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ABSTRACT

In this paper we give explicit characterizations, based on the cutting and
spacer parameters, of (a) which rank-one transformations factor onto a
given finite cyclic permutation, (b) which rank-one transformations factor
onto a given odometer, and (c) which rank-one transformations are iso-
morphic to a given odometer. These naturally yield characterizations of
(d) which rank-one transformations factor onto some (unspecified) finite
cyclic permutation, (d’) which rank-one transformations are totally er-
godic, (e) which rank-one transformations factor onto some (unspecified)
odometer, and (f) which rank-one transformations are isomorphic to some
(unspecified) odometer.

1. Introduction

The ultimate motivation of the work done in this paper is the isomorphism
problem in ergodic theory as formulated by von Neumann in his seminal pa-
per [11] of 1932. There he asked for an explicit process to determine when two
measure-preserving transformations are measure-theoretically isomorphic. Two
important theorems in this direction are von Neumann’s theorem classifying
discrete spectrum transformations by their eigenvalues, and Ornstein’s theorem
classifying Bernoulli transformations by their entropy. To our knowledge, no
other complete isomorphism invariants that classify a class of transformations
have been found, though of course notions such as mixing, weak mixing, etc., are
invariant under isomorphism. In [6], Foreman, Rudolph, and Weiss showed that
the isomorphism relation on the class of all ergodic transformations is complete
analytic, in particular not Borel. In some sense, this brings a negative conclusion
to the von Neumann program. However, in [6] the authors also showed that the
isomorphism problem is Borel on the generic class of (finite measure-preserving)
rank-one transformations. Thus this provides hope that there should exist some
explicit method for determining whether two rank-one transformations are iso-
morphic. In particular, if one is given a specific rank-one transformation, there
should be an explicit description of all rank-one transformations that are iso-
morphic to it. In this paper we give such explicit descriptions, provided that
the given rank-one transformation is an odometer. All the transformations we
consider in this paper are invertible finite measure-preserving transformations.
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Another reason for considering odometers is the role they played in a question
of Ferenczi. In his survey article [5], Ferenczi asked whether every odometer is
isomorphic to a symbolic rank-one transformation. This question is connected
to whether two common definitions of rank-one—the constructive geometric
definition and the constructive symbolic definition—are equivalent. As noted
by the referee, in the Introduction to Adams—Ferenczi—Petersen [1], the authors
mention how one can use Remark 2.10 in Danilenko [2] to answer this question
in the affirmative, and also show how to construct a symbolic rank-one transfor-
mation that is isomorphic to any given odometer. The results in this paper can
be thought of as a continuation of work in [1], [2]. Namely, we explicitly describe
all rank-one transformations that are isomorphic to any given odometer (The-
orem 5.1). In addition, we also explicitly describe all rank-one transformations
that are isomorphic to some (unspecified) odometer (Theorem 5.2).

Rank-one transformations are determined by two sequences of parameters,
known as the cutting parameter and spacer parameter (see Section 2 for the
precise definitions). In this paper we give explicit descriptions, in terms of the
cutting parameter and spacer parameter, of when a rank-one transformation
factors onto a given finite cyclic transformation, or factors onto an (infinite)
odometer, or is isomorphic to a given odometer.

Note that a measure-preserving transformation factors onto a non-trivial fi-
nite cyclic transformation if and only if it is not totally ergodic. Thus results in
this paper give an explicit description of when an arbitrary rank-one transfor-
mation is totally ergodic. This generalizes some result of [7], where Gao and Hill
gave an explicit description of which rank-one transformations with bounded
cutting parameter are totally ergodic.

