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Abstract

This paper studies how to train machine-learning models that
directly approximate the optimal solutions of constrained op-
timization problems. This is an empirical risk minimization
under constraints, which is challenging as training must bal-
ance optimality and feasibility conditions. Supervised learn-
ing methods often approach this challenge by training the
model on a large collection of pre-solved instances. This pa-
per takes a different route and proposes the idea of Primal-
Dual Learning (PDL), a self-supervised training method that
does not require a set of pre-solved instances or an optimiza-
tion solver for training and inference. Instead, PDL mimics
the trajectory of an Augmented Lagrangian Method (ALM)
and jointly trains primal and dual neural networks. Being a
primal-dual method, PDL uses instance-specific penalties of
the constraint terms in the loss function used to train the pri-
mal network. Experiments show that, on a set of nonlinear
optimization benchmarks, PDL typically exhibits negligible
constraint violations and minor optimality gaps, and is re-
markably close to the ALM optimization. PDL also demon-
strated improved or similar performance in terms of the op-
timality gaps, constraint violations, and training times com-
pared to existing approaches. |

1 Introduction

This paper considers constrained optimization problems
which are ubiquitous in many disciplines including power
systems, supply chains, transportation and logistics, manu-
facturing, and design. Some of these problems need to be
solved within time limits to meet business constraints. This
is the case for example of market-clearing optimizations in
power systems, sensitivity analyses in manufacturing, and
real-time transportation systems to name only a few. In many
cases, these optimization problems must be solved repeat-
edly for problem instances that are closely related to each
other (the so-called structure hypothesis (Bengio, Lodi, and
Prouvost 2021)). These observations have stimulated signif-
icant interest in recent years at the intersection of machine
learning and optimization.

This paper is concerned with one specific approach in this
rich landscape: the idea of learning the input/output mapping
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of an optimization problem. This approach has raised signif-
icant interest in recent years, especially in power systems.
Supervised machine learning has been the most prominent
approach to tackling these problems (e.g., (Zamzam and
Baker 2020; Fioretto, Mak, and Van Hentenryck 2020; Chat-
zos, Mak, and Van Hentenryck 2021; Kotary, Fioretto, and
Van Hentenryck 2021; Chatzos et al. 2020; Kotary, Fioretto,
and Van Hentenryck 2022; Chen et al. 2022)). Moreover,
to balance feasibility and optimality, existing methods may
perform a Lagrangian relaxation of the constraints. Super-
vised learning relies on a collection of pre-solved instances
usually obtained through historical data and data generation.

These supervised methods have achieved promising re-
sults on a variety of problems. They also have some limita-
tions including the need to generate the instance data which
is often a time-consuming and resource-intensive process.
Moreover, the data generation is often subtle as optimization
problems may admit multiple solutions and exhibit many
symmetries. As a result, the data generation must be or-
chestrated carefully to simplify the learning process (Ko-
tary, Fioretto, and Van Hentenryck 2021). Recently, Donti,
Rolnick, and Kolter (2021) have proposed a self-supervised
learning method, called DC3, that addresses these limita-
tions: it bypasses the data generation process by training the
machine-learning model with a loss function that captures
the objective function and constraints simultaneously.

Existing approaches are also primal methods: they learn
a network to predict the values of the decision variables. As
a result, the constraint multipliers they use to balance feasi-
bility and optimality are not instance-specific: they are ag-
gregated for each constraint over all the instances. This ag-
gregation limits the capability of the learning method to en-
sure feasibility. For these reasons, dedicated procedures have
been proposed to restore feasibility in a post-processing step
(e.g., (Zamzam and Baker 2020; Velloso and Van Henten-
ryck 2021; Chen et al. 2021a; Fioretto, Mak, and Van Hen-
tenryck 2020)). This repair process however may lead to
sub-optimal solutions.

This paper is an attempt to address these limitations for
some classes of applications. It proposes Primal-Dual Learn-
ing (PDL), a self-supervised primal-dual learning method to
approximate the input/output mapping of a constrained op-
timization problem. Being a self-supervised method, PDL
does not rely on a set of pre-solved instances. Moreover, be-



ing a primal-dual method, PDL is capable of using instance-
specific multipliers for penalizing constraints. The key idea
underlying PDL is to mimic the trajectories of an Aug-
mented Lagrangian Method (ALM) and to jointly train pri-
mal and dual neural networks. As a result, during each iter-
ation, the training process learns the primal and dual itera-
tion points of the ALM algorithm. Eventually, these iteration
points, and hence the primal and dual networks, are expected
to converge to the primal and dual solutions of the optimiza-
tion problem.

