
EDITOR: Ewa Deelman, deelman@isi.edu

DEPARTMENT: VIEW FROM THE CLOUD

FlyNet: Drones on the Horizon
Alicia Esquivel Morel , Chengyi Qu, and Prasad Calyam, University of Missouri, Columbia, MO, 65201, USA

Cong Wang, Komal Thareja, and Anirban Mandal, Renaissance Computing Institute, University of
North Carolina at Chapel Hill, Chapel Hill, NC, 27517, USA

Eric Lyons and Michael Zink, University of Massachusetts Amherst, Amherst, MA, 01003, USA

George Papadimitriou and Ewa Deelman, University of Southern California, Los Angeles, CA, 90089, USA

Over the past few years, due to the boom of advances in image processing, edge
computing, and wireless networking, unpiloted aerial vehicles, often referred to as
drones, have become an important enabler to support a wide variety of scientific
applications, ranging from environmental monitoring, disaster response, and wildfire
monitoring to the survey of archaeological sites. In this article, we present the FlyNet
platform, which extends an existing workflowmanagement system to support and
manage scientific workflows. FlyNet enables automated resource allocation, workflow
instrumentation, and network service support to support researchers in their goal to
analyze data for new scientific discoveries. In addition, FlyNet provides network services
management to support quality of service for efficient data transport between edge
devices, edge servers, and the cloud.

INTRODUCTION

D rones are literally on the horizon. Unpiloted
aerial vehicles (UAVs) (often referred to as
drones) are now supporting a wide range of

scientific applications, ranging from environmental
monitoring, disaster response, and wildfire monitor-
ing to the survey of archeological sites. The success of
these applications heavily depends on the ability to
efficiently manage and analyze large volumes of data
generated by drones. This is where scientific workflow
support comes into play, providing researchers with
the tools and techniques to better manage and ana-
lyze their data. In this context, scientific workflows can
be characterized as a series of processes that are
executed in a specific order to analyze the data gener-
ated by drones. Examples include the processing and
analysis of video, imagery, and other sensor data. By
using workflow management systems for scientific

UAV applications, researchers can create data man-
agement and analysis processes with the goal of effi-
ciently and effectively extracting insights and new
knowledge from the collected data.

In parallel, there has been an evolution of the cloud
computing paradigm with the advent of edge comput-
ing, providing researchers with the opportunity to span
their workflows across the edge-to-cloud spectrum
based on the resource needs of their scientific appli-
cations. To streamline data management based on
application requirements, resources across the spec-
trum need to be appropriately allocated. Unfortunately,
selecting the appropriate set of resources for a specific
scientific workflow is often a challenge for domain
scientists who are not experts in distributed computer
systems.

FlyNet introduces a platform to support scientific
workflows from the edge to the core for UAV and
other edge-to-cloud applications by automating the
processes of resource allocation, workflow implemen-
tation, and network service support to support research-
ers in their goal to analyze data for new scientific
discoveries.
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FLYNET SYSTEM ARCHITECTURE
The FlyNet architecture (shown in Figure 1) supports
the composition of end-to-end (edge-to-core) work-
flows capable of supporting scientific UAV and other
edge-to-cloud applications.

Edge-to-Core Infrastructure
The edge-to-core infrastructure depicted at the bottom
of Figure 1 covers all points in the spectrum of response
latency for application processing—the latency spec-
trum. While some processing needs to be performed on
the devices and the network edge to support the

increasing scale of Internet of Things (IoT) applications,
some computations need to be performed in network,
and some can be offloaded to core computing resour-
ces “far” from the edge devices.

There are several categories in this latency
spectrum—edge devices, edge servers, in network, and
core computing. While edge devices provide minimum
latency for response times, they have limited compu-
tational capabilities and/or power constraints. Thus,
onboard resources are often not sufficient to support
the UAV application processing needs. Edge servers or
nodes that make up an edge computing infrastructure
have more computational power and fast turnaround

FIGURE 1. FlyNet System architecture showing how applications can leverage edge-to-core infrastructure via FlyNet services.

API: application programming interface; BM: bare metal; L: level; REST: Representational State Transfer; VM: virtual machine.
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times, but they support only limited scales of computa-
tion (e.g., they might be able to run very lightweight
algorithms but not data- and compute-intensive work-
loads like deep learning models).