The rest of the paper is organized as follows. In Section 2 we recall the
constructive geometric definition and the constructive symbolic definition of
rank-one transformations. We also explicitly define odometers and finite cyclic
transformations. In Section 3 we give an explicit description of all rank-one
transformations that factor onto a given finite cyclic transformation, as well as
a description of rank-one transformations that allow a finite factor. In Section 4
we describe all rank-one transformations that factor onto a given odometer. As
a corollary, we get a description of all rank-one transformations that factor onto
some odometer. Finally, in Section 5 we describe all rank-one transformations
that are isomorphic to a given odometer. Again, this gives rise to a description
of all rank-one transformations that are isomorphic to some odometer.
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2. Preliminaries

2.1. MEASURE-PRESERVING TRANSFORMATIONS. We will be concerned with
Lebesgue spaces, which we shall denote by (X, 1) or (Y,v), and typically not
mention the o-algebra. We shall assume that the measure of the space is 1
and in most cases, and unless we explicitly specify to the contrary, we will
assume our measures to be nonatomic and call the spaces standard Lebesgue
spaces. A map ¢ : (X,u) — (Y,v) is measure-preserving if for all measur-
able sets A, »~1(A) is measurable and p(¢~1(A4)) = v(A). A transformation
T:(X,u) — (X, p) is a measure-preserving map that is invertible on a set of
full measure and whose inverse is measure-preserving. We will call (X,pu,T) a
measure-preserving system and, by abuse of notation, also a measure-preserving
transformation.

If (X, p, T) and (Y, v, S) are measure-preserving transformations, then a fac-
tor map from T to S is a measure-preserving map ¢ : (X, u) — (Y, v) such that
for u-almost every = € X,

60 T(x) = S0 B(a).

We say that T factors onto S if there exists a factor map ¢ from (X, u, T') onto
(Y,v,8). If (X, p, T) and (Y, v, S) are measure-preserving transformations, then
an isomorphism between T and S is a factor map ¢ from (X, u, T') to (Y, v, S)
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that is invertible a.e. We note here that neither factor maps nor isomorphisms
need to be defined on the entire underlying space (X, u), only a subset of X
of full measure, and that two measure isomorphisms are considered the same if
they agree on a set of full measure.

2.2. RANK-ONE TRANSFORMATIONS. The constructive geometric definition of
a rank-one transformation is given below (see e.g., [5]). It describes a recursive
cutting and stacking process that produces infinitely many Rokhlin towers (or
columns) to approximate the transformation.

Definition 2.1: A measure-preserving transformation 7" on a standard Lebesgue
space (X, p) is rank-one if there exist sequences of positive integers r, > 1,
for neN={0,1,2,...}, and nonnegative integers s, ;, forn € Nand 0 < i <y,
such that, if h,, is defined by

hO = ]-a hn+1 = Tnhn + Z Snis

0<i<rn
then
—+oo
h —rph
(1) IR AT
n—0 hn+1

and there are subsets of X, denoted by B,, for n € N, by B, ; for n € N
and 0 <i<rp,and by Cp;jforn e N,0<i<rp,and 0<j <sp,; (if s, =0
then there are no C, ; ;), such that for all n € N:

{Bn,i:0<i<mr,} is a partition of B,,
the T*(B,,), 0 < k < h,,, are disjoint,
Thn (Bn,i) = Chia if sni #0and ¢ <7y,
Thn (Bhn,i) = Bni+1 if spi =0 and i < ry,
T(Cnyi_’j) = On,i,jJrl lfj < Sn,i,
T(Criis,.) = Brjit1 if i <y,
L Bn+1 = Bn,la
and the collection | 7" o{Bn, T(By),...,T"""1(B,)} is dense in the o-algebra
of all yu-measurable subsets of X.

Assumption (1) of this definition is equivalent to the finiteness of the mea-
sure p. In this definition the sequence (r,) is called the cutting parameter,
the sets C,,; ; are called the spacers, and the doubly-indexed sequence (s, ;)
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is called the spacer parameter. For each n € N, the collection
{B,,T(By),...,T" (B,)}

gives the stage-n tower, with B,, as the base of the tower, and each Tk(Bn),
where 0 < k < h,,, a level of the tower. The stage-n tower has height h,. At
stage n + 1, the stage-n tower is cut into r, many n-blocks of equal measure.
Each block has a base B, ; for some 0 < ¢ < r, and has height h,,. These
n-blocks are then stacked up, with spacers inserted in between. At future
stages, these n-blocks are further cut into thinner blocks, but they always have
height h,,.
Note that the base of the stage-m tower, B,,, is partitioned into

{BmJ' 0<e < ’I"m},

where each By, ; is now a level of the stage-(m + 1) tower, with By, 1 = Bmy1
being the base of the stage-(m + 1) tower. It is clear by induction that for
any n > m, B, is partitioned into various levels of the stage-n tower.