The effectiveness of PDL is demonstrated on a num-
ber of benchmarks including convex quadratic programming
(QP) problems and their non-convex QP variants, quadratic
constrained quadratic programming (QCQP), and optimal
power flows (OPF) for energy systems. The results high-
light that PDL finds solutions with small optimality gaps
and negligible constraint violations. Its approximations are
remarkably close to those of optimization with ALM and, on
the considered test cases, PDL exhibits improved accuracy
compared to supervised methods and primal self-supervised
approaches.

In summary, the key contributions of PDL are summa-
rized as follows:

* PDL proposes a self-supervised learning method for
learning the input/output mapping of constrained opti-
mization problems. It does so by mimicking the trajec-
tories of the ALM without requiring pre-solved instances
or the use of an optimization solver.

e PDL is a primal-dual method: it jointly trains two net-
works to approximate the primal and dual solutions of
the underlying optimization. PDL can leverage the dual
network to impose instance-specific multipliers/penalties
for the constraints in the loss function.

* Experimental results show that, at inference time, PDL
obtains solutions with negligible constraint violations
and minor optimality gaps on a collection of benchmarks
that include QP, QCQP, and OPF test cases.

The rest of this paper is organized as follows. Section 2
presents the related work at a high level. Section 3 presents
the paper notation and learning goal, and it reviews existing
approaches in more detail. Section 4 presents PDL and Sec-
tion 5 reports the experimental results. Section 6 concludes
the paper.

2 Related Work

This section gives a broad overview of related work. De-
tailed presentations of the key related work are introduced
in Section 3. The use of machine learning for optimization
problems can be categorized into two main threads (See the
survey by Bengio, Lodi, and Prouvost (2021) for a broad
overview of this area): i) Learning to optimize where ma-
chine learning is used to improve an optimization solver by
providing better heuristics or branching rules for instance
(Chen et al. 2021b; Liu, Fischetti, and Lodi 2022); ii) op-
timization proxies/surrogates where the machine-learning
model directly approximates the input/output mapping of
the optimization problem (Vesselinova et al. 2020; Kotary
et al. 2021).

4053

Reinforcement learning has been mostly used for the first
category including learning how to branch and how to apply
cutting planes in mixed integer programming (e.g., (Khalil
et al. 2016; Tang, Agrawal, and Faenza 2020; Liu, Fischetti,
and Lodi 2022), and how to derive heuristics for combina-
torial optimization problems on graphs (e.g., (Khalil et al.
2017)).

Supervised learning has been mostly used for the sec-
ond category. For example, Fioretto, Mak, and Van Hen-
tenryck (2020), Chatzos et al. (2020), and Zamzam and
Baker (2020) propose deep-learning models for optimal
power flow that approximate generator setpoints. These su-
pervised approaches require a set of pre-solved instances
obtained from historical data and complemented by a data
augmentation process that uses an optimization solver. This
data augmentation process can be very time-consuming and
resource-intensive, and may not be practical for certain type
of applications (e.g., (Chen et al. 2022)).

Donti, Rolnick, and Kolter (2021) propose a self-
supervised learning approach that avoids the need for pre-
solved instances, using the objective function and constraint
violations to train the neural network directly.

3 Preliminaries
3.1 Notations

Bold lowercase notations are used for vectors or sets of func-
tions, and bold uppercase notations are used for matrices. A
capital calligraphic notation such as G represents a set, a dis-
tribution, or a loss function. ||-|| represents an arbitrary norm.

3.2 Assumptions and Goal

This paper considers a constrained optimization problem
Py (y) of the form:

Py(y): minimize fx(y),
yeY

subjectto g, ,;(y) <0, Vjeg, (D

hx,j(Y) - 07 Vj EH.

x € RP represents instance parameters that determine the
functions fx, gx, and hy. Each x thus defines an instance of
the optimization problem (1). G and H are the indices sets of
the inequality and equality functions, respectively. Y is the
variable domain, i.e., a closed subset of R™ defined by some
bound constraints. The functions fy, gx, and hy are smooth
over Y, and possibly nonlinear and non-convex.

The goal is to approximate the mapping from x to an op-
timal solution y* of the problem Py (y) (Eq. (1)). This work
restricts the potential approximate mappings to a family of
neural nets Ny parameterized by trainable parameters 6. The
model Ny is trained offline and, at inference time, it is ex-
pected to yield, in real-time, a high-quality approximation
to an optimal solution. This paper measures the quality of
an approximation using optimality gaps and maximum con-
straint violations over unseen test instances.

