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ABSTRACT

Al language technologies increasingly assist and expand human
communication. While Al-mediated communication reduces hu-
man effort, its societal consequences are poorly understood. In this
study, we investigate whether using an Al writing assistant in per-
sonal self-presentation changes how people talk about themselves.
In an online experiment, we asked participants (N=200) to intro-
duce themselves to others. An Al language assistant supported their
writing by suggesting sentence completions. The language model
generating suggestions was fine-tuned to preferably suggest either
interest, work, or hospitality topics. We evaluate how the topic
preference of a language model affected users’ topic choice by ana-
lyzing the topics participants discussed in their self-presentations.
Our results suggest that Al language technologies may change the
topics their users talk about. We discuss the need for a careful
debate and evaluation of the topic priors built into AI language
technologies.
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1 INTRODUCTION

Al language technologies are increasingly used to augment or en-
hance human communication [18]. From single-word shortcuts and
suggestions to sentence completion and translation by services [26],
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Al language technologies enable new types of interactions that re-
duce human effort. With the recent generation of large transformer-
based generative language models like GPT-3 [8], coherent human-
like language can be generated automatically at scale [24]. How-
ever, infusing human communication with Al-generated language
suggestions can have unintentional side effects with far-reaching
consequences that may be hard to foresee. For example, when lan-
guage models generate certain topics more often than others, the
communication tools they power may change conversation topics
and entire societal discourses.

The current study investigates whether a language-model-powered
Al writing assistant that preferably suggests certain topics shifts
how its users present themselves to others. We explore this research
question in the context of self-presentation of the type prevalent in
online profiles, e.g., on online hospitality platforms [20, 38]. Previ-
ous work on online self-presentation [12, 39] has shown that im-
pression formation based on self-descriptions helps establish trust
in technology-mediated environments [14, 29]. When Al language
technologies change how people present themselves to others, they
may not only change how people perceive themselves and are per-
ceived by others [12, 14] but may undermine the trust required for
social interactions such as sharing [23].

In a quantitative experimental study, we asked participants (N=200)
to introduce themselves to potential guests on an online hospitality
platform. Each participant was assisted by an Al writing assistant
that suggested completions for their sentences. The writing assis-
tant was powered by a customized version of OpenAI's GPT-2, a
transformer-based large language model [34]. We fine-tuned three
different versions of the model such that they preferably gener-
ated suggestions related to people’s (1) interests and hobbies, (2)
work and education, or (3) hospitality and guests. We randomly
assigned one of these three topic-biased language models to power
the AI writing assistant that supported participants in writing their
self-presentations. We analyzed how participants interacted with
the writing assistant and how the composition of topics in their
self-presentations differed across treatment groups.

To preview our results, participants were significantly more
likely to talk about the topics that the Al writing assistant suggested
- even if we account for suggestions they directly accepted from the
model. We discuss the implications of our findings in the context
of the increasing deployment of Al language technologies into our
communication [19] and argue that there is an urgent need for
careful monitoring and evaluation of their topic preferences.
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2 RELATED WORK

Our work builds on previous research on people’s interactions with
writing assistants and the societal risk of large language models.

2.1 Interaction with writing assistants

Word suggestions and sentence completions have become popular
features in commercial products, such as mobile phones and email
clients [9, 10]. While basic assistants predict single words based on
frequency distributions [13, 17], more sophisticated assistants sug-
gest sentence completions or entire paragraphs using the generative
power of large language models [9]. Prior research has primarily
focused on the impact of suggestions on writing efficiency [6, 15].
More recent work with advanced models [8, 34] has explored dif-
ferent outcomes of interest, such as enhanced creativity. Studies
have been conducted using systems to aid in writing slogans [11],
creative stories[36], science fiction [31], and metaphors [16]. There
is relatively little prior work on the types of unwanted side effects
that Al language technologies may have on people’s writing. Initial
studies found that predictive text systems could introduce biases
into reviews [1, 5] or image caption [2] based on the predominant
sentiment of the suggestions. Similarly, experimental work has sug-
gested that opinionated language models may change their users’
views and attitudes [22]. In the current experiment, we evaluate
how co-writing with large language may affect the topics that users
write about.

