion of Paper I of the importance
of orbits with loops at their ends (in the x–y plane) to the
shoulders in bar density profiles.

2. We show that this orbital shape typically happens for
orbits at the ILR [ (Ωj− ΩP)/ΩR= 1/2] and with
1 Ωz/ΩR 3/2 (vertically warm). Among the orbits
at the ILR, those with Ωz/ΩR 3/2 (cool orbits) have a
mildly elliptical shape and contribute negligibly to the
shoulders.

3. As the bar slows down, the main resonances sweep the
disk and, for a fixed set of particles, the ratio
(Ωj− ΩP)/ΩR increases, until they are trapped by the
ILR. While the bar thickens, the ratio Ωz/ΩR tends to
decrease, causing a significant number of orbits to cross
the vILR (Figures 21–24).

4. In agreement with Quillen et al. (2014) and Sellwood &
Gerhard (2020), we find that the vILR does not trap stars
for long periods of time. However, orbits crossing it are
permanently vertically excited, developing an X-shape in
the x–z plane—see also Wheeler et al. (2023).

5. Warm orbits at the ILR crossing the vILR toward
Ωz/ΩR 1 are vertically excited at the expense of in-
plane motion, become chaotic, and populate a region
around the vILR in the frequency map that we dub the
vILR cloud. In comparison to warm orbits at the ILR,
those at the vILR cloud are less extended along the x-axis
and produce a more diffuse net figure in the x–y plane
(Figures 25–28).

6. Orbits at the vILR cloud also contribute significantly to
shoulders, but the larger their vertical excursions, the less
shoulder-supporting they are.

7. As the bar thickens, the orbital support for shoulders can
increase with orbits at the ILR entering the range of warm
orbits, and potentially decrease once they move to
Ωz/ΩR 1 (where they cross the vILR). This explains
why shoulders can develop right after a buckling event
but can also be erased right after a second buckling (as
noted in Paper I), since these can suddenly either populate
or de-populate those orbits. This simple evolutionary
sequence supports the suggestion of Erwin et al. (2023)
that shoulders seem to appear before BP-bulges (with a
possible co-formation of shoulders and BP-bulges in
buckling bars).

8. An analysis with the isochrone model (Appendix B)
shows that for orbits with large apocenters, the leading
frequency in the azimuthal spectrum is the precession
one, instead of Ωj. This has possible implications for the
analysis of Milky Way halo stars and deserves further
investigation. Moreover, frequency estimates with the
time-series ∣ ∣ ( )j j= +jf L i2 cos sinz provide higher
precision (compared to fj= j) and facilitate its extraction
—see Figure B1.

In conclusion, bar thickening and vertical resonances can
dilute the shoulders in the bar-major-axis density profiles,
unless the bar keeps trapping new orbits in the appropriate
frequency ratios, with the looped morphology. This sheds light
on the conclusion of Paper I that long-term shoulders require a
growing bar. Our results help to build a coherent picture tying
together known analytical results with several recent observa-
tional and simulation-based results on the properties and
evolution of shoulders in the density profiles of bars.
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Appendix A
Frequency Analysis Algorithm

Here we present the algorithm used to extract frequencies of
orbits, which is essentially the same as NAFF, proposed by
Laskar et al. (1992) and further developed by Valluri & Merritt
(1998)—see also Price-Whelan et al. (2016). We refer the
reader to these papers for a complete description. We also
comment on some details and improvements implemented in
the python package used in this work, which we dub naif
(Beraldo e Silva & Valluri 2023)—the documentation is
available at http://naif.readthedocs.io/en/latest/index.html.
This preliminary version extracts peak frequencies very
accurately, as demonstrated in Appendix B, and will be
improved in the future with several tools for frequency
analysis.
Assume that an orbit is integrated for a total time T and let,

