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ABSTRACT

Construction sequences are a general method of building symbolic shifts
that capture cut-and-stack constructions and are general enough to give
symbolic representations of Anosov—Katok diffeomorphisms. We show
here that any finite entropy system that has an odometer factor can be
represented as the limit of a special class of construction sequences, the
odometer based construction sequences. These naturally correspond to
those cut-and-stack constructions that do not use spacers. The odometer
based construction sequences can be constructed to have the small word
property and every Choquet simplex can be realized as the simplex of in-
variant measures of the limit of an odometer based construction sequence.
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Preface

This preface is due solely to the first author.

I had the privilege to meet Benjy Weiss in the early 1990s. I was surprised by
his openness and ability to interact with a stranger in a different field. Indeed
our joint work, which covers decades and hundreds of published pages (and
many more pages of unpublished work), has been a tribute to his willingness to
work with someone with a completely different background and training.

I humorously, but sincerely, categorize Benjy’s roles as:

Inspiration: Benjy is the perfect mathematical role model. Unparalleled
modesty, openness in sharing ideas and fairness combined with unlim-
ited talent.

Oracle: Ask any question and his remarkable memory will nearly in-
stantly retrieve the answer if it is known.

Speculator: He is completely willing to discuss paths that seem implau-
sible at first and see where they lead. The fact that they are often
empty doesn’t seem to bother him.

Friend and Mentor: This is perhaps his most important role for me.

With these points in mind, I sincerely thank Benjy Weiss for the years of com-
panionship and productivity.

1. Introduction

Construction sequences are a general method of building symbolic shifts that
capture cut-and-stack constructions and are general enough to give symbolic
representations of Anosov—Katok diffeomorphisms. This paper studies a special
class of construction sequences, the odometer based construction sequences that
corresponds to those cut-and-stack constructions that don’t use spacers.

In [7] we show that there is a functorial isomorphism between the symbolic
systems that are limits of odometer based construction sequences and symbolic
systems that are limits of a class of construction sequences called circular sys-
tems. Many circular systems, in turn, can be realized as diffeomorphisms of
the 2-torus. As a corollary the qualitative ergodic theoretic structure of the
odometer based systems is reflected in the diffeomorphisms of the 2-torus. For
example, in [9] it is shown that there are measure-distal diffeomorphisms of the
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torus of all countable ordinal heights and for all Choquet simplices IC, there is
a Lebesgue measure preserving ergodic diffeomorphism of the torus that has K
as its simplex of invariant measures. This uses Corollary 2 in this paper.

To use the functor defined in [7] to build diffeomorphisms with complicated
behavior, one needs that the class of transformations isomorphic to limits of
odometer based construction sequences exhibits quite rich ergodic phenomena.
This is the point of the current paper.

It is a classical theorem of Krieger ([10]) that an ergodic system with finite
entropy has a finite generating partition. This gives a symbolic representation
for any such system and shows that the theory of finite entropy ergodic measure
preserving systems coincides with the theory of finite valued ergodic stationary
processes { X, }. When studying stationary processes {X,} it is often useful to
have a block structure, namely a way of dividing the indices into a hierarchy of
blocks of lengths ky, k1k2, k1kaks, . .. in a unique fashion. If this is possible then
the process will have as a factor the odometer transformation corresponding to
the sequence {k,}. Our main theorem (Theorem 21) is that it is always possible
to find such a symbolic representation with a rather simple form whenever this
necessary condition is satisfied.

THEOREM (in Section 4): Let (X, B, 1, T') be a measure preserving system with
finite entropy. Then X has an odometer factor if and only if X is isomorphic
to an odometer based symbolic system.

The class of ergodic transformations containing an odometer factor is easily
characterized spectrally as those ergodic transformations whose associated uni-
tary Koopman operator has infinitely many eigenvalues of finite multiplicative
order. (We prove this in Proposition 6.)

If T is totally ergodic, i.e., all powers are ergodic, then the product of T’
with any odometer is ergodic. In general we have the following easy proposition
which illustrates the ubiquity of ergodic transformations with odometer factors:

PROPOSITION 1: Given any ergodic transformation X = (X, B, u,T) either:

(1) X has an odometer factor, or:
(2) there is an odometer O such that X x O is ergodic (and X x O has finite
entropy if X does).

In particular, every finite entropy transformation is a factor of a finite entropy
odometer based symbolic system and the finite entropy transformations that
have an odometer factor are closed under finite entropy extensions.
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Proof. If X does not already have an odometer factor, then the Koopman op-
erator associated to X has finitely many eigenvalues with finite order. Let O
be an odometer such that the eigenvalues of the Koopman operator of £ are
relatively prime to the orders of the eigenvalues associated to X. It is then easily
verified that X x © is ergodic. ]

We remark that we can put a pre-partial ordering < on the set of ergodic
transformations Epp with finite entropy by setting (X,T") <p (Y, 5) if and only
if there is a factor map 7 : ¥ — X. A standard definition from the theory of
pre-partial orderings is that a set C' C £ is a cone relative to <p iff and only if:

C is closed upwards: if (X,T) € C and X <p Y then Y € C,
Extension: for all ergodic (X,T) with finite entropy there is a Y € C
with X <p Y.
The relevance of cones is that the set of cones generate a non-principal filter
relative to <p. Hence a cone can be viewed as a set of measure one for a
finitely additive measure on the Epp with the ordering <p. In this rigorous
sense Proposition 1 shows that the set of transformations of finite entropy with
an odometer factor is a large set.

COROLLARY 2: For all finite or countable ordinals o there is an ergodic measure
distal, odometer based system of distal height c.

Proof. Fix a finite or countable ordinal a. By the results of Beleznay and Fore-
man ([2]) there is a measure distal transformation T of distal height o. Since T'
is measure distal it has entropy 0. The Koopman operator corresponding to T’
has no eigenvalues of finite order. Hence we can choose a sequence (k,, : n € N)
going to infinity and consider the odometer transformation O based on the se-
quence (k,, : n € N). (See section 2.2 for a formal definition.) By Proposition 1,
T x O is an ergodic odometer based transformation.

Using Lemma 2.8 of [2] (and the discussion surrounding it), one sees that
T x O has distal height a. ]

We should point out that special symbolic processes with a block structure,
called Toeplitz systems, have been well studied from the point of view of topo-
logical dynamics. (See, e.g., [4], [3], [13].)

THE STRUCTURE OF THIS PAPER. Section 2 has the basic definitions used in
the paper as well as properties of odometer based systems that we use in the
construction. Section 4 contains the proof of our main theorem, Theorem 21.
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It begins by pointing out a known fact that odometers cannot be represented
topologically as symbolic shifts, in contrast to Theorem 21, which is in the
measure category. As a precursor it then presents the odometer as an odometer
based system, describes the plan of the proof and finally gives the proof in detail.

In Section 5 we discuss the connections with Toeplitz systems, showing how
to augment a Toeplitz system to get an odometer based system while preserving
the simplex of invariant measures. It then follows from a remarkable theorem
of Downarowicz [3] (generalizing work of Williams [13]) saying that arbitrary
simplices of invariant measures can be realized on Toeplitz sequences to see that
arbitrary simplices of invariant measures can be realized on limits of odometer
based construction sequences.

The applications of this paper require that the odometer based construction
sequences in the domain of the isomorphism functor has the frequencies of words
decreasing arbitrarily fast. We call this the small word property. In Section 6
we define the small word property and show that we can realize odometer based

systems continuously in a sequence of small word requirements.

THE ROAD NOT TAKEN. After a draft of this paper was circulated, it was
pointed out that there is an alternate proof of our result about simplices of
invariant measures. It is based on a result of Downarowicz and Lacroix ([4],
theorem 8) which states that every transformation satisfying the hypothesis
of our main theorem can be represented as the orbit closure of a Toeplitz se-
quence. Then applying Proposition 32 in this paper presents orbit closures of
Toeplitz sequences as limits of odometer based construction sequences, giving
an alternate proof. However, the proof that is given in [4] makes key use of a
result in Weiss’” paper, [11]. In that paper only a brief sketch of a more general
theorem is given and the specific result that they need for the alternate proof
is not even mentioned there. Moreover, the applications of the results in this
paper in [9] use the specific representation given here that has the small word
property. This idea is new to this paper and is completely missing from the
alternate proof.