2.2 Societal risks of large language models

Large generative language models [7, 41, 42] have received much
attention for the new types of product and interactions they en-
able [7]. However, they have also raised concerns about societal
risks associated with the use and capabilities of these models. A ma-
jor concern is that biases prevalent in the language generated can
lead to unintended negative impacts on system users, for example
minoritized groups may be more susceptible to discrimination and
exclusion [8, 21, 32]. In addition, the technology may contribute to
new forms of misinformation [27, 28, 35, 43] and cause other envi-
ronmental [40] and socioeconomic harms [4]. Comparatively little
work has considered how the use of Al language technologies may
change our communication topics and behaviors [19]. First audits
of widely used models seem to suggest a western bias, e.g., GPT-3’s
output aligns more with reported dominant US values than those
upheld in other cultures [25] and may reinforce the respective val-
ues when widely used. We contribute to this debate by evaluating
how AI language models may shift how people present themselves.

3 METHODS

We conducted a randomized controlled experiment where we asked
participants (N=200) to write a self-presentation or personal intro-
duction for an online hospitality platform. In their writing, they
were assisted by an Al language assistant that suggested possible
sentence completions. The language model powering the assistant
was biased to overly suggest selected topics. Our primary hypothe-
sis was that the text suggestions generated by the language model-if
they were biased towards a certain topic—would lead participants
to write more extensively about that topic in their self-presentation.
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We test this hypothesis by comparing the number of words partici-
pants wrote about each topic across treatment groups.

3.1 Experiment design

Our experiment took places in an interactive text editor with an Al
writing assistant powered by a customized version of GPT-2 [34]
in the backend. The writing assistant generated sentence contin-
uations for participants as they typed, giving the option of either
accepting the suggestions, requesting a new suggestion, or ignor-
ing it. Once participants were satisfied with their self-presentation,
they could submit their text, which we saved in a cloud storage
bucket.

We used a between-subjects design with block randomization
and a single independent variable: the topic bias of the model that
powered the writing assistant. Participants were unaware of which
model they were using. We used GPT-2 [34] as our baseline model
and finetuned different model versions that preferably generated
suggestions for one of the following topics: (1) interests and hobbies,
(2) work and education, or (3) hospitality and guests. To create these
models, we draw on a previous study of Airbnb host profiles [29].
The study’s authors collected 1,200 Airbnb host profiles. They man-
ually labeled their sentences into topic categories and made the
coded data publicly available. In a subsequent study[30], they used
the coding scheme scheme and extended it to 4,180 Airbnb host
profiles by developing a computational classifier.

Using these datasets, we extracted the sentences that were la-
beled as mentioning only interest, work, or hospitality topics. We
obtained 885 sentences related to work and education, 1,085 exam-
ples of interest-related sentences, and 908 self-presentation text
samples related to guests and hospitality. We applied further pre-
processing to parts of the data to reduce noise, such as collapsing
multiple white spaces. We split each sample set into a train and test
set with a train-to-test ratio of 0.9. We finetuned a version of GPT-2
on each topic dataset for five epochs with a learning rate of 0.005
and 100 warm-up steps.

We built a topic bias detection pipeline to evaluate the topic
bias of each finetuned model. We first used nine minimal prompts
(T, ’We’, ’As a’, "My’ etc.) to generate sample continuations with
each of the three fine-tuned models. We then trained a BERTopic,
BagOfWords, and BertForSequenceClassification classifier on an
extended version of the training data discussed above to predict
the topic of text sequences. Since BertForSequenceClassification
offered the best performance on the test set (F1=0.86), we used it
for the evaluation of the topic bias of our fine-tuned models. The
results indicate the continuations generated by the finetuned model
contained the intended treatment topic in about 70% of sentences
for work and education, 75% of sentences for hospitality and guests,
and 83% of sentences for interests and hobbies.

3.2 Outcome measures and covariates

Two researchers independently coded the topics participants men-
tioned in the self-presentations they had written with the Al writing
assistant. They labeled the data on a sentence level, attributing each
sentence to a topics: (1) interests and hobbies, (2) work and ed-
ucation, or (3) hospitality and guests. Sentences that referred to
neither were coded as (4) Other. Sentences that referred to multiple
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Figure 1: Participants assisted by a model that preferably suggested a certain topic were more likely to write about the topic in
their self-descriptions. Ns=21,843 words written by N,=192 participants. Error bars represent 95% confidence intervals. The
y-axis indicates the average number of words participants wrote on the topic shown in the panel title. Word counts are split
by experimental treatment based on whether participants co-wrote with a language model that preferably suggested writing
about their interests, work, or hospitality. Coloured bars indicate alignment between the topic measure and the model bias.

topics were split into sentence fragments that referred to a specific
topic or represented the share of the topic in a sentence according
to the annotators’ judgment. The researchers were aware of the
experimental group participants were assigned to. To account for
the different lengths of the fragments, we used the sum of fragment
word counts—rather than sentence counts—as our main outcome
measure. Through this coding process, we achieved an interrater
reliability of 87.8%. Disagreements in codes were resolved in a
collective discussion of cases.