3.3 Supervised Learning

This subsection revisits some supervised-learning schemes
to meet the above requirements. These methods need the



ground truth, i.e., an actual optimal solution for each in-
stance parameters x that can be obtained by solving problem
Py, (y) with an optimization solver. Given the dataset con-
sisting of pairs {x, y*}, the neural net Ny strives to yield an
output y approximating the ground truth y* as accurately as
possible.?

The Naive Approach The naive supervised-learning ap-
proach (e.g., (Zamzam and Baker 2020)) minimizes a simple
and intuitive loss function such as

»Cnal've = ”y - y*” . 2)

MAE and MSE have been widely used as loss functions. The
main limitation of the naive approach is that it may provide
approximations that violate constraints significantly.

The Supervised Penalty Approach The supervised
penalty approach uses a loss function that includes terms pe-
nalizing constraint violations (e.g., (Nellikkath and Chatzi-
vasileiadis 2022))

Lnaive + Z Pg.iV (gx7j (Y)) + Z Ph,jV (hx,j (y)) 3)
Jjeg JEH
where gy ; and hy ; are the 4" inequality and equality con-
straints, respectively, and v (-) is any violation penalty func-
tion. Each constraint also has a penalty coefficient p > 0.

The Lagrangian Duality Method It is not an obvious
task to choose penalty coefficients (or Lagrangian multi-
pliers) to minimize constraint violations and balance them
with the objective function. Fioretto, Mak, and Van Henten-
ryck (2020) propose a Lagrangian Duality (LD) approach to
determine suitable Lagrangian multipliers. They employ a
subgradient method that updates the multipliers every few
epochs using the rules:

Pg.j < Pgj + 7V (9x,(¥)), Vi € G, and
Phj < prj+ v (hxj(y)), Vi€ H,

where the hyperparameter v > 0 represents the step size for
updating p.

3.4 Self-Supervised Learning

Obtaining y* for a large collection of instances is a time-
consuming and resource-intensive task. In addition, the data
augmentation process should proceed carefully since mod-
ern solvers are often randomized and may yield rather differ-
ent optimal solutions to similar optimization problems (Ko-
tary, Fioretto, and Van Hentenryck 2021). Self-supervised
learning approaches remedy this limitation by learning the
neural network directly without using any pre-solved in-
stances. Instead, they use a loss function that includes the
objective function of the optimization problem.

The Self-Supervised Penalty Approach The self-
supervised penalty approach uses the loss function

F(¥) + D paiv (9xi () + D ongv (hxi(9))- (g

Jj€EG JEH

>The loss functions in what follows generalize naturally to
mini-batches of instances.

g"Mi;i&ize fx®

, !
' subjectto gx;(¥) <0 Vj€G,|
hg;(y) =0 Vj EH)

. . Outer iter. k
Primal Learning

/ Pg -y ‘ Update Pg while freezing Dy,
x

\‘ Dy —Ap ‘ Dual Learning ‘

Update Dy while freezing Py

Figure 1: Schematic overview of PDL for training both pri-
mal and dual neural networks that output the optimal solu-
tions of the constrained optimization problems.

This loss function resembles the supervised penalty ap-
proach, except that the objective function term replaces the
norm term that measures the proximity to the ground truth.

DC3 DC3 (Deep Constraint Completion and Correction)
is a self-supervised learning method proposed by Donti,
Rolnick, and Kolter (2021). It uses the same loss as the
self-supervised penalty approach (Eq. (4)), but also employs
completion and correction steps to ensure feasibility. In par-
ticular, the core neural network only approximates a subset
of the variables. It is then followed by a completion step that
uses implicit differentiation to compute a variable assign-
ment that satisfies the equality constraints. The correction
step then uses gradient descent to correct the output and sat-
isfy the inequality constraints. Those steps ensure that a fea-
sible solution is found. However, the obtained solution may
be sub-optimal, as shown in Section 5.

4 Self-Supervised Primal-Dual Learning

This section is the core of the paper. It presents a self-
supervised Primal-Dual Learning (PDL) that aims at com-
bining the benefits of self-supervised and Lagrangian dual
methods. The key characteristics of PDL can be summarized
as follows.

