
Robust Federated Learning against
Backdoor Attackers

Priyesh Ranjan1, Ashish Gupta1, Federico Corò2, and Sajal K. Das1
1Missouri University of Science and Technology, Rolla, USA

2University of Perugia, Italy
pr8pf@mst.edu, ashish.gupta@mst.edu, federico.coro@unipg.it, sdas@mst.edu

Abstract—Federated learning is a privacy-preserving alter-

native for distributed learning with no involvement of data

transfer. As the server does not have any control on clients’

actions, some adversaries may participate in learning to introduce

corruption into the underlying model. Backdoor attacker is one

such adversary who injects a trigger pattern into the data to

manipulate the model outcomes on a specific sub-task. This work

aims to identify backdoor attackers and to mitigate their effects

by isolating their weight updates. Leveraging the correlation

between clients’ gradients, we propose two graph theoretic

algorithms to separate out attackers from the benign clients.

Under a classification task, the experimental results show that

our algorithms are effective and robust to the attackers who

add backdoor trigger patterns at different location in targeted

images. The results also evident that our algorithms are superior

than existing methods especially when numbers of attackers are

more than the normal clients.

Index Terms—Federated learning, backdoor, robustness, tar-

geted attackers,

I. INTRODUCTION

Federated Learning (FL) [1] is an emerging area of dis-
tributed learning which decentralizes the collection and pro-
cessing of data to local participants. By maintaining par-
ticipants’ control over the usual privacy sensitive data and
incorporating anonymity in model training, FL bolsters collab-
orative learning across participants by ensuring data privacy.
Such collaborative learning leads to an efficient data utiliza-
tion along with user and data anonymity [2]. However, this
anonymity comes at the cost of the participation of adversaries
with the intent to corrupt the model. Due to the lack of
restriction on client training as well as the decoupling of
the need of data collection, the adversaries can collude and
hamper model convergence. An individual adversary can easily
circumvent traditional defenses and can force non-optimal
convergence [3]. A large number of such attackers can even
overwhelm a strong robust aggregation scheme.

The detection and isolation of adversaries remain elusive
due to the lack of information about the training process at the
clients’ end. Training of the model on corrupted data shards [4]
or manipulated labels [5], [6] are commonly employed by
adversaries along with model replacement [7] to maximize
the malicious effect on the model. In particular, there exists a
form of attack allowing the adversary to influence the global
model to achieve high accuracy on a backdoor sub-task while
retaining the performance on other tasks [8]. Such attacks,

commonly known as backdoor, provide additional challenges
during detection as the poisoning can stay dormant and can be
activated during testing by providing the unique trigger that
was incorporated by the adversary during training.

This work is motivated by the need of a novel method for
secure and robust aggregation against backdoor attacks, which
can identify the entire set of adversaries and isolate them
during the communication round to effectively eliminate their
effect during the training. While there are works discussing
FL defenses for targeted attacks [9], the extension to backdoor
attacks still remains a challenge due to their minimal impact
on the main FL task. Other works that involve techniques like
encryption for model transfer during server-client communi-
cation as in [10] further require the number of adversaries
to be in minority to allow additional deliberation. Algorithms
employing central tendencies like pairwise distances [11] or
divergence [12] also assume the number of adversaries to be
in minority and thus are vulnerable to overwhelming attacks
on the setup. Unlike this, our work does not assume the set
of adversaries to be in minority and is equally robust in cases
where the benign agents are overwhelmed by the adversaries.
We highlight the contributions of the work as:

• By exploiting the core ideas of Maximum Spanning
Tree (MST) and K-Densest graphs, we propose two
attacker detection (AD) approaches, namely MST-AD
and Density-AD, that identify and effectively isolate
the weight updates obtained from backdoor adversaries
before the aggregation during training.

• Our algorithms empower the server to identify and ex-
clude the entire set of adversarial agents at every com-
munication round even in cases where these adversaries
overwhelm (70% of total clients) the normal clients.

• We empirically demonstrate the effectiveness of MST-AD
and Density-AD under an image classification task using
a benchmark dataset and compare the performance with
the existing state-of-the-art aggregation algorithms.

