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Abstract—Many emerging applications require multi-hop wire-
less relaying, for which reliability requirements increase packet
retransmissions, amplifying latency across hops. Existing works
mostly focus on the simple two-hop, single-relay setting and
ignore spatial diversity that enables a destination to receive
independent noisy copies of data from multiple relays in parallel
to improve error performance. In this paper, we consider a
single-bit source message and construct learning-rate-optimal,
delay-constrained multi-hop schemes by jointly designing time-
varying, distributed relay mapping functions with destination
decoding strategies. The learning-rate-optimal scheme, however,
requires channel and relaying knowledge, which limits practical
implementation. With the aim of practical implementation, we
have also considered several low-complexity relay and destina-
tion strategies and analyzed their performances under different
combinations. Numerical comparisons show that none of the
alternatives universally dominate, and the system designer thus
has to carefully opt for the best suitable schemes depending on the
channel conditions. Finally, we show that carefully coordinating
many low-quality relay channels in parallel can vastly outperform
having only one high-quality relay channel, which demonstrates
the spatial diversity gains for the first time in the learning over
parallel-relay setting.

Index Terms—Multi-hop, relay channels, low latency, high
reliability, transcoding, teaching and learning

I. INTRODUCTION

The relay channel [1] is a long-standing information-
theoretic topic growing (again) in recent interest due to its vast
applicability to emerging wireless systems such as machine-
to-machine relaying in Internet of Things (IoT) networks [2],
integrated terrestrial-air-space communications [3]–[5], and
multi-hop wireless backhauling for rural networks and small
cells [6], [7]. While the general relay channel capacity is
unknown, many real systems can be modeled as a specialized
case known as the separated relay channel, which is the con-
catenation of two point-to-point (single-hop) channels where
the source has no direct connection to the destination. The
capacity of this specialized relay channel is the bottleneck
capacity of the two concatenated point-to-point channels, i.e.,
C = min{C1, C2}, and is achieved with the decode-and-
forward (DF) protocol in the absence of delay constraints [1].

However, recent interest in low-latency and high-reliability
communication requires a better understanding of the finite
blocklength regime’s throughput-delay and delay-reliability
tradeoffs [8]–[10]. This regime differs from the asymptotic
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Shannon capacity and is relevant to many applications, i.e.,
healthcare, robotics, autonomous vehicles, and augmented
reality, that need latencies of less than a millisecond and packet
error rates below 10−5 [11]. For such applications, ultra-
reliable and low-latency communication (URLLC) is essential,
as specified by the Third Generation Partnership Project [11].
Low-latency solutions for single-hop channels include short-
ened transmission time intervals and frame structures, hybrid
automatic repeat request (HARQ) protocols, edge caching,
computing, and slicing [8]. High-reliability techniques over
single-hop channels include adapting coding rates and exploit-
ing time, frequency, and spatial diversity [8].

Despite existing solutions for single-hop channels, little is
known about designing low-latency and high-reliability multi-
hop networks [9], [10]. With strict reliability requirements,
packets are more likely to require multiple retransmissions
across the hops to guarantee reliable delivery at the destination,
amplifying end-to-end latency. Conversely, strict delay require-
ments entail that relays in the multi-hop network can not
afford the time to queue packets needed for retransmissions,
decreasing the end-to-end reliability [12].

Furthermore, unlike single-hop communication, multi-hop
networks have an additional design component: the relaying
protocol. Relays typically use either amplify-and-forward (AF)
or decode-and-forward (DF), which skew performance to the
extremes of feasible delay-reliability regions [9]. AF relays
transmit amplified versions of their received signals without
processing, resulting in minimal end-to-end latency, but often
unreliable transmission, due to error accumulation in inter-
mediate nodes. DF relays wait to receive the entire block
before decoding, re-encoding, and transmitting to the next hop.
The DF protocol has maximal end-to-end latency but often
improves reliability because relays perform error correction
[1].

A. Related Work
In [9], the transcoding principle was introduced for the

separated relay channel as an alternative to the latency ex-
tremes of AF and DF. Transcoding relays perform (potentially)
time-varying mapping functions from the partial sequence
of symbols received up to time k to the next-hop input at
time k. For example, [9] introduced a concatenated coding-
inspired method, in which the block transmitted by the source
is processed and transmitted as a sequence of independent
sub-blocks at the relays. Each sub-block uses inner codes, and
error patterns outside of a selected decoding radius propagate
between hops to the destination, where the destination handles
errors by decoding with the entire block.
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Transcoding for the separated relay channel demonstrates
untapped potential to outperform the AF and DF relaying
schemes when restricted by latency constraints [9]. However,
the proposed framework neither directly maximizes through-
put nor minimizes the probability of decoding error at the
destination. Instead, it uses the error exponent and the finite-
length approximation formulae as proxies of the traditional
communication performance metrics. In this paper, we are
explicitly interested in 1) analytically determining error perfor-
mance bounds on transcoding in the delay-constrained setting,
and 2) constructing joint time-varying relaying and destination
decoding strategies to achieve the optimal error performance.

Recent research has explored the problem of teaching and
learning in uncertainty, with works [13], [14] studying a single
separated relay with independent binary symmetric channels
(BSCs). Additionally, [15] extended this framework to include
general binary-input discrete memoryless channels. The goal
of [13]–[15] was to maximize the asymptotic learning rate by
designing joint time-varying relaying functions and destination
decoding strategies. However, multi-bit transmission remained
an open problem until [16] addressed the transmission of an
arbitrary number of source messages over a single separated
relay with discrete memoryless channels (DMCs). In these
studies, the teacher (relay) receives n (blocklength) repeated
noisy observations of an unknown message, θ, from a source
and conveys this information to the student (destination).
The teaching and learning framework seeks to maximize
the asymptotic learning rate with explicitly designed time-
varying relaying functions and destination decoding strategies.
Denoting θ̂ as the message estimate at the destination, the
asymptotic learning rate is defined as

L (P, Q) = lim
n→∞

{
− 1

n
logP

(
θ̂ 6= θ

)}
,

where P and Q are the transition laws of the source-to-relay
and relay-to-destination links, respectively. For a single-bit
source message over BSCs (with source-to-relay and relay-
to-destination crossover probabilities p, q ∈ [0, 1/2), respec-
tively), the learning rate is denoted as L(p, q) and a converse
bound on the learning rate is proposed as

L(p, q) ≤ Dkl(0.5||max p, q),

where Dkl(a||b) = a log a
b + (1− a) log 1−a

1−b is the Kullback-
Leibler divergence of independent Bernoulli random variables
parameterized by a and b.

In [13], [14] (see Sec. III), the proposed strategies fall short
of the converse bound. However, [15] introduces a relaying
protocol over BSCs (see Sec. III) that processes and transmits
independent sub-blocks of δT = o(n) bits (sub-linear with
respect to the blocklength). The relay transmits each received
sub-block as a sorted sequence of k0 zeros followed by k1

ones (with δT = k0 + k1), where the number of zeros
and ones depends on the fraction υ ∈ [0, 1] of zeros in
the sub-block. With maximum likelihood (ML) destination
decoding, the independent sub-block-structured strategy of
[15] asymptotically achieves the optimal learning rate over
BSCs.

Wireless systems exploit spatial diversity to enable high
reliability [8], [17]. For example, multi-antenna systems trans-
mit signals through parallel paths, so that the receiver obtains
independently-faded replicas of data [18]. Distributed array
systems use virtual elements of a multi-antenna architecture,
where adding or dropping nodes varies system performance
and energy efficiency [19]. In wireless sensor and mesh
networks, spatial diversity is exploited by opportunistically
selecting multi-hop routing paths [20]–[24]. Our work studies
the effect of spatial diversity using the teaching and learning
or transcoding framework, developing relaying strategies over
time and space. This approach resembles the distributed detec-
tion of signals over wireless channels or distributed estimation
in wireless sensor networks [25], [26]. In this framework, each
receiving antenna or node makes a multi-bit decision with its
observations, and a fusion center combines the decisions to
produce a final decoding decision [25].

B. Contributions

This paper exploits spatial diversity to achieve low-latency
and high-reliability relaying over parallel separated relay chan-
nels. We extend the teaching and learning framework [13]–[15]
to M ≥ 2 parallel relays receiving n repeated observations
of an unknown single-bit state from a source, corrupted by
independent BSC noise. The destination receives signals from
all relays through independent BSCs to make a final decoding
decision and learn the state θ. We derive analytical error
performance-related bounds for the multi-relay setting and
develop distributed coding schemes across the M relays jointly
designed with destination decoding schemes. Next, we outline
the contributions of this work.
Contribution 1: We derive an upper bound on the asymptotic
learning rate of the final decoding decision at the destination.
Contribution 2: We show that an M parallel-relay gen-
eralization of the independent sub-block-structured strategy
from [15], paired with ML destination decoding, achieves the
optimal learning rate on BSCs.