 Self-Supervised Training Process Inspired by ALM
The training process of PDL mimics an Augmented La-
grangian Method (ALM) (Hestenes 1969; Powell 1969;
Rockafellar 1974; Bertsekas 2014).

* Primal and Dual Approximations PDL jointly trains
two independent networks: one for approximating pri-
mal variables and another for approximating dual vari-
ables that can then serve as Lagrangian multipliers in the
primal training.

* Instance-Specific Lagrangian Multipliers Contrary to
the supervised methods, PDL uses instance-specific La-
grangian multipliers, yielding a fine-grained balance be-
tween constraint satisfaction and optimality conditions.

A high-level overview of PDL is presented in Figure 1. It
highlights that PDL alternates between primal learning, dual



learning, and updating a penalty coefficient at each outer it-
eration. Given instances x, the primal network Py outputs
the primal solution estimates y, i.e., Py(x) = y, whereas
the dual network Dy provides the dual solution estimates
w, A for equalities and inequalities, i.e., Dg(x) = {p, A}.
The trainable parameters 6 and ¢, associated with the primal
and dual networks, respectively, are learned during training.
Specifically, the primal learning updates Py while Dy is
frozen. Conversely, the dual learning updates Dy while Py
is frozen. Observe that PDL obtains both primal and dual es-
timates at inference time and is able to leverage any neural
network architecture. The rest of this section provides all the
details of PDL.

4.1 Primal Learning

The loss function for training the primal network is the ob-
jective function of the primal subproblem of the ALM: it
combines a Lagrangian relaxation with a penalty on con-
straint violations. For each outer iteration k, the parameters
6 of the primal network Py are trained while freezing Dy.
The loss function of the primal training is given by

Ly (vl A) = fx(y)+1" gx(y)+ A ha(y)+

5
D STITNITIES SIITN L)) M

Jj€G JEH

where p and A are the output of the frozen dual network
Dy, i.e., the dual solution estimates for the inequality and
equality constraints, respectively. Note that these dual es-
timates are instance-specific: for instance X, the dual esti-
mates are given by D 4(x). The dual estimates are initialized
to zero at the first outer iteration (which is readily achiev-
able by imposing the initial weights and bias parameters of
the final layer of Dy to be zero). In Eq. (5), following the
ALM, the violation functions for the inequality and equality
constraints are defined as v (g(y)) = max{g(y),0}> and

v (h(y)) = h(y)>.

4.2 Dual Learning

The dual learning is particularly interesting. PDL does not
store the dual estimates for all instances for ensuring ef-
ficiency and scalability. Instead, it trains the dual network
Dy to estimate them on a need basis. This training is again
inspired by the ALM algorithm. At outer iteration k, the
ALM updates the dual estimates using a proximal subgra-
dient step:

Mr1 + max{pg + pg(y), 0},

6
Akt+1 < Ap + ph(y). ©)

This update step suggests the targets for updating D,. How-
ever, the dual training requires some care since the update
rules refer both to the current estimates of the dual values,
and to their new estimates. For this reason, at outer itera-
tion k, the dual learning first copies the dual network into a
“frozen” network Dy, that will provide the current estimates
pr and Ag. The dual learning can then update the dual net-
work to yield a new estimate that is close to the RHS of the
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Algorithm 1 Primal-Dual Learning (PDL)

Parameter: Initial penalty coefficient p, Maximum outer it-
eration K, Maximum inner iteration L, Penalty coefficient
updating multiplier «, Violation tolerance 7, Upper penalty
coefficient safeguard pp,x
Input: Training dataset D

Output: learned primal and dual networks Py, Dy
:forke{l,...,K} do
: foric{l,...,L} do > Primal Learning
: Update Fy using VoL, (See Eq. (5))
end for
Calculate vy, as Eq. (8)
Define Dy, by copying D
forl e {l,...,L} do > Dual Learning
: Update Dy, using V4 Lq (See Eq. (7))

9: end for
10: Update p with Eq. (9)
11: end for
12: return 6 and ¢

1
2
3
4.
5:
6.
7
8

ALM dual update rule (Eq. (6)). Specifically, the dual net-
work Dy is trained by minimizing the following dual loss
function:

Lalp, Ay, e, M) = || n— (max{pr, +pgx (y), 01) |

+ A=A+ phy(y))] -

where pi); and Xy, are the outputs of the frozen network D,
and y is the output of the primal network Py. Note that the
primal network Pp is also frozen during the dual learning.
Moreover, by minimizing the dual loss function (Eq. (7)), it
is expected that, for each instance, the dual network yields
the dual solution estimates that are close to those obtained in
the ALM algorithm after applying the first-order proximal
rule (Eq. (6)).