The rest of the paper is organized as follows. Section II
formally introduces the problem and describes the assumptions
made by the proposed algorithms along with the threat model
considered. Section III describes the two proposed algorithms
while Section IV ascertains the performance of these algo-
rithms as compared to the existing state-of-the-art algorithms.
The work is concluded in Section V.

IEEE INFOCOM WKSHPS: AidTSP 2023: International Workshop on AI-driven Trustworthy, Secure, and Privacy-Preserving Computing

978-1-6654-9427-4/23/$31.00 ©2023 IEEE

IE
EE

 IN
FO

CO
M

 2
02

3
- I

EE
E

Co
nf

er
en

ce
 o

n
Co

m
pu

te
r C

om
m

un
ica

tio
ns

 W
or

ks
ho

ps
 (I

NF
OC

OM
 W

KS
HP

S)
 |

 9
78

-1
-6

65
4-

94
27

-4
/2

3/
$3

1.
00

 ©
20

23
 IE

EE
 |

 D
OI

: 1
0.

11
09

/IN
FO

CO
M

W
KS

HP
S5

74
53

.2
02

3.
10

22
59

22

Authorized licensed use limited to: Missouri University of Science and Technology. Downloaded on September 16,2023 at 19:47:04 UTC from IEEE Xplore. Restrictions apply.

II. PROBLEM DESCRIPTION

This section presents FL background and describes the goal
of our aggregation algorithms. We also describe the adver-
sary’s goal and the assumptions made about their capabilities.

A. Federated Learning
FL relies on the collaborative training of a server model by

participants without any movement of individual data shards.
Mathematically, the set of participants C where each client
ci 2 C has access to data shard Di, provide their own local
weight update �

t
i to the server. These weight updates are

aggregated into updating the server model W
t at communi-

cation round t. The Stochastic Gradient Descent algorithm,
employed in conventional FL [1] operates as presented in
Algorithm 1, where w

t
i and �

t
i are the weights and weight

updates respectively for an individual client ci 2 C having
access to data shard Di. rf and ✏ are the loss function and
the learning rate for an individual client. pi is utilized by the
server during aggregation and decides the relative weight of
individual participants’ update vectors.

Algorithm 1: Stochastic Gradient Descent in FL
1 Initialization: Server Model W 0

2 for t 2 [0, T] do

3 for ci 2 C do

4 wt
i W t

5 �ti = wt
i � ✏rf(wt

i , Di)

6 W t+1 = W t +
Pn

i=1 pi�
t
i ,
Pn

i pi = 1

7 return WT

However, this aggregation does not take into account the
presence of adversaries attempting to provide non-convergent
weight updates. In particular, during such a scenario, the
equation in Line 6 of Algorithm 1 modifies to:

W
t+1 = W

t +
n�mX

i=1

pi�
t
i +

mX

j=1

pj�
t
j , (1)

where �
t
j is the update vectors provided by the set of adver-

saries at communication round t and
Pn�m

i=1 pi+
Pm

j=1 pj = 1.
We denote the corresponding set of adversaries as M making
the corresponding set of benign workers as B = C \M. The
algorithms proposed in this work aim to identify the set M and
exclude the corresponding weight updates �tj from the training
process by manually enforcing the values of pj = 0, 8cj 2 M.

B. Threat Model
The adversary aims to maximize the global models’ perfor-

mance on the test set images containing the backdoor trigger.
The model performance on the original FL task, however, is
expected to remain high. The adversary achieves this by em-
bedding a trigger pattern in select images and manipulating the
corresponding labels on its local data shard. The aggregated
server model yields the expected classification outcome while
performing classifications task on the images without the em-
bedded trigger pattern in the test set. However, by embedding

a similar trigger in test set images, the adversary can easily
manipulate the global model toward misclassification into the
targeted label.

