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ABSTRACT

Construction sequences are a general method of building symbolic shifts

that capture cut-and-stack constructions and are general enough to give

symbolic representations of Anosov–Katok diffeomorphisms. We show

here that any finite entropy system that has an odometer factor can be

represented as the limit of a special class of construction sequences, the

odometer based construction sequences. These naturally correspond to

those cut-and-stack constructions that do not use spacers. The odometer

based construction sequences can be constructed to have the small word

property and every Choquet simplex can be realized as the simplex of in-

variant measures of the limit of an odometer based construction sequence.
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Preface

This preface is due solely to the first author.

I had the privilege to meet Benjy Weiss in the early 1990s. I was surprised by

his openness and ability to interact with a stranger in a different field. Indeed

our joint work, which covers decades and hundreds of published pages (and

many more pages of unpublished work), has been a tribute to his willingness to

work with someone with a completely different background and training.

I humorously, but sincerely, categorize Benjy’s roles as:

Inspiration: Benjy is the perfect mathematical role model. Unparalleled

modesty, openness in sharing ideas and fairness combined with unlim-

ited talent.

Oracle: Ask any question and his remarkable memory will nearly in-

stantly retrieve the answer if it is known.

Speculator: He is completely willing to discuss paths that seem implau-

sible at first and see where they lead. The fact that they are often

empty doesn’t seem to bother him.

Friend and Mentor: This is perhaps his most important role for me.

With these points in mind, I sincerely thank Benjy Weiss for the years of com-

panionship and productivity.

1. Introduction

Construction sequences are a general method of building symbolic shifts that

capture cut-and-stack constructions and are general enough to give symbolic

representations of Anosov–Katok diffeomorphisms. This paper studies a special

class of construction sequences, the odometer based construction sequences that

corresponds to those cut-and-stack constructions that don’t use spacers.

In [7] we show that there is a functorial isomorphism between the symbolic

systems that are limits of odometer based construction sequences and symbolic

systems that are limits of a class of construction sequences called circular sys-

tems. Many circular systems, in turn, can be realized as diffeomorphisms of

the 2-torus. As a corollary the qualitative ergodic theoretic structure of the

odometer based systems is reflected in the diffeomorphisms of the 2-torus. For

example, in [9] it is shown that there are measure-distal diffeomorphisms of the
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torus of all countable ordinal heights and for all Choquet simplices K, there is

a Lebesgue measure preserving ergodic diffeomorphism of the torus that has K
as its simplex of invariant measures. This uses Corollary 2 in this paper.

To use the functor defined in [7] to build diffeomorphisms with complicated

behavior, one needs that the class of transformations isomorphic to limits of

odometer based construction sequences exhibits quite rich ergodic phenomena.

This is the point of the current paper.

It is a classical theorem of Krieger ([10]) that an ergodic system with finite

entropy has a finite generating partition. This gives a symbolic representation

for any such system and shows that the theory of finite entropy ergodic measure

preserving systems coincides with the theory of finite valued ergodic stationary

processes {Xn}. When studying stationary processes {Xn} it is often useful to

have a block structure, namely a way of dividing the indices into a hierarchy of

blocks of lengths k1, k1k2, k1k2k3, . . . in a unique fashion. If this is possible then

the process will have as a factor the odometer transformation corresponding to

the sequence {kn}. Our main theorem (Theorem 21) is that it is always possible

to find such a symbolic representation with a rather simple form whenever this

necessary condition is satisfied.

Theorem (in Section 4): Let (X,B, µ, T ) be a measure preserving system with

finite entropy. Then X has an odometer factor if and only if X is isomorphic

to an odometer based symbolic system.

The class of ergodic transformations containing an odometer factor is easily

characterized spectrally as those ergodic transformations whose associated uni-

tary Koopman operator has infinitely many eigenvalues of finite multiplicative

order. (We prove this in Proposition 6.)

If T is totally ergodic, i.e., all powers are ergodic, then the product of T

with any odometer is ergodic. In general we have the following easy proposition

which illustrates the ubiquity of ergodic transformations with odometer factors:

Proposition 1: Given any ergodic transformation X = (X,B, µ, T ) either:

(1) X has an odometer factor, or:

(2) there is an odometer O such that X ×O is ergodic (and X × O has finite

entropy if X does).

In particular, every finite entropy transformation is a factor of a finite entropy

odometer based symbolic system and the finite entropy transformations that

have an odometer factor are closed under finite entropy extensions.
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Proof. If X does not already have an odometer factor, then the Koopman op-

erator associated to X has finitely many eigenvalues with finite order. Let O

be an odometer such that the eigenvalues of the Koopman operator of O are

relatively prime to the orders of the eigenvalues associated to X. It is then easily

verified that X×O is ergodic.

We remark that we can put a pre-partial ordering ≤F on the set of ergodic

transformations EFE with finite entropy by setting (X,T ) ≤F (Y, S) if and only

if there is a factor map π : Y → X . A standard definition from the theory of

pre-partial orderings is that a set C ⊆ E is a cone relative to ≤F iff and only if:

C is closed upwards: if (X,T ) ∈ C and X ≤F Y then Y ∈ C,

Extension: for all ergodic (X,T ) with finite entropy there is a Y ∈ C

with X ≤F Y .

The relevance of cones is that the set of cones generate a non-principal filter

relative to ≤F . Hence a cone can be viewed as a set of measure one for a

finitely additive measure on the EFE with the ordering ≤F . In this rigorous

sense Proposition 1 shows that the set of transformations of finite entropy with

an odometer factor is a large set.

Corollary 2: For all finite or countable ordinals α there is an ergodic measure

distal, odometer based system of distal height α.

Proof. Fix a finite or countable ordinal α. By the results of Beleznay and Fore-

man ([2]) there is a measure distal transformation T of distal height α. Since T

is measure distal it has entropy 0. The Koopman operator corresponding to T

has no eigenvalues of finite order. Hence we can choose a sequence 〈kn : n ∈ N〉
going to infinity and consider the odometer transformation O based on the se-

quence 〈kn : n ∈ N〉. (See section 2.2 for a formal definition.) By Proposition 1,

T ×O is an ergodic odometer based transformation.

Using Lemma 2.8 of [2] (and the discussion surrounding it), one sees that

T ×O has distal height α.

We should point out that special symbolic processes with a block structure,

called Toeplitz systems, have been well studied from the point of view of topo-

logical dynamics. (See, e.g., [4], [3], [13].)

The structure of this paper. Section 2 has the basic definitions used in

the paper as well as properties of odometer based systems that we use in the

construction. Section 4 contains the proof of our main theorem, Theorem 21.
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It begins by pointing out a known fact that odometers cannot be represented

topologically as symbolic shifts, in contrast to Theorem 21, which is in the

measure category. As a precursor it then presents the odometer as an odometer

based system, describes the plan of the proof and finally gives the proof in detail.

In Section 5 we discuss the connections with Toeplitz systems, showing how

to augment a Toeplitz system to get an odometer based system while preserving

the simplex of invariant measures. It then follows from a remarkable theorem

of Downarowicz [3] (generalizing work of Williams [13]) saying that arbitrary

simplices of invariant measures can be realized on Toeplitz sequences to see that

arbitrary simplices of invariant measures can be realized on limits of odometer

based construction sequences.

The applications of this paper require that the odometer based construction

sequences in the domain of the isomorphism functor has the frequencies of words

decreasing arbitrarily fast. We call this the small word property. In Section 6

we define the small word property and show that we can realize odometer based

systems continuously in a sequence of small word requirements.

The road not taken. After a draft of this paper was circulated, it was

pointed out that there is an alternate proof of our result about simplices of

invariant measures. It is based on a result of Downarowicz and Lacroix ([4],

theorem 8) which states that every transformation satisfying the hypothesis

of our main theorem can be represented as the orbit closure of a Toeplitz se-

quence. Then applying Proposition 32 in this paper presents orbit closures of

Toeplitz sequences as limits of odometer based construction sequences, giving

an alternate proof. However, the proof that is given in [4] makes key use of a

result in Weiss’ paper, [11]. In that paper only a brief sketch of a more general

theorem is given and the specific result that they need for the alternate proof

is not even mentioned there. Moreover, the applications of the results in this

paper in [9] use the specific representation given here that has the small word

property. This idea is new to this paper and is completely missing from the

alternate proof.

We also note the work of Williams presenting the odometer itself as a limit

of a construction sequence (see Williams, [13]), as well as the recent work of

Adams, Ferenczi, and Petersen [1], which realizes generalized odometers and

indeed all rank one systems as “constructive symbolic rank one systems,” in

the terminology of [5].
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2. Preliminaries

An alphabet Σ is a finite collection of symbols. Aword in Σ is a finite sequence

of elements of Σ. If w ∈ Σ<N is a word, we denote its length by |w|. By ΣZ

we mean doubly infinite sequences of letters in Σ. This has a natural product

topology induced by the discrete topology on Σ. This topology is compact if Σ

is finite. For u a word in Σ and k ∈ Z, we use the notation 〈u〉k for the basic

open interval in ΣZ consisting of {f ∈ ΣZ : f ! [k, k + |u|) = u}. If we omit

the k, 〈u〉 means 〈u〉0.
Perhaps the thorniest issue in the paper is defining right vs left shifts, particu-

larly in view of the cultural differences. We define the shift given Sh : ΣZ → ΣZ

by setting Sh(f)(n) = f(n+1). For this paper Sh is the left shift because f is

being shifted left. The right shift is Sh−1. Similarly an occurrence of a word

u ∈ Σ<N in an f ∈ ΣZ at a k ∈ Z is to the left of an occurrence y ∈ Σ<N at l

if k < l. A symbolic system is a closed, shift-invariant K ⊆ ΣZ for some Σ.