)

4.3 Updating the Penalty Coefficient p

When constraint violations are severe, it is desirable to in-
crease the penalty coefficient p, which is also used as a step
size for updating the duals, in order to penalize violations
more. PDL adopts the penalty coefficient updating rule from
(Andreani et al. 2008) but slightly modifies it to consider all
instances in the training dataset. At each outer iteration k,
the maximum violation vy, is calculated as

o = max {max{ [hx(y) o o)}, ®

Ay
where oy ;(y) = max{gx ;(¥), —%}, Vieg

and D = {x(}V is the training dataset. Informally speak-
ing, the vector o represents the infeasibility and comple-
mentarity for the inequality constraints (Andreani et al.
2008). At every outer iteration k > 1, the penalty coeffi-
cient is increased when the maximum violation vy, is greater
than a tolerance value Tvj_q as follows:

)
where 7 € (0, 1) is a tolerance to determine the update of

the penalty coefficient p, « > 1 is an update multiplier, and
Pmax 18 the upper safeguard of p.

p < min{ap, pmax t if v > TUE_1,



4.4 Training

The overall training procedure of PDL is detailed in Algo-
rithm 1. The training alternates between the updates of the
primal and dual networks. Unlike conventional training pro-
cesses, the PDL training procedure contains outer and inner
iterations. In an outer iteration, the two inner loops tackle the
primal and dual learning subproblems. Each inner iteration
samples a mini-batch and updates the trainable parameters
(6 or ¢). Note that each outer iteration aims at estimating
the primal and dual iteration points of the ALM algorithm.
Eventually, these iteration points are expected to converge
to the primal and dual solutions on the training instances
and also provide the optimal solution estimates on unseen
testing instances.

S Experiments

This section demonstrates the effectiveness of PDL on a
number of constrained optimization problems. The perfor-
mance of PDL is measured by its optimality gaps and max-
imum constraint violations, which quantify both optimality
and feasibility, respectively. PDL is compared to the super-
vised (SL) and self-supervised (SSL) baselines introduced
in Section 3, i.e.,

* (Supervised) naive MAE, naive MSE: they respectively
use the 1;-norm and the 15-norm between the optimal so-
Iution estimates and the actual optimal solutions as loss
functions (See Eq. (2)).

* (Supervised) MAE+Penalty, MSE+Penalty, LD: on
top of naive-MAE (or naive-MSE), these methods add
terms to penalize constraint violations (See Eq. (3)). For
LD, I;-norm is associated as used in (Chatzos et al.
2020).

* (Self-Supervised) Penalty this method uses a loss func-
tion that represents the average of the penalty functions
given in Eq. (4) over the training instances.

* (Self-Supervised) DC3 The self-supervised method pro-
posed by Donti, Rolnick, and Kolter (2021).

Note that DC3 is only tested on QP problems be-
cause the publicly available code® is only applica-
ble to those problems. Also, the penalty function in
MAE(MSE)+Penalty(SL) and Penalty(SSL) uses absolute
violations i.e., v(a) = |a| for equalities and v(a)
max{a, 0} for inequalities.

Note that PDL is generic and agnostic about the un-
derlying neural network architectures. For comparison pur-
poses with respect to the training methodology, the experi-
mental evaluations are based on the simple fully-connected
neural networks followed by ReLU activations. The imple-
mentation is based on PyTorch and the training was con-
ducted using a Tesla RTX6000 GPU on a machine with Intel
Xeon 2.7GHz. For training the models, the Adam optimizer
(Kingma and Ba 2014) with the learning rate of le-4 was
used. Other hyperparameters of PDL and the baselines were
tuned using a grid search.

*https://github.com/locuslab/DC3
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5.1 Performance Results

Convex QP & Non-convex QP Variant This benchmark
uses convex QP problems and their non-convex variants pro-
posed for evaluating DC3 (Donti, Rolnick, and Kolter 2021).
The experiments followed the same experimental protocol
as in that paper. Given various x € R, the mathematical
formulation for both cases reads as

1
min —y? Qy+r’y, st. Ay=x, Gy < h,

yER™ 2 (10)

min

yeR™
where Q € R™*™ =0, r € R", A € R™*" G € RMneax™,
and h € R"m. n, ne, and njeq denote the number of
variables, equations, and inequality constraints, respectively.
Eq. (11) is a non-convex variant of the convex QP (Eq. (10))
obtained by adding the element-wise sine operation. Over-
all, 10,000 instances were generated and split into train-
ing/testing/validation datasets with the ratio of 10:1:1.