C. Attacker Capability and Assumptions
We assume a Non-Independent and Identical (IID) distri-

bution of data among the participating clients as suggested
in [8]. We also assume that the participating clients do not
have any knowledge or control over the aggregation method
at the server end. Further, no client including the adversary has
access to the local model of the benign clients. The adversary,
however, has access to the local model of the clients under
them and can control all the aspects of their local training.
Further, we assume the number of adversarial clients to be at
least 2 to realize collusion between the adversaries, and we
assume the presence of at least 2 benign clients to leverage
their weight update correlations.

III. PROPOSED ALGORITHMS

This section proposes two algorithms, MST-AD and
Density-AD, for detecting adversarial clients in FL. While
MST-AD is faster, Density-AD gives better and consistent
results. We first describe the underlying principle of weight
update correlations leveraged by the two proposed algorithms
followed by the corresponding graph formulation.

A. Weight Correlations
As the weight update vectors are provided to the server at

every communication round by every participating client, the
correlation between each pair of client is leveraged by our
work to separate the set of adversaries from the set of benign
clients. This correlation between any pair of clients i and j is
calculated as:

rij =

P
d(�i � �̄)(�j � �̄)qP

d(�i � �̄)2
P

d(�j � �̄)2
, (2)

where 8ci, cj 2 C, i 6= j. �i and �j are the weight
update vectors of clients ci and cj with �̄i and �̄j being the
corresponding mean values (�̄ =

Pd
1 �
d) and d is the length of

the weight update vector. We use the notation rij to describe
the correlation between ci and cj throughout the entirety of
this work. Also, for the purpose of the algorithm, the value of
rii8ci 2 C is kept 0.

In order to compare these weight correlation values between
a pair of clients, we tabulate the weight correlations into a
matrix form notation. We depict the correlation matrix as A 2
Rn⇥n where n = |C| is the number of clients participating in
the training process. The obtained matrix A is a symmetric
matrix from the symmetric nature of correlations and has 0 as
its diagonal entries.
Correlations among different client types: Based on the ob-
servation in [5] we assert that the weight correlation between
different a pair of client update vectors depends on the client
type. In particular, the correlation between two adversarial
clients is higher due to providing weight updates targeted

IEEE INFOCOM WKSHPS: AidTSP 2023: International Workshop on AI-driven Trustworthy, Secure, and Privacy-Preserving Computing

Authorized licensed use limited to: Missouri University of Science and Technology. Downloaded on September 16,2023 at 19:47:04 UTC from IEEE Xplore. Restrictions apply.

towards the common adversarial goal. The weight updates
from the benign agents, however, show a higher divergence
among each other thereby leading to a lesser correlation value
between a pair of benign agents. Further, the correlation
between an adversarial client and a benign client has an even
lesser correlation value resulting from the different objectives
while model training. To this end, we incorporate the following
inequality in our proposed mechanism:

rm�c < rc�c < rm�m (3)

where m is an adversarial client from the set of adversarial
clients M ⇢ C and c is a benign client from the set of benign
clients B = M \ C. It should be noted that although the
inequality in Equation 3 may not hold true for every pair of
clients at every communication round, it can still be used to
identify the set of adversarial clients.

B. Graph Representation
We now leverage the correlation matrix A obtained from

the weight correlations to form a fully connected graph G
where the nodes represent the participating agents and the
edges represent the corresponding correlation values between
the agents. The graph thus obtained is a complete graph with�n
2

�
edges corresponding to the upper triangle entries in A. The

symmetric nature of A makes the graph and undirected matrix
and the null diagonal entries make the graph free from self-
loops. The obtained graph is then exploited in Section III-C
and Section III-D to identify the set of adversarial clients from
the set of benign clients.

C. MST-AD Algorithm
This section uses the graph realization obtained in Sec-

tion III-B to identify the set of attacker clients by formu-
lating a maximum spanning tree (MST). We employ a form
of Kruskal’s algorithm to identify the edge edge with the
maximum edge weight and add it into the spanning tree tree

as long as it doesn’t form a cycle on tree. Then the edge
is discarded from the tree permanently and the next edge is
chosen. This process is repeated until the n � 1 edges for
the tree have been appended. Following this, the edge with
the smallest edge weight is then discarded from tree resulting
in two different sub-trees. Afterwards, the sub-tree with the
lower median edge weight is flagged as the one containing
the adversaries and the clients corresponding to its nodes are
removed from the aggregation for that communication round.