A collection of words W is uniquely readable if and only if whenever

u, v, w ∈ W and uv = pws then either p or s is the empty word.

We note that we can view both words and elements of ΣZ as functions.

If f : A → B and A′ ⊆ A, the restriction of f to A′ is denoted f ! A′.

Given a collection 〈wi : 0 ≤ i ≤ n〉 of finite words in some alphabet, we let

n∏

i=0

wi

denote the concatenationw0w1w2 · · ·wn. Similarly for a single wordw and k ≥ 1

we let wk denote the concatenation of k-copies ofw. So, for example, w3 = www.

2.1. Partitions and symbolic systems. Let (X,B, µ), (Y, C, ν) be standard

probability measure spaces and let π : X → Y . Then ν is the measure induced

by µ and π if and only if for all C ∈ C,π−1(C) ∈ B and ν(C) = µ(π−1(C)).

In symbols we write ν = π∗(µ).

An ordered partition of X is a set P = 〈A0, A1, . . .〉 such that each Ai ∈ B,
Ai ∩ Aj = ∅ if i += j, and X =

⋃
i Ai. We allow our partitions to be finite or

countable and identify two partitions P = 〈Ai〉, Q = 〈Bj〉 if for all i,

µ(Ai∆Bi) = 0.
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We will frequently refer to ordered countable measurable partitions simply

as partitions. A partition is finite iff for all large enough n, µ(Pn) = 0. If P
and Q are partitions, then Q refines P iff the atoms of Q can be grouped into

sets 〈Sn : n ∈ N〉 such that

∑

n

µ

(
Pn∆

( ⋃

i∈Sn

Qi

))
= 0.

In this case we will write that Q , P . A decreasing sequence of partitions

is a sequence 〈Pn : n ∈ N〉 such that for all m < n,Pn , Pm. If A ∈ B is a

measurable set and P is a partition, then we let P ! A be the partition of A

defined as 〈Pn ∩ A : n ∈ N〉.

Definition 3: Let (X,B, µ) be a measure space. We will say that a sequence of

partitions 〈Pn : n ∈ N〉 generates (or generates B) iff the smallest σ-algebra

containing
⋃

n Pn is B (modulo measure zero sets). If T is a measure preserving

transformation we will write TP for the partition 〈Ta : a ∈ P〉. In the context of

a measure preserving T : X → X we will say that a partition P is a generator

for T iff 〈T iP : i ∈ Z〉 generates B.

Given a measure preserving system (X,B, µ, T ) and a partition P of X , define

a map φ : X → PZ by setting (for each a ∈ P)

φ(x)(n) = a if and only if T nx ∈ a.

The bi-infinite sequence φ(x) will be called the P-name of x. The closure

of φ(X) ⊆ PZ is a symbolic system.

Define a measure on PZ by setting

φ∗(µ)(A) = µ(φ−1[A]).

This is a Borel measure on the symbolic shift PZ and makes (PZ, C, ν,Sh) into
a factor of (X,B, µ, T ) (where ν = φ∗(µ)). This factor map is an isomorphism

if and only if B is the smallest shift-invariant σ-algebra containing all of the sets

in P (up to sets of measure zero); i.e., P is a generator for T . In general the

support of ν is the closure of φ(X).

Remark 4: Let P ,Q be partitions of X . Then P and Q determine factors YP

and YQ. Define φ : X → YP × YQ by setting φ(x) = (sp, sq) where sp is the P-

name of x and sq is the Q-name of x. Let η = φ∗(µ). Then (YP × YQ, C, η,Sh)
is isomorphic to the smallest factor of X containing both YP and YQ as factors.
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2.2. Basic facts about odometers. Let 〈ki : i ∈ N〉 be an infinite sequence

of integers with ki ≥ 2. Then the sequence ki determines an odometer trans-

formation with domain the compact space1

O
def
=

∏

i

Zki .

The space O is naturally a monothetic compact abelian group, with the

operation of addition and “carrying right”. We will denote the group element

(1, 0, 0, 0, . . . ) by 1̄, and the result of adding 1̄ to itself j times by j̄.

The Haar measure on this group can be defined explicitly. Define a measure νi
on each Zki that gives each point measure 1/ki. Then Haar measure µ is the

product measure of the νi.

The odometer transformation O : O → O is defined by taking an x ∈
∏

i Zki

and adding the group element 1̄, More explicitly, O(x)(0) = x(0) + 1(mod k0)

and O(x)(1) = x(1) unless x(0) = k0 − 1, in which case we “carry one” and set

O(x)(1) = x(1) + 1(mod k1), etc.

The map O : O → O is a topologically minimal, uniquely ergodic, invert-

ible homeomorphism that preserves the measure µ. When we are viewing the

odometer as a measure preserving system we will denote it by O.

Define UO : L2(O) → L2(O) by setting UO(f) = f ◦ O. Then UO is the

canonical unitary operator associated with O. The characters χ ∈ Ô are eigen-

functions for the UO since

χ(x + 1̄) = χ(1̄)χ(x).

Since the characters form a basis for L2(O), the odometer map has discrete

spectrum.

Here is an explicit description of the characters, which we call Rn here.

Fix n ≥ 1 and let

Kn =
∏

i<n

ki.

Let A0 ⊂
∏

i Zki be the collection of points whose first n + 1 coordinates are

zero, and for 0 ≤ k < Kn set Ak = Ok(A). Define

Rn =
Kn−1∑

k=0

(e2πi/Kn)kChAk

where ChA is the characteristic function of A.

1 We write Z/Zk as Zk .
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Then:

(1) Rn is an eigenvector of UO with eigenvalue e2πi/Kn ,

(2) (Rn)kn = Rn−1,

(3) {(Rn)k : 0 ≤ k < Kn, n ∈ N} form a basis for L2(
∏

i Zki).

For a fixed n, the sets {Ai : 0 ≤ i < Kn} form a tower which will play a

special role in our proofs. More generally, if (X,B, µ, T ) is an ergodic measure

preserving system and π : X → O is a factor map, we set Bi
n = π−1Ai.

Then {Bi
n : 0 ≤ i < Kn} is a partition of X that forms a tower in the sense

that T [Bi
n] = Bi+1

n for i < Kn − 1 and T [BKn−1
n ] = B0

n.

Definition 5: We will call the tower Tn = {Bi
n : 0 ≤ i < Kn} the n-tower

associated with O.

Figure 1. The tower Tn.

Figure 1 illustrates the nth tower, which we will denote Tn. The horizontal

lines represent the levels of the tower. The “n + 1st-digit” of points in O

determine kn many vertical cuts through Tn. Enumerating the levels according

to their lexicographic order in
∏

j<n+1 Zkj amounts to stacking the post-cut

columns of Tn. Figure 2 illustrates the result Tn+1 of the cutting and stacking.
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Figure 2. The tower Tn+1.

Spectral characterization. Here is a standard spectral characterization

of transformations with an odometer factor. Suppose that (X,B, µ, T ) is an

ergodic measure preserving system. Let UT : L2(X) → L2(X) be defined by

UT (f) = f ◦ T.

Let G be the group of eigenvalues of UT that have finite multiplicative order

(as elements of C).
Suppose thatG is infinite. Then there is a sequence of generators {gn : n ∈ N}

of G so that

o(gn) | o(gn+1).

The dual Ĝ of G is the odometer based on 〈kn :n∈N〉, where kn = o(gn). We

have outlined the proof of:

Proposition 6: Let (X,B, µ, T ) be an ergodic measure preserving system.

Then X has an odometer factor if and only if UT has infinitely many eigenvalues

of finite multiplicative order.

We will use the following:
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Proposition 7: Let Ĝ be the measure preserving system described above

and π : X → Ĝ be the canonical factor map. If φ : X → Y is any factor

map of X to an odometer, then there is a π′ : Ĝ → Y such that φ = π′ ◦ π
almost everywhere.

Here is a useful remark.

Proposition 8: Let 〈kn : n ∈ N〉 determine an odometer transformation O

and Kn =
∏

i<n ki. Then for any infinite subsequence of 〈Knj : j ∈ N〉 of

〈Kn : n ∈ N〉, if we set k′0 = Kn0 and for j ≥ 1, k′i = Knj/Knj−1 , then the

odometer O′ determined by 〈k′j : j ∈ N〉 is isomorphic to O.

In particular, an arbitrary odometerO has a presentation where
∑

1/kn < ∞.