The optimal strategy, however, has implementation short-
comings that we address. First, each relay needs to know
its source-to-relay BSC channel parameter. Likewise, ML
decoding at the destination requires knowledge of channel
parameters and relaying functions. Moreover, for a small
tolerable end-to-end delay (often the case in practice), the
error probability of the optimal strategy may suffer, despite the
asymptotic learning rate of the scheme being provably optimal.
Contribution 3: To address implementation shortcomings of
the optimal scheme, we consider alternative relaying protocols,
generalized from the single relay analyses in [13], [14].
Specifically, the relays perform either one of
• Simple forwarding: Each relay forwards its newest re-

ceived bit to the destination in the next channel use;
• Sequential best guessing: In each channel use, the relay

takes a majority vote of all bits received up to that time
and transmits the majority decision to the destination in
the next channel use.

The above relaying alternatives do not require knowledge
of the source-to-relay channel parameters and may exhibit
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improved error performance when operating with a small
tolerable end-to-end delay.

Additionally, we design the following alternative destination
decoding strategies to pair with the simple forwarding and
sequential best guessing relaying schemes.
• Full matrix fusion: The destination takes a majority vote

over all Mn received bits from all relays to determine
the final decoding decision;

• Weighted fusion: The destination quantizes each received
relay signal via sub-decoders into a single-bit decision.
The M sub-decoder outputs are combined as a weighted,
signed summation and compared to a threshold to pro-
duce the final decoding decision;

• Optimally-weighted fusion: The destination uses knowl-
edge of the channels and relaying functions to determine
the optimal weights that provide the maximal learning
rate of all weighted fusion strategies.

We derive the exact asymptotic learning rates for all com-
binations of simple forwarding and sequential best guessing
relaying paired with full matrix, weighted, and optimally-
weighted fusion (six distinct combinations). We show that no
joint strategy universally outperforms the others.
Contribution 4: We characterize the learning rates of all
schemes, as the number of relays grows asymptotically, to
answer a fundamental question, “Is it better to have high
spatial diversity with many low-quality channels or low spatial
diversity with one or two high-quality channels?” We charac-
terize the asymptotic behavior of the M parallel-relay learning
rate

lim
M→∞

ML(p(M), q(M)),

where L(p(M), q(M)) represents the single-relay learning
rate, and p(M) and q(M) are the crossover probabilities of
the source-to-relay and relay-to-destination links, respectively,
that scale with M as M →∞. In particular, we consider

p(M) =
1

2
−

1
2 − p
Mα

→ 1

2
, and q(M) =

1

2
−

1
2 − q
Mα

→ 1

2

as M → ∞. The growth rate α > 0 dictates how rapidly
the multi-relay crossovers degrade to 1/2. We then show
that all schemes exhibit similar scaling behavior, namely,
the learning rates either 1) converge to zero, 2) converge
to a constant depending on the channel parameters, or 3)
grow unbounded, depending on how quickly the channels
degrade, i.e., depending on α. For both the optimal strategy
and strategies employing sequential best guessing at the relays,
we observe increased resilience against channel degradation
when compared to simple forwarding.
Contribution 5: We characterize the influence of the channel
parameters on the learning rates of all schemes to answer
a fundamental question, “Is it better to direct resources to
improve the reliability of the source-to-relay links or the
reliability of the relay-to-destination links?” We show that,
given a total amount of noise present in the combined source-
to-relay and relay-to-destination links, the reliability tradeoff
between the two link types depends on the scheme used. For
the optimal scheme, both link types exert equal influence on

Fig. 1: System model of source, relays, and destination.

the learning rate. For schemes employing simple forwarding at
the relays, both link types also exert equal influence. However,
with sequential best guessing at the relays, a range of behavior
is observed, depending on 1) the total level of noise present
and 2) the destination decoding strategy used.

In Sec. II, we develop the system model. In Sec. III,
we discuss existing single-relay results [13]–[15]. In Sec.
IV, we upper bound the learning rate with M relays and
show that the M -relay generalization of the independent sub-
block-structured strategy [15] achieves the optimal learning
rate. In Sec. V, we apply alternative strategies to address
implementation shortcomings of the optimal scheme. In Sec.
VI, we derive the learning rates of alternative schemes using
full matrix fusion. In Sec. VII, we derive the learning rates of
alternative schemes using weighted fusion. In Sec. VIII, we
characterize the learning rate behavior as the number of relays
grows asymptotically. In Sec. IX, we compare all learning rates
and investigate the influence of the channel parameters. In Sec.
X, we make concluding remarks.

II. SYSTEM MODEL

A. Communication Model

The system model is depicted in Fig. 1. One of two equally
likely binary messages, {0, 1}, are transmitted by a source S
to a destination D by sequentially transmitting a codeword
of blocklength n. The source S , however, does not have a
direct link to the destination D. To facilitate communication,
a collection of M parallel relays are used as intermediate hops
to transmit the message over the source-to-relay (S→R) and
relay-to-destination (R→D) links. Both the S→R and R→D
links are independent binary symmetric channels (BSCs).

The source message θ ∈ {0, 1} is encoded, respectively, as
the all-zeros or all-ones codewords, denoted {0n,1n}. Note
that the two codewords have maximum distance. The particular
maximum distance codewords are chosen without loss of
generality, as any combination of source, relay, and destination
mappings can be complemented to give the all-zeros and all-
ones codewords. The source codeword with blocklength n is

c = [c0, c1, . . . , cn−1] ∈ {0n,1n}, (1)

and is transmitted sequentially to all relays simultaneously at
a rate of one bit per channel use.

The received signal at relay i ∈ [1,M ] , {1, 2, . . . ,M} is

yi = [yi,0, yi,1, . . . , yi,n−1] , (2)
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Fig. 2: Depiction of the strictly causal transcoding relaying frame-
work.

whose components are yi,t = ct ⊕ wsr
i,t, where ⊕ is the

binary XOR operation, and t ∈ [0, n − 1] denotes the
channel use. Each wsr

i,t ∈ {0, 1} is i.i.d. Bernoulli Ber(pi),
with pi ∈ [0, 0.5). The signal transmitted by relay i to the
destination is

zi = [zi,0, zi,1, . . . , zi,n−1] , (3)

and the signal received at the destination from relay i is

vi = [vi,0, vi,1, . . . , vi,n−1] , (4)

where vi,t = zi,t ⊕ wrd
i,t, and each wrd

i,t ∈ {0, 1} is i.i.d.
Bernoulli Ber(qi), with qi ∈ [0, 0, 5).

B. Relaying Description

To facilitate the design of time-varying relaying schemes,
we introduce a transcoding framework, which is parameterized
by a scalar integer parameter δT . The value of δT can range
from [1, b0.5nc]. When δT = 1, the transcoding scheme is the
most general and includes any possible designs as a special
case; when δT = b0.5nc, the transcoding scheme is the most
restricted, since it places the most stringent structure in the
scheme design.

The transcoding framework is depicted in Fig. 2. For a
transcoding scheme to perform time-varying mapping func-
tions, the relays process and transmit K + 1 successive sub-
blocks of δT = n

K+1 bits (assuming K + 1 divides the
blocklength n). The received signal at relay i and the signal
transmitted by relay i are re-expressed with sub-blocks as

yi = [yi,0, . . . ,yi,K ] , zi = [zi,0, . . . , zi,K ] , (5)

respectively. The k-th sub-blocks, for k ∈ [0,K], are

yi,k =
[
yi,kδT , . . . , yi,(k+1)δT−1

]
, (6)

zi,k =
[
zi,kδT , . . . , zi,(k+1)δT−1

]
. (7)

Each relay performs strictly causal encoding between its
input and output signals, as depicted in Fig. 2. The first sub-
block, zi,0, transmitted by relay i is discarded/ignored. Then,
for k ∈ [1,K], the sub-blocks transmitted by relay i are
determined by strictly causal mapping functions

zi,k = Ti,k (yi,0, . . . ,yi,k−1) , k ∈ [1,K], (8)

and we use

z̃i = [zi,1, . . . , zi,K ] (9)

to denote the part of the signal transmitted by relay i that
excludes the discarded sub-block zi,0. Furthermore, the strictly
causal encoding structure entails that the last sub-block re-
ceived at relay i, i.e., yi,K , is discarded and never participates
in the relay’s transmission of z̃i (Fig. 2).