The complete separation of the adversarial and benign
clients into the two sub-trees relies on the assertion made in
Equation 3. The algorithm first adds the edges between the
pairs of adversaries because their correlations are higher than
other correlations. Then, it adds the edges between the pairs
of benign clients, as the correlation between these pairs is
higher than the correlation between an adversarial-benign pair.
This leads to a separate benign sub-tree disconnected from the
adversarial sub-tree. The last edge added is a low-weight edge
between an adversary and a benign agent, upon removing this
edge, the two sub-trees with adversarial and benign agents

are separated and their median edge weights can be compared
to separate the adversarial sub-tree from the benign one as
the adversarial-adversarial edge weights are higher than the
benign-benign edge weights as asserted in Equation 3.

Algorithm 2: MST-AD Algorithm
1 Input: Correlation matrix A
2 Output: Set of attackers (Atk)
3 trees ;; i=0; E sorted edges in non-increasing order
4 while |trees|  n� 1 do

5 if E [i] does not form cycle in trees then

6 trees trees [E [i]
7 i++
8 subT1, subT2 Remove lowest weighted edge from trees

/* Let avg weight(·) computes average weight of tree */
9 if med weight(subT1) > med weight(subT2) then

10 Atk subT1

11 else

12 Atk subT2

13 return Atk

Algorithm 2 illustrates the MST-AD algorithm using the
correlation matrix A. The algorithm creates an empty list to
store the edges in the MST and sorts the edges in decreasing
order (Line 3). It then iterates through every edge and appends
it to the tree as long as it does not form a cycle (Line 6).
Afterward, the lowest weighted edge is removed from the tree,
resulting in two separate sub-trees (Line 8). The sub-tree with
the higher median edge weight is then identified as the one
containing adversarial nodes, based on the assumption that the
correlation between adversarial clients is higher (Line 10).

D. Density-AD Algorithm
This section leverages the utilization of graph density metric

to identify the set of adversaries. In this case we define
density as the average of all the edge weights in the graph.
Mathematically, it is defined as:

density(A) =
2
Pn

i=1

Pn
j=1 rij

n(n� 1)
, (4)

where n is the number of nodes in the graph and rij is a
corresponding entry in correlation matrix A.

The algorithm uses Eq. 4 to calculate the density of the
graph. The first node is thereafter removed and the density
of the resulting graph is calculated. If the removal of the
node increases the density of the resultant graph, we flag
the node as a sparse node and remove it permanently from
the graph. Otherwise, the node is kept and the subsequent
node is considered and the process is repeated. This allows
us to separate the set of adversaries from the set of benign
clients as the benign clients will be sparse nodes in cases
with overwhelming adversaries (due to lower adversary-benign
edge weight) and vice-versa. Removing these sparse nodes
creates a perfect separation between the set of adversarial and
benign clients as sparse nodes and the remainder of the graph.
Afterward, among the sparse nodes and the remaining graphs,

IEEE INFOCOM WKSHPS: AidTSP 2023: International Workshop on AI-driven Trustworthy, Secure, and Privacy-Preserving Computing

Authorized licensed use limited to: Missouri University of Science and Technology. Downloaded on September 16,2023 at 19:47:04 UTC from IEEE Xplore. Restrictions apply.

the set having a higher median edge weight is flagged as the
set containing the adversary nodes.

