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Abstract—Video-based applications form one of the most
popular applications on the Internet that is continually evolving.
There is a need to develop novel network services that enable
reliable video transmission over network paths with dynamic
cross-traffic, as well as services that utilize programmable data
planes enabled by Protocol-independent Packet Processors (P4).
In this paper, we describe experiences in developing network
services for reliable video transmission using resources from the
FABRIC network instrument, which supports high-performance
edge/cloud as well as programmable networking infrastructure.
Specifically, we deploy a programmable network using local
Ethernet (Layer 2) sites, as well as geographically distributed
wide-area network (LAN extension) sites in FABRIC, in order
to experiment with visual cloud computing application use cases.
Our experiment results provide insights into benefits of data
plane programmability (i.e., port forwarding) on improving video
streaming quality and compare CPU vs. GPU processing times
while completing object detection pipeline processing to obtain
visual situational awareness.

Index Terms—FABRIC Instrument, Programmable Data
Planes, Video Delivery Testbed, Traffic Engineering Service

I. INTRODUCTION

Video-based applications continue to grow in popularity
on the Internet, and are evolving to use latest advances in
the areas such as e.g., networking, artificial intelligence, and
cybersecurity. To enable reliable video transmission, it is crit-
ical to perform experimentation of novel network services in
realistic testbeds before deploying them on at-scale production
environments with potentially millions of users. Particularly,
the testbeds need to support traffic realism that causes dy-
namic cross-traffic patterns [1], [2], provide access to powerful
cloud/edge hardware resources (e.g., CPU, GPU) and also use
advances in programmable data planes enabled by Protocol-
independent Packet Processors (P4) [3], [4]. Furthermore, the
testbeds have to support repeatable experimentation to allow
other researchers to replicate findings or extend the testbed
capabilities for more sophisticated experimentation.

Fortunately, there have been significant investments by Fed-
eral funding agencies such as the National Science Foundation
(NSF) to enable a wide range of research instruments to

‡ These authors contributed equally to this work.

enable at-scale experimentation within realistic testbeds. For
example, the Global Environment for Network Innovations
(GENI) [5] started in 2007, and the US Ignite Initiative [6],
linking cities and regions with ultra-high-speed bandwidth
- were part of the initial efforts to provide infrastructures
for experimentation with e.g., software-defined networking
and edge computing. Chameleon [7] is another example of
a community-scale infrastructure that supports bare metal
reconfiguration systems and offers users full control of the
software stack, including kernel customization, and console
access. Using these research instruments, a number of works
have developed testbed methodologies and novel network
services that characterize and improve applications such as
virtual desktop clouds [8], QUIC and HTTP/2 [1] protocols
and wireless resource matchmaking [9].

In this paper, we present our experimentation on de-
veloping network services for reliable video transmission
using a programmable network testbed in the latest NSF-
funded FABRIC [10] network instrument. FABRIC infras-
tructure features state-of-the-art high-speed interconnections
with dedicated optical links and access to powerful cloud/edge
hardware resources. Specifically, we describe experiences in
deploying video processing pipelines related to use cases of
Visual Cloud Computing (VCC) applications, and perform
video transmission application analysis using programmable
data planes as well as object detection tools with dedicated
computing nodes, all possible by use of FABRIC resources.
Our experiments involve a series of steps that begin with
allocation of resources to deploy a programmable network
featuring an isolated Ethernet (Layer 2) setup in a site, and
then use geographically distributed sites for a wide-area net-
work (LAN extension) setup. The application traffic involves
data transfers on FABRIC resources that are controlled using
a programmable data plane that supports network services
that: (a) use a port forwarding algorithm to avoid congested
links in order to enhance video streaming quality, (b) enable
fast processing times when deploying an object detection
pipeline processing with GPU nodes. The experiment results
provide insights into benefits of data plane programmability
to improve video streaming quality and also show how visual
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situational awareness is improved using GPU vs. CPU nodes

for video pipeline processing. The remainder of the paper is

summarized as follows: in Section II we discuss the main

configuration setup in the FABRIC instrument and motivate

the VCC application use cases. In Section III, we describe our

experiment environment by first providing details in setting up

a local Ethernet, and then describe a network slice setup for

traffic analysis with video streaming applications. Section IV

details our methodology to experiment using programmable

data planes and computation nodes, and also presents the

experiment results and salient findings for development of

network services. Lastly, Section V concludes the paper.