We let I, ,,, for n > m, denote the set of indices for all levels of the stage-n
tower that form a partition of B,,, i.e.,

I ={i:T"(By) C Bp,0 <i < hy}.

Note that By, = U,c;,
be inductively computed from the cutting and spacer parameters. For example,

T%(By); L. is a finite set of natural numbers that can

Iymy1 = {0, o 4 Sm1y 2hm + Sm1 + Sm2, -y (Pm — D)hm + Z sm_,i}.
0<i<rm,

We next turn to the constructive symbolic definition of rank-one transforma-
tions. This often gives a succinct way to describe a concrete rank-one transfor-
mation. We will be talking about finite words over the alphabet {0,1}. Let F'
be the set of all finite words over the alphabet {0, 1} that start with 0. A gen-
erating rank-one sequence is an infinite sequence (v,) of finite words in F'
defined by induction on n € N:

vg = 0;Upy1 = v 1510, 1572 o g, 150

for some integers r, > 1 and non-negative integers s, ; for 0 < i < r,. We
continue to refer to the sequence (r,,) as the cutting parameter and the doubly-
indexed sequence (s ;) as the spacer parameter. Note that the cutting and
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spacer parameters uniquely determine a generating rank-one sequence. A gen-
erating rank-one sequence converges to an infinite rank-one word V' € {0, 1},
We write V = lim,, v,,.

Definition 2.2: Given an infinite rank-one word V', the symbolic rank-one
system induced by V is a pair (X, o), where

X = Xy = {z € {0,1}%: every finite subword of z is a subword of V'}
and 0 : X — X is the shift map defined by
o(x)(k)=x(k+1) forall ke Z.

Under the same assumption (1) as in the constructive geometric definition, the
symbolic rank-one system will carry a unique non-atomic, invariant probability
measure. In this case the symbolic rank-one system will be isomorphic to the
rank-one transformation that is constructed with the same cutting and spacer
parameters.

The symbolic definition does not explicitly describe odometers (see Subsec-
tion 2.3 below for definitions), which are considered rank-one transformations.
This was the motivation of Ferenczi’s question in [5] as discussed in the introduc-
tion. In contrast, we note that in the topological setting, Gao and Ziegler have
recently proved in [8] that (infinite) odometers are not topologically isomorphic
to symbolic rank-one systems (which are called rank-one subshifts in [8]).

When we work with a rank-one transformation we will use both the termi-
nology and the notation in this subsection.

2.3. FINITE CYCLIC PERMUTATIONS AND ODOMETERS. Here we precisely de-
scribe what we mean by “finite cyclic permutation” in the context of measure-
preserving transformations. If £ € N with k£ > 1 and n € N, we denote by [n]j
the unique m € N with m < k and n = m mod k. For each k € N with k > 1,
let X ={0,1,...,k — 1}, let pp be the measure on X where each point has
measure 1/k, and let fx : Xi — X given by fr(i) = [i + 1]x. We let Z/kZ
denote the transformation (X, g, fr) and refer to such a transformation as a fi-
nite cyclic permutation. These are the sole cases we consider where the measure
is atomic, so the measures are defined on atomic Lebesgue probability spaces,
and we will still refer to (X, ux, fx) as a transformation, though it should be
clear from the context, such as when we denote a transformation by 7', when
a transformation is defined on a non-atomic space. It is natural to speak of
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a factor map from a measure-preserving transformation 7" to (X, tk, fi), but
since T is implicitly defined on a non-atomic space, it is not possible for such a
factor map to be an isomorphism.