Algorithm 3: Density-AD Algorithm
1 Input: Correlation matrix A
2 Output: Set of attackers (Atk)
3 sparse list ;
4 while i = n down to 1 do

5 B A \ A[i]
6 if density(B) > density(A) then

7 sparse list sparse list [A[i]
8 A A \ A[i]

9 if med weight(sparse list) > med weight(A) then

10 Atk sparse list

11 else

12 Atk A
13 return Atk

The Density-AD algorithm is illustrated in Algorithm 3. The
list of sparse nodes in the matrix is initialized and the nodes
are iterated through one-by-one (Line 4). Then a corresponding
node is removed from the graph (Line 5) and the density of
the resultant graph is calculated (Line 6). If the density of
the graph without the node is higher than the density of the
graph with the node, the node is flagged as a sparse node
(Line 7) and is permanently removed from the graph (Line 8).
After iterating and repeating this process through the entire
set of nodes in the graph, the median weights of edges in the
sparse list and the remaining graph are compared (Line 10)
and the list with higher median edge weight is flagged as the
list containing the adversaries.

IV. EXPERIMENTAL EVALUATION

This section provides the experimental verification of the
proposed algorithms under a FL framework and analyzes
the results obtained in identification and elimination of the
adversarial clients. The comparison with existing state-of-the-
art methods is also reported to ascertain the superiority of the
proposed models on various evaluation metrics.

A. Experimental Setup
Considering an image classification task, we train a model

through FL using a benchmark Fashion-MNIST (FMNIST)
dataset [13] consisting of 60, 000 training and 10, 000 testing
28⇥ 28 greyscale images that divided equally into 10 classes
[T-shirt/top, Trouser, Pullover, Dress, Coat, Sandal, Shirt,
Sneaker, Bag, Ankle boot]. Here, the task involves classifi-
cation of the category of the apparel from the corresponding
greyscale images. The dataset is divided into n = 50 disjoint
data shards for the 50 simulated clients. This partitioning
follows Dirichlet distribution with the parameter ↵ = 0.9
as mentioned in [8]. Each client performs training for 10
local epochs on its local data within every FL round of
communication. We consider a total of 30 such communication
rounds and report the results obtained at the end of the 30th

round using the metrics described in Section IV-C.

B. Backdoor Attack Scenario

For the purpose of backdoor, we introduce a trigger pattern
in selected images and flip their corresponding target labels
to “Bag”. In principle, the knowledge of the triggered pattern
in the global model stays dormant until the specific trigger is
encountered during testing upon which, the model would clas-
sify the test sample to the class “Bag”. In addition, the location
of trigger not fixed in the poisoned images, which makes the
problem even more challenging for the detection algorithm.
Fig. 1 depicts the considered trigger pattern incorporated in
training images (of the targeted class) of the adversaries’ data
shards. Besides that the trigger’s size also varies across images.

Fig. 1: Illustration of trigger patterns being embedded by backdoor
attackers before local training.

Additionally, we conduct experiments with varying number
of adversaries ranging from 5% to 70% of the total number
of clients. The number is not increased beyond 70% to ensure
fair comparison across different test scenarios as increasing
the the ratio of adversaries decreases the ratio of benign agents
thereby reducing the performance even in cases with perfect
detection of adversaries. Further, inspired by [5], we abbreviate
the attack scenarios as A�m where m is the percentage of
adversarial clients to the total number of clients.

C. Evaluation Metrics

We split the evaluation metrics into two categories.
1) Quantifying success on attacker detection: We consider

the following three metrics to report the success of our
approaches on adversarial identification:

• Attack Success Rate (ASR): It is defined as the ratio of
the number of test samples incorrectly classified into the
adversarial label (i.e., “Bag”) to the total number of test
samples containing the backdoor trigger. In the interest of
fair evaluation, we omit the number of samples already
belonging to the target class from the ASR metric.

• Earliest round of Detection (ED): We define ED as
the earliest round in which the corresponding set of
algorithms identifies the entire set of adversaries. We do
mention that the metric does not apply to algorithms
employing averaging or some other transformation on
the entire set of clients and hence is omitted for the
corresponding algorithms.

• False Positives (FP): It is defined as the number of
benign agents incorrectly flagged as adversaries in the
round of earliest detection (ED). As an aggregation algo-
rithm flagging the entire set of clients on the first round
of training performs well on the ASR and ED metrics,
the False Positives metric is introduced to separate such
aggregation from true detection of adversarial clients.