II. BACKGROUND

In this section, we first present our high-level FABRIC in-

strument configuration that leverages unique high-performance

network instrument resources. Following this, we motivate the

real-world scenarios in VCC applications that require novel

network services experimentation involving large volumes of

video transmission in a reliable and scalable manner.

A. FABRIC Instrument Configuration

The FABRIC instrument is an adaptive, programmable re-

search infrastructure for supporting computer science research,

as well as domain science application research involving

cutting-edge network experimentation at scale [11]. Our high-

level configuration relies on a centralized management and

control framework, which is integrated with the FABRIC

instrument. We use the Jupyter Notebooks within the FAB-

RIC portal for orchestration, allocation and experimentation.

Specifically, the Jupyter Notebooks offer a friendly inter-

face to configure slice parameters, create and get slices,

configuring nodes, switches and switch tables. Also, they

provide comprehensive information about resources allocation

and experimentation details. In our experiments, we perform

bandwidth testing and setup of different network layers using

FABRIC capabilities to demonstrate node connections in an

isolated Ethernet within a local area network in same sites,

and in different geographically distributed wide-area network

sites. We also instantiate port forwarding to transfer packets

from one network to another and enable end-to-end network

communication across multi-site network segments.

B. Visual Cloud Computing (VCC) Application

We consider VCC application use case scenarios as they

demand highly efficient solutions in video data processing

pipelines on edge-to-cloud computing infrastructures. In addi-

tion, VCC applications can leverage artificial intelligence, and

machine learning to provide visual situational awareness in

cases of public safety response during disaster incidents [12].

It is critical in VCC applications to deliver video streaming

while ensuring reliable performance, even in the presence of

congestion bottlenecks as shown in [13]. Figure 1 illustrates

a VCC application scenario where a set of Unmanned Aerial

Vehicles (UAVs) are used as the source of video streams that

need to be transferred using network services over multi-

site network segments to provide visual situational aware-

ness in applications such as e.g., search-and-rescue, aerial

surveillance. The UAVs have on-board cameras that collect

video from multiple perspectives at an incident scene, and

transfer them to a Ground Control Station (GCS) that manages

the command control for UAV guidance, and initiates the

processing of the video data sets using available edge/cloud

computing resources to satisfy the user requirements (e.g., to

stream a high or a low definition video with satisfactory video

quality) [14].

Figure 1: Unmanned Aerial Vehicles can be utilized for a wide

variety of applications such as e.g., search-and-rescue, aerial

surveillance. Challenges for network services management

need to be overcome to guarantee satisfactory performance

of network-edge based applications such as video delivery.

III. EXPERIMENTATION ENVIRONMENT IN FABRIC

In this section, we first describe the experimentation envi-

ronment by defining the steps to create an isolated Ethernet

network, and allocate nodes in FABRIC. Next, we characterize

the different computing nodes, and assess their performance

metrics for different sub-nets. Lastly, we detail the setup of a

video streaming application for VCC experiments.

A. Isolated Ethernet Network Setup

We setup a Layer 2 network topology in FABRIC in

GPN site as shown in Figure 2 for data transfer between

two computing nodes, and use two corresponding network

interface card (NIC) components that are connected via an iso-

lated local Ethernet configuration. We also allocate resources

in different sites in a wide-area network setup to compare

performance/bottlenecks for resource-intensive applications.

FABRIC offers various NIC components with models that

include NIC Basic, NIC ConnectX 5, and NIC Connect X6

respectively. In this experiment we are leveraged the capabili-

ties of a NIC Basic component. This NIC Basic is a 100 Gbps

Mellanox ConnectX-6 SR-IOV VF (1 Port). The allocation and

settings are made via a centralized management and control

framework in FABRIC [15]. The Layer 2 network is added



Table I: Sub-net connectivity statistics to show characteristics
of round-trip times.

Measurement Subnet 1 Subnet 2 Subnet 11 Subnet 12

count 25.00000 25.00000 25.00000 25.00000
mean 0.07028 23.156000 0.255720 23.328000
std 0.01724 0.050662 0.057024 0.089069
min 0.05300 23.100000 0.168000 23.200000
max 0.05300 23.100000 0.168000 23.200000

Table II: Packet transfer throughput comparison using Iperf
for parallel connections between same site and different sites
for a 10 second period of test showing improved performance
in the same site configuration.