2.3. Invariant measures. Let X be a compact separable metric space

and T : X → X be a homeomorphism. Then the collection of T -invariant

probability measures on the Borel subsets of X,M(X,T ), endowed with the

weak topology, forms a Choquet simplex K: a compact, metrizable subset of

a locally convex space such that for each µ ∈ K there exists a unique measure

concentrated on the extremal points of K which represents µ. Since the extreme

points of the invariant measures are the ergodic measures, this is a restatement

of the Ergodic Decomposition Theorem.

We emphasize that for µ to belong to M(X,T ), µ must be defined on all

Borel subsets of X .

3. Construction sequences and their limits

Here is the general definition of a construction sequence and its limit. In this

section we briefly explain and prove some general statements in earlier papers.

This paper is concerned with a special case, the odometer based construction

sequences.

Definition 9: A construction sequence in a finite alphabet Σ is a sequence

of non-empty collections of words 〈Wn : n ∈ N〉 with the properties that:

(1) W0 = Σ,

(2) all of the words in each Wn have the same length qn and the collection Wn

is uniquely readable (in the sense of the definition in Section 2),

(3) each w ∈ Wn occurs at least once as a subword of every w′ ∈ Wn+1,
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(4) there is a summable sequence 〈εn : n ∈ N〉 of positive numbers such that

for each n, every word w ∈ Wn+1 can be uniquely parsed into segments2

(1) u0w0u1w1 · · ·wlul+1

such that each wi ∈ Wn, ui ∈ Σ<qn and for this parsing

(2)

∑
i |ui|

qn+1
< εn+1.

We call the elements of Wn n-words, and let sn = |Wn|.

Definition 10: Let 〈Wn : n ∈ N〉 be a construction sequence in an alphabet Σ.

The limit of 〈Wn : n ∈ N〉 is defined to be the collection K of x ∈ ΣZ such that

for all finite intervals I ⊆ Z there is a w ∈ Wn and J ⊆ [0, qn − 1) for some n

such that x ! I = w ! J . Suppose x ∈ K is such that for some an ≤ 0 < bn
and x ! [an, bn) ∈ Wn. Then w = x ! [an, bn) is the principal n-subword of x.

We set rn(x) = |an|, which is the position of x(0) in w.

Definition 11: Let 〈kn : n ∈ N〉 be a coefficient sequence, A construction se-

quence 〈Wn : n ∈ N〉 is odometer based if and only if Wn+1 ⊆ Wkn
n . A

symbolic system K is odometer based if it has a construction sequence that

is odometer based. For an odometer based construction sequence and n ≥ 1

we let Kn =
∏

m<n km.3

Informally: odometer based construction sequences are those built without

spacers.

One way of defining certain elements of K is illustrated in the following

Lemma that is stated in Remark 2.15 in [7] section 2.

Lemma 12: Let 〈Wn : n ∈ N〉 be a construction sequence. Let 〈wn : n ≥ k〉 be
a sequence of words with wn ∈ Wn. Let 〈rn : n ≥ k〉 be a sequence of natural

numbers such that

(1) rn ∈ [0, qn) and both rn → ∞, qn − rn → ∞,

(2) the rthn+1 letter in wn+1 is in the position of the rthn -letter of wn.

Then there is a unique s ∈ K such that for all n ≥ k, rn(s) = rn and the

principal n-subword of s is wn.

2 We assume that l ≥ 1.
3 Kn will be equal to the qn in Definition 9.
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It follows immediately from Lemma 12 that if w ∈ Wn and an r ∈ [0, qn)

there is an x ∈ K such that w is the principal n-subword of x and rn(w) = r.

The next definition is [7, Definition 2.9].

Definition 13: Suppose that 〈Wn : n ∈ N〉 is a construction sequence for a

symbolic system K. We define the set S to be the collection of x ∈ K such that

there are sequences of natural numbers 〈am : m ∈ N〉, 〈bm : m ∈ N〉 going to

infinity such that for all m there is an n, x ! [−am, bm) ∈ Wn.

For clarity we make the following stronger definition:

Definition 14: Define the set S′ to be the collection of x ∈ K such that there are

sequences an, bn ≥ 0 going to infinity such that for all n, x ! [−an, bn) ∈ Wn.

Note that taking k = 0 in Lemma 12, the given s belongs to S′.

Let s ∈ K have principal n and n+ 1-subwords. Then the following are easy

to check:

rn+1 ≥rn,(3)

qn+1 − rn+1 ≥qn − rn.(4)

Zig-zagging. We now describe a method for using Lemma 12 to build

elements s ∈ S′ we will call zig-zagging. Suppose we have 〈wm : m ≤ n〉
and 〈rm : m ≤ n〉. The operations left zig and right zig each can be used to

extend the construction 2-stages to 〈wm : m ≤ n+ 2〉 and 〈rm : m ≤ n+ 2〉. A
zig-zag consists of a left zig followed by a right zig, or a right zig followed by a

left zig. Thus a zig-zag extends the construction 4 stages—from n to n+ 4.

Given the word wn ∈ Wn and the location rn ∈ [0, qn), let wn+2 ∈ Wn+2.

Then wn+2 contains two subwords wl
n+1 and wr

n+1 that belong to Wn+1

with wl
n+1 occurring to the left of wr

n+1. (More precisely, if we view wn+2 as a

string of letters and the first letter of wl
n+1 is at location l0 and the first letter

of wr
n+1 is at l1, then l0 < l1. We include the locations of the words wl

n+1, w
r
n+1

in wn+2 as part of the information in the superscripts l, r.)

We define the left zig. The right zig is defined analogously except that right

zig uses wr
n+1. Let wn+1 be the word wl

n+1. Consider the left most occurrence

of wn in wl
n+1. Then the rthn letter of this occurrence of wn occurs in some

location k in wl
n+1. Let rn+1 be this k. The letter in wl

n+1 in position rn+1

occurs at some k∗ in wn+2. Let rn+2 = k∗.
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Because the wl
n+1 occurs to the left of wr

n+1 we must have

qn+2 − rn+2 ≥ qn+1.

By equations (3) and (4), we have rn+2 ≥ rn+1 ≥ rn. Thus, if we are doing an

inductive construction using Lemma 12 the left zig extends it from n to n + 2

and we have:

rn+2 ≥ rn+1,

qn+2 − rn+2 ≥ qn+1.

We describe a left-right zigzag. We are given a word wn and a loca-

tion rn. Choose wn+2 ∈ Wn+2 and do a left zig. This gives a wn+1 and

locations rn+1, rn+2. Now choose wn+4 ∈ Wn+4 and do a right zig. This

gives wn+3 and locations rn+3, rn+4.

The words wn+1, wn+2, wn+3, wn+4 and locations rn+1, rn+2, rn+3, rn+4 sat-

isfy the conditions of Lemma 12, and the following inequalities:

rn+4 ≥qn+3,(5)

qn+2 − rn+2 ≥qn+1.(6)

In particular, both the locations and the distances from the ends of the words

strictly grow in these four steps.

The right-left zigzag is done the same way except that moving from n

to n+2 is a right zig and going from n+2 to n+4 is a left zig. The analogous

equations to (5) and (6) hold with the roles of n+2 and n+4 swapped and n+1

and n+ 3 swapped.

Example 15: Fix a construction sequence 〈Wn : n ∈ N〉 and let w0 ∈ W0. Let

f ∈ {0, 1}N. Build an s ∈ K by induction on n. The construction inductively

chooses words 〈wm : m ≤ 4n〉 and locations 〈rm : m ≤ 4n〉. To pass from

stage 4n to stage 4(n+ 1) one does a left-right zig-zag if f(n) = 0 and a right-

left zig-zag if f(n) = 1.

The result is a sequence of words 〈wn : n ∈ N〉 and locations 〈rn : n ∈ N〉
that satisfy the hypotheses of Lemma 12, and hence determine an s ∈ K. Equa-

tions (5) and (6) show that s ∈ S′.

Proposition 16: Let S, S′ be defined as in Definitions 13 and 14. Then

(1) S is a shift invariant dense Gδ subset of K.

(2) S′ contains perfect set.
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Proof. We first show that S is dense. Let U = 〈u〉k be a non-empty basic open

set in K. By making u longer and thus shrinking U we can assume that U sits

on an interval [c, d) with c ≤ 0 < d. Applying Definition 13, we can find an n,

w ∈ Wn, a ≤ c < d ≤ b and an x ∈ K such that x ! [a, b) = w, x ! [c, d) = u.

Build a sequence of words 〈wm : n ≤ m〉 with wn = w, rn = −a satisfying the

hypothesis of Lemma 12. If s is the limit of these words given by Lemma 12,

then s ∈ U ∩ S.

To see S is Gδ, for each b > 0,

Sb = {x ∈ K : for some am, bm with am<−b and b < bm, x ! [−am, bm) ∈ Wn}

is an open set. Hence

S =
⋂

b∈N
Sb

is a Gδ set.

To see that S′ contains a perfect set, we use Example 15. For each f ∈ {0, 1}N

the example builds an s(f) ∈ S′. If f += g and f(m) += g(m) then

rm(s(f)) += rm(s(g)).