Table 1 reports the performance results of the convex QP
problem and its non-convex variant on the test instances.
The first row for both tables reports the results of the ground
truth, which is obtained by the optimization systems OSQP
(Stellato et al. 2020) or [POPT (Wichter and Biegler 2006).
In addition, the results of the ALM are also reported: they
show that the ALM converges well for these cases. The op-
timality gap in percentage is the average value of the opti-

mality gaps over the test instances, i.e., W In the

tables, columns ‘Max eq.’, ‘Max ineq.’, ‘Mean eq.”, ‘Mean
ineq.” represent the average violation of the maximum or av-
erage values for the equality or inequality constraints across
the test instances. The performance of PDL, which is only
slightly worse than ALM, is compelling when considering
both optimality and feasibility. The baselines each present
their own weakness. For example, supervised approaches
tend to violate some constraints substantially, which can be
marginally mitigated by adding penalty terms or employing
the LD method. DC3, as it exploits the completion and cor-
rection steps, satisfies the constraints but presents significant
optimality gaps. The superiority of PDL for these cases is
even more compelling when testing with various configura-
tions. Fig. 2 shows the optimality gaps and the maximum
violations in various settings. Note that the PDL results are
located close to the origin, meaning that it has negligible op-
timality gaps and constraint violations.

Quadratically Constrained Quadratic Program (QCQP)
QCQP is basically a non-convex problem in which both
objective function and constraints are quadratic functions.
This experiment considers a binary least-square minimiza-
tion problem, which can be defined as

min (Ay—x)T(Ay—X) csty?=1,vie{l,...,n},

yeERn?

12)
where A € R™#*" and x € R™, Here, n,y is the dimen-
sion of the affine space. This problem can be formulated as
a 0-1 integer programming problem as

(Ay —x)" (Ay —x).

1
§yTQy+rTsin(y), st. Ay=x, Gy <h, (11)

min
ye{-1,1}"



Method Type | Ob;. Opt. Gap(%) Max eq. Max ineq. Mean eq. Mean ineq.
| convex QP (Eq. (10))
Optimizer(OSQP) -15.047 - 0.000 0.001 0.000 0.000
Optimizer(ALM) -15.046 0.003 0.000 0.000 0.000 0.000
PDL(ours) -15.017(0.009)  0.176(0.054) 0.005(0.001) 0.001(0.000) 0.002(0.000) 0.000(0.000)
Penalty SSL | -15.149(0.003) 0.680(0.017) 0.048(0.003) 0.030(0.003) 0.013(0.000) 0.004(0.001)
DC3 -14.112(0.015)  6.219(0.098)  0.000(0.000)  0.000(0.000)  0.000(0.000)  0.000(0.000)
Naive MAE -15.051(0.003)  0.046(0.012)  0.025(0.002) 0.018(0.003) 0.008(0.001)  0.002(0.000)
Naive MSE -15.047(0.001)  0.122(0.025) 0.018(0.001) 0.023(0.004) 0.006(0.000) 0.003(0.001)
MAE-+Penalty SL -15.043(0.004)  0.093(0.013) 0.031(0.001) 0.016(0.001) 0.010(0.000)  0.002(0.000)
MSE-+Penalty -15.047(0.001)  0.059(0.004)  0.026(0.003) 0.016(0.001) 0.008(0.001) 0.002(0.000)
LD -15.043(0.006)  0.093(0.015) 0.033(0.001) 0.016(0.001) 0.011(0.001) 0.002(0.000)
| non-convex QP variant (Eq. (11))

Optimizer(IPOPT) -11.592 - 0.000 0.000 0.000 0.000
Optimizer(ALM) -11.592 0.002 0.000 0.000 0.000 0.000