C. Destination Decoding
The signal received at the destination from relay i is re-

expressed with sub-blocks as

vi = [vi,0,vi,1, . . . ,vi,K ] , (10)

whose k-th sub-block, for k ∈ [0,K − 1], is

vi,k =
[
vi,kδT , . . . , vi,(k+1)δT−1

]
. (11)

Since the first sub-blocks transmitted by all relays are dis-
carded due to strictly causal mapping functions, the destination
accumulates the received signals from all relays and discards
the first sub-blocks received from the relays. Let

ṽi = [vi,1, . . . ,vi,K ] (12)

be the signal received from relay i excluding the discarded
sub-block vi,0. We define

VK =
[
ṽ>1 , ṽ

>
2 , . . . , ṽ

>
M

]>
(13)

as the M × δTK received signal matrix at the destination,
which excludes the discarded sub-blocks. The destination then
applies a fusion function

gK : {0, 1}M×δTK × [0, 0.5)M×[0, 0.5)M→{0, 1} (14)

to produce a final decoding decision θ̂K . For clarity, we note
that the decoding function in (14) is indexed by K to show the
dependence of decoding on the number of sub-blocks (which
dictates the sub-block size δT ). The final decoding decision is

θ̂K = gK (VK ,P,Q) , (15)

where we use

P = (p1, p2, . . . , pM ) , Q = (q1, q2, . . . , qM ) , (16)

to compactly represent the crossover probabilities of the
S → R and R → D links, respectively. In its general form,
the decoding function uses the received signal matrix VK , as
well as knowledge of the channel parameters. However, there
are many functional decoding schemes that do not require
knowledge of the channel parameters. The dependence will
be made clear when describing specific decoding schemes.

III. PROBLEM STATEMENT AND EXISTING RESULTS

For given channel parameters P and Q, we are interested in
designing strategies to maximize the asymptotic learning rate
of the final decoding decision at the destination, namely,

Lmax (P ,Q) = sup
protocols

lim
n→∞

{
− 1

n
logP

(
θ̂K 6= θ

)}
.

The protocols represent any joint design of the number of
sub-blocks K, the destination decoding function gK , and the
relay mapping functions ∪Mi=1 {Ti,k}

K
k=1.
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A. Spatial Diversity

Additionally, we seek to quantify the spatial diversity gains
achieved with M relays. Formally, let L(P ,Q) and L(p, q)
denote the learning rates achieved by performing a protocol
with M relays and a single relay, respectively. When pi = p
and qi = q, for all i ∈ [1,M ], we define the spatial diversity
gain as

Υ(p, q,M) =
L(P ,Q)

L(p, q)
. (17)

The spatial diversity gain measures the ratio of the learning
rate of an M -relay system to that of a single-relay system.
Note that the M -relay system with n channel uses differs
fundamentally from that of a single-relay system with nM
channel uses. Specifically, in the M -relay system, there is
no collaboration among the relays. Furthermore, compared to
the M -relay system, the causality constraints of the single-
relay system are less strict, in the sense that the single-relay
gains access to the entire sequence of nM channel uses.
This allows the single relay to fully comprehend the totality
of the transmitted information. This knowledge is leveraged
within the transcoding framework, enabling the single-relay to
potentially make more informed decisions for its transmitted
bits.

Because of these differences, it is critical to analyze various
relaying schemes and to compare their performance under the
more realistic collaboration and causality constraints of the
multi-relay setup. In the subsequent sections, we demonstrate
that for relaying schemes employing an independent sub-block
structure, e.g., simple forwarding and the optimal scheme
proposed by [15] (detailed in the next subsection), the error
probability of an M -relay system with n channel uses is
equivalent to that of a single-relay system with nM channel
uses when pi = p and qi = q for all i ∈ [1,M ]. Furthermore,
the benefits of using multiple relays extend from the source’s
ability to broadcast its codeword bits to multiple relays in each
channel use. When characterizing the optimal performance of
M -relay system, if all the channel conditions are identical, i.e.,
pi = p and qi = q for all i ∈ [1,M ], then we can compare the
learning rate to those of the single-relay results, since the M -
relay system has more restrictive collaboration and causality
constraints.

B. Existing Results

Single-relay analyses of the learning rate for various re-
laying and destination decoding strategies can be found in
[13]–[15]. In our model, the single separated relay channel
corresponds to M = 1, with S → R and R → D crossover
probabilities p and q, respectively, and a learning rate ex-
pressed with the lower-case parameters as L(p, q). To simplify
discussion of existing single-relay results in this section, we
drop the relay subscripts and denote y = [y0,y1, . . . ,yK ],
z̃ = [z1, . . . , zK ], and ṽ = [v1, . . . ,vK ] as the received signal
at the relay, the transmitted relay signal, and the received signal
at the destination, respectively.

The converse (upper) bound on the learning rate for the
single-relay case is [13]–[15]

L(p, q) ≤ L∗(p, q) = Dkl (0.5||max{p, q}) , (18)

by recognizing that the learning rate is upper bounded by

L(p, q) ≤ L∗(p, 0) = Dkl(0.5||p), (19)
L(p, q) ≤ L∗(0, q) = Dkl(0.5||q), (20)

which are the optimal learning rates achievable when one of
the two S → R and R → D crossover probabilities are held
constant and the other is set to zero, reducing the separated
relay into a single point-to-point channel. Considering both
bounds (19)–(20) together, the upper bound (18) is given.

In [13], the following relaying strategies were considered:
• Simple forwarding: This is a special case of the transcod-

ing scheme when setting the number of bits per sub-block
to δT = 1, hence K = n−1. Following strictly causal
encoding, the relay transmits its (k−1)-th bit observation
to the destination at time k, i.e.,

zk = Tk(y0, . . . ,yk−1) = yk−1, ∀ k ∈ [1,K]. (21)

• Sequential best guessing: The number of bits per sub-
block is δT = 1, with K = n−1. The k-th sub-block
transmitted by the relay is the outcome of a majority vote
over all sub-blocks received at the relay thus far, i.e.,

zk = Tk (y0, . . . ,yk−1)

= Maj ([y0, . . . ,yk−1]) , ∀ k ∈ [1,K], (22)

where Maj(·) ∈ {0, 1} denotes the majority vote taken
over an input binary vector.

In conjunction with the above relaying protocols, [13] con-
sidered several destination decoding strategies and analyzed
all combinations of joint relaying and destination decoding
schemes. The destination decoding schemes are as follows:
• Majority voting: The final decoding decision θ̂K is a

majority vote of the received signal at the destination,
i.e., θ̂K = Maj (ṽ).

• ε-Majority voting: The decoding decision is given by
θ̂K = Maj (ṽε), with superscript ε indicating the last
bε(n−1)c bits of ṽ. The intuition behind only processing
the last bε(n − 1)c bits is that, when paired with well-
designed relaying strategies, one hopes that later bits in
the received signal at the destination are more reliable,
due to the relay correcting errors in the received signal
using more information.

The work [13] showed that no combination of these joint re-
laying and destination decoding strategies achieves the optimal
learning rate L∗(p, q). Furthermore, none of the exact asymp-
totic learning rates of these schemes universally dominate the
others for all channel parameters.

The work [14] considered the simple forwarding and se-
quential best guessing relaying schemes, as well as a protocol
that updates the majority vote every δT =

√
n bits received

at the relay. The updated vote is then transmitted to the
destination for the next length-

√
n sub-block. This relaying

strategy was analyzed jointly with maximum likelihood (ML)
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Fig. 3: Independent sub-block-structured relaying protocol developed
in [15].

destination decoding, but the learning rate falls short of
meeting the converse L∗(p, q). However, the learning rate is
within a factor of 3/4 for the case of p = q and p → 0.5
(p in the vicinity of 0.5). It was conjectured in [14] that
more sophisticated schemes could get arbitrarily close to the
converse L∗(p, q).

The work [15] devised an independent sub-block-structured
relaying strategy for the single relay that achieves the converse
L∗(p, q) when the S → R and R → D links are BSCs,
hence proving the conjecture in [14]. The relay processes
a sequence sub-blocks, where the sub-block size satisfies
δT < n, δT → ∞ and n/δT → ∞ as n → ∞, i.e., the
sub-block size is δT = o(n). The sub-blocks are processed
independently, meaning that each sub-block zk transmitted by
the relay is only a function of the received sub-block yk−1 at
the relay. As depicted in Fig. 3, by letting υk−1 ∈ [0, 1] be
the fraction of ones in the (k−1)-th received sub-block at the
relay, the k-th sub-block transmitted by the relay is comprised
of bδTW (υk−1)c ones followed by δT −bδTW (υk−1)c zeros,
where the function W : [0, 1]→[0, 1] is designed in [15] to be

W (υ) =


0, υ ∈ [0, p),
Dkl(υ||p)

2Dkl(0.5||p) , υ ∈ [p, 0.5],

1−W (1− υ) , υ ∈ (0.5, 1− p),
1, υ ∈ [1− p, 1],

(23)

which is monotonically increasing. Implementing the function
W (·) also requires the relay to know the S → R crossover
probability p. The destination applies optimal ML decoding.