We also note the work of Williams presenting the odometer itself as a limit
of a construction sequence (see Williams, [13]), as well as the recent work of
Adams, Ferenczi, and Petersen [1], which realizes generalized odometers and
indeed all rank one systems as “constructive symbolic rank one systems,” in
the terminology of [5].
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2. Preliminaries

An alphabet X is a finite collection of symbols. A word in 3 is a finite sequence
of elements of ¥. If w € X<V is a word, we denote its length by |w|. By %%
we mean doubly infinite sequences of letters in 3. This has a natural product
topology induced by the discrete topology on 3. This topology is compact if 3
is finite. For v a word in ¥ and k € Z, we use the notation (u)) for the basic
open interval in X% consisting of {f € X% : f | [k, k + |u|) = u}. If we omit
the k, (u) means (u)o.

Perhaps the thorniest issue in the paper is defining right vs left shifts, particu-
larly in view of the cultural differences. We define the shift given Sh : ¥% — %7
by setting Sh(f)(n) = f(n+1). For this paper Sh is the left shift because f is
being shifted left. The right shift is Sh™'. Similarly an occurrence of a word
weX<Ninan f € X% at a k € Z is to the left of an occurrence y € X<N at [
if k < 1. A symbolic system is a closed, shift-invariant K C £ for some X.

A collection of words W is uniquely readable if and only if whenever
u,v,w € W and uv = pws then either p or s is the empty word.

We note that we can view both words and elements of Y% as functions.
If f: A— Band A’ C A, the restriction of f to A’ is denoted f | A’.

Given a collection (w; : 0 < i < n) of finite words in some alphabet, we let

n
[[w
i=0

denote the concatenation wowiws - - - wy. Similarly for a single word w and k& > 1
we let w* denote the concatenation of k-copies of w. So, for example, w® = www.

2.1. PARTITIONS AND SYMBOLIC SYSTEMS. Let (X, B, u), (Y,C,v) be standard
probability measure spaces and let 7 : X — Y. Then v is the measure induced
by p and 7 if and only if for all C € C,7=1(C) € B and v(C) = u(r=1(C)).
In symbols we write v = 7*(u).

An ordered partition of X is a set P = (Ao, A1, ...) such that each A; € B,
A;NA; =0ifi # j, and X = |J; A;. We allow our partitions to be finite or
countable and identify two partitions P = (4;), @ = (B;) if for all i,
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We will frequently refer to ordered countable measurable partitions simply
as partitions. A partition is finite iff for all large enough n, u(P,) = 0. If P
and Q are partitions, then Q refines P iff the atoms of Q can be grouped into
sets (Sp : n € N) such that

Zu(PnA( U Qi)) = 0.

n €Sy
In this case we will write that Q@ < P. A decreasing sequence of partitions
is a sequence (P, : n € N) such that for all m < n,P,, K Pp,. f A€ Bisa
measurable set and P is a partition, then we let P | A be the partition of A
defined as (P, N A :n € N).

Definition 3: Let (X, B, u) be a measure space. We will say that a sequence of
partitions (P,, : n € N) generates (or generates B) iff the smallest o-algebra
containing (J,, Pn is B (modulo measure zero sets). If T' is a measure preserving
transformation we will write TP for the partition (T'a : @ € P). In the context of
a measure preserving 7 : X — X we will say that a partition P is a generator
for T iff (T*P : i € Z) generates B.

Given a measure preserving system (X, B, u, T') and a partition P of X, define
amap ¢ : X — PZ by setting (for each a € P)

¢(x)(n) = a if and only if T"z € a.

The bi-infinite sequence ¢(z) will be called the P-name of z. The closure
of $(X) C PZ is a symbolic system.
Define a measure on PZ by setting

¢* (1) (A) = p(¢~"[A]).

This is a Borel measure on the symbolic shift P% and makes (P%,C, v, Sh) into
a factor of (X, B, u,T) (where v = ¢*(u)). This factor map is an isomorphism
if and only if B is the smallest shift-invariant o-algebra containing all of the sets
in P (up to sets of measure zero); i.e., P is a generator for T. In general the
support of v is the closure of ¢(X).

Remark 4: Let P, Q be partitions of X. Then P and Q determine factors Yp
and Yo. Define ¢ : X — Yp x Yo by setting ¢(x) = (sp, 84) where s, is the P-
name of x and s, is the Q-name of z. Let n = ¢*(u). Then (Yp x Yg,C,n, Sh)
is isomorphic to the smallest factor of X containing both Y and Yg as factors.
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2.2. BASIC FACTS ABOUT ODOMETERS. Let (k; : ¢ € N) be an infinite sequence
of integers with k; > 2. Then the sequence k; determines an odometer trans-
formation with domain the compact space’

0 =[] z..

The space O is naturally a monothetic compact abelian group, with the
operation of addition and “carrying right”. We will denote the group element
(1,0,0,0,...) by 1, and the result of adding 1 to itself j times by j.

The Haar measure on this group can be defined explicitly. Define a measure v;
on each Z, that gives each point measure 1/k;. Then Haar measure p is the
product measure of the v;.

The odometer transformation O : O — O is defined by taking an z € [, Zs,
and adding the group element 1, More explicitly, O(z)(0) = z(0) + 1(mod ko)
and O(z)(1) = x(1) unless z(0) = ko — 1, in which case we “carry one” and set
O(z)(1) = z(1) 4+ 1(mod k1), etc.

The map O : O — O is a topologically minimal, uniquely ergodic, invert-
ible homeomorphism that preserves the measure . When we are viewing the
odometer as a measure preserving system we will denote it by O.

Define Uy : L?(9D) — L2(9) by setting Uo(f) = f o O. Then Up is the
canonical unitary operator associated with O. The characters x € O are eigen-
functions for the Uy since

X(z +1) = x(Dx(x).
Since the characters form a basis for L?(9), the odometer map has discrete
spectrum.
Here is an explicit description of the characters, which we call R, here.

Fix n > 1 and let
K, = H k.

i<n
Let Ag C [[; Zx, be the collection of points whose first n + 1 coordinates are
zero, and for 0 < k < K, set Ay = OF(A). Define
Kn—1

Rn= Y (7"/5n)FChy,
k=0

where Chy is the characteristic function of A.

L We write Z]Zy as Zy,.
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Then:

(1) R, is an eigenvector of Uy with eigenvalue e2mi/ K

(2) (Rn)kn =Rn-1,
(3) {(Rn)*:0<k < K,,n €N} form a basis for L*([], Z,).

For a fixed n, the sets {4; : 0 < i < K,,} form a tower which will play a
special role in our proofs. More generally, if (X, B, u,T) is an ergodic measure
preserving system and 7 : X — O is a factor map, we set Bl = 7 lA4;.
Then {B! : 0 < i < K,} is a partition of X that forms a tower in the sense
that T[B!] = Bi! for i < K, — 1 and T[BX»~1] = BY.

Definition 5: We will call the tower 7,, = {B! : 0 < i < K,} the n-tower
associated with ©O.

K, -many levels =

| J
L

cut into k,-many columns

Figure 1. The tower T,.

Figure 1 illustrates the n'” tower, which we will denote 7,,. The horizontal
lines represent the levels of the tower. The “n + 1%%-digit” of points in O
determine k,, many vertical cuts through 7,. Enumerating the levels according
to their lexicographic order in [] j<nt Zy,; amounts to stacking the post-cut
columns of 7,,. Figure 2 illustrates the result 7,1 of the cutting and stacking.
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Stack with
I{n-{-l = I{n * kn 1
levels

Figure 2. The tower T,41.

SPECTRAL CHARACTERIZATION. Here is a standard spectral characterization
of transformations with an odometer factor. Suppose that (X,B,pu,T) is an
ergodic measure preserving system. Let Uz : L?(X) — L*(X) be defined by

Ur(f)=foT.

Let G be the group of eigenvalues of Ur that have finite multiplicative order
(as elements of C).

Suppose that G is infinite. Then there is a sequence of generators {g,, : n € N}
of G so that

o(gn) | 0(gn+1)-
The dual G of G is the odometer based on (k,:neN), where k, = 0(gn). We
have outlined the proof of:

PROPOSITION 6: Let (X,B,u,T) be an ergodic measure preserving system.
Then X has an odometer factor if and only if U has infinitely many eigenvalues
of finite multiplicative order.