Moreover, the map f 1→ s(f) is continuous. Hence the {s(f) : f ∈ {0, 1}N} is a

compact perfect set.

Remark 17: Suppose that s = s(f) is constructed in the manner of the proof

of Proposition 16 and f is not eventually constant. Then for infinitely many n,

the principal n-subword of s has an n-subword occurring to the left of it in the

principal n+1 subword of s and similarly for words to the right of the principal

n-subword.

The upshot of this discussion is the following:

Proposition 18: The set K is a non-empty, closed, shift invariant, topologi-

cally transitive subshift of ΣZ.

Proof. K is clearly non-empty since it contains the set S′ defined in Proposi-

tion 16.

We first show that K is shift invariant. Let y ∈ K and consider Shn(y).

For I a finite interval, let u = Shn(y) ! I. Then u = y ! Sh−n(I). Hence for

some n, J ⊆ [0, qn), w ∈ Wn, u = w ! J . But then Shn(y) ! I = w ! J . Hence

Shn(y) ∈ K.
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We next show that K is closed. Suppose that 〈yn : n ∈ N〉 ⊆ K and yn →n y.

Let I ⊆ Z be a finite interval. Then for all large enough n, yn ! I = y ! I. Hence
there is an n and a w ∈ Wn such that y ! I is a subsequence of w. Hence y ∈ K.

Finally we show that if s = s(f) where f is not eventually constant (as in

Remark 17), then both its forward and backwards orbits are dense in K. We do

the forward orbit; the argument for the backwards orbit is the same reversing

“left” and “right”. Let x ∈ K and O be an open set containing x. Then we can

choose a basic open interval 〈w〉k⊆O with x∈〈w〉k . From the defining property

of K we can find a word wm ∈ Wm and a location k∗ such that 〈wm〉k∗ ⊆ O.

Let n > m+ 1 be such that f(n) = 0. Then s is built between 4n and 4(n+ 1)

by a left-right zig-zag. Hence the 4n + 2 principal subword of s contains an

n+ 1-word u ∈ Wn+1 to the right of its principal n+ 1-subword.

By clause 3 of the definition of a construction sequence (Definition 9), wm

occurs in u. Hence after finitely many shifts, the principal subword of Shr(s)

is wm and rm(Shr(s)) = k∗. Hence

Shr(s) ∈ 〈wm〉k∗

⊆ 〈w〉k
⊆ O.

We now give an “external” characterization of K:

Proposition 19: The system K is the smallest closed, shift-invariant set that

intersects all intervals of the form 〈w〉0 for w ∈ Wn.

Proof. Let C be the intersection of all closed shift-invariant sets that intersect

all intervals of the form 〈w〉0. It suffices to show that K ⊆ C.

Let X be an arbitrary closed, shift-invariant set intersecting the appropriate

intervals. We first show that X ∩K += ∅.
Let s ∈ S′ ⊆ K. Let rn(s) = an and wn = s ! [an, bn) be its principal

subword. By the assumptions on X , there is a yn ∈ X such that yn ∈ [wn]−an .

Then the sequence 〈yn : n ∈ N〉 converges to s since s ∈ S′. So s ∈ X . If we

take s = s(f) for an f that is not eventually constant, then by Proposition 18,

the orbit of s is dense in K. Since X is closed, K ⊆ X .

Uniform construction sequences. Not every symbolic shift in a finite

alphabet can be built as a limit of a construction sequence, however this method

directly codes cut-and-stack constructions of transformations on probability

spaces.
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In this section we use Definition 9. In particular that every w ∈ Wn+1 can

be written uniquely in the form u0w0u1w1 . . . wlul+1 with the wi ∈ Wn and

ui ∈ Σ<qn .

Definition 20: Let 〈Wn : n ∈ N〉 be a construction sequence. Then 〈Wn : n ∈ N〉
is uniform if there are 〈dn : n ∈ N〉, where dn : Wn → (0, 1) and a sequence

〈εn : n ∈ N〉 going to zero such that for each n all words w ∈ Wn and w′ ∈ Wn+1

if f(w,w′) is the number of i such that w = wi

(7)
∑

w∈Wn

∣∣∣
f(w,w′)

qn+1/qn
− dn(w)

∣∣∣ < εn+1.

If f(w,w′) is a constant (depending on n) for all w ∈ Wn, w′ ∈ Wn+1 we can

take

dn(w) =
f(w,w′)

qn+1/qn
and satisfy Definition 20. In this case we call the construction sequence and K
strongly uniform.

Lemma 11 of [8] shows that uniform construction sequences are uniquely

ergodic.

4. Odometer based construction sequences

In this section we prove:

Theorem 21: Let (X,B, µ, T ) be a measure preserving system with finite en-

tropy. Then X has an odometer factor if and only if X is measure isomorphic

to a topologically minimal odometer based symbolic system.

Proposition 19 of [6] shows that the limit of an odometer based construction

sequence is topologically minimal. This is not true for general construction

sequences. For example, there are circular systems with singleton orbits. (See

[7, Definition 3.17].)

We use the following observation when working with odometer based se-

quences and systems. Viewing the odometer based systems as isomorphic to

cut-and-stack constructions with no spacers, it is immediate. However, we give

a symbolic proof.
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Lemma 22: Let K be an odometer based system with construction sequence

〈Wn : n ∈ N〉. Then for all s ∈ K and all n, s has a principal n-subword.

Moreover, K = S′.

Proof. Fix an n and let a = −qn and b = qn. Then from the definition of K,

there is an m > n, a word w ∈ Wm and an interval J ⊆ [0, qm − 1) such that

s ! [−a.b) = w ! J . Because the system is odometer based wm can be uniquely

written as a concatenation of a sequence of subwords from Wn.4 The interval J

can be extended to an interval J ′ by adding at most qn letters so that w ! J ′

is a concatenation of words from Wn, say w ! J ′ = w0w1 . . . wk. The (qn + 1)st

element of J must lie inside one of the wi’s. Let an be the position of wi.

Then the principal subword of s is wi and if x ! [−an, bn) = wi, then an, bn go

to ∞.

The name odometer based system is motivated by the following proposition:

Proposition 23: Suppose that 〈Wn : n ∈ N〉 is an odometer based construc-

tion sequence for a symbolic systemK. LetKn be the length of the words inWn,

k0 = K1 and for n > 0, kn = Kn+1/Kn. Then the odometer O determined by

〈kn : n ∈ N〉 is canonically a factor of K.

Proof. Let s ∈ K. By the unique readability, for each n, s can be uniquely

parsed into a bi-infinite sequence of n words. For each n, there is an cn such

that the principal n-block of s is the cthn n-word in the principal n + 1-block

of s.

Define a map φ : K →
∏

n Z/knZ by setting

φ(s) = 〈cn : n ∈ N〉.

It is easy to check that φ(Sh(s)) = O(φ(s)) (where “Sh” stands for the shift

map).

Remark 24: We note two things:

(1) Hypothesis 2 of Lemma 12 simplifies in the case of odometer based systems

to being the requirement that rn+1 ≡Kn rn.

(2) Our notation is inconsistent in that for general construction sequences we

use qn for the lengths of the n-words, but for odometer based systems we

use Kn.

4 This is shown by induction on m ≥ n+ 1.
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4.1. Odometers are not topological subshifts. Theorem 21 says that

all ergodic measure preserving transformations with a non-trivial odometer fac-

tor are measure theoretically isomorphic to an odometer based symbolic system.

In contrast, it is well known that as topological dynamical systems, odometers

are not homeomorphic to symbolic shifts. For background we give a very brief

proof of this fact.

Definition 25: Let (X, d) be a metric space. A map T : X → X is expansive

if there is an ε > 0 so that for all x += y in X there is an n, such that

d(T nx, T ny) ≥ ε.

The following is easy to verify:

Proposition 26: Let (X, d) be a compact metric space and T : X → X .

(1) If T is an isometry, then T is not expansive unless X is finite.

(2) IfX ⊆ ΣZ is a compact subshift, and T is the shift map, then T is expansive.

Proof. The first proposition is trivial. To see the second, note that we can

assume Σ is finite. Let c be the minimum distance between cylinder sets 〈i〉
and 〈j〉 based at 0. Then if x += y, we can find an n, x(n) += y(n). It follows

that d(T nx, T ny) ≥ c.

Because the odometer is a rotation on a compact metric group it is an isom-

etry, hence is not expansive.

For the reader wanting concrete details, in view of Proposition 26, to see that

an odometer cannot be presented as a topological subshift it suffices to show

that, viewed as metric systems, odometer transformations are isometries. Let

O=
∏∞

0 Z/knZ be an odometer and T be the odometer map O.

For x, y ∈ O, define ∆(x, y) to be the least n such that x(n) += y(n) and

d(x, y) =
1

2∆(x,y)
.

Then d is a complete metric yielding the product topology on O and is invariant

under O. If O were homeomorphic to a subshift X ⊆ ΣZ then d could be copied

over to a shift invariant metric dX on X . But then dX must be expansive

contradicting the first item of Proposition 26.