Now we describe what we mean by an odometer (see [4]). Loosely it can be
described as an inverse limit of a coherent sequence of finite cyclic permutations.
To be more precise, suppose we have a sequence (k, : n € N) of positive
integers greater than 1 such that for all n € N, k,|k,+1. We now define X
as the collection of sequences o = (ay, : n € N) € ey Z /knZ such that
for all m,n € N with m < n, [an]g,, = @m. There is a natural measure p
on X satisfying the following: for all n € Z and all i € {0,1,...,k, — 1} the
set {a € X : a,, = i} has measure 1/k,. There is also a natural bijection
f X — X defined by

fla) = (filen), f2(az),...) = ([a1 + iy, [ae + 1k, .. ).

A transformation (X, u, f) obtained in this way is called an odometer. For
example, if k, = 2™, one obtains the standard dyadic odometer.

The following characterization of when two such odometers are isomorphic is
well known. Suppose (k, : n € N) and (k/, : n € N) are sequences of positive
integers greater than 1 such that for all n € N, ky|k,41 and kj, |k}, ;. Then the
odometers corresponding to these two sequences are isomorphic if and only if

{meN:3IneN (mlk,)} ={meN:3neN (m|k],)}.

Because of this characterization we often describe an odometer by an infinite
collection K of natural numbers that is closed under taking factors. If one has
such a set K, then it is easy to produce a sequence (ky, : n € N) of integers > 1
such that ky|k,1, for all n € N, and for which

K= |J{meN:mk,}.
neN

Moreover, any choice of such a sequence (k, : n € N) will give rise to the
same odometer, up to isomorphism. We can now let Ok denote (any) one of
the odometers produced by choosing such a sequence (k, : n € N). There are
canonical ways to choose Ok based on the maximum power of each prime that
occurs in K, but we will not go into the details of this canonical choice in this
paper. It is worth noting that the characterization in the preceding paragraph
guarantees that if K # K’ are infinite collections of natural numbers that are
closed under factors, then O 22 Ok-.
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Here we collect the important facts about Ok that we will use in this paper.

(1) For each k € K, then there is a canonical factor map = from O
to Z/kZ.
(2) For all k, k' € K, with k|k’, then for all z in the underlying set of O,

() = [mp ()] k-

(3) The collection of sets {m; '(i) : k € K,0 < i < k} generates the o-
algebra on Ok.

(4) If a measure-preserving transformation factors onto Z/kZ for all k € K,
then it also factors onto O . If, moreover, the fibers of these maps gen-
erate the o-algebra on (X, ), then that factor map is an isomorphism.
The argument for this is similar to the construction of the Kronecker
factor of a transformation; see, e.g., [9].

2.4. THE NOTION OF e-CONTAINMENT. In this subsection we define a precise
notion of almost containment and briefly describe some of its properties; this is
a standard notion in measure theory also called (1 — ¢)-full.

Definition 2.3: Let A and B be measurable subsets of positive measure of a
measure space (X, u) and let € > 0. We say that A is e-contained in B, and
write A C. B, provided that

u(A\ B)
1(A)

Equivalently, we say that A is (1 — €)-full of B if u(AN B) > (1 — e)u(A4).

< €.

Here are the basic facts we will need; the reader may refer to, e.g., [10].

(1) If AC, B and A is partitioned into sets Aj, As, ..., A,, there is some : <r
such that A; C. B.

(2) If A is partitioned into sets Aq, Aa,..., A, and for all i < r, A; C,. B,
then A C. B.

(3) Let (X,u,T) be a measure-preserving transformation. If A C. B
and z € Z, then T#(A) C. T*(B).

(4) Let (X,u,T) be a rank-one transformation. If B C X has positive
measure, there there is some n € N and some 0 < ¢ < h, such
that T%(B,,) C. B.
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3. Factoring onto a finite cyclic permutation

It is quite easy to build a rank-one transformation that factors onto a cyclic
permutation of k elements. Simply ensure that for some N € N, the height
of the stage-IN tower is a multiple of k£ and furthermore insist that every time
spacers are inserted after stage-N the number of spacers inserted is a multiple
of k. If a rank-one transformation is constructed in this way, then one can define,
for all m > N, a function 7, which goes from the stage-m tower to Z/kZ defined
by mm(x) = [i]k, where x belongs to level i of the stage-m tower. The method
of construction guarantees that if x belongs to the stage-m tower and n > m,
then 7, (z) = 7, (x). The domains of the functions =, are increasing and their
measure goes to one. Thus, we can define 7 from a full-measure subset of X
to Z/kZ by

m(x) = lm 7, (x).