The scheme in [15] achieves the optimal learning rate over
the two-hop separated relay channel with S → R and R → D
crossover probabilities p and q, respectively. With respect to
the learning rate, it is equivalent to transmitting the codeword
c over a single point-to-point BSC whose crossover probability
is the bottleneck of the two relay links, i.e., max{p, q}, and
performing ML destination decoding. Achieving the optimal
learning rate requires that the sub-block size be sub-linearly
growing in terms of the blocklength. However, the first sub-
block of the R → D hop and the last sub-block of the
S → R hop are discarded completely. For a small and
finite tolerable end-to-end delay, which is usually the case in
practice, the error probability of the scheme [15] may suffer
since a non-negligible portion of the channel uses is discarded,
even though its (asymptotic) learning rate is provably optimal.

IV. OPTIMAL RATE FOR THE PARALLEL RELAY CHANNEL

In this section, we upper bound the learning rate of the
problem and then show that the upper bound can be attained
by an M -relay generalization of the strategy in [15].

A. Upper Bound on the Learning Rate

Theorem 1. For any joint relaying and destination decoding
strategy, the learning rate, L(P ,Q), of the final decoding
decision at the destination is upper bounded by

L(P ,Q) ≤
M∑
i=1

Dkl(0.5||max{pi, qi}). (24)

Proof. See Appendix A.

B. The Generalized M -Relay Scheme

For M relays, we propose generalizing the scheme devel-
oped in [15] by having each relay perform the same protocol
in parallel using its independently received sub-blocks. Each
relay processes a sequence of K+1 sub-blocks, with the sub-
block length satisfying δT = o(n).

For non-discarded sub-blocks k ∈ [1,K] of relay i ∈ [1,M ],
the sub-block zi,k transmitted by the relay is a function of
the received sub-block yi,k−1 at that relay. Letting υi,k−1

be the fraction of ones in the received sub-block yi,k−1,
i.e., υi,k−1 = wt (yi,k−1) /δT , where wt(·) is the Hamming
weight, the transmitted sub-block zi,k is a sorted sequence
of bδTW (υi,k−1)c ones followed by δT − bδTW (υi,k−1)c
zeros. As [15] remarks, δTW (υi,k−1) is not always an integer.
However, it is shown for the single-relay case that performing
the learning rate analysis with δTW (υi,k−1) ones followed by
δT (1−W (υi,k−1)) zeros helps with analytical tractability and
does not change the asymptotic error analysis. We adopt this
modification in our M -relay analysis.

The destination applies an ML fusion strategy. That is, since
each relay channel is independent, we define the log-likelihood
ratio (LLR) as

LLRopt (VK ,P,Q) =
M∑
i=1

K∑
k=1

log
P (vi,k|θ = 0)

P (vi,k|θ = 1)
, (25)

and choose θ̂K with the LLR test

θ̂K =

{
0, LLRopt (VK ,P,Q) ≥ 0,

1, LLRopt (VK ,P,Q) < 0.
(26)

C. Statistical Closeness Metric

In this subsection, we review properties of the Bhat-
tacharyya coefficient required to analyze the learning rate of
the joint strategy from Sec. IV-B. We define the Bhattacharyya
coefficient between two discrete random variables A and B
defined on a sample space Ω as

ρ (A,B) =
∑
x∈Ω

√
P (A = x)P (B = x), (27)

where ρ(A,B) = 0 if and only if the supports of A and B
are disjoint. Similarly, ρ(A,B) = 1 if and only if A and B
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have identical distributions. We now list three standard prop-
erties of the Bhattacharyya coefficient that will be useful for
characterizing the learning rate of the M -relay generalization
of the independent sub-block-structured protocol.

Property 1: If a random variable X is known to be dis-
tributed according to A or B, then there exists a strategy,
when X is drawn in a random trial, to obtain a classification
error probability of at most ρ(A,B). This error probability
can be achieved using the ML test. For X = x, A is decided
if P(A = x) > P(B = x), and B otherwise. The probability
of incorrectly choosing distribution A when B is true is [15]∑

x∈Ω

P(B = x)I (P(A = x) > P(B = x))

≤
∑
x∈Ω

√
P(A = x)P(B = x),

= ρ(A,B). (28)

The same applies for incorrectly choosing B when A is true,
giving the error bound

P (error) ≤ ρ(A,B). (29)

Property 2: Let x = (x1, x2) ∈ Ω2. For A1, A2 independent
and B1, B2 independent, with supports Ω, we have

ρ ((A1, A2), (B1, B2))

=
∑
x∈Ω2

√
P (A1=x1, A2=x2)P (B1=x1, B2=x2)

=
∑
x∈Ω2

√
P (A1=x1)P (B1=x1)P (A2=x2)P (B2=x2)

= ρ(A1, B1)ρ(A2, B2), (30)

by expanding the terms and rearranging.
Property 3: For A = (A1, A2, . . . , AK) and B =

(B1, B2, . . . , BK), where {Ak}Kk=1 and {Bk}Kk=1 are i.i.d.
following the distributions of A and B, respectively, then
ρ (A,B) = ρ (A,B)

K by following the same procedure
that establishes Property 2 and noting that, in addition to
being independent, the same-letter random variables are also
identically distributed.

Keeping with (29), we assume for the case of Property 3,
i.e., observing K i.i.d. observations following the distribution
of A or B, that the ML decoding rule is adopted, resulting
in the multi-variate upper bound on the decision error [15],
given by

P (error) ≤ ρ(A,B)K . (31)
D. Lower Bound on the Learning Rate

Since sub-blocks received over the same relay channel are
i.i.d., we use Bi as shorthand notation to represent the non-
discarded sub-blocks {vi,k}Kk=1 received on the i-th parallel
channel at the destination. Moreover, Bi|0 and Bi|1 denote
conditioning of Bi on the source message θ = 0 and θ =
1, respectively. Using Properties 1–3, the error probability is
upper bounded by

P
(
θ̂K 6= θ

)
≤

M∏
i=1

ρ
(
Bi|0, Bi|1

)K
. (32)

For a given sub-block size δT , the learning rate, de-
noted Lopt (P ,Q) for the generalized independent sub-block-
structured scheme, is lower bounded as the blocklength n
grows large by

Lopt (P ,Q) ≥ − 1

δT

M∑
i=1

log ρ
(
Bi|0, Bi|1

)
. (33)

As [15] remarks, the distributions Bi|0 and Bi|1 depend on δT ,
and while a fixed δT provides a lower bound to the learning
rate, this also holds true when δT grows large with δT = o(n),
which requires the additional limiting operation limδT→∞.

Since Lopt(P ,Q) is bounded by the sum of terms that are
functions of {ρ

(
Bi|0, Bi|1

)
}Mi=1, a closed-form bound on the

learning rate can be achieved by determining bounds for each
individual component of the sum in (33), which has been done
in [15]. For a single relay channel characterized by crossover
probabilities p and q, it was established in [15, Thm. 1] that

Lopt(p, q) ≥ Dkl(0.5||max{p, q}). (34)

Specializing the result (34) for each relay i ∈ [1,M ], we obtain

Lopt(P ,Q) ≥
M∑
i=1

Dkl(0.5||max{pi, qi}) (35)

as n→∞, δT →∞, and δT = o(n).
Recalling the upper bound, L∗(P ,Q), on the learning rate

of the M -relay setting (Theorem 1), we see that the lower
bound (35) exactly coincides with Lopt(P ,Q) = L∗(P ,Q),
and hence the joint relaying and destination decoding strategy
attains the optimal learning rate. In the special case where the
S → R and R → D crossover probabilities satisfy pi = p
and qi = q for all i ∈ [1,M ] and any p, q ∈ [0, 0.5), a direct
comparison can be made to the single-relay scheme in [15].
In this case, we denote Υopt(p, q,M) as the spatial diversity
gain of the optimal strategy, defined as the ratio of the learning
rate for the M -relay case to the single-relay one, i.e.,

Υopt(p, q,M) =
Lopt (P ,Q)

L∗(p, q)
= M, (36)

hence the optimal strategy fully utilizes the spatial diversity
gain provided by M relays.

V. ALTERNATIVE STRATEGIES

In this section, we apply alternative relaying and destination
decoding strategies to address the implementation shortcom-
ings of the (asymptotically) optimal scheme.

