Human Activity Recognition SoC for AR/VR with Integrated Neural Sensing, Al

Classifier and Chained Infrared Communication for Multi-chip Collaboration
Yijie Wei, Xi Chen, Jie Gu
Northwestern University, Evanston, IL, USA

Abstract

This paper presents a distributed multi-chip human activity
recognition system for Virtual Reality (VR) and Augmented
Reality (AR) applications. A comprehensive solution is
delivered including Al core for classification, analog sensing
for neural activity detection and infrared data communication
for multi-chip collaboration. A 65nm test chip is fabricated and
distributed across the body area to demonstrate the low power,
low latency, and camera-free features of the target applications.

Introduction

VR and AR applications have recently experienced
significant growth driven by gaming, workplace assistance,
and social networking. VR/AR offers a new level of virtual
immersion to users by seamlessly blending the real and digital
worlds. However, as shown in Fig. 1, current VR/AR systems
primarily rely on conventional techniques such as joysticks,
IMU gloves along with external cameras for motion tracking.
These methods suffer from low resolution for sophisticated
gestures from users and use of cameras which often have
limited view-of-sight and face challenges in a non-stationary
environment. Instead, neural activities from human’s
physiological signals e.g., electromyogram (EMG), provide
high-resolution and high-fidelity information to user’s body
movement [1]. Combining local neural activities with global
positioning of human limbs provides a promising solution for
camera-free high-resolution human activity sensing. In this
work, we present a distributed multi-chip solution that
simultaneously captures 4D information, i.e., gestures, limb
position and continuous temporal movement of body activities
of the user. The contributions of this work include: (1) a fully-
integrated SoC chip is delivered including neural sensing of
EMG signals, distance measurements of human limbs, and a
body area communication for multi-chip collaboration
demonstrated by a 65nm test chip; (2) Reconfigurable Al
accelerator for both NN and LSTM is integrated for low power
real-time body activity recognition; (3) A special infrared (IR)
daisy-chained communication is developed for low-cost multi-
chip collaborative computing. To the best of our knowledge,
this is the first distributed multi-chip solution for camera-free
activity sensing, well poised for AR/VR applications.

System Implementation

The proposed system is shown in Fig. 1. Up to four SoC
chips (nodes) can be deployed on users’ limb and collaborate
on the activity classification. Each body node detects the user's
local gestures by sensing and classifying the EMG signals from
specific muscle groups while also measuring the relative
distance between neighboring nodes.  The distributed
information is collected through a chained communication
scheme passing into the last node for final recognition of a
variety of body activities such as punching, shooting, and
arching, detecting both temporal and spatial movement of
multiple human limbs. An infrared (IR) data communication
and distance measurement circuit are utilized through a daisy-
chain protocol for multi-chip collaboration.

The signal flow for acquiring and classifying local body
gestures/movements is shown in Fig. 2. Fully integrated 6-
channel low-noise amplifiers with a tunable gain from 35dB -

55dB are deployed to sense EMG signals. The collected EMG
signals are processed through mixed-signal circuitry for
digitalization and extraction of time-domain features, such as
mean, variance, zero crossing, and histograms, from each input
channel. A 3-layer fully connected neural network (FCNN) is
employed for local gesture recognition based on the extracted
EMG features. For a body movement with a temporal series
of gestures, e.g. punching, a long short-term memory (LSTM)
network is deployed for classification. The LSTM considers all
gesture results from FCNN and distance measurements among
multiple nodes to derive the final classification results.

Fig. 3 shows the top level SoC block diagram. After the 6-
channel analog front-end (AFE) and feature extraction, time-
domain features are sent to an Al core which contains both a
classifier and a local feature storage memory for recording data
for offline training. The compute engine in Al core contains a
reconfigurable neural network accelerator which comprises 80
MACs, weight SRAM banks, and other associated caches. As
shown in Fig. 3, the NN accelerator computes both FCNN and
LSTM along with activation functions, e.g., Tanh, Sigmoid,
and dedicated process sequence control. For inter-chip
communication, the analog data path includes IR data
transceivers, distance sensing with power detector and ADC,
and clock-data-recovery (CDR) circuits.