This map 7 is clearly a factor map.
The theorem below gives a full characterization of which transformations
factor onto a cyclic permutation of k elements.

THEOREM 3.1: Let (X, u,T) be a rank-one measure-preserving transformation
and let 1 < k € N. The following are equivalent:

(i) (X,p,T) factors onto Z/kZ.
(ii) VYn > 0,3IN € N,Vn > m > N,3j € Z/kZ such that
i € T i £ 3] _
L.
Proof. First we will show that (i) implies (ii). Suppose that 7 : X — Z/kZ is
a factor map. The fibers 771(0), 771(1), 771(2),..., 771 (k — 1) are a partition
of X into sets of measure 1/k such that

n.

T(r=' () == ([ + L),

for all j € Z/kZ. Let n > 0 and choose € smaller than both /2 and 1/2.

Since the levels of the towers generate the o-algebra of X, there exists N € N
such that for all n > m > N, every level of the stage-n tower is e-contained
in 771(j) for some j € Z/kZ. Fix jo € Z/kZ such that B,, C. 7 1(jo). We
claim that among the levels of the stage-n tower that comprise the base of the
stage-m tower, the fraction of those that are e-contained in 7~ !(jo) must be at
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least 1 — 2e. In other words, letting I’ = {i € I, : T*(Bn) Zc 7 (jo)}, we
claim that

I
(2)
Ll
Suppose this is not the case. Since

By \ 7 (jo) 2 U (T"(Bn) \ 7" (jo)):

icl’

< 2e.

we have that
=y : I
(B \ 7 (o)) > |I'| - 11(Bp) - (1 — €) =

L.

W(Bu) - (1= o).
Therefore,

p(B \ 7)) 11
N(Bm) h |Im,n|

since € < 1/2. This contradicts the fact that By, is e-contained in 7~ (jo) and

(1—€)>(2¢)-(1—¢€) >k,

completes the proof of (2).
Since the levels of the stage-n tower that are e-contained in 7= (jo) are all in
the same congruence class mod k, there is some j € Z/kZ such that
{i € I : [i]k # j}]
L.

completing the proof that (i) implies (ii).

< 2e <7,

Next we will show that (ii) implies (i). Assuming (ii) we construct a factor
map 7 : X — Z/kZ.

For all a € N, let 7o, = 5= and use (i) to produce N, € N. We may assume
that the sequence (N, : a € N) is increasing and that for each a, N, is large
enough that the measure of the stage-N, tower is at least 1 — p% Now, for
each @ € N we also choose j,, € Z/kZ such that

Hi € INy Noyr ¢ (1K 7 Ja}l <
|IN017N04+1|

Nox-

For all @ € N, define a function ¢, from the stage-N, tower to Z/kZ as
follows: If x belongs to level i of the stage-N, tower, then ¢4 (z) = [i]x. Since
for most z in the base of the N,-tower, ¢ot1(x) = jo, the reader can verify
that for all « € N,

p({r € dom(¢a) : pat1(®) # ja}) < Na-
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Now, for each o € N, we let J, = Zﬁ<aj5. Also, for each o € N we
define a function 7, from the stage-N,, tower to Z/kZ by wq () = [pa(x) — Ja]k-
Since ¢, and 7, have the same domain for all @ € N, and in addition, if
x € dom(my), then mot1(x) = 7o () if and only if ¢ot1(z) = [da(z) + julk, and
we already know that

N({w € dom(¢a) : ¢oz+1(x) # [(ba(x) +joz]k}) < Na,

then one can verify that for all a € N,

1
p({z € dom(my) : for all B > a, mo(x) = ma(x)}) > 1 — 7
It follows that for p-almost every x € X, the sequence (my(z) : @ € N)
eventually stabilizes and we can define

m(x) = O}LH;O o (2).