Thus, by Proposition 26, it follows that the odometer is not isometric to a

subshift of ΣZ for any finite Σ.
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4.2. Presenting the odometer. In this section we show that odometers are

measure theoretically isomorphic to odometer based systems. In Section 6 we

will be concerned with the rates of descent of the measures of the basic open

intervals 〈w〉 determined by w ∈ Wn as n increases. Lemma 42, a generalization

of the next lemma, is a key tool for showing that the small word property defined

in Section 6 can be achieved for odometer based systems.

Lemma 27: If O is an odometer determined by 〈kn : n ∈ N〉 with kn ≥ 2,

then there is a uniform odometer based construction sequence 〈Wn : n ∈ N〉
such that the associated symbolic system K is topologically minimal, uniquely

ergodic and measure theoretically conjugate to O.

Proof. By Proposition 8, we can assume that
∑

1/kn < ∞. We define an

odometer based construction sequence 〈Wn :n∈N〉 such that eachWn={an, bn}
has exactly two words in it.

• Let Σ = {a, b} and W0 = Σ.

• Suppose that we are given Wn = {an, bn}. Let Wn+1 = {an+1, bn+1}
with an+1, bn+1 ∈ Wkn

n where:

an+1 = anananbnbnbnanbnanbn · · ·x,

bn+1 = bnbnbnananananbnanbn · · ·x,

where x is either an or bn, depending on whether kn is even or odd.

The number of alternations of an and bn is determined by kn, so the second

item is well-defined.

It is easy to verify inductively that the an’s and bn’s are uniquely readable

(look for patterns of the form ananan and bnbnbn) and that 〈Wn : n ∈ N〉 is

uniform. Let K be the associated symbolic system. Then K is uniquely ergodic,

with an invariant measure µ.

Let

G = {x ∈ O : for all large enough n, 10 ≤ x(n) ≤ kn − 10}.

Since
∑

1/kn < ∞, the Borel–Cantelli Lemma implies that G has measure one

for O. Further, G is invariant under O±1.

We define ψ : G → K. By Lemma 12, we can determine ψ(x) by defining a

suitable sequence 〈rn : n ≥ k〉 and 〈wn : n ≥ k〉.
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Let x ∈ G and suppose that for all n ≥ k, both x(n) ≥ 10 and x(n) ≤ kn−10.

For n ≥ k, let

rn = x(0) + x(1)K1 + x(2)K2 + · · ·+ x(n)Kn.

Since x(n) ≥ 10, either for all n + 1-words w ∈ Wn+1, the x(n)th n-subword

in w is an, or for all n+ 1-words w ∈ Wn+1, the x(n)th n-subword in w is bn.

Let wn be either an or bn accordingly.

Let ψ(x) be the element s of K determined by 〈rn : n ≥ k〉 and 〈wn : n ≥ k〉,
as in Lemma 12. From the definition of G,

(1) ψ(x) is well-defined and ψ(x) ∈ S,

(2) ψ is one-to-one and continuous,

(3) ψ(O±1(x)) = Sh±1(ψ(x)),

(4) if φ : K → O is the factor map given in Proposition 23, then φ ◦ ψ is the

identity map.

Because ψ is one-to-one, continuous and G is Borel, the image of G under ψ is

a Borel set.

If ν is the measure on O giving the odometer system, then ψ induces a shift-

invariant measure ν∗ = ψ∗ν on the Borel subsets of K. Since K is uniquely

ergodic, ν∗ = µ. Hence ψ is a measure isomorphism between O and K.

Remark 28: In Proposition 32 we use properties 1–4 of the proof and the fact

that ψ[G] is Borel.

4.3. The plan. In this section we explain the idea of the proof of Theorem 21;

the details will follow in the next section. To show that a given transforma-

tion with an odometer factor is isomorphic to a symbolic system built from

an odometer based construction sequence, we build a generating partition so

that the names of points on the bases of the n-towers in Definition 5 form an

odometer based construction sequence.

Let (X,B, µ, T ) be an ergodic measure preserving system with an odometer

factor O. By Lemma 27, O is isomorphic to an odometer based system in the

alphabet Σ = {a, b}. Call the resulting construction sequence 〈WO
n : n ∈ N〉.

If K is the symbolic system associated with this construction sequence we have

X O K!
π

!
ψ

where π and ψ are defined on full measure sets.
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Let Q = {Q0, Q1} be the partition of X corresponding to the basic open

intervals 〈a〉, 〈b〉 in K (so Q0 = (ψ ◦ π)−1〈a〉 and Q1 = (ψ ◦ π)−1〈b〉). Then Q
generates the subalgebra of B corresponding to the factor O.

Suppose that C ⊆ X is a set of positive measure. Let TC : C → C be the

induced map: TC(c) = d if and only if for the least k > 0, with T k(c) ∈ C one

has T k(c) = d. Suppose that P0 = {P1, P2, . . . , Pa} is a generator for TC , where

a ∈ N. Let D = X \ C and P = P0 ∪ {D}. Then for x ∈ X , the P-name of x

uniquely determines x, and thus P is a generator for X .

For a typical x, the combined P0,Q-name of x can be visualized as in Fig-

ure 3. The elements of Q parse the x-orbit into n-words which measure the

duration an orbit stays in D, while the elements of P0 determine the orbit of x

inside C. Since P0 and Q determine x, in building an odometer based symbolic

representation of (X,B, µ, T ), one has complete freedom to fill in symbols in the

parts of the x-orbit that lie in D. This allows our word construction to satisfy

the definition of an odometer based construction sequence.

Figure 3. The P0-name of x punctuated by the odometer.

In terms of partitions, this can be restated as saying that we can mod-

ify the atoms of the partition P0 by adding elements of D in any arbitrary

way, as long as the restriction of each atom of P0 to C remains the same.

If P ′
0 = {P ′

1, P
′
2, . . . , P

′
a} is such a modification of P0, then any partition re-

fining P ′
0 and Q still forms a generator for T . Hence, as in Remark 4, the

symbolic system consisting of pairs (sP′
0
, sQ) of P ′

0 and Q-names is isomorphic

to (X,B, µ, T ).
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Of course, Figure 3 is an over-simplification of the possibilities for the orbit:

it assumes that the set C fits coherently with the odometer factor. In other

words, C must be chosen to be measurable with respect to the sub-σ-algebra

of B generated by the odometer factor.

4.4. The proof. Suppose that (X,B, µ, T ) has entropy less than 1
2 log c for

some integer constant c ≥ 2. By Proposition 8, we can assume that

K1 = k0 > 10, Kn =
∏

i<n

ki

and kn > 4cKn10n+1.

Let B0, B1, . . . be the bases of the n-towers in X associated with O by the

factor map π; in the notation of Definition 5, Bn = B0
n and Tn is the tower with

base Bn. Let dn = 4Kn−1cKn−1 and define

Dn =
⋃

0≤i≤dn

Bi
n

and

D =
∞⋃

1

Dn.

Thus Dn consists of the first dn levels of the n-tower. Since all of the levels of

the tower have the same measure, the measure of Dn is

dn
Kn

=
4Kn−1cKn−1

Kn

=
4Kn−1cKn−1

Kn−1kn−1

<
4Kn−1cKn−1

Kn−14cKn−110n

= 10−n.

Set C = X \D. Clearly C is measurable with respect to the odometer factor,

since it is a union of levels of the odometer towers. Moreover, µ(C) > 3/4, and

hence the entropy of TC is less than (2/3) log c. By Krieger’s Theorem [10] there

is a generating partition P0 = {P1, P2, . . . , Pc} for TC that has c elements.
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Figure 4 is a graphical representation of Tn showing:

(1) C as whitespace.

(2) Dn lightly shaded as an initial segment of the levels of Tn.
(3) The sets Dm for m < n are initial segments of earlier Tm and hence get

stacked as bands across Tn. They are given an intermediate shading in

Figure 4.

(4) Because each Dm is an initial segment of Tm, at the previous stage the

points in Dm have to be in the leftmost columns of Tm−1. Moreover, for

m < m′, Km divides dm′ . Thus Dm′ is made up of whole columns of Tm.

Consequently
⋃

m>n Dm forms a contiguous rectangle on the left side of Tn.
This region is indicated by the darkest shading.

Figure 4. The nth stage of the construction. The shaded hori-

zontal bands are elements of Dm for m < n.



Vol. 251, 2022 ODOMETER BASED SYSTEMS 351

We construct P ′
0 in the manner described in Section 4.3: we add points from D

to each Pj to get a final partition P ′
0 = {P ′

1, P
′
2, . . . , P

′
a}. For each i we build

an increasing sequence 〈Pi(n) : n ∈ N〉 and let

P ′
i =

⋃

n

Pi(n).

The construction sequence will use the alphabet Σ = {P ′
1, P

′
2 . . . , P

′
a} × Q,

where Q = {Q0, Q1} is the partition generating the odometer; W0 = Σ and Wn

will consist of the Σ-names of points that occur in the base of Tn. Thus the

construction is completely determined by the manner we add points to the Pi

to get Pi(n).