In addition to collecting the final essays, we kept track of partic-
ipants’ interactions with the writing assistant and collected their
demographics. We measured how many words they accepted from
the models’ suggestions. We use a covariate to differentiate between
direct topic influence by accepting a suggestion and indirect influ-
ence by merely reading and being inspired by suggestions. We also
recorded the time participants took to write their essays and asked
them about their gender, age, and ethnicity.

3.3 Experiment procedure and participant
recruitment

We recruited 200 participants through Prolific [33]. We first elicited

participants’ consent, then conducted three attention checks and

provided them with a link to the web app with the writing task.

The study was open to participants 18+ years old and proficient in

English. 68% of participants were between 18 and 24 years of age,
24% were between 25 and 34, 5% were between 35 and 44, and 3%
were older than 45 years. 52.4% of our participants were male, 44.2%
were female, and 3.4% reported themselves as other or preferred
not to say. 49.0% of participants self-identified as White, 7.8% as
Black or African American, 2.9% as Asian, and 1.0% as American
Indian or Alaska Native. About 39.3% selected other or preferred
not to say.

Participants received about 10$ per hour for their time. We
planned the sample size based on the effect we observed in a pilot
with 30 participants, with an alpha of 0.05 and a power of 0.80. We
rejected 12 submissions for writing very short self-presentations of
less than 55 words and reopened the study to replace these rejected
submissions. We also had to drop eight submissions during the
analysis where the writing assistant had generated no suggestions
due to system issues. Our experimental protocols were approved
by the Cornell University Institutional Review Board.

4 RESULTS

Figure 1 shows the mean number of words participants wrote
about interests, work, and hospitality in their self-descriptions.
The top left panel counts how many words in participants’ self-
descriptions were related to describing their hobbies and interests.
The word counts are further disaggregated based where the Al
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Table 1: Linear regression predicting the number of words written on interests, hospitality, and work & education based on the
bias of the mode powering the writing assistant. The model baseline (constant) is the group using a model train to preferably

suggest work & education topics.

Dependent variable:

Interest word Hospitality Work & edu.
count word count word count

1) @ ®)
Model bias: Interests 9.909* 9.459 —9.898**
Model bias: Hospitality 0.214 12.117* —5.545
Words accepted from model —0.201 0.239 0.195
Model: Interests * accepted words 0.201 —-0.726 —0.001
Model: Hospitality * accepted words 0.275 0.194 —-0.378
Writing time 0.008** —0.004 0.001
Participant age —-0.083 0.079 —-0.092
Constant 3.123 28.398™** 14.867**
Observations 192 192 192
R? 0.101 0.060 0.111
Adjusted R? 0.066 0.022 0.076
Residual Std. Error 19.338 30.143 15.554
F Statistic 2.848** 1.603 3.155%*

Note:

assistant preferably suggested interest (left bars), hospitality (cen-
ter), or work topics (right). On average, participants using a model
that preferably generated suggestions related to personal interests
wrote 19.64 words on their hobbies and interests (top left in red). In
comparison, participants who used the hospitality- or work-biased
model only wrote 10.21 and 7.30 words on their interests, respec-
tively. Similarly, as shown in the bottom left panel, participants
using a model that preferably generated suggestions related to work
wrote 14.26 words about their work and education (blue), while
participants using an interest- or hospitality-biased model wrote
5.58 and 6.19 words about their work and education respectively.
The outcome difference across treatment groups is less pronounced
for participants’ writing on hospitality, shown in yellow in the top
right panel. Here, participants using a hospitality-biased model
wrote 40.72 words on hospitality topics (yellow), while participants
with interest- and work-biased models wrote 37.45 and 28.79 words,
respectively.