Choose «a sufficiently large so that 74 (z) = 7(z), 7o(T(z)) = 7(T(z)) and
belongs to a non-top level of the stage-N, tower. If x belongs to level i of the
stage N, tower, then T'(z) belongs to level ¢ + 1 of the stage-N,, tower which
implies that ¢q(T(2)) = [¢a(z) + 1]k Now,

m(T(z)) = ma(T'(2)) = [$a(T(2)) — Jalk = [¢a(2) + 1 = Ja]k = [7(z) + 1.
Therefore, 7 : X — Z/kZ is a factor map. |

As a corollary, we obtain a characterization of the rank-one transformations
that factor onto some (unspecified) non-trivial finite cyclic permutation, a condi-
tion that is well-known to be equivalent to the transformation not being totally
ergodic.

COROLLARY 3.2: Let (X, u,T) be a rank-one measure-preserving transforma-
tion. The following are equivalent:

(1) T factors onto some finite cyclic permutation.
(2) 3k e N with k> 1,Vn>0,3N € N,Vn >m > N,3j € Z/kZ such that

el i .
[{i e I’I [l|]k7éj}|<n_

We end with an equivalent characterization as suggested by the referee. The

proof is similar to that of Theorem 3.1.
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THEOREM 3.3: Let (X, u,T) be a rank-one measure-preserving transformation
and let 1 < k € N. The following are equivalent:

(i) (X,p,T) factors onto Z/kZ.
(ii) There is an increasing sequence (gy) such that

i|{i61mqn+15i50 modk}|<OO

n=1 |Iq71r7q”+1 |

4. Factoring onto an odometer

We now give characterizations of which rank-one transformations factor onto
a given odometer, and which rank-one transformations factor onto some (un-
specified) odometer. These characterizations are essentially corollaries of The-

orem 3.1.
THEOREM 4.1: Let (X, u,T) be a rank-one measure-preserving transformation
and let Ok be an odometer. The following are equivalent:
(i) (X,p,T) factors onto Ok.
(ii) Vk € K,¥Vn > 0,3IN € N,Vn > m > N,3j € Z/kZ such that
[{é € Inn : [ili # J}
I -

Proof. Suppose (X, u,T) factors onto Ok. Then for each k € K, one can

n.

compose this factor map with a factor map from O to Z/kZ to get a factor map
from (X, u, T) to Z/kZ. Together with Theorem 3.1, this implies condition (ii).

Now suppose that condition (ii) holds. By Theorem 3.1 we know that (X, p, T)
factors onto Z/kZ for every k € K. Therefore, (X, 1, T) factors onto Of. |

By a proof is similar to that of Theorem 4.1 we obtain the following corollary.

COROLLARY 4.2: Let (X, u,T) be a rank-one measure-preserving transforma-
tion. The following are equivalent:

(i) (X, p,T) factors onto some odometer O.
(i) VM € N,3k > M,¥n > 0,3N € N,Vn > m > N,3j € Z/kZ such that

el i .
[{i e I’I [l|]k7éj}|<n_
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5. Being isomorphic to a given odometer

It turns out that it is not too hard to construct a rank-one transformation that
is isomorphic to a given odometer. Let K be an infinite set of natural numbers
that is closed under factors. First choose a sequence (k, : n € N) of natural
numbers such that the factors of the partial products []
the set K and for which

m<n km are precisely

Then build a rank-one transformation by a symbolic construction as follows.
For n € N, let vg = 0 and let v,,41 = (v,)**~11%». Then the resulting transfor-
mation 7T is what is called essentially 0-expansive by Adams, Ferenczi, and
Petersen in [1], and their method shows that T is isomorphic to the odome-
ter Ok. A definition of an isomorphism is also implicit in our results below.

In this section we characterize in general when a rank-one transformation is
isomorphic to a given odometer. The idea is to build on our characterization
for rank-one transformations which factor onto a given odometer, and then to
examine when a factor map turns out to be an isomorphism. The following
result gives the explicit details.