IEEE INFOCOM WKSHPS: AidTSP 2023: International Workshop on AI-driven Trustworthy, Secure, and Privacy-Preserving Computing

Authorized licensed use limited to: Missouri University of Science and Technology. Downloaded on September 16,2023 at 19:47:04 UTC from IEEE Xplore. Restrictions apply.

TABLE I: ASR, ED and FP with varying attack scenarios for Backdoor Attacks with a moving trigger pattern (ASR – lower is better.)

Atk MST-AD Density-AD FoolsGold FedAvg GeoMed

ASR E.D. F.P. ASR E.D. F.P. ASR E.D. F.P. ASR ASR

A-10 0.95% 2 0 0.80% 2 0 0.97% 1 24 8.59% 2.16%
A-15 0.83% 2 0 0.74% 2 0 0.76% 1 27 13.75% 4.72%
A-20 0.80% 2 0 0.68% 3 0 0.94% 1 28 25.47% 7.71%
A-25 0.97% 3 0 0.58% 3 0 0.97% 1 28 27.19% 17.99%
A-30 0.84% 2 0 0.60% 3 0 0.86% 1 22 34.04% 24.78%
A-35 0.82% 2 0 0.62% 3 0 0.90% 1 12 40.28% 38.40%
A-40 0.85% 2 0 0.76% 3 0 0.95% 1 22 46.04% 48.76%
A-45 0.89% 5 0 0.81% 7 0 0.95% 1 18 47.57% 79.31%
A-50 0.20% 2 0 0.60% 6 16 0.83% 1 10 51.92% 88.80%
A-55 0.90% 5 0 0.76% 5 13 0.94% 1 13 58.48% 90.00%
A-60 1.11% 2 0 0.57% 3 1 0.93% 1 7 60.45% 90.00%
A-65 0.38% 2 0 0.61% 3 7 0.93% 1 11 74.05% 90.00%
A-70 0.60% 2 1 0.57% 3 6 0.70% 1 0 85.55% 90.00%

2) Measuring classification performance: These metrics
compare the classification performance of the collaborative
model obtained in FL.

• Accuracy: We define accuracy as the ratio of the number
of correctly classified samples in the test set to the number
of samples in the test set. We provide only the test
accuracy values as adversaries training on corrupted data
shards renders training accuracy an ineffective metric.

• F1 Score: F1 Score is described as the harmonic mean
of precision and recall values obtained on the test set.
Mathematically, it is defined as:

F1 = 2⇥ precision⇥ recall

precision+ recall
=

2

2 + FN+FP
TP

(5)

where FN , FP , and TP are False Negatives, False
Positives, and True Positives respectively.

• Training Loss: We provide the value of the loss function
obtained at every communication round for the A�5 and
A�70 attacks.

• Confusion Matrix: Confusion Matrices for the A�5 and
A�70 attacks are provided for comparison. For brevity,
we only provide comparative matrices for the most com-
petitive algorithm next to the proposed algorithms.

D. Results

We present the results in comparison with the existing
competitive detection algorithms including FoolsGold [5] and
GeoMed [14] to illustrate the superiority of the proposed algo-
rithm. We also include the federated averaging (FedAvg) [1]
to establish the baseline performance.

1) Robustness: Table I presents the detection metrics of
Attack Success Rate, Early Detection, and False Positives. It
can be seen that the algorithms relying on central measures
like the FedAvg and the GeoMed fail to maintain a low
Attack Success Rate when the number of adversaries increase.
As these algorithms do not rely on detection and, as a
consequence isolation, they are easily overwhelmed when the
number of adversaries increase. While FoolsGold circumvents
this issue by detection and isolation, it flags multiple benign
agents as adversaries sacrificing model performance(seen in
Section IV-D2) as a consequence. In contrast the proposed

algorithms maintain a lower ASR comparable to FoolsGold
and do not incorrectly flag benign agents as adversaries thus
reducing the isolation’s impact on performance.