Connections Size (GBytes) Throughput (Gbits/sec)
Same site Diff. sites Same site Diff. sites

10 20.7 3.25 17.5 2.77
20 21.3 5.31 18.0 4.52
30 20.4 6.97 17.3 5.91
40 14.3 7.71 11.9 6.53
50 19.1 5.49 16.0 4.60

to the slice, and then this passes the list of interfaces that can
be connected to the Ethernet setup.

An essential step to setup LAN extension between GPN
and SALT sites as shown in Figure 2 is to configure the
IP addresses. FABRIC provides the API FABlib2 [16] that
facilitates this step, with easy-to-use methods. Sub-net and
list of IP addresses can be queried with the respective de-
scriptions. After specifying the IP addresses and picking the
sub-nets, nodes are ready to be configured by printing out
the interface details. The methods to accomplish involve the
use of node.get interface to get the interface, and
iface.ipaddr add to set the IP address and sub-net. Once
the deployment is ready (which includes both network and
computing nodes), users can log in to the nodes and run
experiments. Iperf3 is installed in the computing nodes
and produces standardized performance measurements for our
network setup.

Table I shows the sub-net connectivity statistics in terms of
round-trip times. Specifically, in Subnet 1, we performed Ping
connectivity testing to node 2 from node 1 (both nodes were
in the same GPN site), with default packet sizes. Similarly, in
Subnet 2, we performed Ping connectivity testing to node 3
from node 2 (with node 2 in the GPN site and node 3 in the
different SALT site), with default packet sizes. In Subnet 11,
we performed Ping connectivity testing from node 1 with max
(65000kb) packet size (with both nodes in the same GPN site).
Lastly, in Subnet 12, we performed Ping connectivity testing
to node 2 from node 3 with max (65000kb) packet size (with
nodes in different sites of GPN and SALT, respectively). Table
II shows the packet transfer throughput comparison obtained
using the Iperf tool with parallel connections (between 10 to
50) used between the same site and different sites for a 10
second period of test. The key finding is that we see improved
performance in the same site nodes configuration case, versus
when the nodes are in different sites.

B. Video Streaming Application Setup

To validate the experiment environment suitability for VCC
application experimentation, we analyzed a video streaming
application. Specifically, we relied on an open-source software
viz., FFmpeg [17] to emulate real-world video transmission for
an application scenario that uses cloud/edge resources. Video
data was transferred from node 1 to node 2 and node 3 to
node 2. The ffprobe and tcpdump tools were utilized to
output information about our video input, including duration,
frame size, rate, and analyze the overall network performance,
including the jitter measure in the video stream. We began an
ffmpeg process on a source node that streamed the contents
of an input video file over UDP to a target node. We then ran
the ffprobe utility on the target node to analyze the video
stream and extract frame data. We repeated this procedure for
two different video streams, one from the same site as the
target node, and one from a different site.

Table III shows DataFrame measurements obtained for the
number of frames transferred and frame size comparison for
parallel connections between same site and different sites, in
order to assess the effects of network location of the nodes
on the video streaming application. We found no apparent
differences for a simple video transmission experiment in an
ideal scenario as seen from the measurements. The same site
DataFrame contained 3872 rows, representing 3872 frames
in the video stream. On the other hand, the different sites
DataFrame contained 3884 rows, representing 3884 frames in
the video stream. The column size (bytes) in both DataFrames
represents the size of each frame in bytes, the mean size of
the frames in the same site stream was 3957.89 bytes, while
the mean size of the frames in the different sizes was 3956.77
bytes. The standard deviation of the frame sizes was relatively
high in both streams, with a value of 6794.92 bytes for the
same site stream and a value of 6791.73 bytes for the different
sites stream as also illustrated in Figure 3. The minimum
and maximum values for the frame sizes were similar in
both streams, with a minimum value of 468 bytes and a
maximum value of 31438 bytes. The size (bytes) column in
both DataFrames had a similar distribution, with the 25th,
50th, and 75th percentile values, all within a few hundred
bytes of each other.

Table III: Number of frames transferred and frame size
comparison for parallel connections between same site and
different sites showing no apparent differences for simple
video transmission in an ideal scenario.

Measure Same Site Different Sites
Frame ind. Size (bytes) Frame ind. Size (bytes)

count 3872.00 3872.00 3884.00 3884.00
mean 1935.50 3957.89 1941.50 3956.77
std 1117.89 6794.92 1121.35 6791.73
min 0.00 468.00 0.00 468.00
25% 967.75 815.00 970.75 816.75
50% 1935.50 1621.00 1941.50 1623.00
75% 2903.25 3127.50 2912.25 3125.00
max 3871.00 31438.00 3883.00 31438.00

IEEE INFOCOM WKSHPS: The 10th International Workshop on Computer and Networking Experimental Research using Testbeds (CNERT 
2023)

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on September 15,2023 at 20:32:53 UTC from IEEE Xplore.  Restrictions apply. 