A. Alternative Relaying Strategies

We consider two relaying schemes, namely, simple for-
warding and sequential best guessing, which were defined for
the single-relay scenario (in (21) and (22), respectively). We
extend these schemes to M relays, where they are applied
independently and in parallel for each relay. Unlike the asymp-
totically optimal scheme, neither alternative relaying protocol
must know the S → R channel parameters. Moreover, the
alternative relaying protocols only discard the first channel
use of the relay transmit signals, which may lead to improved
error performance for small tolerable end-to-end delay.
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B. Alternative Destination Decoding Strategies

In wireless networks, a destination node may receive paral-
lel transmissions from multiple relays. Two practical scenarios
are: (1) orthogonal multiplexing over frequency or space at a
single fusion center, and making a final decoding decision
using all n bits from each of the M relays (full matrix
fusion) [18]; (2) a collection of distributed sub-decoders that
make single-bit decoding decisions (weighted fusion) [25].
The latter scenario enables low-power and low-complexity
sub-decoders, i.e., oblivious to knowledge of the channels and
relaying functions, but requires a more sophisticated fusion
center to make the final decoding decision [26]. In the full
matrix fusion scheme, all nM bits are decoded jointly when
the destination lacks knowledge of the relaying functions and
the channel information. In the weighted fusion scheme, an
inner-outer decoding approach is taken, where each of the M
sub-decoders makes a hard decoding decision, and the sub-
decoder outcomes are weighted to produce the final decoding
decision. The weights can be selected to maximize the learning
rate given channel information.

For the sub-decoders, majority voting is a natural choice
in the absence of channel or relaying knowledge. However,
a more sophisticated fusion center can address these sub-
decoders limitations [27]. The fusion center leverages asym-
metric channel knowledge to generate decisions based on a
global view of the network and assigns sub-decoder weights
using knowledge of the relaying functions, channel qualities,
and sub-decoding functions to improve decoding performance.
Next, we formalize the full matrix and weighted fusion
schemes.
Full matrix fusion: A final decoding decision θ̂K is generated
by a majority vote of the received signal matrix VK , i.e.,

θ̂K = Maj (vec (VK)) , (37)

where vec (VK) = [ṽ1, ṽ2, . . . , ṽM ] is the vectorization of
the M rows of VK into a single row vector. The destination
does not need channel or relaying function knowledge.
Weighted fusion: A final decoding decision is generated by
combining M single-bit sub-decoder decisions. Precisely, the
i-th single-bit-quantized message estimate is given by

θ̂i,K = Maj (ṽi) , ∀i ∈ [1,M ]. (38)

The M sub-decoder outcomes, defined with a vector as

θ̂K =
[
θ̂1,K , θ̂2,K , . . . , θ̂M,K

]
∈ {0, 1}M , (39)

are then fed into a fusion function that combines the M outputs
to produce the final decoding decision θ̂K . The weighted
fusion strategy implements a linear threshold function (LTF)
[28] characterized by a vector Π = [π0, π1, . . . , πM ] ∈ RM+1

+ ,
where R+ denotes the non-negative real numbers [28]. Using
Π, the final decoding decision is generated as

θ̂K =

{
0, π0 +

∑M
i=1(−1)θ̂i,Kπi ≥ 0,

1, π0 +
∑M
i=1(−1)θ̂i,Kπi < 0.

(40)

Optimally-weighted fusion: With simple forwarding and
sequential best guessing at the relays, we are interested
in analytically finding the optimal weights Π∗SF (P ,Q) and

TABLE I: Equation numbers for the learning rates of alternative
relaying and destination decoding strategies.

Full matrix Weighted Optimally-weighted
Simple forwarding Eqn. (68) Eqn. (87) Eqn. (89)
Seq. best guessing Eqn. (50) Eqn. (75) Eqn. (88)

Π∗SG(P ,Q), respectively, that maximize the learning rate with
weighted fusion.

Lemma 1. For simple forwarding and sequential best guess-
ing at the relays with weighted fusion at the destination,
respectively, the following weights are asymptotically optimal:

Π∗SF (P ,Q) =
[
0, `SF1 (p1, q1), . . . , `SFM (pM , qM )

]
, (41)

Π∗SG(P ,Q) =
[
0, `SG1 (p1, q1), . . . , `SGM (pM , qM )

]
, (42)

where `SFi (pi, qi) and `SGi (pi, qi) are the learning rates of
simple forwarding and sequential best guessing of the i-th
branches, respectively. These learning rates determine the
weights {πi}Mi=1 of the signed summation in (40). Specifically,
the offset for both relaying schemes is π0 = 0, and the weights
of the signed summation are equal to the learning rates of
their respective sub-decoders. We provide explicit definitions
of these learning rates in equations (74) and (66), which can
be found in subsequent sections.

Proof. See Appendix B.

Thus far, we have considered two relaying strategies and
three destination decoding strategies. Totally, there are six
different combinations that can be deployed in a practical
system. In the following sections, we characterize the learning
rates of all combinations. For the weighted fusion schemes at
the destination, we assume the weights are arbitrary. Since
we analytically characterize the learning rates for arbitrary
weights, we can further specialize to the optimal weights,
provided in Lemma 1, and the results with optimal weights
are also reported. Table I depicts the equation numbers where
the learning rates are located throughout the paper.

VI. LEARNING RATE OF FULL MATRIX FUSION

In this section, we derive the learning rates when simple
forwarding and sequential best guessing at the relays are paired
with full matrix fusion at the destination.

A. Preliminary Calculations

In order to determine the learning rates with full matrix
fusion, we first develop large deviation properties of the relay
transmit signals as well mixtures of independent Bernoulli
random variables in Lemmas 2 and 3, respectively. Lemma
2 is a restatement of [13, Thm. 1] using our notation (which
differs significantly from [13]), whereas Lemma 3 is derived
directly in this work. To begin, let the transmitted relay signals
be re-written as zi = c⊕ ei, where

ei = [ei,0, ei,1, . . . , ei,n−1] ∈ {0, 1}n (43)

is defined as the distortion vector of relay i. The Hamming
weight, wt(ei), encapsulates the distortion between the trans-
mitted relay signal zi and the transmitted source codeword.
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Lemma 2 ( [13, Thm. 1]). Let δ ∈ [0, 1]. With sequential best
guessing at relay i ∈ [1,M ], the relay distortion vector weight
satisfies

lim
n→∞

{
− 1

n
logP (wt (ei) ≥ δn)

}
= δDkl(0.5||pi). (44)

Readers can refer to [13, Thm. 1] for verification of the
result.1 The result in Lemma 2 is obtained by recasting the
received signal at relay i as as a pi-biased random walk where
the bit values {0, 1} are modulated as {+1,−1}, respectively,
so that the state of the random walk relative to the zero
state determines the identity of bits transmitted by the relay
at each time. The weight wt (ei) of the relay distortion
vector is viewed as the number of times the relay transmit
signal is incorrect. With this perspective, the distribution
of P (wt (ei) ≥ δn) is broken down into simpler cases by
conditioning on various aspects of the random walk, such as
the time of the final visit and number of returns to the zero
state. The result (44) is then determined for large values of n
by applying the Gärtner-Ellis theorem [29].

Next, we develop a fundamental result for mixtures of
independent Bernoulli random variables. For analytical con-
venience, we characterize sums of Bernoulli random variables
and normalize by the total number of variables, rather than
writing Hamming weights. Note that the rate function I of a
general sequence of random variables {An} is such that for
any closed set F ⊆ R and open set G ⊆ R, the inequalities

lim sup
n→∞

1

n
logP (An ∈ F ) ≤ − inf

w∈F
I(w),

lim inf
n→∞

1

n
logP (An ∈ G) ≥ − inf

w∈G
I(w),

are satisfied [13], [29].

Lemma 3. Let ρi ∈ [0, 1] and qi ∈ [0, 0.5) for i ∈ [1,M ].
For each i, consider sequences of i.i.d. Ber(1 − qi) random
variables {Ui,j}n−bρincj=1 and i.i.d. Ber(qi) random variables

{Vi,j}bρincj=1 , where the Ui,j variables are independent of the
Vi,j variables. Next, define the sample mean

W̄ =

∑M
i=1

(∑n−bρinc
j=1 Ui,j +

∑bρinc
j=1 Vi,j

)
Mn

, (45)

where Mn is the total number of random variables in the
sample mean. The random variable W̄ satisfies the large
deviation principle and has a rate function

Iρ (w,Q) = sup
λ

{
λw −

M∑
i=1

(
ρ̄i log

(
eλ/M q̄i + qi

)
+ ρi log

(
eλ/Mqi + q̄i

))}
, (46)

1Note that Lemma 2 pertains to sequential best guessing, for which δT=1
(likewise for simple forwarding). Thus, the first bits of the transmitted relay
signals are discarded. Asymptotically, it makes no difference whether we use
n or n−1. For compactness, we use n to describe the results in Table I.

where ρ = (ρ1, ρ2, . . . , ρM ), ρ̄i = 1 − ρi, and q̄i = 1 − qi.
The supremum is achieved when

w =
1

M

[
M∑
i=1

(
ρ̄i

eλ/M q̄i
eλ/M q̄i + qi

+ ρi
eλ/Mqi

eλ/Mqi + q̄i

)]
(47)

is satisfied.