We will use the following:
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PROPOSITION T7: Let GG be the measure preserving system described above
and m : X — G be the canonical factor map. If ¢ : X — Y is any factor
map of X to an odometer, then there is a 7' : G — Y such that o=7om
almost everywhere.

Here is a useful remark.

PROPOSITION &: Let (k, : n € N) determine an odometer transformation £
and K, = [];., ki. Then for any infinite subsequence of (K, : j € N) of
(Kn :n € N), if we set ki = Ky, and for j > 1,k{ = K, /K, then the
odometer O determined by (K} : j € N) is isomorphic to O.

j—17

In particular, an arbitrary odometer O has a presentation where > 1/k,, < oc.

2.3. INVARIANT MEASURES. Let X be a compact separable metric space
and T : X — X be a homeomorphism. Then the collection of T-invariant
probability measures on the Borel subsets of X, M(X,T), endowed with the
weak topology, forms a Choquet simplex K: a compact, metrizable subset of
a locally convex space such that for each p € K there exists a unique measure
concentrated on the extremal points of L which represents p. Since the extreme
points of the invariant measures are the ergodic measures, this is a restatement
of the Ergodic Decomposition Theorem.

We emphasize that for p to belong to M(X,T), pu must be defined on all
Borel subsets of X.

3. Construction sequences and their limits

Here is the general definition of a construction sequence and its limit. In this
section we briefly explain and prove some general statements in earlier papers.
This paper is concerned with a special case, the odometer based construction
sequences.

Definition 9: A construction sequence in a finite alphabet ¥ is a sequence

of non-empty collections of words (W, : n € N) with the properties that:

(1) Wo =3,

(2) all of the words in each W,, have the same length ¢,, and the collection W,
is uniquely readable (in the sense of the definition in Section 2),

(3) each w € W, occurs at least once as a subword of every w’' € W, 1,
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(4) there is a summable sequence (€, : n € N) of positive numbers such that
for each n, every word w € W, 11 can be uniquely parsed into segments?

(1> UpWoU1WY * + * WIUL+1

such that each w; € Wy, u; € ¥<9% and for this parsing

(2)
We call the elements of W,, n-words, and let s, = [W,|.

Definition 10: Let (W, : n € N) be a construction sequence in an alphabet X.
The limit of (W, : n € N) is defined to be the collection K of = € %7 such that
for all finite intervals I C Z there is a w € W,, and J C [0, ¢, — 1) for some n
such that = [ I = w [ J. Suppose z € K is such that for some a,, < 0 < b,
and z | [an,b,) € W,. Then w =z | [an, b,) is the principal n-subword of z.
We set 1, () = |ay|, which is the position of z(0) in w.

Definition 11: Let (k, : n € N) be a coefficient sequence, A construction se-
quence (W, : n € N) is odometer based if and only if W,,;1 C Wk A
symbolic system K is odometer based if it has a construction sequence that
is odometer based. For an odometer based construction sequence and n > 1
we let Ky =[], km->

Informally: odometer based construction sequences are those built without
spacers.

One way of defining certain elements of K is illustrated in the following
Lemma that is stated in Remark 2.15 in [7] section 2.

LEMMA 12: Let (W, : n € N) be a construction sequence. Let (w,, : n > k) be
a sequence of words with w, € W,,. Let (r, : n > k) be a sequence of natural
numbers such that

(1) r, €[0,¢n) and both 1, — 00, G, — T, — 00,
(2) the rit | letter in wy41 is in the position of the ril-letter of wy,.

Then there is a unique s € K such that for all n > k, r,(s) = r, and the
principal n-subword of s is wy,.

2 We assume that ! > 1.
3 Ky, will be equal to the g, in Definition 9.
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It follows immediately from Lemma 12 that if w € W,, and an r € [0,¢y)
there is an = € K such that w is the principal n-subword of x and r, (w) = r.
The next definition is [7, Definition 2.9].

Definition 13: Suppose that (W, : n € N) is a construction sequence for a
symbolic system K. We define the set S to be the collection of z € K such that
there are sequences of natural numbers (a,, : m € N), (b,, : m € N) going to
infinity such that for all m there is an n, x | [—am, bm) € Wh.

For clarity we make the following stronger definition:

Definition 14: Define the set S’ to be the collection of z € K such that there are
sequences a,, b, > 0 going to infinity such that for all n,z [ [—a,,b,) € W,.

Note that taking £ = 0 in Lemma 12, the given s belongs to S".
Let s € K have principal n and n + 1-subwords. Then the following are easy
to check:

(3> Tn+1 Zrny

(4> Qn+1 — Tn+l 2qn — Tn.

Z1G-ZAGGING.  We now describe a method for using Lemma 12 to build
elements s € S we will call zig-zagging. Suppose we have (w,, : m < n)
and (r,, : m < n). The operations left zig and right zig each can be used to
extend the construction 2-stages to (wy, : m <n+2) and (ry, :m <n+2). A
zig-zag consists of a left zig followed by a right zig, or a right zig followed by a
left zig. Thus a zig-zag extends the construction 4 stages—from n to n + 4.

Given the word w, € W, and the location r, € [0,¢,), let wpi2 € Wpia.
Then w, 2 contains two subwords w!, 411 and wy,,, that belong to W, 1
with w, ,; occurring to the left of w’ ;. (More precisely, if we view w, 42 as a
string of letters and the first letter of w!,, , is at location Iy and the first letter
of wl, is at Iy, then [y < l;. We include the locations of the words w!,, ;, w’
in w42 as part of the information in the superscripts [, 7.)

We define the left zig. The right zig is defined analogously except that right
zig uses w,, 1. Let wy41 be the word wl, 11- Consider the left most occurrence
of w, in w!_ . Then the ri" letter of this occurrence of w, occurs in some
location £ in wﬁlﬂ. Let 7,41 be this k. The letter in wﬁlﬂ in position 7541
occurs at some k* in wy, 2. Let rpqo = k*.
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Because the w}, ,; occurs to the left of w?,, ; we must have

dn+2 — T'n42 Z dn+1-

By equations (3) and (4), we have 42 > 741 > 7y, Thus, if we are doing an
inductive construction using Lemma 12 the left zig extends it from n to n + 2

and we have:

Tn+2 Z Tn+1,
dn+2 — T'n42 Z dn+1-

We describe a left-right zigzag. We are given a word w, and a loca-
tion 7,. Choose wyt2 € Wyyo and do a left zig. This gives a w,4+1 and
locations r,41,7n+2. Now choose w,+4 € Wyy4 and do a right zig. This
gives w43 and locations 7,43, Tn44.

The words w41, Wnt2, Wnt3, Wn4+q and locations 7,41, "nt2, i3, Tnita Sat-
isfy the conditions of Lemma 12, and the following inequalities:

(5) Tni4 ZQni3,
(6) nt2 — "nt2 2qnt1-

In particular, both the locations and the distances from the ends of the words
strictly grow in these four steps.

The right-left zigzag is done the same way except that moving from n
to n+ 2 is a right zig and going from n + 2 to n+ 4 is a left zig. The analogous
equations to (5) and (6) hold with the roles of n+2 and n+4 swapped and n+1
and n + 3 swapped.

Example 15: Fix a construction sequence (W,, : n € N) and let wy € Wp. Let
f €{0,1}". Build an s € K by induction on n. The construction inductively
chooses words (wy, : m < 4n) and locations (r,, : m < 4n). To pass from
stage 4n to stage 4(n + 1) one does a left-right zig-zag if f(n) = 0 and a right-
left zig-zag if f(n) = 1.

The result is a sequence of words (w, : n € N) and locations (r, : n € N)
that satisfy the hypotheses of Lemma 12, and hence determine an s € K. Equa-
tions (5) and (6) show that s € S’.