GPN
Node2

Node2-nic2_3Node2-nic2

Node3

Network
Service

net2_3

Network
Service

net1_2

SALT
Node1-nic1

Node1

Figure 2: FABRIC deployment with slices allocated in two different sites i.e., GPN and SALT. Two nodes were allocated in
GPN, whereas one node in SALT as part of the LAN extension. Network interfaces connect the computing nodes at the sites.
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Figure 3: The frame size was relatively high in both same
and different sites, resulting in minimum effects of network
location on the video streams.

Table IV: Jitter measurement comparison between same and
different sites showing no apparent differences for simple
video transmission in an ideal scenario.

Measure Same Site Different Sites

count 22209.000000 22209.000000
mean 0.000930 0.000907
std 0.002962 0.003675
min 0.000000 0.000000
25% 0.000322 0.000305
50% 0.000387 0.000369
75% 0.000592 0.000554
max 0.240147 0.467062

In addition, we ran experiments with the tcpdump utility
to capture packets from the video streams, and also used
the scapy library to extract data from the packets. More
specifically, latency and jitter metrics were analyzed in the
video streams as important indicators of the video quality.
Through a ffmpeg process on a source node, we streamed a
video file over UDP to a target node. We used tcpdump on
the target node to capture packets from the video stream and
save them as a PCAP file. This file was read with scapy
library and timestamp, latency and jitter information was
extracted for each packet.

Again, we repeated this process for two different video
streams, one from the same site as the target node, and
one from a different site. We compared the resulting data to

assess the effects of network location on the video streams.
The resulting data was stored in Pandas DataFrames and
summarized using statistical measures listed in Table IV.
The measures include information about the mean, standard
deviation, minimum and maximum values, and percentiles for
the latency and jitter data for the two video streams. Through
this experimentation, we again found no apparent differences
in the measurements for simple video transmission in an ideal
scenario. This further indicates the high-performance nature
of both network settings in the FABRIC resources.

IV. RESOURCE ADAPTATION EXPERIMENTS

In this section, we first explain the experiment testbed for
solution implementation of a VCC application deployed using
FABRIC resources in order to demonstrate the benefits of
the programmable network capability for resource adaptation.
Following this, we explain the implementation and execution
of experiments involving a high-performance object detection
pipeline for video stream data processing using CPU/GPU
node configurations.

A. Video Streaming Application and Programmable Data
Planes

Our adapted experiment testbed is comprised of a set of
P4-programmable components with corresponding data plane
interfaces between them. The current revision of the P4 [18]
language P416 is instantiated, and the BMV2 (Behavioral
model version 2) is installed in the switches. We benefit
from the P4Runtime [19] tool to programmatically install
rules into each switch. Our core network is setup to emulate
VCC application servers and end-user sites, in addition to
basic NICs (Virtual NICs implemented as Single Root I/O
Virtualization, on top of ConnectX-6 physical cards). The disk
of the switches is 100 GB each, whereas each of the hosts has
a 10 GB disk. For our experiments, we relied on a topology
(see Figure 4) comprised of: five hosts which act as servers
of the UAVs’ video streams, end-users of the video streams
[h1, h2, h3, h11, h22] corresponding to decision makers, and
three P4 programmable switches [s1, s2, s3] of the video
content delivery network. Our P4 algorithms are implemented
within the switches [s1, s2, s3]. Specifically, we rely on a port
forwarding algorithm, creating a control system that knows
the entire topology, being aware of any congestion that might
occur, and taking the appropriate steps to overcome it. Our
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Figure 4: Experiment testbed for solution implementation of

a VCC application deployed in a FABRIC testbed with port

forwarding algorithm to reroute the packets through a link with

no congestion.

system is also able to diagnose congestion issues at the ingress

level, thus solving the issue before it reaches the egress level.

Figure 5: Jitter measurements between two paths in our

realistic custom topology to compare traditional shortest path

method (that introduces congestion) and a port forwarding

approach that uses programmable switches (that makes the

setup congestion-free).