Proof. See Appendix C.

The solution to (47) is a polynomial equation in eλ that
can be solved numerically when the number of channels is
M ≥ 2. In [13], a specialization of Lemma 3 is solved for
the single-relay case M = 1. In this case, (47) reduces to a
quadratic equation in eλ, and the rate function was derived
explicitly in [13, Lem. 4] for a crossover probability q and
mixture fraction ρ as

Iρ(w, q) = w log(η)−ρ̄ log(q̄η + q)−ρ log(qη + q̄), (48)

with

η =
−τ +

√
τ2 + 4ww̄

2w̄
, τ =

q̄

q
(ρ̄− w) +

q

q̄
(ρ− w), (49)

where we have defined w̄ = 1−w, ρ̄ = 1− ρ, and q̄ = 1− q.

B. Statement of the Results

The next theorem derives the learning rate of sequential best
guessing at the relays with full matrix fusion at the destination.
The results readily extend to simple forwarding at the relays
after.

Theorem 2. Using sequential best guessing at the relays with
full matrix fusion at the destination, the learning rate of the
final decoding decision, denoted LFSG(P ,Q), is

LFSG(P ,Q) = inf
ρ∈[0,1]M

{
M∑
i=1

ρiDkl(0.5||pi) + Î (ρ,Q)

}
,

(50)

where

Î (ρ,Q) = inf
w∈[0,0.5]

Iρ (w,Q) , (51)

and Iρ (w,Q) is the rate function defined in (46).

Proof. Let εK denote the error event that θ̂K 6= θ and consider
an integer N , to be specified later. First, we divide the interval
(0, n] into intervals {Fj}N−1

j=0 , where

Fj =

(
n(N − j − 1)

N
,
n(N − j)

N

]
. (52)

Note that, for i ∈ [1,M ],

P (wt(ei) ∈ Fj) =P
(

wt(ei) >
n(N − j − 1)

N

)
− P

(
wt(ei) >

n(N − j)
N

)
. (53)
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Defining j = (j1, j2, . . . , jM ) ∈ [0, N − 1]M = J , the error
probability with full matrix fusion is

P (εK) =
∑
j∈J

P (εK |wt (e1) ∈ Fj1 , . . . ,wt (eM ) ∈ FjM )

·

(
M∏
i=1

P (wt (ei) ∈ Fji)

)
. (54)

Let ε1 > 0 be an arbitrarily small constant. Lemma 2
dictates that for all ji ∈ [0, N−1], for each i ∈ [1,M ], and for
fixed N , the following inequality is satisfied for n sufficiently
large∣∣∣∣− 1

n
logP (wt (ei)∈Fji)−

N−ji−1

N
Dkl(0.5||pi)

∣∣∣∣ < ε1,

(55)

because the first term of (53) dominates for fixed N and n
sufficiently large. Moreover, letting

ξji,fl =

⌊
n(N − ji − 1)

N

⌋
, ξji,cl =

⌈
n(N − ji)

N

⌉
(56)

be used for compactness, upper and lower bounds on P (εK)
are formed when conditioning on the weight of the relay
distortion vectors of all channels simultaneously as

P (εK |wt (e1) = ξj1,fl, ...,wt (eM ) = ξjM ,fl)

≤ P (εK |wt (e1) ∈ Fj1 , . . . ,wt (eM ) ∈ FjM )

≤ P (εK |wt (e1) = ξj1,cl, . . . ,wt (eM ) = ξjM ,cl) . (57)

To verify (57), note that the error event εK corresponds
to θ̂K 6= θ, where θ̂K is a majority vote of bits in the
received signal matrix VK . Conditioned on the Hamming
weights {wt(ei)}Mi=1 of the relay distortion vectors, the weight
of all bits in VK follows a Poisson-binomial distribution
[30], [31]. The bounds (57) are readily confirmed using well-
established results on the stochastic orderings of Poisson-
binomial distributions (see, for example, [31, Thm. 3.2]).

Let ε2 > 0 be an arbitrarily small constant. Using the large
deviation result of Lemma 3, for sufficiently large n and each
j ∈ J , the following bounds hold:∣∣∣∣∣− 1

n
logP (εK |wt (e1) = ξj1,cl, . . . ,wt (eM ) = ξjM ,cl)

− Î
(
N − j1
N

, . . . ,
N − jM
N

,Q
) ∣∣∣∣∣ < ε2, (58)∣∣∣∣∣− 1

n
logP (εK |wt (e1) = ξj1,fl, . . . ,wt (eM ) = ξjM ,fl)

− Î
(
N − j1 − 1

N
, . . . ,

N − jM − 1

N
,Q
) ∣∣∣∣∣ < ε2, (59)

because conditioned on the fraction of incorrect relay distor-
tion bits wt(ei)/n = (N − ji)/N , the distribution of bits
received at the destination behaves as a Bernoulli mixture with
ρi = 1 − ji/N . Moreover, the conditional error probability
is the infimum of the rate function over the interval [0, 0.5],
corresponding to full matrix fusion taking a majority vote over
the received signal matrix.

For sufficiently large n, we have for each j ∈ J that

e
−n
(
Î
(
N−j1−1

N ,...,
N−jM−1

N ,Q
)

+ε2
)

< P (εK |wt (e1) ∈ Fj1 , . . . ,wt (eM ) ∈ FjM )

< e
−n
(
Î
(
N−j1
N ,...,

N−jM
N ,Q

)
−ε2

)
. (60)

Combining (60) with the bounds (55), the probability of error
is bounded above and below as

P (εK) ≤
∑
j∈J

e−nfub(j), P (εK) ≥
∑
j∈J

e−nflb(j), (61)

where

fub(j) =
M∑
i=1

(
N − ji − 1

N

)
Dkl(0.5||pi)

+ Î

(
N − j1
N

, . . . ,
N − jM
N

,Q
)
− ε1 − ε2,

(62)

flb(j) =
M∑
i=1

(
N − ji − 1

N

)
Dkl(0.5||pi)

+ Î

(
N − j1 − 1

N
, . . . ,

N − jM − 1

N
,Q
)

+ ε1 + ε2. (63)

Let ε3 > 0 be an arbitrarily small constant. Let x =
(x1, x2, . . . , xM ) ∈ [0, 1]M . We define three quantities:

a = inf
x∈[0,1]M

{
M∑
i=1

xiDkl(0.5||pi) + Î (x1, . . . , xM ,Q)

}
,

a∗ = inf
j∈J

{
M∑
i=1

N − ji − 1

N
Dkl(0.5||pi)

+ Î

(
N − j1
N

, . . . ,
N − jM
N

,Q
)}

,

a∗ = inf
j∈J

{
M∑
i=1

N − ji − 1

N
Dkl(0.5||pi)

+ Î

(
N − j1 − 1

N
, . . . ,

N − jM − 1

N
,Q
)}

.

Due to the continuity of Î(·, ·), the value of N can be selected
depending on ε3 and P so that

max {|a− a∗| , |a− a∗|} < ε3. (64)

When n is sufficiently large, the following bounds hold

P (εK) ≤ NMe−n(a−ε1−ε2−ε3), P (εK) ≥ e−n(a+ε1+ε2+ε3).

Dividing by −n then taking the logarithm and limit gives

lim
n→∞

− 1

n
logP (εK) = a, (65)

which completes the proof.

Next, we present a corollary that immediately follows from
Theorem 2 to provide the sub-decoder learning rates when
sequential best guessing is used at the relays. This result will
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aide in characterizing the learning rates with the weighted
fusion strategy in the next section.

Corollary 1 ( [13, Thm. 2]). For source message θ, sub-
decoder i commits an error if θ̂i,K = Maj (ṽi) 6= θ. The
sub-decoder learning rate with sequential best guessing at the
relays is

`SGi (pi, qi) = inf
ρ∈[0,1]

{
ρDkl(0.5||pi) + Î(ρ, qi)

}
, (66)

where Î(ρ, qi) = infw∈[0,0.5] Iρ(w, qi), and Iρ(w, qi) is de-
fined in (48).

Proof. The result follows immediately from Theorem 2 when
M = 1. The single S→R and R→D crossover probabilities
are pi and qi, respectively. The Bernoulli mixture rate function
is specialized to the single-relay form in (48), which is also
derived in [13, Lem. 4].

Note that Corollary 1 is proven in [13, Thm. 2], which only
studied the single relay. In our work, we derive the corollary
as a specialization of the general M -relay setting.