PROPOSITION 16: Let S, S’ be defined as in Definitions 13 and 14. Then

(1) S is a shift invariant dense G5 subset of K.
(2) S’ contains perfect set.
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Proof. We first show that S is dense. Let U = (u);, be a non-empty basic open
set in K. By making u longer and thus shrinking U we can assume that U sits
on an interval [¢,d) with ¢ < 0 < d. Applying Definition 13, we can find an n,
w€E€W,,a<c<d<band an z € K such that z [ [a,b) = w, z | [¢,d) = u.
Build a sequence of words (w,, : n < m) with w,, = w, r,, = —a satisfying the
hypothesis of Lemma 12. If s is the limit of these words given by Lemma 12,
then s e UNS.
To see S is Gg, for each b > 0,

Sp = {z € K : for some @y, by, with a,, <—band b < by, T | [—am,bm) € Wa}

is an open set. Hence
S=[)5%

is a Gs set.
To see that S’ contains a perfect set, we use Example 15. For each f € {0, 1}
the example builds an s(f) € S’. If f # g and f(m) # g(m) then

rm(s(f)) # rm(s(g))-

Moreover, the map f + s(f) is continuous. Hence the {s(f): f € {0,1}} is a
compact perfect set. |

Remark 17: Suppose that s = s(f) is constructed in the manner of the proof
of Proposition 16 and f is not eventually constant. Then for infinitely many n,
the principal n-subword of s has an n-subword occurring to the left of it in the
principal n+ 1 subword of s and similarly for words to the right of the principal
n-subword.

The upshot of this discussion is the following:

ProposiTION 18: The set K is a non-empty, closed, shift invariant, topologi-
cally transitive subshift of 2.

Proof. K is clearly non-empty since it contains the set S’ defined in Proposi-
tion 16.

We first show that K is shift invariant. Let y € K and consider Sh"(y).
For I a finite interval, let w = Sh"(y) | I. Then v =y [ Sh™"(I). Hence for
some n, J C [0,¢,), w € Wy, u=w | J. But then Sh"(y) [ I = w | J. Hence
Sh™(y) € K.
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We next show that K is closed. Suppose that (y, : n € N) C K and y,, =, y.
Let I C Z be a finite interval. Then for all large enough n,y, [ I =y | I. Hence
there is an n and a w € W, such that y | I is a subsequence of w. Hence y € K.

Finally we show that if s = s(f) where f is not eventually constant (as in
Remark 17), then both its forward and backwards orbits are dense in K. We do
the forward orbit; the argument for the backwards orbit is the same reversing
“left” and “right”. Let € K and O be an open set containing x. Then we can
choose a basic open interval (w) CO with = € (w);. From the defining property
of K we can find a word w,, € W,,, and a location k* such that (w, )i C O.
Let n > m + 1 be such that f(n) = 0. Then s is built between 4n and 4(n + 1)
by a left-right zig-zag. Hence the 4n + 2 principal subword of s contains an
n + 1-word u € Wy, 41 to the right of its principal n + 1-subword.

By clause 3 of the definition of a construction sequence (Definition 9), wp,
occurs in u. Hence after finitely many shifts, the principal subword of Sh”(s)
is wy, and 1y, (Sh"(s)) = k*. Hence

Sh"(s) € (W )k
C (w)g

C 0. |

We now give an “external” characterization of K:

PROPOSITION 19: The system K is the smallest closed, shift-invariant set that
intersects all intervals of the form (w)g for w € W,.

Proof. Let C be the intersection of all closed shift-invariant sets that intersect
all intervals of the form (w)g. It suffices to show that K C C.

Let X be an arbitrary closed, shift-invariant set intersecting the appropriate
intervals. We first show that X N K # (.

Let s € 8 C K. Let r,(s) = a, and w, = s | [an,by) be its principal
subword. By the assumptions on X, there is a y, € X such that y,, € [wy]—a,,-
Then the sequence (y, : n € N) converges to s since s € §'. So s € X. If we
take s = s(f) for an f that is not eventually constant, then by Proposition 18,

the orbit of s is dense in K. Since X is closed, K C X. |

UNIFORM CONSTRUCTION SEQUENCES. Not every symbolic shift in a finite
alphabet can be built as a limit of a construction sequence, however this method
directly codes cut-and-stack constructions of transformations on probability
spaces.
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In this section we use Definition 9. In particular that every w € Wy can
be written uniquely in the form wowouiws ... w41 with the w; € W, and
u; € ¥<an,

Definition 20: Let (W, : n € N) be a construction sequence. Then (W,, : n € N)
is uniform if there are (d,, : n € N), where d, : W,, — (0,1) and a sequence
(€n : m € N) going to zero such that for each n all words w € W,, and w’ € Wy, 41
if f(w,w’) is the number of ¢ such that w = w;

(7) Z f(’LU, wl)

] —dp(w)| < €ng1-
wEWY, In+1/4n

If f(w,w") is a constant (depending on n) for all w € W,,, w’ € W, 11 we can
take )
4wy — L)

Gn+1/qn

and satisfy Definition 20. In this case we call the construction sequence and K
strongly uniform.

Lemma 11 of [8] shows that uniform construction sequences are uniquely
ergodic.

4. Odometer based construction sequences
In this section we prove:

THEOREM 21: Let (X, B, u,T) be a measure preserving system with finite en-
tropy. Then X has an odometer factor if and only if X is measure isomorphic
to a topologically minimal odometer based symbolic system.

Proposition 19 of [6] shows that the limit of an odometer based construction
sequence is topologically minimal. This is not true for general construction
sequences. For example, there are circular systems with singleton orbits. (See
[7, Definition 3.17].)

We use the following observation when working with odometer based se-
quences and systems. Viewing the odometer based systems as isomorphic to
cut-and-stack constructions with no spacers, it is immediate. However, we give

a symbolic proof.
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LEMMA 22: Let K be an odometer based system with construction sequence
(W, : n € N). Then for all s € K and all n, s has a principal n-subword.
Moreover, K = 5.

Proof. Fix an n and let a = —¢,, and b = ¢,. Then from the definition of K,
there is an m > n, a word w € W,, and an interval J C [0, g, — 1) such that
s | [~a.b) =w | J. Because the system is odometer based w,, can be uniquely
written as a concatenation of a sequence of subwords from W,,.* The interval J
can be extended to an interval J’ by adding at most g, letters so that w [ J’
is a concatenation of words from W, say w | J' = wow; ... wk. The (g, + 1)
element of J must lie inside one of the w;’s. Let a, be the position of w;.
Then the principal subword of s is w; and if x | [—ap,b,) = w;, then ay, b, go
to oo. |

The name odometer based system is motivated by the following proposition:

PROPOSITION 23: Suppose that (W, : n € N) is an odometer based construc-
tion sequence for a symbolic system K. Let K,, be the length of the words in W,,,
ko = K and for n > 0, k,, = K, +1/K,. Then the odometer  determined by
(kn : m € N) is canonically a factor of K.

Proof. Let s € K. By the unique readability, for each n, s can be uniquely

parsed into a bi-infinite sequence of n words. For each n, there is an ¢, such

th
n

that the principal n-block of s is the ¢.* n-word in the principal n + 1-block
of s.

Define a map ¢ : K = [[,, Z/k,Z by setting
o(s) = {cn : n €N).

It is easy to check that ¢(Sh(s)) = O(¢(s)) (where “Sh” stands for the shift
map). |

Remark 24: We note two things:

(1) Hypothesis 2 of Lemma 12 simplifies in the case of odometer based systems
to being the requirement that r,41 =k, -

(2) Our notation is inconsistent in that for general construction sequences we
use g, for the lengths of the n-words, but for odometer based systems we
use K.

4 This is shown by induction on m > n + 1.
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4.1. ODOMETERS ARE NOT TOPOLOGICAL SUBSHIFTS. Theorem 21 says that
all ergodic measure preserving transformations with a non-trivial odometer fac-
tor are measure theoretically isomorphic to an odometer based symbolic system.
In contrast, it is well known that as topological dynamical systems, odometers
are not homeomorphic to symbolic shifts. For background we give a very brief
proof of this fact.

Definition 25: Let (X,d) be a metric space. A map T : X — X is expansive
if there is an € > 0 so that for all x # y in X there is an n, such that

d(T"x, T"y) > e.
The following is easy to verify:

PROPOSITION 26: Let (X,d) be a compact metric space and T : X — X.

(1) If T is an isometry, then T is not expansive unless X is finite.
(2) If X C X% is a compact subshift, and T is the shift map, then T is expansive.