The words must satisfy Definition 9. Clause 1 is automatic. Clause 2 holds

because all words have length equal to the height of Tn. Unique readability is

immediate since the odometer based presentation of O uses uniquely readable

words in the language Q. Clause 4 is vacuous since we have no spacers ui

occurring anywhere in the words: elements of Wn+1 are simply concatenations

of words from Wn.

Proposition 19 of [6] shows that the limit of any odometer based construction

sequence is minimal. In this construction we do more: each word in Wn occurs

at least twice in each word in Wn+1, a property which is stronger than clause 3.

We satisfy this by “painting” the words from Wn onto Dn+1.

Let P ′
i (n) be the collection of points in P ′

i at stage n, and P ′
i (0) = Pi.

Inductively we will assume that at stage n:

(1)
⋃

n<m Dm ∩ P ′
i (n) = ∅ for all i, and

(2) (Tn \
⋃

n<m Dn) ⊆
⋃

i P
′
i (n).

For n = 1, we consider D1 \
⋃

m>1 Dm. At stage 1 the minimality require-

ment says that each pair (P ′
i (0), j) for 1 ≤ i ≤ c and j ∈ {Q0, Q1} occurs at

least twice. Each of Q0, Q1 occur equally often in the Q-names of the first d1
letters of each Q-name and d1 = 4c. Hence it is possible to assign the levels

in D1 \
⋃

m>1 Dm to {P ′
1(1), . . . , P

′
c(1)} in such a way that each element of the

alphabet Σ occurs at least twice. Concretely this means that for each i, j there

are two levels of S1 \
⋃

m>1 Dm that belong to Qj and are put into P ′
i (1).

To pass from n to n + 1 in the construction, we know inductively that no

elements of Dn+1 have been assigned to any P ′
i at earlier stages. Moreover, Wn

consists of the Σ-names of the words in B0 \
⋃

m>nDm, where B0 is the base

of Tn. There are at most 2cKn such words in the language Σ. Each such word

has length Kn.
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Since dn+1 = 4KncKn there are ample levels in Dn+1 that each level can be

added to some P ′
i (n + 1) in a manner that each word in Wn occurs at least

twice as a Σ-name of an element in the first dn+1 levels of Tn+1.

Remark 29: The construction in the proof of Theorem 21 used a particular

presentation of O as an odometer based system in a language Q = {a, b} to

build a language Σ = {P ′
1, P

′
2, . . . , P

′
c}×Q. If we were given another odometer

based presentation 〈WO
n : n ∈ N〉 of O in a different finite language with letters

{a1, . . . , ak} we could take Σ = {P ′
1, P

′
2, . . . , P

′
c} × {a1, . . . , ak} and repeat the

same construction over this presentation. We will call this the odometer based

presentation of X built over 〈WO
n : n ∈ N〉.

5. Toeplitz systems

In this section we use a result of Downarowicz ([3]) to show that every compact

metrizable Choquet simplex is affinely homeomorphic to the simplex of invariant

measures of an odometer based system. Williams showed that the orbit closure

of every Toeplitz sequence in a finite language Σ is a minimal symbolic shift L
with a continuous map to an odometer factor O. If πO : L → O is this factor

map, it would be tempting to try to argue that the words occurring on πO-

pullbacks of the levels of the n-towers form an odometer based construction

sequence. However, we don’t know this in general; in particular, we don’t know

that the words constructed this way are uniquely readable.

To make the words uniquely readable we need to add information without

changing the collection of invariant measures. To do this we introduce the

notion of an augmented symbolic system.

Definition 30: Let (Z,σ, S) and (X, τ, T ) be minimal compact topological sys-

tems and π : Z → X be a continuous factor map. Then (π, Z) is an augmen-

tation of X if there is an S-invariant Borel set A ⊆ Z such that if

L = {x : there is exactly one y ∈ A with π(y) = x},

then for all T -invariant µ on X ,

µ(L) = 1.
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We use this idea as follows:

Proposition 31: Suppose that (π, Z) is an augmentation of X . Then there is

a canonical affine homeomorphism from M(Z, S) to M(X,T ).

Proof. The map φ : M(Z, S) → M(X,T ) given by

φ(µ) = π∗(µ)

is a continuous affine map.

If ν is an invariant measure on X , then the pullback of ν by π is an in-

variant measure ν′ on a sub-σ-algebra of the Borel subsets of Z. Standard

arguments show that ν′ can be extended to an S-invariant measure µ on Z such

that π∗(µ) = ν, hence φ is surjective.

We claim that A has measure one for all invariant measures µ on Z. Otherwise

suppose that µ(A) < 1. Consider ν = φ(µ). Let B ⊆ L be ν-measurable and

such that ν(B) = 1. Then π−1(B) ⊆ A and has µ-measure one since ν = π∗(µ).

We need to see that φ is one-to-one. Clearly φ takes ergodic measures to

ergodic measures. Suppose that µ += ν are ergodic measures on Z. Then there

are disjoint invariant sets B,C ⊆ Z such that µ(B) = ν(C) = 1. Let B′ and C′

be the images of B and C under the map π. Then, from the properties of L,

π−1(L ∩B′) ⊆ B and π−1(L ∩C′) ⊆ C.

Hence L ∩ B′ and L ∩ C′ are disjoint and have measure one for φ(µ) and φ(ν)

respectively. Hence φ(µ) and φ(ν) are distinct.

Since φ is affine, continuous and one-to-one on the ergodic measures, it is a

one-to-one map. Finally, since the set of invariant measures on Z is a compact

space φ is a homeomorphism.

To prove Proposition 32, we use:

Theorem (Downarowicz, [3, Theorem 5]): For every compact metric Choquet

simplex K there is a dyadic Toeplitz flow whose set of invariant measures is

affinely homeomorphic to K.

Proposition 32: Let L be the orbit closure of a Toeplitz sequence x, O be

its maximal odometer factor based on a sufficiently fast growing sequence 〈kn〉
and K be the odometer based presentation of O defined in Lemma 27. Then

there is an odometer based system L∗ ⊆ L × K such that if π : L∗ → L is the

projection to the first coordinate, then (π,L∗) is an augmentation of L.
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Thus, as an immediate consequence of Downarowicz’ theorem and Proposi-

tions 31 and 32:

Corollary 33: For every compact metrizable Choquet simplex K there is an

odometer based symbolic shift L∗ whose set of invariant measures is affinely

homeomorphic to K.

Proof of Proposition 32. We use the language of Williams [13]. Let x be a

Toeplitz sequence in a finite language Σ. Let L be the orbit closure of x under

the shift map and O be the associated odometer system.

As in [13] we can choose a sequence 〈Kn : n ∈ N〉 of essential periods for x.

By choosing the Kn’s to grow fast enough we can assume that

(a) Kn|Kn+1,

(b)
⋃

nPerKn(x) = Z.

Choosing a further subsequence we can also assume that

(c) if k ≡ 0 (mod Kn), then there is an i ≡ 0 (mod Kn) with i < Kn+1

and x ! [k, k +Kn) = x ! [i, i+Kn).

Given n0, for large enough n, x ! [0,Kn0) is a subset of the Kn-skeleton of x.

Since the Kn-skeleton is Kn-periodic, every subword of the Kn-skeleton is re-

peated Kn+1/Kn times in x ! [0,Kn+1). Thus by again thinning the Kn’s we

can assume that:

(d) for each n and i ≡ 0 (mod Kn) and each word w ∈ ΣKn occurring

as x ! [i, i+Kn), w occurs at least twice in x ! [0,Kn+1).

Let O be the odometer with coefficient sequence 〈kn : n ∈ N〉, where

kn = Kn+1/Kn.

Let 〈Wn : n ∈ N〉 be the odometer based construction sequence in the presen-

tation of O given in Lemma 27. Let w0
n, w

1
n be the two words in Wn. We define

an odometer based construction sequence by setting Vn to be the collection of

words v in the alphabet Σ× {a, b} of the form

(x ! (i, i+Kn), w
j
n)

where x ∈ L, i < Kn+1, i ≡ 0(mod Kn) and j ∈ {0, 1}.
To see that this is an odometer based construction sequence we check Defi-

nitions 9 and 11.
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Unique readability of the words v ∈ Vn follows immediately from the fact

that the wj
n are. The fact that each v ∈ Vn occurs at least twice as a subword

of each v′ ∈ Vn+1 follows immediately from item (d) of the properties of the

essential periods of x. From item (c) and the structure of the word construction

from the Toeplitz sequence each word in Vn+1 is a concatenation of words in Vn.

By [13], there is a continuous factor map

θ : L → O.

From the proof of Lemma 27 (see Remark 28) we see that there is an invariant

Borel set G ⊂ O of measure one and a one-to-one continuous map ψ : G → K.

Let L∗ be the limit of 〈Vn : n ∈ N〉. Note that for each x ∈ L there is an z such

that (x, z) ∈ L∗. Let

A = {(y,ψ ◦ θ(y)) : θ(y) ∈ G} ⊆ L∗.

Let µ be an invariant measure on L. Then

µ(θ−1(G)) = 1,

and for y ∈ θ−1(G) there is a unique z, (y, z) ∈ A.

Let ρ be an invariant measure on L∗. Let ρL be the L marginal. Then

ρL(θ−1(G)) = 1.