We continue our analysis with fitting a regression model to the
data to confirm whether the differences in outcomes are statistically
significant across treatment groups. We also explore whether the
differences observed may be due to participants conveniently ac-
cepting the model’s suggestions. The three models shown in Table 1
predict the words participants wrote on each topic based on the
language model they used. The regression baseline is the group
using a language model preferably suggesting work & education
topics. In addition to the main treatment variables (rows one and
two), the regression models include a covariate for the number
of words participants accepted from the models’ suggestion (row
three) and an interaction term between the model bias and the
number of accepted words (rows four and five).

*p<0.05; *p<0.01; ***p<0.001

The left column shows the fitted coefficients predicting the num-
ber of words participants wrote on their interests and hobbies. Par-
ticipants using an interest-biased model wrote significantly more
words about their interests than participants using a work-biased
model (the baseline of the regression), as indicated by the significant
coeflicient in the first row (B = 9.9, p < 0.05). Similarly, participants
who took more time to write their self-descriptions wrote more
words about their interests (B = 0.0087,p < 0.01). While partic-
ipants who used an interest-biased model and accepted a larger
number of accepted words from the model (interaction term in the
fourth row) wrote even more words about their interests (B = 0.2,
not statistically significant), the number of words accepted did not
explain the difference in words counts between treatment groups
(ie., the main effect coefficient in the first row remains significant).
Demographic factors like age were not significantly correlated with
topic prevalence.

The right column shows the coefficients predicting the word
count related to work and education. Here, since the work-biased
model constitutes the model baseline, the coefficients for the other
treatment groups are negative. For example, participants using an
interests-biased model wrote fewer words on work and education
than participants using a work-biased model (B = -9.9,p < 0.01).
The statistical results for the hospitality topic (center column) and
work topic (right column) are similar to those of the interest topic
discussed above.

5 DISCUSSION

Our results indicate that when people are writing with an Al writ-
ing assistant that preferably suggests a certain topic, they write
more extensively about the topic preferred by the Al system. In
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the context of this study—personal self-presentation [20, 38]-this
meant that people described themselves depending on what type of
Al assistant they were using. The difference in topic distributions
across treatment group persisted even when we controlled for the
words that were directly accepted from the model in a regression
analysis, suggesting that the Al assistant influenced topic choice not
only through accepted suggestions, but also indirectly by merely
displaying possible continuations.

We note that for the hospitality and guests topic, the effect the
model bias had on participants’ topic choice was less pronounced.
We interpret this smaller effect size as a ceiling effect, as participants
wrote a large number of words on hospitality to topics indepen-
dent of the treatment group due to the hospitality context of our
experimental task.

Our findings align with recent research finding that using AI
language technologies in human communication does not only
increase efficiency but changes the content of what is being said.
Previous studies have shown that using an Al writing assistant
affects the sentiment and valence of what people write [1, 5] and
may lead to shorter or more generic text being written [2]. Another
study even showed that large language models that preferably gen-
erate certain opinions can shift not only the opinions users express
in writing, but also the opinions people hold after interacting with
the language model [22].

Changing the topics people write (or talk about) should not been
seen as a minor side-effect of Al language technologies. In the
context of our study, personal self-presentation, the topics people
choose to talk about have downstream effects on how others trust
them [23, 29, 30]. A change in how people describe themselves
may not only affect how others perceive them but, according to
self-perception theory [3], even change how they think about them-
selves. If our findings generalize to topic choice in other social
contexts than self-presentation, Al language technologies could
influence larger societal discourses by agenda-setting, and the prim-
ing, and framing of topics [37] through their suggestions. Here, a
more careful discussion and monitoring of topic priors in Al lan-
guage technologies seems necessary in both academia and industry.

Our early study has several limitations: We only investigated the
effects of topic biases through large language models in a specific
social context—online self-presentation-and with specific language
model (GPT-2). A more extensive replication study can solidify our
findings and test how they generalize to different social contexts.
Using a different language model-such as GPT-3-in a different Al
language product-such as smart replies—may lead to different out-
comes in topic influence. Further investigations are also required to
understand the significance of our findings. We still need to under-
stand the mechanisms of the effects we observed-to what extent
are they, for example, due to convenience or perceived authority of
the Al model? Future studies will also need to explore how large
the topic shifts are compared to other influences on topics choice,
and how transient or lasting the observed treatment effects are.
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