for simplicity of notation, the time variable be defined in the
symmetric interval −T/2� t� T/2. In practice, t is an array
with N elements tn, and we have a (real or complex) time-series
f (tn) associated with each coordinate. We start by performing a
windowed discrete Fourier transform
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is the window function, with Îp . In this work, we use
p= 1, but other values might improve the estimate (Laskar
1999; Hunter 2002).
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The spectrum is calculated at frequencies ωj= 2πj/T, and
the minimum frequency that can be probed is w p= T2min .
On the other hand, the maximum (Nyquist) frequency is
ΩNy=Ωj=N/2= Nπ/T. If we conservatively require ΩNy≈
103 Gyr−1, this requires N (103/π)(T/Gyr). For an orbit with
a period of circular motion Tcirc≈ 0.25 Gyr, integrated for
T≈ 20Tcirc≈ 5 Gyr (T≈ 40Tcirc≈ 10 Gyr), we have w »min

-1.25 Gyr 1 (w » -0.63 Gyrmin
1), and we need N 1500

(N 3000) points. Using N∼ 104 points is thus safe for most
applications.

A rough estimate of the leading frequency is the spectral line
with maximum amplitude |Fj|, wmax. Since the spectrum is
defined in the discrete set ωj= 2πj/T, this estimate’s precision
is limited by the resolution Δω= 2π/T. This estimate is then
refined by calculating the projection f(ω)= 〈f (t), e iω t〉 of the
time-series f (t) onto the “frequency vector” e iω t, where

( ) ( ) ( ) ( ) ( ) ( )ò cá ñ º
-

*f t g t
T

f t g t t t,
1

d . A3
T

T

p
2

2

The refined frequency is found by maximizing |f(ω)| around
wmax. The maximum is determined with the optimized Brent’s
algorithm, as implemented in scipy. If the maximum cannot be
identified in this first shot, a local maximum is identified via a
brute force search. The interval around wmax used in the
original NAFF implementation is w p T2max , but we have
found that the interval w p T4max is more appropriate to
guarantee that Brent’s algorithm will find the maximum, and
this is the interval used in naif. Having thus identified this
first leading frequency ω1, we calculate the complex amplitude
a1 associated with it, where

( ) ( )= á ña f t u, , A4k k

and = wu ek
i tk . If we want to extract additional frequencies, we

“subtract” this spectral line from the time-series, defining in
general

( ) ( ) ( )= --f t f t a e , A5k k k k1

where e1= u1, fk(t) is the time-series after extracting the kth
frequency ωk, and f0(t) is the original one. Here, ek denotes an
orthonormal basis, built from the ukʼs via a Gram-Schmidt
process:
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We then iterate through Equations (A1)–(A6) to extract as
many frequencies as desired.

Compared to the original NAFF algorithm, a small (but
relevant) improvement of naif is as follows: NAFF first applies
a DFT without windowing to look for the rough estimate wmax,
and then uses the window function χp(t) in the refinement step
when maximizing |f(ω)|. This different procedure to look for the
same frequency ends up changing the order of the highest
amplitudes in some cases. This is later corrected by sorting the
frequencies by amplitude and taking the leading one, but requires
extraction of some frequencies even if we are only interested in
the leading one. On the other hand, naif performs a windowed
DFT, Equation (A1), already in the first search for wmax, which
ends up always being the leading frequency. This removes the
need to extract additional frequencies if we are only interested in
the leading one.

Finally, naif provides easy access to the spectrum before
the extraction of each frequency and also to |f(ω)| around each
extracted frequency, which can be useful for detailed
investigations of individual orbits.