We consider a crucial scenario where high throughput

and low latency are needed to support the VCC application,

allowing reliable and timely transmission of video data. Our

experiments are based on a real-world use case in which a

UAV surveillance system a.k.a. swarm of UAVs connected via

an ad-hoc network, are responsible for collecting video data

for a VCC application. To mitigate congestion, P4 switches

are utilized in conjunction with a port forwarding algorithm

to avoid the presence of congested links. To validate the

effectiveness of this approach, jitter measurements were taken

in two connecting lines, one utilizing the traditional shortest

path method and the other one utilizing the port forwarding

approach. Figure 5 shows the jitter measurements are lower

with the port forwarding algorithm that is implemented in

the P4 switches (implies better video quality), and the jitter

measurements are higher with the traditional shortest path that

introduces congestion.

Table V: Frame processing times comparison using YOLOV 5

model with CPU and CUDA modes of operation on a node,

showing min/max metrics for frame per second, and overall

processing time that includes video pre-processing, objection

detection and storing processed video.

Processor FPS Max. FPS Min. Overall Processing Time

CPU 5.649718 0.017332 599.704482
CPU 5.617978 0.034234 599.704482
CPU 5.555556 0.994036 599.704482
CPU 5.681818 0.96432 599.704482
CPU 14.925373 0.017119 599.704482

CUDA 83.333333 0.766284 511.263838
CUDA 83.333333 0.87108 511.263838
CUDA 83.333333 0.743494 511.263838
CUDA 83.333333 0.714796 511.263838
CUDA 83.333333 0.034426 511.263838

B. Video Analytics and Object Detection Model

The goal of this set of experiments is to empirically show

the feasibility of utilizing FABRIC in facilitating the imple-

mentation and execution of high-performance VCC applica-

tions. Video analytics, storage, and object detection models

were performed using both CPU and GPU nodes. Specifically,

we leverage a surveillance application that employs a swarm

of UAVs, which stream and offload video data to the Ground

Control Station (GCS). A popular object detection model is

implemented with a class that performs object detection on the

video file. The algorithm uses the YOLOV 5 pre-trained model

to make inferences and opencv2 to manage the frames.

These inferences are utilized to plot boxes on objects (i.e.

people), along with labels as observed in Figure 6.

Figure 6: Example of object detection results obtained using

a video file that is streamed and offloaded at an edge Ground

Control Station in experiments to compare performance of

video processing using CPU and GPU resources in FABRIC.

As shown in Table V, YOLOV 5 model enabled the com-

parison of CPU and CUDA modes performance in terms of



min/max metrics for frame per second (FPS), and Overall

Processing Time that includes video pre-processing, object de-

tection and storing processed video. The CUDA mode involves

a GPU worker with a storage instance (i.e., NVIDIA RTX6000

GPU node) that is directly connected to the head node in

FABRIC. We can see from Table V that the performance of the

CPU mode processing is slower in comparison with the CUDA

mode processing of the compute-intensive tasks involved in

the video streaming and object detection tasks. Additionally,

as illustrated in Figure 7, we can observe that the GPU-

based execution with CUDA mode outperforms CPU-based

execution in terms of Overall Processing Times, even when

the threat counts increase, and a linear increase in Overall

Processing Times is observed in both the CPU and CUDA

mode cases. This trend can be attributed to the occurrence of

I/O operations, which become increasingly time-consuming as

the number of threads increases.

Figure 7: Overall Processing Time comparison when using 1,

3 and 5 thread counts in both the CPU and CUDA mode cases.

V. CONCLUSION

In this paper, we detailed experiments of network services

for supporting Visual Cloud Computing (VCC) applications

using FABRIC instrument resources. We experimented with

high-speed and dedicated optical links, deploying use-case

scenarios at-scale and testing video streaming performance to

adapt resources for reliable video transmission. We leveraged a

centralized management and control framework that is suitable

for reproducible experimentation. We successfully deployed

P4-based switches for avoiding congestion and managing

cross-traffic dynamics in programmable network settings. We

also showed how Overall Processing Times for compute-

intensive tasks involving object detection of video streams

obtained from UAV swarms can be more efficient when using

GPU resources in FABRIC. Our experimentation with network

services in FABRIC are important to deploy real-world scenar-

ios that involve video transmission in network-edge locations

that leverage high-performance edge/cloud resources as well

as programmable network infrastructure.

Future work can leverage In-band Network Telemetry (INT)

capabilities in FABRIC for more fine-grained adaptation of

resources to further improve video transmission quality.
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