Proof. The first proposition is trivial. To see the second, note that we can
assume Y is finite. Let ¢ be the minimum distance between cylinder sets (i)
and (j) based at 0. Then if z # y, we can find an n,z(n) # y(n). It follows
that d(T"z, T"y) > c. n

Because the odometer is a rotation on a compact metric group it is an isom-
etry, hence is not expansive.

For the reader wanting concrete details, in view of Proposition 26, to see that
an odometer cannot be presented as a topological subshift it suffices to show
that, viewed as metric systems, odometer transformations are isometries. Let
O= 11" Z/knZ be an odometer and T be the odometer map O.

For z,y € O, define A(x,y) to be the least n such that z(n) # y(n) and

1
d(x,y) = (@)
Then d is a complete metric yielding the product topology on O and is invariant
under O. If O were homeomorphic to a subshift X C %% then d could be copied
over to a shift invariant metric dx on X. But then dx must be expansive
contradicting the first item of Proposition 26.

Thus, by Proposition 26, it follows that the odometer is not isometric to a

subshift of ©Z for any finite 3.
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4.2. PRESENTING THE ODOMETER. In this section we show that odometers are
measure theoretically isomorphic to odometer based systems. In Section 6 we
will be concerned with the rates of descent of the measures of the basic open
intervals (w) determined by w € W, as n increases. Lemma 42, a generalization
of the next lemma, is a key tool for showing that the small word property defined
in Section 6 can be achieved for odometer based systems.

LEMMA 27: If © is an odometer determined by {(k, : n € N) with k, > 2,
then there is a uniform odometer based construction sequence (W, : n € N)
such that the associated symbolic system K is topologically minimal, uniquely
ergodic and measure theoretically conjugate to O.

Proof. By Proposition 8, we can assume that > 1/k, < oco. We define an
odometer based construction sequence (W, :n €N) such that each W,, = {an, by}
has exactly two words in it.

o Let ¥ = {a,b} and Wy = X.
e Suppose that we are given W,, = {an,bn}. Let Wyi1 = {ant1,bnt1}
with ap41,bpt1 € W,’j" where:

Gnt1 = Gppanbybpbyanbpanby, - - - x,

bn+1 = bpbnbnGnGnGnanbyapby - - - Zz,

where z is either a,, or b,, depending on whether k,, is even or odd.

The number of alternations of a,, and b, is determined by k,, so the second
item is well-defined.

It is easy to verify inductively that the a,’s and b,’s are uniquely readable
(look for patterns of the form a,ana, and b,b,b,) and that (W, : n € N) is
uniform. Let K be the associated symbolic system. Then K is uniquely ergodic,
with an invariant measure .

Let
G = {z € O : for all large enough n, 10 < z(n) < k, — 10}.

Since Y 1/k, < 0o, the Borel-Cantelli Lemma implies that G has measure one
for ©. Further, G is invariant under O*!.

We define ¢ : G — K. By Lemma 12, we can determine (z) by defining a
suitable sequence (r,, : n > k) and (w,, : n > k).
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Let « € G and suppose that for all n > k, both 2(n) > 10 and z(n) < k,, — 10.
For n >k, let

rn =2(0) +2(1)K1 + 2(2)Ka + - - + z(n) K,,.

Since z(n) > 10, either for all n + 1-words w € W41, the x(n)" n-subword
in w is ay,, or for all n + l-words w € W, 41, the x(n)"" n-subword in w is b,,.
Let w, be either a,, or b, accordingly.

Let ¢(x) be the element s of K determined by (r,, : n > k) and (w,, : n > k),
as in Lemma 12. From the definition of G,

(1) ¥(zx) is well-defined and ¥ (z) € S,
(2) 1 is one-to-one and continuous,
(3) V(OF)(2)) = Sh* (¥(a)),
(4) if ¢ : K — O is the factor map given in Proposition 23, then ¢ o 1) is the
identity map.
Because v is one-to-one, continuous and G is Borel, the image of G under 1 is
a Borel set.
If v is the measure on O giving the odometer system, then v induces a shift-
invariant measure v* = ¥*v on the Borel subsets of K. Since K is uniquely
ergodic, v* = u. Hence 9 is a measure isomorphism between 9 and K. |

Remark 28: In Proposition 32 we use properties 1-4 of the proof and the fact
that ¥[G] is Borel.

4.3. THE PLAN. In this section we explain the idea of the proof of Theorem 21;
the details will follow in the next section. To show that a given transforma-
tion with an odometer factor is isomorphic to a symbolic system built from
an odometer based construction sequence, we build a generating partition so
that the names of points on the bases of the n-towers in Definition 5 form an
odometer based construction sequence.

Let (X, B, 1, T) be an ergodic measure preserving system with an odometer
factor O. By Lemma 27, O is isomorphic to an odometer based system in the
alphabet ¥ = {a,b}. Call the resulting construction sequence (W9 : n € N).
If K is the symbolic system associated with this construction sequence we have

X—W>O—¢>K

where 7 and 1) are defined on full measure sets.
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Let Q@ = {Qo,Q1} be the partition of X corresponding to the basic open
intervals (a), (b) in K (so Qo = (¢ o)~ 1{a) and Q; = (¢ o 7)~1(b)). Then Q
generates the subalgebra of B corresponding to the factor O.

Suppose that C' C X is a set of positive measure. Let T : C' — C be the
induced map: Tc(c) = d if and only if for the least k > 0, with T%(c) € C one
has T*(c) = d. Suppose that Py = {Py, P», ..., P,} is a generator for T¢, where
a€N. Let D=X\C and P = PyU{D}. Then for z € X, the P-name of
uniquely determines x, and thus P is a generator for X.

For a typical x, the combined Py, Q-name of z can be visualized as in Fig-
ure 3. The elements of Q parse the z-orbit into n-words which measure the
duration an orbit stays in D, while the elements of Py determine the orbit of
inside C. Since Py and Q determine z, in building an odometer based symbolic
representation of (X, B, u, T'), one has complete freedom to fill in symbols in the
parts of the z-orbit that lie in D. This allows our word construction to satisfy
the definition of an odometer based construction sequence.

Blanks to be filled in. s Aova

/ \ \ —t n-word
ey

[ | |
[Po [P3 [P17] [P21]pe [Pz | [ir1 [r2 [P3 [ | [ [Fe [ra [raz i [ Paz[raz]raz]
|
Py-names of elements of C

Figure 3. The Py-name of x punctuated by the odometer.

In terms of partitions, this can be restated as saying that we can mod-
ify the atoms of the partition Py by adding elements of D in any arbitrary
way, as long as the restriction of each atom of Py to C' remains the same.
It Py={P{,Ps,...,P.} is such a modification of Py, then any partition re-
fining Pj and Q still forms a generator for 7. Hence, as in Remark 4, the
symbolic system consisting of pairs (spy, sg) of Py and Q-names is isomorphic
to (X,B,u,T).
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Of course, Figure 3 is an over-simplification of the possibilities for the orbit:
it assumes that the set C fits coherently with the odometer factor. In other
words, C' must be chosen to be measurable with respect to the sub-c-algebra
of B generated by the odometer factor.

4.4. THE PROOF. Suppose that (X, B, pu,T) has entropy less than %logc for
some integer constant ¢ > 2. By Proposition 8, we can assume that

Ky =ko>10, K,=]]k
<n
and Kk, > 4cKn10mHL,
Let By, By, ... be the bases of the n-towers in X associated with 9 by the

factor map 7; in the notation of Definition 5, B,, = BY and 7T, is the tower with
base B,,. Let d,, = 4K,,_1c¥»-1 and define

D.= |J B
0<i<d,

and
D= GD”'
1

Thus D,, consists of the first d,, levels of the n-tower. Since all of the levels of
the tower have the same measure, the measure of D,, is

dy, B 4K, _1cEn—1
K, K,
_ 4K, _jcfn—1
 Kyoikya
< 4K, _1cKn—1
K, _14cKn-110"

=10"".

Set C = X\ D. Clearly C is measurable with respect to the odometer factor,
since it is a union of levels of the odometer towers. Moreover, u(C) > 3/4, and
hence the entropy of T¢ is less than (2/3) log c. By Krieger’s Theorem [10] there
is a generating partition Py = { Py, P, ..., P.} for T¢ that has ¢ elements.
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Figure 4 is a graphical representation of 7, showing:

(1) C as whitespace.

(2) D, lightly shaded as an initial segment of the levels of Ty,.