For simple forwarding at the relays with full matrix fusion
at the destination, the learning rate is a straightforward appli-
cation of Lemma 3. With simple forwarding, bits arriving to
the destination from relay i are i.i.d. with crossover probability
pi ∗ qi = pi(1− qi) + qi(1− pi), since the relay is forwarding
its received bits with no processing. Letting

P ∗ Q = (p1 ∗ q1, p2 ∗ q2, . . . , pM ∗ qM ) (67)

be the crossover probabilities of the M parallel channels when
the links from the relays to the destination are viewed as
superchannels, the learning rate, denoted by LFSF (P ,Q), is

LFSF (P ,Q) = Î (0,P ∗ Q) = inf
w∈[0,0.5]

I0 (w,P ∗ Q) . (68)

C. Spatial Diversity Gains

When pi = p and qi = q for all i ∈ [1,M ], the learning
rate for sequential best guessing and simple forwarding at the
relays with full matrix fusion at the destination simplifies due
to the symmetry of the M identical relaying channels. For the
sequential best guessing case, we have

LFSG(P ,Q) = M inf
ρ∈[0,1]

{
ρDkl(0.5||p) + Î (ρ, q)

}
, (69)

i.e., the learning rate of a single sub-decoder times the number
of relays. For simple forwarding, the learning rate becomes

LFSF (P ,Q) =MÎ(0, p ∗ q) = MDkl(0.5||p ∗ q). (70)

Denoting ΥF
SG(p, q,M) and ΥF

SF (p, q,M) as the diversity
gains of the alternative relaying schemes paired with full ma-
trix fusion, both schemes attain the maximum spatial diversity

ΥF
SG(p, q,M) = ΥF

SF (p, q,M) = M. (71)

VII. LEARNING RATE OF WEIGHTED FUSION

In this section, we derive the exact asymptotic learning rates
of both simple forwarding and sequential best guessing at
the relays paired with the weighted fusion strategies at the
destination.

A. Statement of the Results

The LTF function (see (40)) used for weighted fusion
is characterized by a vector Π ∈ RM+1. Without loss of
generality, let εK be the error event that θ̂K = 1, assuming
θ = 0 was sent. Let εi,K be the error event θ̂i,K 6= θ of
sub-decoder i. Let ϕi,K = P (εi,K) be the error probability of
sub-decoder i. The final decoding decision error probability is

P (εK) =
M∑
k1=0

( ∑
A∈Tk1

( ∏
k2∈A

ϕk2,K
∏
k3∈Ac

(1− ϕk3,K)

)

· χ (A,Π)

)
, (72)

where

χ (A,Π) = I

(
π0 +

∑
k′∈Ac

πk′ −
∑
k∈A

πk < 0

)
, (73)

Tk is defined as the set of all subsets of k integers than can
be chosen from [1,M ], Ac = [1,M ]\A is the complement of
set A, and I (·) is the indicator function.

The error probability (72) takes the sum over all possi-
ble sub-decoder outcomes θ̂K ∈ {0, 1}M , weighting each
probability term by a 0 or 1, depending on whether the
LTF is less than 0 (when the decoder outputs the incorrect
message estimate θ̂K = 1 given that θ = 0 was sent). In the
following theorem, we assume that sequential best guessing
is used at the relays, thus the sub-decoder learning rates are
{`SGi (pi, qi)}Mi=1, which are derived in Corollary 1. The results
in Theorem 3 are readily extended to simple forwarding at
the relays by substituting the sub-decoder learning rates with
{`SFi (pi, qi)}Mi=1, where the sub-decoder learning rates are

`SFi (pi, qi) = Dkl(0.5||pi ∗ qi). (74)

Theorem 3. Let {`SGi (pi, qi)}Mi=1 be the learning rates of the
M sub-decoders when using sequential best guessing at the
relays, and let Π be the vector defining the weighted fusion
function. The learning rate of the final decoding decision,
denoted LΠ

SG(P ,Q), is

LΠ
SG(P ,Q) = min

{∑
k∈A

`SGk (pk, qk)

∣∣∣∣∣A ∈ Ti,
i ∈ [1,M ], χ(A,Π) = 1

}
, (75)

where χ (A,Π) is defined in (73).

Proof. Let Ni divide the interval (0, n] into subintervals,
denoted by {Fj}Ni−1

j=0 as defined in (52), for each i ∈ [1,M ].
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The i-th parallel sub-decoder’s learning rate and upper and
lower bounds are reiterated as follows:

ai= inf
x∈[0,1]

{
xDkl(0.5||pi) + Î(x, qi)

}
,

ai,∗

= inf
j∈[0,Ni−1]

{
Ni − j − 1

Ni
Dkl(0.5||pi) + Î

(
Ni − j
Ni

, qi

)}
,

ai,∗

= inf
j∈[0,Ni−1]

{
Ni−j−1

Ni
Dkl(0.5||pi)+Î

(
Ni−j−1

Ni
, qi

)}
.

Given an arbitrary constant ε3 > 0 and pi, we choose Ni =
Ni(ε3, pi) so that

max
{∣∣ai − ai,∗∣∣ , |ai − ai,∗|} < ε3 (76)

is satisfied. For arbitrary ε1, ε2 > 0, by selecting N =
max{N1, N2, . . . , NM}, then there exists some sufficiently
large n∗ ∈ N such that

ϕi,K = P (εi,K) ≤ Ne−n(ai−ε1−ε2−ε3), (77)

ϕi,K = P (εi,K) ≥ e−n(ai+ε1+ε2+ε3), (78)

for all n ≥ n∗ and each i ∈ [1,M ].
Applying the upper and lower bounds in (77)–(78), the error

probability is upper bounded by

P (εK) ≤
M∑
k1=0

( ∑
A∈Tk1

( ∏
k2∈A

ςk2,K
∏
k3∈Ac

(1− %k3,K)

)

· χ (A,Π)

)
=PUB,K , (79)

where

ςk,K = Ne−n(ak−ε1−ε2−ε3), %k,K = e−n(ak+ε1+ε2+ε3),

and is similarly lower bounded by

P (εK) ≥
M∑
k1=0

( ∑
A∈Tk1

( ∏
k2∈A

%k2,K
∏
k3∈Ac

(1− ςk3,K)

)

· χ (A,Π)

)
=PLB,K . (80)

For functions of the form

f̃(n) =
U∑
u=0

Cue
−dun

 ∏
u′∈A(u)

(
1− e−mu′n

) , (81)

where A(u) is any finite set of positive integers determined
by u, Cu and mu′ are positive constants for all u and u′, and
d0 = 0, we have that by taking the logarithm, dividing by −n,
and taking the limit as n → ∞, the smallest exponent of the
{du}Uu=1 terms is extracted, i.e.,

lim
n→∞

− 1

n
log f̃(n) = min {d1, d2, . . . , dU}. (82)

With the bounds on the probability of decoding error, by
taking the logarithm, dividing by −n, and taking the limit,
the property (82) can be applied to obtain

lim
n→∞

− 1

n
logPUB,K

≥ min

{∑
k∈A

ak : A ∈ Ti, i ∈ [1,M ], χ (A,Π) = 1

}
− (ε1 + ε2 + ε3) Ψ, (83)

where Ψ ∈ N is a finite positive integer, dependent on the
behavior of the LTF. Similarly,

lim
n→∞

− 1

n
logPLB,K

≤ min

{∑
k∈A

ak : A ∈ Ti, i ∈ [1,M ], χ (A,Π) = 1

}
+ (ε1 + ε2 + ε3) Ψ. (84)

As a consequence of (83) and (84), the learning rate is
bounded by∣∣∣∣− 1

n
logP (εK)− LΠ

SG(P ,Q)

∣∣∣∣ ≤ (ε1 + ε2 + ε3)Ψ, (85)

for sufficiently large n. This entails that

lim
n→∞

− 1

n
logP (εK) = LΠ

SG(P ,Q), (86)

since ε1, ε2, and ε3 are arbitrary. This completes the proof.

Analogously, the learning rate using simple forwarding at
the relays and weighted fusion at the destination, denoted
LΠ
SF (P ,Q), is obtained by exchanging the learning rates

`SGi (pi, qi) with `SFi (pi, qi) for all i ∈ [1,M ], i.e.,

LΠ
SF (P ,Q) = min

{∑
k∈A

`SFk (pk, qk)

∣∣∣∣∣A ∈ Ti,
i ∈ [1,M ], χ(A,Π) = 1

}
. (87)

The learning rates with weighted fusion are dictated by a
subset of sub-decoder outcomes θ̂K ∈ {0, 1}M producing
an incorrect final decoding decision, i.e., θ̂K 6= θ. For
each incorrect sub-decoder outcome θ̂K , the learning rates of
the individually incorrect sub-decoders are summed, and the
learning rate with weighted fusion is the minimum of these
sums. This aligns with the learning rate being governed by the
worst-case behavior.