THEOREM 5.1: Let (X, u,T) be a rank-one measure-preserving transformation
and let Ok be an odometer. The following are equivalent:

(I) T is isomorphic to Ok.
(II) Both of the following hold.
(Ila) Vk € K,¥n > 0,3IN € N,Vn > m > N,3j € Z/kZ such that

" .
l{i e I’I [l|]k7éj}|<n_

(Ib) VI € N,Ve > 0,3k € K,3IN € N,¥m > N, 3D C Z/kZ such that

P < At [0 D}AIL
5 b 0 € D)l
l,m

Proof. First assume (II). Using condition (Ila) and the proof of Theorem 3.1

we construct, for each k € K, a factor map my, : X — Z/kZ. Recall that 7y, is
built using a series of approximating maps (7 : @ € N).
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It suffices to show that for every I € N and every & > 0, there is some k € K
and some E C Z/kZ such that

w(B AT E)) < 6.

Let I € N and § > 0. Let e = §/2. First, we use condition (IIb) above to
produce k € K and N > [ such that for all m > N, there exists some D C Z/kZ
such that

|{Z < hm : [Z]k S D}AIl,m| e
|Il,m|

Since k € K, we have a factor map 7y : X — Z/kZ that is built using the
approximating maps 7y . Choose a specific a € N so that 2% < §/2 and such
that N, is greater than the IV produced in the preceding paragraph. Using the
fact that N, > N and using features of the approximating maps 7., we get
the following;:

(1) There exists some D C Z/kZ such that

|{Z < hNa : [’L]k € D}AIZ,N
[T1.n. |
(ii) There exists E C Z/kZ such that
U( U mew)=Umbe.

deD N0<i<hn, e€E
[ilx=d

o |

(iii) p({z € dom(mk,a) : T (x) = T(2)}) > 1 — 55.

Using these properties one can show that
w(B AT E]) < 6,

completing the proof that (X, p,T) is isomorphic to Ok.

Now we assume that (X, u,T") is isomorphic to Ok and let ¢ be an isomor-
phism between T and O . For each k € K we can compose ¢ with the canonical
factor map of Ok onto Z/kZ to get a factor map 7, from X to Z/kZ. For such
ak € K, Theorem 3.1 guarantees that Vi > 0,AN € N,Vn >m > N,3j € Z/kZ
such that

el i .
[{i e I’I [l|]k7éj}|<n_

Thus we have condition (IIa).
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Next, exchanging the variable e for § in condition (IIb), we will prove
that VI € N,Vé > 0,3k € K,3IN € N,Vm > N,3D C Z/kZ such that
[{i < hum : [l € D}AL |
|Il m|

Let l e Nand § > 0. Let e = § - u(B;)/4. The reader can verify that there
exists some k € K and E C Z/kZ such that

< 4.

() WBAT (E)) < e.

We next claim that there exists N € N such that for all m > N there exists
some j € Z/kZ such that for all 0 <14 < hyp,,

T'(Bpm) Ce 7t ([i 4 41k)-

We can prove this with similar methods.
Fix such an N € N that also satisfies u(Ug<;cp, TYBy)) > 1 — € and
let m > N. We now claim that there exists D C Z/kZ such that

(%) ( U T'(Bp)A 7, (B )) < 3e.
0<1<h77L
[ijx€D
Combining equations (x) and (#*) we now have that
( U 7B ABl) < Ae.
0<1<h77L

[iJx€D

To finish the proof of the theorem, note that
#(Uosi<r, T'(Bu)AUes, , T'(Bo))

{i < hp : [i]x € DYAL | _ lilkeD
[ Z1,m | H(Uiell’m T"(Bm))
_ [’L]kED
w(Br)
4e - .
w(Bi)

Next we characterize when a rank-one transformation is isomorphic to some

(unspecified) odometer.