Appendix B
Numerical Frequencies for the Isochrone Model

We use AGAMA to generate a self-consistent sample of the
isochrone model and integrate each orbit for ≈100 azimuthal
periods. A self-consistent ensemble is not strictly necessary,
since we simply compare frequencies of orbits individually and
do not focus on their relative numbers. However, this
guarantees a broad phase-space region for investigation. Since
this is a spherical model, we only estimate the radial and
azimuthal frequencies, Ωr and Ωj, respectively (the transversal
frequency Ωϑ=±Ωj). For this model, we set GM= 1.
Figure B1 shows the relative errors of the estimated

frequencies for 103 orbits, in comparison to the analytic
expressions for the isochrone model (Binney & Tremaine
2008). Points are color-coded by the apocenter radii (in units of
the scale radius). The left column shows results obtained using
as input the real time-series

( )j
=
=j

f r

f , B1
r

Figure B1. Relative errors in the fundamental frequencies for 103 orbits in the
isochrone potential. Left column: real time-series, Equation (B1). Right
column: complex time-series, Equation (B2). The radial frequency (top row) is
estimated as the absolute value of the leading frequency. Real and complex
time-series give similar errors. For Ωj (middle row), the real time-series
requires setting sign( Ωj) = sign(Lz), while this is automatically set for the
complex time-series. Requiring Ωj > Ωr/2 (see the main text) and taking the
leading frequency, we have |δ Ωj/ Ωj|  10−3 (bottom row). The complex
time-series provides ≈10 × smaller errors for Ωj.
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and the right column shows results for the complex time-series
(Papaphilippou & Laskar 1996, 1998)

∣ ∣ ( ) ( )j j

= +

= +j

f r iv

f L i2 cos sin , B2
r r

z

where vr= dr/dt is the radial velocity, and Lz is the z-
component of the angular momentum. For the radial coordinate
(first row), the absolute value of the leading frequency has a
relative error |δΩr/Ωr|≈ 10−6, using either the real or complex
time-series.

For the azimuthal angle (second row), using the real time-
series fj= j, the leading frequencies provide errors
|δΩj/Ωj| 10−3 for a fraction of the orbits, but only after
imposing sign(Ωj)= sign(Lz), while the complex time-series
(Equation (B2)) does not require this intervention. Addition-
ally, there are a few orbits with small analytic Ωj and
|δΩj/Ωj|≈ 1 for both real and complex time-series. These
orbits have large apocenters (rapo/a 15), and spend most of
their time far from the center, effectively behaving as
precessing ellipses in a Kepler-like potential. As a conse-
quence, the leading frequency in the spectrum is Ωr− Ωj (the
precessing frequency), although Ωj is also present, with a
smaller amplitude. In a Kepler-like potential, Ωr≈Ωj, thus the
leading frequency is ≈0, which implies |δΩj/Ωj|≈ 1. In
realistic galactic potentials, typical stars have Ω κ 2Ω.
Thus, if we heuristically require |Ωj|> |Ωr|/2, and take the
leading frequency respecting this restriction, the fundamental
Ωj is recovered with good accuracy (|δΩj/Ωj| 10−3) for
almost all orbits (third row). Finally, the complex time-series
provides a ≈10× better precision (although the estimates are
almost identical to those of the real series if orbits are integrated
for only ≈50 circular periods).

Appendix C
Inertial versus Rotating Frame

Here we compare the frequencies obtained using coordinates
in the inertial frame and in the bar rotating frame. We use the
model SD1S, which has a fast bar at 7 Gyr, and the region
where star particles are selected is near the corotation radius—
see Figure 4. Thus, we can expect the corotation resonance to
be populated in the frequency map, as is the case when we use
the inertial frame (Figure 13). In this case, the frequency
analysis outputs Ωj, and we literally subtract the bar pattern
speed ΩP before plotting the frequency map in Figure 13.

Figure C1 shows the frequency map for the same snapshot
and the same orbits, but now using coordinates in the bar
rotating frame. With Ωj still representing the azimuthal
frequency in the inertial frame, the output of the frequency
analysis is now Ωj− ΩP.

Comparing Figures 13 and C1, we see that the two frequency
maps are almost identical, except for the corotation (Ωj= ΩP),
which is sharply defined in the inertial frame, but is completely
lost if we use coordinates in the rotating frame. This is probably
due to the leading frequency in this case being the libration
around the corotation, which might be relevant for detailed
investigations of orbits trapped at corotation, but it is not of
interest for this work.
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