If y ∈ θ−1(G) and (y, z) ∈ L∗, then z = ψ ◦ θ(y). Hence µ(A) = 1.

Remark: The well-known Thue–Morse minimal system is an example of an

odometer based system which is not Toeplitz.

6. The small word property and rates of descent

The applications of the representation theorem and Proposition 32 require that

for all invariant measures on the limit system K, the basic open intervals de-

termined by words in Wn+1 have measure much smaller than the measures of

basic open intervals determined by words in Wn. We show how to arrange this

for odometer based systems by taking subsequences.
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6.1. Empirical distributions and frequencies. In this section we intro-

duce Empirical Distributions and the special case of Frequencies.

Suppose we are given a (general) construction sequence 〈Wn : n ∈ N〉, and a

word in w′ ∈ Wk+l that can be uniquely written as a word

w′ = u0w0u1w1 · · ·wJuJ+1

with wi ∈ Wk. We define the empirical distribution5 of Wk-words in w′ by

EmpDistk(w′). Formally:

EmpDistk(w
′)(w) =

|{0 ≤ j ≤ J : wj = w}|
J + 1

, w ∈ Wk.

Lemma 34: Let w ∈ Wk. If for all w′ ∈ Wk+1, η0 < EmpDist(w′)(w) < η1,

and no Wk-word occurs as subword of a spacer ui, then for k+ l > k, w′ ∈ Wk+l

we have η0 < EmpDist(w′)(w) < η1.

Proof. We prove this in the case we use: odometer based construction sequences,

and comment at the end how to give the general proof. If w′ ∈ Wk+l, then w′ is

a concatenation w0w1 · · ·wKk+l/Kk+1−1 of Kk+l/Kk+1 many words from Wk+1.

The number of occurrences Occ(w′, w) of w in w′ is the sum of the number of

occurrences of w in the wi’s. We see that

EmpDistk(w
′)(w) =

Occ(w′, w)

Kk+l/Kk
=

∑
i Occ(wi, w)

Kk+l/Kk

=
(Kk+1/Kk)

∑
EmpDistk(wi, w)

Kk+l/Kk

=

∑
EmpDistk(wi, w)

Kk+l/Kk+1
.

Since the empirical distributions of Wk words in Wk+l words are the averages of

the empirical distributions of the Wk words in Wk+1 words, the lemma follows

for odometer based construction sequences.

For general construction sequences the Wk words have spacers in them and

the number of occurrences ofWn-words in Wn+1-words may vary (but only by a

small amount). Nonetheless, a small variation of the argument just given shows

that the empirical distributions of the k words in k + l-words is the weighted

average of the distributions of k-words in k + 1-words, and the lemma follows

as before.

5 See [7].
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Empirical distributions are related to measures via generic sequences. We

summarize some results in [12] and [7].

Let µ be a shift invariant measure on a symbolic system K defined by a

uniquely readable construction sequence 〈Wn : n ∈ N〉 in a finite language Σ.

Assume that qn is the length of the words in Wn. By µm we will denote the

discrete measure on the finite set Σm given by µm(u) = µ(〈u〉). By µ̂n(w) we

will denote the discrete probability measure on Wn defined by

(8) µ̂n(w) =
µqn(〈w〉)∑

w′∈Wn
µqn(〈w′〉) .

Thus µ̂n(w) is the relative measure of 〈w〉0 among all 〈w′〉0, w′ ∈ Wn. The

denominator is a normalizing constant to account for spacers at stages m > n

and for the measures of sets 〈w′〉k where 0 < k < qn.

In an odometer based system, the normalizing denominator is the measure

of
⋃

w∈Wn
〈w〉0. This consists of all words in K with rn(s) = 0. Because the

length of the words in Wn is Kn, and the words are uniquely readable, K is the

disjoint union of
{
Shk

( ⋃

w∈Wn

〈w〉0
)

: 0 ≤ k < Kn

}
.

Since µ is shift invariant for each k, Shk(
⋃

w∈Wn
〈w〉0) has the same measure

as
⋃

w∈Wn
〈w〉0. Thus the denominator of equation (8) is exactly 1/Kn.

Thus by the shift invariance of µ this is exactly 1/Kn. Hence

(9) µ̂n(w) = Knµ(〈w〉0).

Definition 35: A sequence 〈vn ∈ Wn : n ∈ N〉 is a generic sequence of words

if and only if for all k and ε > 0 there is an N such that for all m,n > N ,

‖EmpDistk(vm)− EmpDistk(vn)‖var < ε.

The sequence is generic for a measure µ if for all k

lim
n→∞

‖EmpDistk(vn)− µ̂k‖var = 0,

where ‖ ‖var is the variation norm on probability distributions.
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It follows that if 〈vn : n ∈ N〉 is a generic sequence of words, then it is

generic for a unique measure µ. Even though Definition 35 involves only the

measures µ̂k it is easy to see (using the Ergodic Theorem) that for any u ∈ Σk,

if 〈vn : n ∈ N〉 is generic then the density of the occurrences of u in the vn will

converge to µ(〈u〉).
The following is Proposition 2.20 in [7]:

Proposition 36: Let K be an ergodic symbolic system with construction se-

quence 〈Wn : n ∈ N〉 and measure µ. Then for any generic s ∈ K the sequence

of principal subwords of s, 〈wn : n ∈ N〉, is generic for µ. In particular, generic

sequences for µ exist.

There is also a finitary notion of an ergodic sequence. For generic er-

godic sequences µ̂ is defined to be the limit of the empirical distributions, and

determines a shift invariant ergodic measure µ.

Thus empirical distributions capture the notion of ergodicity in a finitary

way, and every generic point for an ergodic measure is a limit of empirical

distributions along subwords.

Remark 37: In fact more than Lemma 34 is true (again, see the arguments

in [7]). In Lemma 29, we can change k + 1 to an arbitrary k′ > k: Let w ∈ Wk

and fix k′ > k. If for all w′ ∈ Wk′ , we have η0 < EmpDist(w′)(w) < η1, and no

k-word occurs as subword of a spacer ui in a word in w′ ∈ Wk′+l with k′+ l > k.

Then for all w′ ∈ Wk′+l we have

η0 < EmpDist(w′)(w) < η1.

In particular, for all shift invariant measures µ on the limit K of 〈Wn : n ∈ N〉
we have η0 ≤ µ̂k(w) ≤ η1.

6.2. The small word property.

Definition 38: Let 〈Wn : n ∈ N〉 be a construction sequence. Let

fn = sup{EmpDist(w′)(w) : w ∈ Wn, w
′ ∈ Wn+1}

be the supremum of the empirical distributions of the n-words in n+ 1-words.

The sequence 〈Wn : n ∈ N〉 has the small word property with respect to a

sequence 〈δn : n ∈ N〉 if and only if for all n,

fn < δn < 1.
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Odometer based systems are simpler. For odometer based construction

sequences we write the lengths of the n-words, qn, as Kn (so Kn =
∏

m<n km).

With this notation the definition of empirical distribution simplifies. For n < m,

w ∈ Wn, w′ ∈ Wm, the empirical distribution EmpDist(w′)(w) is simply the

frequency of occurrences of w in w′, which is given by

Freq(w,w′) =
number of occurrences of w in w′

Km/Kn
.

We use the following remark in [9].

Remark 39: For n < m, clause 3 of the definition of a construction sequence

(Definition 9) together with Remark 34 implies that the frequency of each word

w ∈ Wn inside each w′ ∈ Wm is at least 1/kn.

Definition 38 can be restated for odometer based construction sequences as

saying that if

fn = sup{Freq(w,w′) : w ∈ Wn, w
′ ∈ Wn+1}

is the supremum of the frequencies of the n-words in n + 1-words, then the

sequence 〈Wn : n ∈ N〉 has the small word property with respect to a

sequence 〈δn : n ∈ N〉 if and only if for all n, fn < δn.

Since odometer based construction sequences have no spacers, the hypoth-

esis about spacers mentioned in Lemma 34 does not arise. Restating the

lemma in the language of frequencies, if w ∈ Wk and for all w′ ∈ Wk+1,

η0 < Freq(w,w′) < η1, then for k + l > k, w′ ∈ Wk+l we have

η0 < Freq(w,w′) < η1.

We preserve the following proposition for future use:

Proposition 40: Let 〈Wn : n ∈ N〉 be an odometer based sequence. Suppose

that fn < δ. Then for all w ∈ Wn and all shift invariant measures µ on the

limit K

µ̂n(w) < δ,

µ(〈w〉) < δ/Kn.

The next lemma gives upper and lower bounds on measures of basic open

intervals.
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Lemma 41: Let 〈Wn : n ∈ N〉 be an odometer based construction sequence

for the system K, and ρ be a shift-invariant measure on K. Then for all words

w ∈ Wn
1

Kn+1
≤ ρ(〈w〉) ≤ fn

Kn
.

Proof. By the ergodic theorem, it suffices to show that for all n < m and all

w ∈ Wn, w′ ∈ Wm,

1

Kn+1
≤ |{k ≤ Km : w′ ! [k, k + kn) = w}|

Km
≤ fn

Kn
.