As the latency on the spectrum increases, process-
ing packets and turning them around using in-network
computing capabilities (either compute resources or
specialized programmable hardware deployed in the
network core) can be envisioned. This will reduce
latency compared to cases where data have to be
transmitted all the way to the computing core. For
UAV data processing that needs substantially more
computational resources (e.g., GPUs for training
machine learning models for object detection), data
need to travel all the way to core cloud resources. This
incurs the maximum latency with the benefit that high
processing power can be utilized.

FlyNet Services: Resource Provisioning
To implement this overall architecture, FlyNet uses
a network-centric platform called Mobius1 with sup-
port for provisioning programmable cyberinfrastruc-
ture comprised of FABRIC2 and Chameleon Cloud3

testbeds. Mobius makes it easier for applications to
provision and manage the appropriate infrastructure
resources for their execution. It supports multiclouds
and automated network provisioning to connect the
clouds. It leverages the jclouds application program-
ming interface (API), which supports OpenStack-based
clouds, to provision bare metal (BM) nodes and virtual
machines (VMs) from Chameleon. It uses the FABRIC
FABlib API4 to 1) provision VMs from FABRIC with directly
attached PCI devices—GPUs, network cards, non-volatile
memory (NVMe) drives, and field-programmable gate
arrays—and 2) to provision layer 2/3 networks and facility
ports5 for connecting different FABRIC core and edge
nodes with external infrastructure. Users, applications,
and workflowmanagement systems interact with Mobius
using a Representational State Transfer (REST) API for
provisioning resources and deploying services (see the
next section).

FlyNet Services: Service Deployment
Container Setup and Orchestration
Since we envision that edge servers will be shared by
more than one application, the FlyNet architecture
supports a container-based application deployment
approach by using KubeEdge,6 which provides con-
tainer orchestration at the edge. This containerized
approach provides FlyNet with the required flexibility
for workflows that support drone-based applications.
The use of containers adds the benefit of simplified

deployments of applications on edge nodes and sup-
ports the migration of applications between edge
nodes. The latter is an important requirement of drone-
based applications, where the distance and, thus, the
resulting latency between a drone and an edge node
might become too large for effective and safe opera-
tions. In that case, migrating the application to a differ-
ent edge node that is closer to the drone is critical. To
support FlyNet, we extended Mobius to automatically
deploy a container orchestration service using KubeEdge,
which automatically instantiates KubeEdge clusters
on the provisioned nodes. To support BM container
orchestration on the edge resources, as on the Chame-
leon edge resources—CHI@Edge,7 Mobius takes advan-
tage of the REST API8 to provision the containers.

Computation and DataManagement Services
Mobius services also allow applications and workflow
systems to deploy HTCondor9 clusters—HTCondor
Master/scheduler and HTCondor workers—on the pro-
visioned resources selected from (potentially) multiple
cloud platforms (FABRIC and Chameleon), such that
workflow/application tasks can be readily scheduled
and executed. Mobius automates configurations for
the networks, Internet Protocol addresses, and setup
of the daemons and makes it easier for scientists and
applications to use the provisioned infrastructure.

Monitoring Setup and Data
Collection: Prometheus
Mobius also automatically deploys Prometheus10 moni-
toring agents on the provisioned resources—contain-
ers/VMs/BM. These agents monitor different resource
metrics, e.g., CPU loads, continuously and stream the
measurements to a central Prometheus server. The
Prometheus server aggregates all of the monitoring
time series data from the agents and exposes an API
for applications. The applications can query on the
observed performance attributes of the resources and
make key decisions for resource management. Such
monitoring data are critical for edge resource selection.