2) Classification performance: Next, we report the classi-
fication performance results using the considering metrics.
• Training Loss: Figure 2 provides the training losses for
the compared aggregation algorithms for the A�5 and A�70
attacks. We observe a convergence of the loss values for
the algorithms for the A�5 attack. However, the loss values
diverge quickly for the A�70 attack across the algorithms.
While the FoolsGold, MST-AD and Density-AD algorithms
show similar convergence and loss function values as the
A�5 attack, the FedAvg algorithm shows non-convergence
and large oscillation values of the loss function. Further, the
GeoMed algorithm shows divergence away from the optimum
loss value showcasing its poor performance when the percent-
age of adversaries increase.

5 10 15 20 25 30

0.6

0.8

1

1.2

Training Rounds

T
ra
in
in
g
L
os
s
(%

)

MST-AD

Density-AD

Fedavg

FoolsGold

GeoMed

(a) Training Loss for A�5 attack

5 10 15 20 25 30

100

101

Training Rounds

T
ra
in
in
g
L
os
s
(%

)

MST-AD

Density-AD

Fedavg

FoolsGold

GeoMed

(b) Training Loss for A�70 attack

Fig. 2: Training loss over 30 communication rounds.

• Confusion Matrices: We present the confusion matrices for
FedAvg and the Density-AD algorithm in Figs 3(a) and 3(b),
respectively. We can observe that the Density-AD algorithm
provides better performance on the test set as compared to
the FedAvg algorithm on the A�70 attack as the adversarial
attempt at misclassification of the target label into Label ‘8’ is
successful. The proposed algorithms are able to identify and
eliminate the adversaries thus resulting in high classification
performance on the task.
• Accuracy and F1 Score: We depict the Accuracy and F1
Score Metrics in Figure 4 for the proposed algorithms. We

IEEE INFOCOM WKSHPS: AidTSP 2023: International Workshop on AI-driven Trustworthy, Secure, and Privacy-Preserving Computing

Authorized licensed use limited to: Missouri University of Science and Technology. Downloaded on September 16,2023 at 19:47:04 UTC from IEEE Xplore. Restrictions apply.

(a) FedAvg (b) Density-AD

Fig. 3: Confusion matrices for FedAvg and Density-AD algorithms
in case of A�70 on FMNIST dataset.

notice that while the proposed algorithms (and FoolsGold) are
able to completely mitigate the impact of adversarial agents
on the model performance, the algorithms employing central
measures show a sharp decline in performance following the
increase in the number of adversaries. We further see a slight
decline in the performance of the FoolsGold aggregation as
the number of adversaries increase due to incorrect flagging
of benign agents as adversaries.

5 10 15 20 25 30 35 40 45 50 55 60 65 70

20

40

60

80

Percentage of Attacker Clients

T
es
t
A
cc
u
ra
cy

(%
)

MST-AD

Density-AD

Fedavg

FoolsGold

GeoMed

(a) Test Accuracy

5 10 15 20 25 30 35 40 45 50 55 60 65 70
0

20

40

60

80

Percentage of Attacker Clients

T
es
t
F
1
S
co
re

(%
)

MST-AD

Density-AD

Fedavg

FoolsGold

GeoMed

(b) Test F1 Score

Fig. 4: Accuracy and F1 Score results under varying attack scenarios
for backdoor attacks for moving trigger pattern.

Comparison of MST-AD and Density-AD algorithms: From
the obtained results, it can be established that the performance
of the Density-AD algorithm exceeds the performance of
the MST-AD algorithm in most cases. The E.D. and F.P.
values of the Density-AD algorithm degrade when the number
of adversaries are equal to the number of benign agents
whereas MST-AD algorithm shows consistent performance in
all cases. Further, MST-AD algorithm incurs lower computa-
tional complexity of O(n log(n)) than Density-AD algorithm
with O(n2), where n is the number of edges in the graph.

V. CONCLUSION

In this work, we addressed the presence of adversaries em-
ploying data poisoning on the FL setup with added backdoor
trigger pattern. By leveraging the graph theoretic algorithms
of MST-AD and Density-AD, we were able to successfully
identify and isolate the set of adversaries thus mitigating the
effects of the attack. The experimental evaluations against a
varied set of metrics and the existing state-of-the-art, we were
able to establish the superiority of the proposed algorithms
even in cases with overwhelming number of adversaries. In

future, we plan to incorporate cases with different adversarial
objectives employed by the backdoor triggers. Additionally,
the extension to byzantine attacks and adversaries employing
a combination of label flipping and backdoor attacks will be
considered as an area of improvement of this work.