Fig. 4 illustrates the daisy-chain data communication for
sequentially sharing data among chips and distance sensing.
Each chip is programmed with a chip ID representing the
communication order. After gesture classification at local site,
each chip node takes turns to transmit its local result to the next
node who receives the data and performs distance
measurement to its preceding node. After receiving the data,
the receiving node appends its gesture label and distance
results to the bit stream and transmits it to the next node. The
final node engages its LSTM network to process the gesture
labels and distance measurements from all the nodes to
determine the user’s body activity in both temporal and spatial
dimensions. A verification procedure is used to enhance error
tolerance through a verification pattern and sender ID. Data
will only be accepted when the receiver matches the sender ID
and verification pattern. The daisy-chain communication
enables low-power and low-latency data exchange since only
neighbors with short distance are communicating with only
gesture label and distance shared. The communication circuitry
only consumes 20 uW and takes less than 4 ms to finish within
four interconnected nodes, suitable for low-cost real-time
application. To account for clock mismatch, a CDR circuit
utilizing a PWM modulated data signal and a delay lock loop
(DLL) is used, as shown in Fig. 5. To minimize interference,
300 kHz was selected for data transmission and 3 MHz was
used for distance measurement separated in time. The data
signal is processed through a CDR circuit in the first 250 ps,
followed by the distance signal which is processed through a
high pass filter, power detector, and converted to 8-bit data by
an ADC. As the IR LED has a 120° illumination angle
limitation, the LEDs beams are positioned to cover the receiver
at the full range of arm rotation movement to maintain stable
communication as shown in Fig. 5. A distance power detector



is used based on the distance-power relationship of IR signals.
Measurement Results

A 65nm test chip has been fabricated. Fig. 6 shows the
measurement results of IR inter-node communication
waveform, including initial signals for receiver's DLL to lock,
verification pattern, data signal of first three nodes, and a 3
MHz distance measurement signal, completed within 500 ps
for fast communication and distance sensing. The average
power of the SoC is 135 pW, dominated by digital Al core
which only consumes 88 uW at 2 MHz. The AFE consumes 18
uW while the communication transceivers and CDR consumes
20 uW on average. The measured waveforms of EMG signals
from LNA, and the distance readouts from ADC are also
shown in Fig. 6. The distance based on IR signal is accurately
captured within a range of 70 cm, making it suitable for
localized body area sensing. Fig. 7 shows the demonstration of
four example activities with activity matrix, PCB board and die
photo. Three sensing nodes were placed on the subject's
forearms and upper arm, with the final LSTM node located on
the left forearm. FCNN/LSTM models were off-line trained.
The multi-dimensional activity classification clusters separated
by local gesture, movement and distance show the device
achieved an 85% accuracy on activity classification tasks
including hand waving, shooting, arching, and punching. Table
1 compares the proposed design with prior arts showing similar
or better energy efficiency [3-6]. While existing works only
focus on single-chip local bio-recording or standalone neural
network processing for bio-signals, this work, for the first time,
delivers a multi-chip comprehensive solution covering sensing,
multi-chip communication and Al classification for camera-
free human activity tracking ta})rgeting VR/AR applications.
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Fig. 1. Human body activity tracking for VR/AR application with
challenges of existing solution [2] and proposed multi-chip system.
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Fig. 2. Local gesture classification through FCNN and LSTM-based
body activity classification flow.
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Fig. 5. Data and distance processing flow (left), diagram of IR signal

transmission view angle with arm rotation and receiver (right).
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Fig. 6. Measurement results: Inter-node communication data signal
(top-left), chip power breakdown (top-right), amplified EMG signals

(bottom-left) and ADC readout vs distance (bottom-right).
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Fig. 7. Experimental setup of 3 nodes with different activities (left)
and classification matrix (middle), demo PCB, and die photo (right).
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