EDGE-TO-CLOUD WORKFLOW
ORCHESTRATION
Challenges of Edge-to-Cloud
Execution
Edge-to-cloud computing environments make it pos-
sible for applications and systems to capitalize on
the desirable advantages offered by both computing
paradigms: faster response times, data locality, cost
savings at the edge, scalability, high availability, and
reliability provided by the cloud. Effectively utilizing
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both computing paradigms within such a complex exe-
cution environment for a given application presents a
number of challenges. First, available resources and
their states need to be visible to make scheduling
decisions. Some environments with IoT devices may
experience churn due to limited power and network
connection. This is especially the case for UAVs that
might come in and out of communication range when
executing a mission. Second, scheduling decisions
must be made. When running in the cloud, both com-
pute and data movement costs may need to be consid-
ered. Incorporating the edge may involve taking into
consideration energy consumption, limited compute
capacity, and storage constraints. In addition to sched-
uling decisions, there may be resource provisioning
decisions that can be made to better accommodate
varying levels of expected load. Such provisioning can
happen at the edge, for example, in a cloudlet or on
idle edge devices. Third, software systems must be in
place to execute computations at both ends and auto-
matically handle failures when they occur. Finally, the
ability to capture fine-grained performance metrics or
provenance data is indispensable to optimizing execu-
tions on an edge-to-cloud continuum.

Edge-to-Cloud Workflow
System Design
To orchestrate workflows that span edge and cloud
resources, FlyNet uses the Pegasus Workflow Manage-
ment System.11 Pegasus has a number of key features
that make it a particularly good candidate to provide
the automation needed to span the edge-to-cloud con-
tinuum. Most importantly, it has the notion of an
abstract workflow. This is a workflow description that
is resource independent and captures the workflow at
the science level: the codes used for the computations
as well as the data needed for and generated by the
workflow tasks. Pegasus takes this abstract workflow
description andmaps it to the available resources, gen-
erating the necessary resource-dependent scripts for
job submission and adding the necessary data move-
ment between jobs by invoking appropriate data trans-
fer protocols. These resource-specific scripts produced
by Pegasus form the executable workflow that is then
passed to HTCondor’s DAGMan12 for execution.

Pegasus’s architecture and the use of proven and
versatile technologies, such as HTCondor, allowed us
now to extend the workflows to the edge. HTCondor
can run on any edge or cloud resource running Linux,
macOS, or Windows, creating a hybrid edge–cloud
infrastructure. To match jobs specifically with edge
or cloud resources, we added an additional attribute,

which indicates whether or not that resource was an
edge or cloud resource. During workflow generation,
jobs can be annotated with the type of resources they
should be matched with. During execution, HTCondor
takes into account this requirement in addition to
other job requirements and matches the job with the
appropriate resources.

To support data movement operations, workflows
are configured to use remote transfer protocols, such
as HTTP and SCP, and local file system operations.
These are managed by the pegasus-transfer utility.
Pegasus-transfer is invoked for each job to handle
staging in input data and staging out output data. For
jobs that are scheduled on locations where input data
already reside, symlinks are used by pegasus-transfer
to avoid unnecessary datamovements and reduce overall
disk usage. One notable advantage of pegasus-transfer
is that data movement operations are decoupled from
the jobs themselves. For example, a change in the loca-
tions of initial input files would only require a workflow-
specific configuration change with Pegasus.

Workflow Evaluation
For the evaluation, we used a drone application and
two other edge-to-cloud workflows. We use these appli-
cations to demonstrate the feasibility of our approach
and the benefits of using an infrastructure that pro-
vides resources across the edge-to-cloud continuum.

Typical UAVWorkflow
This workflow13 was developed to represent data aggre-
gation and analytics applications that run in edge-to-
cloud environments. For such applications, initial input
data are derived at the edge from multiple instruments,
such as cameras and sensors, mounted on drones. Each
input goes through preprocessing steps before being
aggregated by a single job that outputs the final result.

WindWorkflow
The Wind workflow1,14 is designed to identify areas of
maximum observed wind magnitudes from a network
of overlapping Doppler weather radars. Single radar
files in polarimetric format, from a total of seven radars,
are regridded into a common coordinate system. At a
centralized location, the workflow periodically takes
any available scans collected over a given time interval
and creates a new file in a latitude/longitude projection
representing the highest winds that have been observed
during the time period.