PDL (ours) -11.552(0.006)  0.324(0.051) 0.004(0.001) 0.001(0.000) 0.001(0.000)  0.000(0.000)
Penalty SSL | -11.654(0.002) 0.532(0.015) 0.042(0.002) 0.027(0.001) 0.011(0.000)  0.003(0.000)
DC3 -11.118(0.017)  4.103(0.151)  0.000(0.000)  0.000(0.000)  0.000(0.000)  0.000(0.000)
Naive MAE -11.593(0.004)  0.044(0.021) 0.020(0.002)  0.022(0.006)  0.006(0.000) 0.001(0.001)
Naive MSE -11.593(0.002) 0.031(0.008) 0.017(0.000) 0.029(0.010)  0.005(0.000)  0.002(0.001)
MAE-+Penalty SL -11.591(0.004) 0.073(0.016) 0.033(0.001) 0.016(0.002) 0.010(0.000) 0.001(0.000)
MSE-+Penalty -11.593(0.001)  0.050(0.002) 0.023(0.002) 0.017(0.001) 0.007(0.001) 0.001(0.000)
LD -11.593(0.005)  0.072(0.005) 0.032(0.001) 0.017(0.002) 0.010(0.000) 0.001(0.000)

Table 1: Performance results of the self-supervised (SSL) and supervised learning (SL) schemes for the convex QP problem
(Top) and non-convex QP problem (Bottom) with n = 100, neq = nineq = 50 on 833 test instances. Std. dev. in parenthesis is
evaluated across 5 independent runs. Underlined numbers denote poor results (opt. gap over 1% or max violation over 0.01).
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Opt. Gap (%)

Vv Naive MAE (SL) Method Ob;. Time (s)
12 A Vv Naive MSE (SL) mean max
0]y R idbond e Opt.(Gurobi) 710071 - - 257361
9 i o ¢ LD(SL) Opt.(CVXPY-QCQP) 1082.793 52.597 408.631 4.646
o 81 ®__Penalty (SSL) Opt.(ALM) 710923 0.119 7.659 128.992
© % DC3(SSL)
O 6] % ® PDL (SSL, ours) PDL(SSL, ours) 711.064 0.141 8307 0.004
3 Penalty (SSL) 1295.388 82.555 109.406 0.004
O 41% 5 2 Naive MAE (SL) 716.132  0.834 67.051 0.004
51 @ 4 w Naive MSE (SL) 716.695 0911 85.073  0.004
& “ A MAE+Penalty (SL)  714.891 0.664 61.093  0.004
o Bovo = v MSE-+Penalty (SL) 717.869 1.072 80.577 0.004
0.0 01 0.2 03 0.4 05 0.6 LD (SL) 715522 0.751 73.290  0.004

Max Violation

Figure 2: The optimality gaps (%) and maximum violations
for various convex QP problems. Tested on 9 problem con-
figurations using neq = {10, 30, 50, 70,90} and njneq = 50,
Or Neq =50 and nineq = {10, 30, 70, 90}.

Gurobi 9.5.2 was used as the optimization solver to pro-
duce the instance data for the supervised baselines, and also
served as the reference for computing optimality gaps. In
addition, CVXPY-QCQP (Park and Boyd 2017) was used
as an alternative heuristic optimizer for additional compar-
isons. Since it is a heuristic method, CVXPY-QCQP tends
to solve problems faster, but often converges to a suboptimal
solution. The ALM is also included in the table for compar-
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Table 2: Performance results for the QCQP problem
(Eq. (12)) with n = 50 and nug = 75 on 1000 test instances.
The best results are shown in bold.

ison. As it is a local search method and the local solution
depends on the initial point, the table reports the best objec-
tive values obtained from 50 independent ALM runs with
randomized initial points.

The overall results for n = 50 and n,z = 75 are illus-
trated in Table 2. The supervised baselines are trained on
10,000 instances solved by Gurobi and the training instances
for the self-supervised learning methods are generated on
the fly during training. In this experiment, finding a feasi-
ble point is readily achievable as one can exploit a sigmoid



case57 casell8
Gap(%) Gap(%) Max viol.

0.21(0.02) 0.01(0.00) 0.73(0.12) 0.04(0.01)
9.73(0.03) 0.03(0.00) 5.51(0.11) 0.05(0.00)

Naive MAE (SL)  0.39(0.54) 0.09(0.06) 0.73(0.25) 0.35(0.13)
Naive MSE (SL)  0.06(0.01) 0.06(0.03) 0.34(0.38) 0.21(0.12)
MAE+Penalty (SL) 0.37(0.52) 0.03(0.01) 0.91(0.86) 0.08(0.02)
MSE+Penalty (SL) 0.05(0.01) 0.02(0.00) 0.37(0.33) 0.05(0.01)
LD (SL) 0.33(0.45) 0.02(0.00) 0.70(0.60) 0.06(0.00)

Method

Max viol.