Vol. 255, 2023 RANK-ONE TRANSFORMATIONS 247

THEOREM 5.2: Let (X, u,T') be a rank-one measure-preserving transformation.
The following are equivalent:
(I) T is isomorphic to an odometer.
(IT) For alll € N and all € > 0, there is some k € N such that for all n > 0
there exists an N € N such that for alln > m > N,
(ITa) there is some j € Z/kZ such that
[{i € Lo : [i]i # 5} <.
L.
(ITb) there is some D C 7Z/kZ such that
|{Z < hm: [Z]k IS D}AIl,m| e
|Il,m|
Proof. Suppose T is isomorphic to an odometer. Let K be the finite factors of
that odometer. Let [ € N and € > 0. Using condition (IIb) of Theorem 5.1 we
can find some k € K and some N7 €N, such that Vm > Ny, 3D CZ/kZ such that
{i < hp : i € DYAL | <
|Il,m|
For any 1 > 0 we can use that specific k¥ € K and condition (IIa) of Theorem 5.1
to find Ny € N such that Vn > m > No,3j € Z/kZ such that

el .
l{i e I’I [l|]k7éj}|<n_

Letting N = max{Ny, N2} we complete condition (II) of the theorem.

Suppose now that condition (IT) holds. For all [ € N and all ¢ > 0, pro-
duce k¢, and N; . according to condition (II). Let

K ={k € N: k|k; ¢ for some [ € N and € > 0}.

It is clear that K is closed under factors. We leave it to the reader to show
that K is infinite by showing that if { € N and € < 1, then k. > hy.

Now, consider Ok. We will prove that 7" is isomorphic to Ox by showing that
conditions (ITa) and (IIb) of Theorem 5.1 hold. First, let k € K. Choose l € N
and € > 0 such that k|k; .. We chose k; . using condition (II) of this theorem.
Theorem 3.1 guarantees that that T factors onto Z/k; Z. Therefore, T must
also factor onto Z/kZ. Now Theorem 3.1 guarantees that condition (IIa) of The-
orem 5.1 holds. Condition (IIb) of Theorem 5.1 follows immediately from our
assumption that condition (IT) of this theorem holds and our choice of K. |
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Before closing, we consider an example of a rank-one transformation that
factors onto an odometer but is not isomorphic to any odometer.

Example: Let T be the rank-one transformation corresponding to the symbolic
definition

Vo = O,
2n+1
Un4+1 = Un¥Upl UnUn -

Then

[Un| = Ry =27 (27T —1).
Using Theorem 3.1 it is easy to verify that T factors onto the dyadic odometer.
As noted by the referee, ergodicity of the odd powers follows from [3, Theo-
rem H], so T has no finite factors of odd cardinality. (One can also use The-
orem 3.1 to show that T' does not have any odd finite factors.) Therefore the
maximal odometer factor of T is the dyadic odometer.

Finally, we verify that condition (IIb) of Theorem 5.1 fails. From this it
follows that 7" is not isomorphic to the dyadic odometer, and in conclusion, T’
is not isomorphic to any odometer.

Let I = 0 and ¢ = 1/2. For any k € K (say k = 2") and any N € N,
choose m > max{1l,n, N}. We make two observations. First, note that in vy,
there are more Os than 1s. In fact, |l | = 4™ > %hm. Second, we claim that
the positions of Os in v, are equidistributed modulo £ = 2™. Granting this
claim, we see that the way to minimize

[{i < hum : [l € D}AIp |
is to choose D C Z/kZ to be all of Z/kZ. In this case
Hi < ho o il € D}YAIo | Bon — [To,m] N 1
|IO,m| |Io7m| 2

It remains to see that the positions of Os in v, are equidistributed modulo 2",

that is, for each n € N, there are an equal number of zeros in v,,, for m > n,
in each congruence class modulo 2". We show this by induction. For the
case m = n we proceed by induction on n. This is clearly true if n = 0. For the
inductive step, note that each zero in v, gives rise to four zeros in v,41, and
all zeros in v,41 arise in this way. If an occurrence of zero occurs at position p
in vy, then the four zeros in v, 1 that come from it occur at positions p, p+ hy,
p+ 2h, + 2" and p + 3h, + 271, It follows that, if p is in the congruence
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class of r modulo 2™, then two of the four corresponding zeros in v,4+1 occur

at positions congruent to r modulo 2"*! and the other two occur at positions

congruent to r 4+ 2" modulo 2"*!. Thus, if there are an equal number of zeros

in v, in each congruence class modulo 27, then there are an equal number of

zeros in v,41 in each congruence class modulo 27!, This finishes the proof for

the case m = n. The case m > n follows from a similar induction on m.
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