(3) The sets D,, for m < n are initial segments of earlier 7, and hence get
stacked as bands across 7,. They are given an intermediate shading in
Figure 4.

(4) Because each D,, is an initial segment of 7,,, at the previous stage the
points in D,, have to be in the leftmost columns of 7,,_1. Moreover, for
m < m', K, divides d,,,. Thus D,/ is made up of whole columns of T,,.

Consequently | D,,, forms a contiguous rectangle on the left side of 7.

m>n

This region is indicated by the darkest shading.

RRAARARRRE RN RN RN RN RN AR RN RRRRR R
-4

“= C

4

e

-
e e e
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-

—&

| J \
T T

Um)n DTT’ Dﬂ
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S

Figure 4. The n*" stage of the construction. The shaded hori-
zontal bands are elements of D,,, for m < n.
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We construct P}, in the manner described in Section 4.3: we add points from D
to each P; to get a final partition Py = {P], Ps,..., P,}. For each i we build
an increasing sequence (P;(n) : n € N) and let

P =JPin).

The construction sequence will use the alphabet ¥ = {P{,P;..., P} x Q,
where Q = {Qo, @1} is the partition generating the odometer; Wy = ¥ and W,
will consist of the Y-names of points that occur in the base of 7,. Thus the
construction is completely determined by the manner we add points to the P;
to get Pi(n).

The words must satisfy Definition 9. Clause 1 is automatic. Clause 2 holds
because all words have length equal to the height of 7,. Unique readability is
immediate since the odometer based presentation of £ uses uniquely readable
words in the language Q. Clause 4 is vacuous since we have no spacers u;
occurring anywhere in the words: elements of W, ;1 are simply concatenations
of words from W,,.

Proposition 19 of [6] shows that the limit of any odometer based construction
sequence is minimal. In this construction we do more: each word in W,, occurs
at least twice in each word in W, 11, a property which is stronger than clause 3.
We satisfy this by “painting” the words from W,, onto D, 1.

Let P/(n) be the collection of points in P/ at stage n, and P/(0) = P,.
Inductively we will assume that at stage n:

(1) Upepm Dm N P{(n) =0 for all i, and
(2) (Ta \Un<m Dn) € U; Pi(n).

For n = 1, we consider Dq \ {J,,~1 Dm. At stage 1 the minimality require-
ment says that each pair (P/(0),7) for 1 < i < c and j € {Qo,Q1} occurs at
least twice. Each of @y, Q1 occur equally often in the Q-names of the first dy
letters of each Q-name and d; = 4c. Hence it is possible to assign the levels
in D1\ U,,51 Dm to {P{(1),..., P:(1)} in such a way that each element of the
alphabet 3 occurs at least twice. Concretely this means that for each i, j there
are two levels of S\ |J,,,~; Dm that belong to Q; and are put into P;(1).

To pass from n to n + 1 in the construction, we know inductively that no
elements of D,, 1 have been assigned to any P/ at earlier stages. Moreover, W,
D,,, where By is the base
of T,,. There are at most 2¢%» such words in the language ¥. Each such word
has length K.

consists of the ¥-names of the words in By \ U,,~.,,
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Since d,, 11 = 4K,,c" there are ample levels in D,, 1 that each level can be
added to some P/(n 4 1) in a manner that each word in W, occurs at least
twice as a Y-name of an element in the first d,, 1 levels of T,41. [ |

Remark 29: The construction in the proof of Theorem 21 used a particular
presentation of O as an odometer based system in a language Q@ = {a,b} to
build a language ¥ = {P{, Py, ..., P.} x Q. If we were given another odometer
based presentation (W2 : n € N) of O in a different finite language with letters
{a1,...,ar} we could take ¥ = {P|, Pj,..., P.} x {a1,...,ar} and repeat the
same construction over this presentation. We will call this the odometer based
presentation of X built over (W? : n € N).

5. Toeplitz systems

In this section we use a result of Downarowicz ([3]) to show that every compact
metrizable Choquet simplex is affinely homeomorphic to the simplex of invariant
measures of an odometer based system. Williams showed that the orbit closure
of every Toeplitz sequence in a finite language ¥ is a minimal symbolic shift L.
with a continuous map to an odometer factor O. If 7° : L — O is this factor
map, it would be tempting to try to argue that the words occurring on 7°-
pullbacks of the levels of the n-towers form an odometer based construction
sequence. However, we don’t know this in general; in particular, we don’t know
that the words constructed this way are uniquely readable.

To make the words uniquely readable we need to add information without
changing the collection of invariant measures. To do this we introduce the
notion of an augmented symbolic system.

Definition 30: Let (Z,0,5) and (X, 7,T) be minimal compact topological sys-
tems and 7 : Z — X be a continuous factor map. Then (7, Z) is an augmen-
tation of X if there is an S-invariant Borel set A C Z such that if

L = {x : there is exactly one y € A with 7(y) = «},

then for all T-invariant u on X,

w(L) = 1.
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We use this idea as follows:

PROPOSITION 31: Suppose that (7, Z) is an augmentation of X. Then there is
a canonical affine homeomorphism from M(Z,S) to M(X,T).

Proof. The map ¢: M(Z,S) - M(X,T) given by
¢(p) =7 (1)

is a continuous affine map.

If v is an invariant measure on X, then the pullback of v by 7 is an in-
variant measure v/ on a sub-c-algebra of the Borel subsets of Z. Standard
arguments show that v/ can be extended to an S-invariant measure y on Z such
that 7*(u) = v, hence ¢ is surjective.

We claim that A has measure one for all invariant measures p on Z. Otherwise
suppose that u(A) < 1. Consider v = ¢(p). Let B C L be v-measurable and
such that v(B) = 1. Then 7= 1(B) C A and has p-measure one since v = 7 (1).

We need to see that ¢ is one-to-one. Clearly ¢ takes ergodic measures to
ergodic measures. Suppose that p # v are ergodic measures on Z. Then there
are disjoint invariant sets B, C' C Z such that u(B) = v(C) = 1. Let B’ and C’
be the images of B and C' under the map 7. Then, from the properties of L,

7 Y(LNBYCB and 7 YLNC")CC.

Hence LN B’ and LN C’ are disjoint and have measure one for ¢(u) and ¢(v)
respectively. Hence ¢(u) and ¢(v) are distinct.

Since ¢ is affine, continuous and one-to-one on the ergodic measures, it is a
one-to-one map. Finally, since the set of invariant measures on Z is a compact
space ¢ is a homeomorphism. |

To prove Proposition 32, we use:

THEOREM (Downarowicz, [3, Theorem 5]): For every compact metric Choquet
simplex K there is a dyadic Toeplitz flow whose set of invariant measures is
affinely homeomorphic to K.

PROPOSITION 32: Let L be the orbit closure of a Toeplitz sequence x, O be
its maximal odometer factor based on a sufficiently fast growing sequence (k)
and K be the odometer based presentation of O defined in Lemma 27. Then
there is an odometer based system L* C L x K such that if = : L* — L is the
projection to the first coordinate, then (m,L*) is an augmentation of LL.
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Thus, as an immediate consequence of Downarowicz’ theorem and Proposi-
tions 31 and 32:

COROLLARY 33: For every compact metrizable Choquet simplex K there is an
odometer based symbolic shift .* whose set of invariant measures is affinely
homeomorphic to K.

Proof of Proposition 32. We use the language of Williams [13]. Let z be a
Toeplitz sequence in a finite language . Let IL be the orbit closure of  under
the shift map and O be the associated odometer system.

As in [13] we can choose a sequence (K, : n € N) of essential periods for z.
By choosing the K,,’s to grow fast enough we can assume that

(a) Kn|Kn1,
(b) UnPerKn (:C) = Z

Choosing a further subsequence we can also assume that
(¢) if Kk = 0 (mod K,,), then there is an ¢ = 0 (mod K,) with i < K,11

and z [ [k, k+ K,,) = | [i,i + K,).

Given nyg, for large enough n,z | [0, K,,) is a subset of the K, -skeleton of x.
Since the K,-skeleton is K,-periodic, every subword of the K,-skeleton is re-
peated K, 1/K, times in z [ [0, K,+1). Thus by again thinning the K, ’s we
can assume that:
(d) for each n and i = 0 (mod K,) and each word w € XX occurring

as x | [1,7+ Kp), w occurs at least twice in z [ [0, Kpt1).