Write w′ = w0w1 · · ·wKm/Kn+1
where each wi ∈ Wn+1. Because w occurs at

least once inside each wi, the density of

D = {k : wi ! [k, k + kn)}

is at least 1/Kn+1. The first inequality follows.

To see the second, for all i, note that for all wi

fn ≥ Freq(w,wi) =
number of occurrences of w in wi

Kn+1/Kn
.

Hence the number of occurrences of w in w′ is bounded by

fn
(Kn+1

Kn

)( Km

Kn+1

)
= fn

(Km

Kn

)
.

It follows that the density of D is bounded by

fn
(Km

Kn

)( 1

Km

)
=

fn
Kn

.

Thus if 〈Wn : n ∈ N〉 has the small word property with respect to 〈δn : n ∈ N〉
with δn < 1, then for all w ∈ Wn, w′ ∈ Wn+1 and all invariant measures ρ

(10) ρ(〈w′〉) < δn+1

Kn+1
< ρ(〈w〉).

Our next step is to show that if O is an odometer transformation, then O has

a presentation as an odometer based system with the small word property for

some sequence 〈δn : n ∈ N〉 tending to 0. We do this by modifying Lemma 27.

Lemma 42: Let O =
∏

n∈N Zkn be an odometer system with invariant mea-

sure µ. Then O is isomorphic to (K, ν) where K is the limit of an odometer

based construction sequence 〈Wn : n ∈ N〉 with fn tending monotonically to

zero exponentially fast; in particular,
∑

fn < ∞.
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Proof. Let O be an odometer based on 〈kn : n ∈ N〉. Let ni be a monotone

strictly increasing sequence and define

li =
∏

ni−1≤n<ni

kn.

By Proposition 8, O is isomorphic to the odometer based on 〈li : i ∈ N〉. Thus
by passing to a subsequence we can assume that

kn > 3sn(2
n + 1)Kn

(recall that sn is the number of words in Wn). To begin, letW0 = Σ = {a, b, c}.6

Suppose that we have constructed Wn and it is enumerated in lexicographical

order as {wn
i :1≤ i≤sn〉. For each non-identity permutation σ of {1, 2, 3, . . . , sn},

let wσ be the three-fold concatenation of the words in Wn in the order given

by σ:

wσ =

( sn∏

i=1

wn
σ(i)

)3

.

Note that the length of wσ is 3snKn.

Write kn = sn(cn + 3) + dn where cn ∈ N, 0 ≤ dn < sn and let

-t =

( sn∏

i=1

wn
i

)cn

∗
dn∏

i=1

wn
i .

Note that the final segment,
∏dn

i=1 w
n
i , has length dnKn. Finally we let

Wn+1 = {w%σ -t : σ is a non-trivial permutation of {1, 2, . . . , sn}}.

In words: we begin by making sn!− 1 prefixes wσ by concatenating the words

in Wn in all possible orders. We then use a single, much longer, suffix to

complete each word. Note that Wn+1 has at least sn!− 1 many words in it.

Since each prefix is uniquely readable and comes from a non-trivial permu-

tation σ, the words in Wn+1 are uniquely readable. Moreover, any two words

inWn occur with approximately the same frequency in each word inWn+1. This

precision gets better in a summable way as n increases to∞. The words inWn+1

are clearly concatenations of words in Wn. Let K be the limit of 〈Wn : n ∈ N〉.

6 This construction can be easily modified to work in a 2-letter alphabet, by changing W1

in an ad hoc way.
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By assumption on kn the prefix makes up less than 2−n portion of a word

in Wn+1. Let

G = {x ∈ O : for large enough m, 3sm < x(m) < km − 10}.

For x ∈ G, for some k and all m ≥ k and w ∈ Wm+1, x(m)Km is bigger than

the length of the prefix wσ and less than Km+1 − (dm + 10)km.

As before we let

rn = x(0) + x(1)K1 + x(2)K2 + · · ·+ x(n)Kn.

Because x(n) ≥ 3sm for all n+1 words w ∈ Wn+1, the x(n)th letter is not in a

prefix. It follows that for all w ∈ Wn+1, the x(n)th subword is the same. Let wm

be this word, and let ψ(x) be the element s ∈ K determined by 〈rn : n ≥ k〉
and 〈wn : n ≥ k〉.
As in Lemma 27, G is a measure one Borel set and the map

ψ : G
1−1−→ K

is continuous and one-to-one.

It remains to show that the fn are small. Since each word in Wn occurs very

close to the same number of times in each Wn+1, the frequencies of occurrences

of each word is to 1/sn. Since sn grows as an iterated factorial, fn goes to zero

exponentially.

6.3. Arbitrary rates of descent. Fix an odometer based construction se-

quence 〈Wn : n ∈ N〉 with fn ≤ bn for some sequence 〈bn : n ∈ N〉 going to zero.

Let 〈δi : i ∈ N〉 be a sequence of positive numbers less than one. Then there is

a subsequence 〈ni : i ∈ N〉 such that bni < δi. Let Vi = Wni .

We claim that 〈Vi : i ∈ N〉 has the small word property with respect

to 〈δi : i ∈ N〉. This follows because the frequency of each w ∈ Wni in

each w′ ∈ Wni+1 is bounded above by bni < δi. Applying Lemma 34 we

see that the frequency of each w ∈ Vi in each w′ ∈ Wni+1 = Vi+1 is bounded

above by δi.

This subsequence can be chosen continuously in the parameters 〈bi, δi〉 and

any tail of any sufficiently fast growing subsequence has the small word property

with respect to 〈δn : n ∈ N〉. We elaborate on this after the next theorem.

We now note the following:
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Theorem 43: Let O be an odometer system. Let 〈WO
n : n ∈ N〉 be a construc-

tion sequence for O that has the small word property for 〈δn : n ∈ N〉.

• If T : (X,µ) → (X,µ) is an ergodic transformation with finite entropy

having O as a factor, and 〈WX
n : n ∈ N〉 is the presentation of X as

a limit of the odometer based system 〈WX
n : n ∈ N〉 constructed by

Theorem 21 as modified in Remark 29, then 〈WX
n : n ∈ N〉 has the

small word property for 〈δn : n ∈ N〉.
• If x is a Toeplitz sequence with underlying odometer O, then the pre-

sentation of the orbit closure L of x as the limit L∗ of an odometer

based construction sequence given in Corollary 33 has the small word

property with parameters 〈δn : n ∈ N〉.

Proof. In both cases the words in the respective construction sequences were of

the form (u, v), where v is in the construction sequence for a presentation of O.

Since the construction sequence for O has the small word property, the given

construction sequence does as well.

Theorem 43 reduces the problem of finding presentations of odometer based

systems with the small word property to the problem of finding a presentation

of the underlying odometer with the small word property. By Lemma 42, we

can do this for a single sequence 〈fn〉 tending to zero.

The small word property can be arranged continuously. Fix an

odometer construction sequence 〈Wn : n ∈ N〉, let n0 = 0 and consider the

following game G(〈Wn : n ∈ N〉). Let 〈bn : n ∈ N〉 be a sequence with bn > fn
for all n. At round k ≥ 0:

• Player I plays εk > 0.

• Player II plays nk+1 > nk.

Player II wins G(〈Wn : n ∈ N〉) if and only if bnk+1 < εk for all k.

We record the following remark for applications in other contexts.

Remark 44: If bn converges to 0 then player II has a winning strategy

in G(〈Wn : n ∈ N〉). Moreover, by Theorem 43, if S is this strategy for an

odometer based presentation 〈WO
n : n ∈ N〉, then S is also a winning strategy

for all odometer based presentations 〈WX
n : n ∈ N〉 built over 〈WO

n : n ∈ N〉.

In particular, we can choose the subsequence nk continuously in the εk.



364 M. FOREMAN AND B. WEISS Isr. J. Math.

References

[1] T. Adams, S. Ferenczi and K. Petersen, Constructive symbolic presentations of rank one

measure-preserving systems, Colloquium Mathematicum 150 (2017), 243–255.

[2] F. Beleznay and M. Foreman, The complexity of the collection of measure-distal trans-

formations, Ergodic Theory and Dynamical Systems 16 (1996), 929–962.

[3] T. Downarowicz, The Choquet simplex of invariant measures for minimal flows, Israel

Journal of Mathematics 74 (1991), 241–256.

[4] T. Downarowicz and Y. Lacroix, Almost 1-1 extensions of Furstenberg–Weiss type and

applications to Toeplitz flows, Studia Mathematica 130 (1998), 149–170.

[5] S. Ferenczi, Systems of finite rank, Colloquium Mathematicum 73 (1997), 35–65.

[6] M. Foreman, D. J. Rudolph and B. Weiss, The conjugacy problem in ergodic theory,

Annals of Mathematics 173 (2011), 1529–1586.

[7] M. Foreman and B. Weiss, From odometers to circular systems: a global structure theo-

rem, Journal of Modern Dynamics 15 (2019), 345–423.

[8] M. Foreman and B. Weiss, A symbolic representation for Anosov–Katok systems, Journal
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