PDL (SSL, ours)
Penalty (SSL)

Table 3: Performance results for the case56 and casel18 AC-
OPF problems. Std. dev. in parenthesis is evaluated across 5
independent runs. The best values are in bold.

function in the last layer of the neural network. Hence, the
constraint violation results are not reported. Similar to the
ALM and also inspired by the stochastic multi-start local
search (Schoen 1991), 10 independent models with different
seeds were built for each training method, and the reported
results in the table are based on the best values among 10
inferences. The times reported in the table denote the infer-
ence times for training the learning schemes or the solving
times for the optimization runs.

The results in Table 2 show that PDL is particularly ef-
fective. PDL is almost as accurate as the ALM in terms of
optimality gaps, with a mean optimality gap of 0.14% and
a maximum optimality gap of only 8.31% among 1,000 test
instances. Note that the ALM method has a mean optimality
gap of 0.12% and a maximum optimality gap of only 7.66%
when solving (not learning) the 1,000 test instances. As a
result, PDL provides about an order of magnitude improve-
ment over the baselines. Moreover, PDL presents a speedup
of around 64, 340x over Gurobi at the cost of a reasonable
loss in optimality.

AC-Optimal Power Flow Problems AC-optimal power
flow (AC-OPF) is a fundamental building block for op-
erating electrical power systems. AC-OPF determines the
most economical setpoints for each generator, while satisfy-
ing the demand and physical/engineering constraints simul-
taneously. Different instances of an AC-OPF problem are
given by the active and reactive power demands. The vari-
ables, which correspond to the output of the (primal) neural
network, are the active and reactive power generations, the
nodal voltage magnitudes, and the phase angles for all buses.

Table 3 reports the performance results of the case56
and casel18 in PGLib (Babaeinejadsarookolaee et al. 2019).
The results show that PDL produces competitive optimality
gaps and maximum constraint violations, while supervised
penalty approaches also show fine performances. However,
for bulk power systems, where gathering the pre-solved in-
stances is cumbersome, PDL may become a strong alterna-
tive to the supervised approaches for yielding real-time ap-
proximations of the solutions.
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Training Time (s)  Pre-solved Training Set

Test Case Pm) Generation Time (s)
Convex QP 1558.5 1493.3 32.5
Nonconvex QP 1624.5 1550.4 630.1
AC-OPF(case57) 5932.5 84732 3690.2
AC-OPF(casel18) 7605.1 9149.6 13120.3

QCQpP 5553.2  3572.3 2573607.3 =~ 715 hours

Table 4: The averaged elapsed time (s) for training PDL and
the representative supervised learning baseline, LD (mid-
column). The CPU time for gathering the pre-solved training
instances (right-column).

5.2 Training Time vs. Data Generation Time

Table 4 reports the training times for PDL, and shows that
they are comparable to those of one of the supervised learn-
ing baselines, LD. Importantly, it also highlights a key ben-
efit of PDL and self-supervised methods in general. Super-
vised learning schemes rely on pre-solved instances and may
need to run an optimization solver on each input data. The
QCQP problem required around 715 hours of CPU time to
collect the training dataset. In contrast, PDL, being self-
supervised, does not need this step. This potential benefit
may be important for training input/output mappings for
large constrained optimization problems in a timely manner.

6 Conclusion

This paper presented PDL, a self-supervised Primal-Dual
Learning scheme, to learn the input/output mappings of
constrained optimization problems. Contrary to supervised
learning methods, PDL does not require a collection of
pre-solved instances or an optimization solver. Instead,
PDL tracks the iteration points of the ALM and jointly
learns primal and dual networks that approximate primal
and dual solution estimates. Moreover, being a primal-dual
method, PDL features a loss function for primal training
with instance-specific multipliers for its constraint terms.
Experimental results on a number of constrained optimiza-
tion problems highlight that PDL finds solutions with small
optimality gaps and negligible constraint violations. Its ap-
proximations are remarkably close to the optimal solutions
from the ALM, and PDL typically exhibits improved ac-
curacy compared to supervised methods and primal self-
supervised approaches.

PDL has also a number of additional benefits that remain
to be explored. Being a primal-dual method, PDL provides
dual approximations which can be useful for downstream
tasks (e.g., approximating Locational Marginal Prices in
power systems or prices in general). Dual solutions esti-
mates can also be leveraged when learning is used for warm-
starting an optimization or, more generally, speeding up an
optimization solver by identifying the set of binding con-
straints. Finally, observe that PDL is generic with respect to
the underlying primal and dual neural networks. Exploring
more complex architectures for a variety of graph problems
is also an interesting direction.
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