Let O be the odometer with coefficient sequence (k,, : n € N), where
kn = n+1/Kn-

Let (W, : n € N) be the odometer based construction sequence in the presen-
tation of O given in Lemma 27. Let wQ, w. be the two words in W,,. We define
an odometer based construction sequence by setting V,, to be the collection of
words v in the alphabet X x {a, b} of the form

(@ ] (4, + Kn),w))

where z € L, i < Kp11,7 = 0(mod K,,) and j € {0,1}.
To see that this is an odometer based construction sequence we check Defi-
nitions 9 and 11.
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Unique readability of the words v € V,, follows immediately from the fact
that the wj, are. The fact that each v € V,, occurs at least twice as a subword
of each v/ € V41 follows immediately from item (d) of the properties of the
essential periods of z. From item (c) and the structure of the word construction
from the Toeplitz sequence each word in V,, 1 is a concatenation of words in V,,.

By [13], there is a continuous factor map

6:L — 9.

From the proof of Lemma 27 (see Remark 28) we see that there is an invariant
Borel set G C O of measure one and a one-to-one continuous map ¢ : G — K.
Let L* be the limit of (V,, : n € N). Note that for each 2 € L there is an z such
that (x,z) € L*. Let

A={(y,dob(y)):0(y) € G} CL".

Let @ be an invariant measure on .. Then

u(6-1(@) = 1,

and for y € 71(@G) there is a unique z, (y, z) € A.
Let p be an invariant measure on L*. Let p™ be the L. marginal. Then

P071(G)) = L.

If y € 071(G) and (y, z) € L*, then 2 = ¢ 0 0(y). Hence u(A) =1. &

Remark: The well-known Thue-Morse minimal system is an example of an
odometer based system which is not Toeplitz.

6. The small word property and rates of descent

The applications of the representation theorem and Proposition 32 require that
for all invariant measures on the limit system K, the basic open intervals de-
termined by words in W,,4+1 have measure much smaller than the measures of
basic open intervals determined by words in W,,. We show how to arrange this
for odometer based systems by taking subsequences.
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6.1. EMPIRICAL DISTRIBUTIONS AND FREQUENCIES. In this section we intro-
duce Empirical Distributions and the special case of Frequencies.

Suppose we are given a (general) construction sequence (W,, : n € N), and a
word in w’ € Wiy, that can be uniquely written as a word

w' = UpWoU1wW1 * - WJjUJ+1
with w; € Wy. We define the empirical distribution® of Wj-words in w’ by
EmpDisty (w’). Formally:
{0<j<J:w =wj
J+1

LEMMA 34: Let w € Wy. If for all w' € Wiy1, no < EmpDist(w')(w) < m,
and no Wy-word occurs as subword of a spacer u;, then for k+1 > k,w’ € Wy,

EmpDist,, (w')(w) = . wE Wy

we have 1y < EmpDist(w’)(w) < ;.

Proof. We prove this in the case we use: odometer based construction sequences,
and comment at the end how to give the general proof. If w’ € Wy, then w' is
a concatenation wowy - Wr, /K, —1 Of K41/ K41 many words from Wi 1.
The number of occurrences Oce(w’, w) of w in w’ is the sum of the number of
occurrences of w in the w;’s. We see that

. Occ(w', w i Oce(w;, w)
EmpDist,, (w')(w) = KkJ(rl/Kk> - ZK’C”/K’“

(Kg41/Kx) > EmpDist, (w;, w)
K1/ Ky
> EmpDist, (w;, w)
- Kpp/Egp

Since the empirical distributions of W), words in Wy; words are the averages of

the empirical distributions of the Wy words in Wy; words, the lemma follows
for odometer based construction sequences.

For general construction sequences the Wy words have spacers in them and
the number of occurrences of W,,-words in W, ;1-words may vary (but only by a
small amount). Nonetheless, a small variation of the argument just given shows
that the empirical distributions of the k words in k + [-words is the weighted
average of the distributions of k-words in k£ 4+ 1-words, and the lemma follows
as before. |

5 See [7].
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Empirical distributions are related to measures via generic sequences. We
summarize some results in [12] and [7].

Let p be a shift invariant measure on a symbolic system K defined by a
uniquely readable construction sequence (W,, : n € N) in a finite language X.
Assume that g, is the length of the words in W,,. By pun, we will denote the
discrete measure on the finite set ¥ given by i, (u) = p((u)). By fin(w) we
will denote the discrete probability measure on W, defined by

fq, ((w))

w €Wy, Han ((w"))

(8) fin (w) = 5

Thus fi,(w) is the relative measure of (w)g among all (w')g,w’ € W,,. The
denominator is a normalizing constant to account for spacers at stages m > n
and for the measures of sets (w');, where 0 < k < ¢y.

In an odometer based system, the normalizing denominator is the measure
of Uyew, (w)o. This consists of all words in K with r,(s) = 0. Because the
length of the words in W, is K,,, and the words are uniquely readable, K is the

{Sh’“<wgvn<w>o) 0<k< Kn}

Since y is shift invariant for each k&, Sh” (Uwew, (w)o) has the same measure

disjoint union of

as Uyew, (w)o. Thus the denominator of equation (8) is exactly 1/K,.
Thus by the shift invariance of u this is exactly 1/K,,. Hence

9) fin(w) = Knp({w)o).

Definition 35: A sequence (v, € W,, : n € N) is a generic sequence of words
if and only if for all k£ and € > 0 there is an N such that for all m,n > N,

|[EmpDisty, (v,,) — EmpDisty (vy,)||var < €.
The sequence is generic for a measure p if for all k
lim ||EmpDisty, (vyn) — fik]|var = 0,
n—roo

where || ||var is the variation norm on probability distributions.
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It follows that if (v, : n € N) is a generic sequence of words, then it is
generic for a unique measure p. Even though Definition 35 involves only the
measures ji; it is easy to see (using the Ergodic Theorem) that for any u € X¥,
if (v, : n € N) is generic then the density of the occurrences of u in the v,, will
converge to u({u)).

The following is Proposition 2.20 in [7]:

ProrosiTION 36: Let K be an ergodic symbolic system with construction se-
quence (W,, : n € N) and measure p. Then for any generic s € K the sequence
of principal subwords of s, (w,, : n € N), is generic for . In particular, generic
sequences for ji exist.

There is also a finitary notion of an ergodic sequence. For generic er-
godic sequences [ is defined to be the limit of the empirical distributions, and
determines a shift invariant ergodic measure p.

Thus empirical distributions capture the notion of ergodicity in a finitary
way, and every generic point for an ergodic measure is a limit of empirical

distributions along subwords.

Remark 37: In fact more than Lemma 34 is true (again, see the arguments
in [7]). In Lemma 29, we can change k + 1 to an arbitrary k' > k: Let w € W,
and fix k£’ > k. If for all w’ € Wy, we have 1y < EmpDist(w)(w) < n1, and no
k-word occurs as subword of a spacer u; in a word in w’ € Wy, with k' +1 > k.
Then for all w’ € Wy, we have

no < EmpDist(w’)(w) < m.

In particular, for all shift invariant measures p on the limit K of (W, : n € N)
we have ng < fip(w) < 1.

6.2. THE SMALL WORD PROPERTY.
Definition 38: Let (W, : n € N) be a construction sequence. Let
frn = sup{EmpDist(w’)(w) : w € Wp,w" € Wpi1}

be the supremum of the empirical distributions of the n-words in n + 1-words.
The sequence (W, : n € N) has the small word property with respect to a
sequence (0, : n € N) if and only if for all n,

fn <0, < 1.
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ODOMETER BASED SYSTEMS ARE SIMPLER. For odometer based construction
sequences we write the lengths of the n-words, ¢, as Ky, (so K,y = [[,,,, km)-
With this notation the definition of empirical distribution simplifies. For n < m,
w € Wy, w' € W,,, the empirical distribution EmpDist(w’)(w) is simply the
frequency of occurrences of w in w’, which is given by

number of occurrences of w in w’

K. /K,

Freq(w,w') =

We use the following remark in [9].

Remark 39: For n < m, clause 3 of the definition of a construction sequence
(Definition 9) together with Remark 34 implies that the frequency of each word
w € W, inside each w’ € W, is at least 1/k,,.