OrcasoundWorkflow
Orcasound15 is a community-driven project that lever-
ages hydrophone sensors deployed in three locations
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in the state of Washington (San Juan Island, Point
Bush, and Port Townsend) to study orca whales in the
Pacific Northwest region. The Orcasound Pegasus
workflow16 processes the hydrophone data of one or
more sensors in batches for each timestamp and con-
verts them to a WAV format. Using the WAV output,
the workflow creates spectrogram images that are
stored in the final output location. Furthermore, using
a pretrained Orcasound model developed by the com-
munity, the workflow scans the WAV files to identify
potential sounds produced by the orcas.

Edge-to-Cloud Evaluation
To evaluate our approach, we executed each of the
three workflows in edge-only, edge-to-cloud, and cloud-
only scenarios. We emulated an edge-to-cloud scenario
and provisioned nodes on both Chameleon sites at
Texas Advanced Computing Center (TACC) and Univer-
sity of Chicago (UChicago). At TACC, we deployed our
cloud site, where we assumed we could get unlimited
resources, and, at UChicago, we used Docker to deploy
our edge nodes and limit their processing capabilities.17

In Figure 2, we present the average makespan for
10 runs of each of the three workflows under the differ-
ent scenarios as a percentage of the edge scenario. As
can be seen, the wall clock time (makespan) for each
of the three workflows is different for the three execu-
tion environments. While the typical UAV workflow per-
forms best in an edge-only environment, the Wind and
Orcasound workflows perform best in the cloud-only
environment.

Additionally, in Figure 3, we present the average
time the workflows spent transferring data over the
wide area network (WAN) as a percentage of the edge
scenario. This figure provides some insights as to why
the cloud-only scenario does not perform the best in

all cases. The UAV workflow was designed to favor the
edge-only scenario, and, without any computation at
the edge, the workflow is forced to spend 30 times
more on WAN transfers, negating any increase in com-
pute power the cloud offers. On the other hand, the
Wind and Orcasound workflows still have to spend
about four times and two times more on WAN trans-
fers, respectively, but the speed-up these workflows
are getting from the cloud resources is enough to
improve their overall makespans (Figure 2).

Overall, these results show the benefits and flexibil-
ity this approach provides. Without any additional
development, Pegasus can map the workflows to edge
and/or cloud resources, enabling optimizations under
constraints utilizing different tradeoffs (e.g., a shorter
makespan versusmore network utilization).

NETWORK SERVICES FOR
EDGE-TO-CLOUD WORKFLOWS

The edge-to-cloud orchestration presented in the
“Edge-to-Cloud Workflow Orchestration” section shows
the benefits of being able to explore the tradeoff
between compute time, data transmission time, and
queueing delays for different workflows. In addition to
this workflow orchestration, we also investigate how
network services that are based on programmable data
planes can efficiently manage the transmission of data
in the edge-to-cloud continuum. Such network services
are an important component in the FlyNet architecture
since they support efficient data transport between
edge devices, edge servers, and the cloud. Figure 4
shows an example scenario for search-and-rescue
operations, which requires the efficient transmission of
video footage to adequate compute resources.

The advent of programmable data planes provides
in-band telemetry (INT) capabilities that address network

FIGURE 2. Workflow makespans for 10 runs of each of the

three workflows under different scenarios. UAV: unpiloted

aerial vehicle.

FIGURE 3. Cumulative time spent on transferring data over

the wide area network.
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resource usage, identify resource contention, and pro-
vide detailed visibility into the network infrastructure.
Based on these capabilities, INT can be used to enable
network quality of service (QoS), ensuring that work-
flows receive the required network service.

INT
INT-based packet processors [e.g., programming proto-
col-independent packet processors (P418)] enable the

generation of monitoring data. In contrast to existing
approaches, INT based on P4 allows for the collection
of network metrics (delay, jitter, BW, etc.) on a per-hop
basis. Thus, QoS-related issues with a specific link can
be pinpointed to a specific segment of the path, allow-
ing network services to address these issues with the
goal of maintaining the required QoS.

To further illustrate, Figure 5 depicts an INT imple-
mentation. At each of the programmable P4 switches,
INT data in the form of the outgoing queue length are
collected and added to the packets traversing the link.
At the egress point, these metadata are removed from
the packet (before it is forwarded to h2) and analyzed.
Queue sizes above a certain threshold might indicate
that the required QoS can no longer be supported along
this path. In this case, network services can be invoked
to actively manage the network (rerouting or limiting of
other traffic) to further guarantee the required QoS.