REFERENCES

[1] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas,
“Communication-efficient learning of deep networks from decentralized
data,” in Artificial intelligence and statistics. PMLR, 2017, pp. 1273–
1282.

[2] C. Zhou, A. Fu, S. Yu, W. Yang, H. Wang, and Y. Zhang, “Privacy-
preserving federated learning in fog computing,” IEEE Internet of Things
Journal, vol. 7, no. 11, pp. 10 782–10 793, 2020.

[3] G. Baruch, M. Baruch, and Y. Goldberg, “A little is enough: Circumvent-
ing defenses for distributed learning,” Advances in Neural Information
Processing Systems, vol. 32, 2019.

[4] C. Xie, M. Chen, P.-Y. Chen, and B. Li, “Crfl: Certifiably robust
federated learning against backdoor attacks,” in International Conference
on Machine Learning. PMLR, 2021, pp. 11 372–11 382.

[5] C. Fung, C. J. M. Yoon, and I. Beschastnikh, “The limitations of
federated learning in sybil settings,” in 23rd International Symposium
on Research in Attacks, Intrusions and Defenses, 2020, pp. 301–316.

[6] J. Steinhardt, P. W. Koh, and P. Liang, “Certified defenses for data poi-
soning attacks,” in 31st International Conference on Neural Information
Processing Systems, 2017, pp. 3520–3532.

[7] P. Blanchard, E. M. El Mhamdi, R. Guerraoui, and J. Stainer, “Machine
learning with adversaries: Byzantine tolerant gradient descent,” in Inter-
national Conference on Neural Information Processing Systems, 2017,
pp. 118–128.

[8] E. Bagdasaryan, A. Veit, Y. Hua, D. Estrin, and V. Shmatikov, “How to
backdoor federated learning,” in International Conference on Artificial
Intelligence and Statistics. PMLR, 2020, pp. 2938–2948.

[9] A. Gupta, T. Luo, M. V. Ngo, and S. K. Das, “Long-short history of
gradients is all you need: Detecting malicious and unreliable clients in
federated learning,” in European Symposium on Research in Computer
Security. Springer, 2022, pp. 445–465.

[10] L. Zhao, J. Jiang, B. Feng, Q. Wang, C. Shen, and Q. Li, “Sear: Secure
and efficient aggregation for byzantine-robust federated learning,” IEEE
Transactions on Dependable and Secure Computing, vol. 19, no. 5, pp.
3329–3342, 2021.

[11] S. Awan, B. Luo, and F. Li, “Contra: Defending against poisoning attacks
in federated learning,” in European Symposium on Research in Computer
Security. Springer, 2021, pp. 455–475.

[12] Y. Mao, X. Yuan, X. Zhao, and S. Zhong, “Romoa: Robust model
aggregation for the resistance of federated learning to model poisoning
attacks,” in European Symposium on Research in Computer Security.
Springer, 2021, pp. 476–496.

[13] H. Xiao, K. Rasul, and R. Vollgraf, “Fashion-mnist: a novel image
dataset for benchmarking machine learning algorithms,” arXiv preprint
arXiv:1708.07747, 2017.

[14] D. Yin, Y. Chen, R. Kannan, and P. Bartlett, “Byzantine-robust dis-
tributed learning: Towards optimal statistical rates,” in International
Conference on Machine Learning. PMLR, 2018, pp. 5650–5659.

IEEE INFOCOM WKSHPS: AidTSP 2023: International Workshop on AI-driven Trustworthy, Secure, and Privacy-Preserving Computing

Authorized licensed use limited to: Missouri University of Science and Technology. Downloaded on September 16,2023 at 19:47:04 UTC from IEEE Xplore. Restrictions apply.