Definition 38 can be restated for odometer based construction sequences as
saying that if

fn = sup{Freq(w,w’) : w € Wy, w' € Wy11}

is the supremum of the frequencies of the n-words in n + 1-words, then the
sequence (W,, : n € N) has the small word property with respect to a
sequence (0, : n € N) if and only if for all n, f, < J,.

Since odometer based construction sequences have no spacers, the hypoth-
esis about spacers mentioned in Lemma 34 does not arise. Restating the
lemma in the language of frequencies, if w € Wy and for all w' € Wiy,
1o < Freq(w,w’) < my, then for k41 > k, w’ € Wy4; we have

no < Freq(w,w') < my.
We preserve the following proposition for future use:

PROPOSITION 40: Let (W,, : n € N) be an odometer based sequence. Suppose
that f,, < d. Then for all w € W, and all shift invariant measures y on the
limit K

fin (W) < 4,

p({w)) < 6/ K,.

The next lemma gives upper and lower bounds on measures of basic open
intervals.
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LEMMA 41: Let W, : n € N) be an odometer based construction sequence
for the system K, and p be a shift-invariant measure on K. Then for all words

w € Wy

1 [
7 < ollw) < -

Proof. By the ergodic theorem, it suffices to show that for all n < m and all
w € Wy, w' € W,
1 < {k < Kpp:w' | [k, k+ kn) = w} < fn
KnJrl - Km - Kn

Write w’ = wowy -- CWEK /K g where each w; € W,,+1. Because w occurs at
least once inside each w;, the density of

D =A{k:w; I [k,k+kn)}
is at least 1/K,,4+1. The first inequality follows.

To see the second, for all 7, note that for all w;

number of occurrences of w in w;

Kn+1/Kn

fu > Frea(w, w;) =

Hence the number of occurrences of w in w’ is bounded by

W (ED) =0 (F)

It follows that the density of D is bounded by

fn(ﬁ) (L) _I
K,/ \Ky, K,

Thus if (W,, : n € N) has the small word property with respect to (4, : n € N)
with §,, < 1, then for all w € W,,,w’ € W,,11 and all invariant measures p

/ 6n+1
(10) p((w')) < Koy © p((w)).

Our next step is to show that if O is an odometer transformation, then O has

a presentation as an odometer based system with the small word property for
some sequence (d,, : n € N) tending to 0. We do this by modifying Lemma 27.

LEMMA 42: Let O = [],cy%Zk, be an odometer system with invariant mea-
sure u. Then 9O is isomorphic to (K,v) where K is the limit of an odometer
based construction sequence (W, : n € N) with f, tending monotonically to
zero exponentially fast; in particular, Y f, < oo.
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Proof. Let O be an odometer based on (k, : n € N). Let n; be a monotone
strictly increasing sequence and define

l; = H K.

ni—1<n<n;

By Proposition 8, 9 is isomorphic to the odometer based on (I; : ¢ € N). Thus
by passing to a subsequence we can assume that

kn > 3s,(2" + 1)K,

(recall that s,, is the number of words in W,,). To begin, let Wy = ¥ = {a, b, c}.°

Suppose that we have constructed W,, and it is enumerated in lexicographical
order as {w:1<i<s,). For each non-identity permutation o of {1,2,3,...,s,},
let w, be the three-fold concatenation of the words in W, in the order given
by o:

Sn 3
Wy = (Hw;’(i)) .

Note that the length of w, is 3s, K.
Write k,, = sn(cn, +3) + d,, where ¢, € N, 0 <d,, <s, and let

Sn cn  dn
f= ( H w:’) * H wy'.
i=1 i=1
Note that the final segment, H?;l w?, has length d, K,,. Finally we let

Whi1 = {w; t: o is a non-trivial permutation of {1,2,...,s,}}.

In words: we begin by making s,! — 1 prefixes w, by concatenating the words
in W, in all possible orders. We then use a single, much longer, suffix to
complete each word. Note that W, 1 has at least s,,! — 1 many words in it.
Since each prefix is uniquely readable and comes from a non-trivial permu-
tation o, the words in W,,;1 are uniquely readable. Moreover, any two words
in W, occur with approximately the same frequency in each word in W,, 1. This
precision gets better in a summable way as n increases to co. The words in W, 1
are clearly concatenations of words in W,,. Let K be the limit of (W, : n € N).

6 This construction can be easily modified to work in a 2-letter alphabet, by changing W;
in an ad hoc way.
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By assumption on k, the prefix makes up less than 27" portion of a word
in Wy1. Let

G = {x € O : for large enough m, 3s,, < z(m) < k,,, — 10}.

For z € G, for some k and all m > k and w € Wy, 11, (m)K,, is bigger than
the length of the prefix w, and less than K, 1 — (dp, + 10)ky,.
As before we let

rn=200)+2(1)K; + 2(2)Ka + - - - + 2(n) K,,.

Because x(n) > 3s,, for all n + 1 words w € W,, 11, the z(n)*" letter is not in a
prefix. It follows that for all w € W41, the z(n)" subword is the same. Let w,,
be this word, and let 1)(x) be the element s € K determined by (r, : n > k)
and (wy :n > k).

As in Lemma 27, (G is a measure one Borel set and the map

VG K

is continuous and one-to-one.

It remains to show that the f,, are small. Since each word in W,, occurs very
close to the same number of times in each W,, 1, the frequencies of occurrences
of each word is to 1/s,. Since s, grows as an iterated factorial, f,, goes to zero
exponentially. |

6.3. ARBITRARY RATES OF DESCENT. Fix an odometer based construction se-
quence (W, : n € N) with f,, < b, for some sequence (b, : n € N) going to zero.
Let (4; : i € N) be a sequence of positive numbers less than one. Then there is
a subsequence (n; : i € N) such that b,, < ;. Let V; = W,,.

We claim that (V; : ¢ € N) has the small word property with respect
to (6; : i« € N). This follows because the frequency of each w € W, in
each w' € W, 41 is bounded above by b,, < J;. Applying Lemma 34 we
see that the frequency of each w € V; in each w' € W,,,,, = V41 is bounded
above by J;.

This subsequence can be chosen continuously in the parameters (b;,d;) and
any tail of any sufficiently fast growing subsequence has the small word property
with respect to (d,, : n € N). We elaborate on this after the next theorem.

We now note the following:
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THEOREM 43: Let O be an odometer system. Let W2 :n € N) be a construc-
tion sequence for O that has the small word property for (6, : n € N).

o If T :(X,u) — (X,p) is an ergodic transformation with finite entropy
having O as a factor, and (WX : n € N) is the presentation of X as
a limit of the odometer based system (W= : n € N) constructed by
Theorem 21 as modified in Remark 29, then (WX : n € N) has the
small word property for (6, : n € N).

e If x is a Toeplitz sequence with underlying odometer 9, then the pre-
sentation of the orbit closure L. of x as the limit IL* of an odometer
based construction sequence given in Corollary 33 has the small word
property with parameters (3, : n € N).

Proof. In both cases the words in the respective construction sequences were of
the form (u, v), where v is in the construction sequence for a presentation of O.
Since the construction sequence for £ has the small word property, the given

construction sequence does as well. |

Theorem 43 reduces the problem of finding presentations of odometer based
systems with the small word property to the problem of finding a presentation
of the underlying odometer with the small word property. By Lemma 42, we
can do this for a single sequence (f,,) tending to zero.

THE SMALL WORD PROPERTY CAN BE ARRANGED CONTINUOUSLY. Fix an
odometer construction sequence W, : n € N), let ng = 0 and consider the
following game &((W,, : n € N)). Let (b, : n € N) be a sequence with b,, > f,
for all n. At round k£ > 0:

e Player I plays €, > 0.
e Player II plays ng+1 > ng.

Player II wins &((W, : n € N)) if and only if by, , < € for all k.
We record the following remark for applications in other contexts.

Remark 44: If b, converges to 0 then player II has a winning strategy
in (W, : n € N)). Moreover, by Theorem 43, if S is this strategy for an
odometer based presentation (W,? :n € N), then § is also a winning strategy
for all odometer based presentations (WX : n € N) built over (W2 : n € N).

In particular, we can choose the subsequence ny continuously in the €.
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