Network Services Control and
Workflow Evaluation
As shown in Figure 1, the FlyNet architecture is designed
to operate on advanced network infrastructures like
FABRIC.2 The availability of programmable network ele-
ments in FABRIC supports INT scenarios, as shown in
Figure 5. The benefits of this approach can be demon-
strated by a scenario in which a swarm of drones
sends video footage from a search-and-rescue opera-
tion. Through the combination of INT and multihop
route inspection (MRI), a control system can be created
that is aware of the entire network topology between

FIGURE 4. UAVs can be utilized for a wide variety of applica-

tions, such as, e.g., search and rescue as well as aerial surveil-

lance. Challenges for network services management need to

be overcome to guarantee the satisfactory performance of

network-edge-based applications, such as video delivery.

GCS: ground control station.

h1 h2

FIGURE 5. Illustration of the application of INT where data are transmitted between hosts h1 and h2 using three programmable

network switches—the INT source, transit hop, and sink add headers—to report the time spent in the outgoing queues across

the network path. INT: in-band telemetry.
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IoT devices (a swarm-of-drones scenario), edge servers,
and the cloud. It allows the detection of congestion
within that topology and can actively intervene to pre-
vent it.19

Figure 6 depicts a scenario in which aggregated
video streams from a swarm of drones are transmitted
from edge server h1 to cloud server h2 via s1 and s2.
Due to competing traffic between h11 and h22, packet
loss and delay can occur for the video stream. With the
aid of INT, the link on which this packet loss and delay
occur can be identified, and MRI is invoked to reroute
the competing traffic (from h11 to h22) via s3, mitigat-
ing the congestion on the s1-to-s2 link.

As the results in Figure 7 show, this INT-based net-
work service (implemented via P4 in FABRIC) is able to
guarantee QoS for the video streams generated by the
swarm of drones. While there is significant packet loss
when no INT is applied (cases 1 and 2), there is no

packet loss when an INT-based network service is
used (case 4).

CONCLUSION
UAVs, often referred to as drones, have become an
important enabler for a wide variety of scientific and
societally impactful applications. FlyNet supports these
applications by providing automated resource alloca-
tion, workflow instrumentation, and network service
management. It leverages the Pegasus workflow man-
agement system for supporting andmanaging scientific
workflows spanning from the edge to the core cloud as
well as Mobius, a resource-provisioning system that
can build a virtual edge-to-cloud platform. In combina-
tion with network services that are based on program-
mable network elements, FlyNet is able to allocate
network and compute resources to optimize the execu-
tion of these UAV workflows. As a result, researchers
can collect and efficiently analyze data, make scien-
tific discoveries, or react to information coming from
remote locations.

While we have created a platform that supports
drone-based research, there are many research issues
that still need to be addressed in the future. For exam-
ple, the interdependency between data collection and
offloading under uncertain network connectivity con-
ditions has not been sufficiently studied. Resource
provisioning, task scheduling, and fault recovery that
take into account a number of competing criteria,
including performance, reliability, and power, are still
challenging. We will address such research issues
through the exploration of new algorithm design and
experimentation with FlyNet on wireless testbeds like
AERPAW.20

FIGURE 6. Aerial video surveillance data collection use case scenario of experiencing congestion bottlenecks without P4 pro-

grammable devices.

FIGURE 7. Packet loss measurements to show the impact of

increased congestion on the path between s1 and s2 with

capacity of 200 Mb/s for the following cases: without P4 and

congestion of 800 Mb/s (case 1), without P4 and congestion

of 400 Mb/s (case 2), and with P4 (case 3).
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In the future, we will utilize and extend the FlyNet
platform to conduct new drone-based research—
supporting new use cases like utilizing a network of
drones for emergency management, using a network
of edge computing systems to perform drone compu-
tations, and executing machine learning algorithms
with varying computational requirements across the
latency spectrum.

We also plan to harden, test, and expand its capa-
bilities to make them available as part of the overall
cyberinfrastructure ecosystem. This will allow scien-
tists, engineers, and emergency managers to leverage
FlyNet’s capabilities for their work.
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