Substituting the optimal weights in (42), the learning rate
of optimally-weighted fusion with sequential best guessing is

LΠ∗

SG(P ,Q) = min

{∑
k∈A

`SGk (pk, qk)

∣∣∣∣∣A ∈ Ti,
i ∈ [1,M ], ΦSG(A) = 1

}
, (88)

where

ΦSG(A) = I

( ∑
k′∈Ac

`SGk′ (pk′ , qk′)−
∑
k∈A

`SGk (pk, qk) < 0

)
.
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Substituting the optimal weights given in (41), the learning
rate of optimally-weighted fusion with simple forwarding at
the relays is

LΠ∗

SF (P ,Q) = min

{∑
k∈A

`SFk (pk, qk)

∣∣∣∣∣A ∈ Ti,
i ∈ [1,M ], ΦSF (A) = 1

}
, (89)

where

ΦSF (A) = I

( ∑
k′∈Ac

`SFk′ (pk′ , qk′)−
∑
k∈A

`SFk (pk, qk) < 0

)
.

B. Spatial Diversity Gains

When the crossover probabilities satisfy pi = p and qi = q
for all i ∈ [1,M ], we denote the sub-decoder learning rates for
sequential best guessing and simple forwarding as `SG(p, q)
and `SF (p, q), respectively. This implies that `SGi (pi, qi) =
`SG(p, q) and `SFi (pi, qi) = `SF (p, q) for all i ∈ [1,M ].
In this case, a direct comparison can be made between M
relays (using optimally-weighted fusion) and a single relay
(using majority voting at the destination). Specifically, the
optimally-weighted fusion strategy reduces to a majority vote
over the M sub-decoder outputs. In this case, the learning
rates LΠ∗

SG(P ,Q) and LΠ∗

SF (P ,Q) simplify to

LΠ∗

SG(P ,Q) = min
{
|A|`SG(p, q)

∣∣A ∈ Ti, i ∈ [1,M ],

ΦSG(A) = 1
}

=

⌈
M

2

⌉
`SG(p, q),

LΠ∗

SF (P ,Q) = min
{
|A|`SF (p, q)

∣∣A ∈ Ti, i ∈ [1,M ],

ΦSF (A) = 1
}

=

⌈
M

2

⌉
`SF (p, q),

since the smallest sets A satisfying ΦSG(A) = 1 and
ΦSF (A) = 1 are of size |A| = dM/2e when the sub-decoder
learning rates across M relays are identical. Leveraging this
fact, we denote the diversity gains of optimally-weighted
fusion with sequential best guessing and simple forwarding,
respectively, as ΥΠ∗

SG(p, q,M) and ΥΠ∗

SF (p, q,M), which equal

ΥΠ∗

SG(p, q,M) = ΥΠ∗

SF (p, q,M) =

⌈
M

2

⌉
, (90)

Therefore, the full diversity gain of M is not achieved when
the alternative relaying strategies are paired with optimally-
weighted fusion at the destination.

VIII. MULTI-RELAY SCALING BEHAVIOR

In this section, we investigate the multi-relay scaling behav-
ior. To formalize, let p and q be the S→R andR→D crossover
probabilities, respectively, of the single-relay channels. We
parameterize the M -relay crossover probabilities by

pi (M,p, α) =
1

2
−

1
2 − p
Mα

, qi (M, q, α) =
1

2
−

1
2 − q
Mα

,

(91)

for i ∈ [1,M ]. We use P(M,p, α) to denote the setting
that all M S → R channels are of crossover probability
pi(M,p, α). Similarly, we define Q(M, q, α). Two remarks
are in order. First, the crossover probabilities of the same
link types are equal. Second, parameterization as a function
of M ensures that the quality of channels decreases as the
number of relays grows. The parameter α > 0 controls
how rapidly the crossover probabilities become completely
unreliable. We note that the parameterization of pi(M,p, α)
and qi(M, q, α) in (91) using Mα is a modeling choice.
However, this parameterization is extremely general and not
restrictive. In fact, by analyzing the behavior of learning rates
as M → ∞ with different parameterizations of crossover
probabilities (e.g., M ! or logM instead of Mα for various
values of α > 0), we can compare the learning rates to
known convergent or divergent sequences of learning rates
parameterized by Mα and quickly identify the asymptotic
behavior of the learning rates.
Optimal Scheme: Since the maximizer of pi(M,p, α) or
qi(M, q, α) is the same for any M , the learning rate of the
optimal scheme becomes

Lopt (P(M,p, α),Q(M, q, α))

= MDkl

(
0.5

∣∣∣∣∣∣∣∣12 − 1
2 −max{p, q}

Mα

)
. (92)

With the form of equation (92), we observe several interesting
behaviors of the asymptotic learning rate in the next lemma.

Lemma 4. For the learning rate in (92), the behavior as the
number of relays M →∞ is

lim
M→∞

Lopt(P(M,p, α),Q(M, q, α))

=


+∞, α < 0.5,

2
(

1
2 −max{p, q}

)2
, α = 0.5,

0, α > 0.5.

(93)

Proof. See Appendix D.

The growth rate α = 0.5 behaves as a critical point, and
when α < 0.5, the learning rate grows unbounded, indicating
that spatial diversity gains outweigh the pace of channel
degradation.
Simple Forwarding: For tractability, we restrict the crossover
probabilities to pi(M, t, α) = qi(M, t, α), for t ∈ [0, 0.5).
With optimally-weighted fusion, equal weights are assigned
to each sub-decoder, and the learning rate with M relays is

LΠ∗

SF (P(M, t, α),Q(M, t, α))

=

⌈
M

2

⌉
Dkl

(
0.5

∣∣∣∣∣∣∣∣(1

2
−

1
2 − t
Mα

)
∗
(

1

2
−

1
2 − t
Mα

))
.

(94)
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Lemma 5. For simple forwarding with optimally-weighted
fusion, where pi(M, t, α) = qi(M, t, α) for some t ∈ [0, 0.5),
the learning rate as the number of relays M →∞ is

lim
M→∞

LΠ∗

SF (P(M, t, α),Q(M, t, α))

=


+∞, α < 1/4,

4
(

1
2 − t

)4
, α = 1/4

0, α > 1/4.

Proof. See Appendix E.

For simple forwarding with optimally-weighted fusion, the
critical point is α = 1/4, which shows reduced resiliency
against channel degradation when compared to the optimal
scheme.

When pi(M, t, α) = qi(M, t, α), the learning rate of simple
forwarding with full matrix fusion simplifies to

LFSF (P(M, t, α),Q(M, t, α))

= MDkl

(
0.5

∣∣∣∣∣∣∣∣(1

2
−

1
2 − t
Mα

)
∗
(

1

2
−

1
2 − t
Mα

))
,

which is the same form as (94), except the scaling by M rather
than dM/2e due to the improved spatial diversity gain. Thus,
Lemma 5 can be applied to the asymptotic behavior of simple
forwarding with full matrix fusion as

lim
M→∞

LFSF (P(M, t, α),Q(M, t, α))

=


+∞, α < 1/4,

8
(

1
2 − t

)4
, α = 1/4,

0, α > 1/4.

Sequential Best Guessing: The scaling behavior with se-
quential best guessing is difficult to characterize due to
the complicated learning rate expressions. However, when
pi(M, t, α) = qi(M, t, α) for t ∈ [0, 0.5), the learning rates
simplify to scaled versions of the single-relay learning rates.
Let t(M,α) = 1

2 −
1
2−t
Mα be the crossover probability of all

links as a function of M . The learning rates become

LΠ∗

SG (P(M, t, α),Q(M, t, α))

=

⌈
M

2

⌉
inf

ρ∈[0,1]

{
ρDkl(0.5||t(M,α)) + Î(ρ, t(M,α))

}
,

LFSG (P(M, t, α),Q(M, t, α))

= M inf
ρ∈[0,1]

{
ρDkl(0.5||t(M,α)) + Î(ρ, t(M,α))

}
.

Fig. 4a depicts the learning rate of sequential best guessing
with full matrix fusion (denoted SBG + FMF in the figure) as
the number of relays increases and demonstrates that α = 0.5
is a critical point.2 For α = 0.5, the learning rate converges
to a positive constant depending on the channel parameters.
For α > 0.5, it decays to zero. For α < 0.5, the learning rate
grows unbounded, showing resiliency to channel degradation
on par with the optimal scheme.

2Note that the same behavior is observed with optimally-weighted fusion,
as the only difference is the diversity gain as a scaling factor.
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(a) SBG + FMF vs. M for various α values.
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(b) Comparison of the optimal and alternative schemes.

Fig. 4: (a) Learning rate of SBG + FMF vs. M ; (b) Learning rates of
the optimal and alternative schemes for M=5, with pi=p and qi=q
for all i ∈ [1,M ].

Lastly, we clarify that for Fig. 4a and all remaining figures,
we use the following notation to improve readability: simple
forwarding (SF), sequential best guessing (SBG), full matrix
fusion (FMF), and optimally-weighted fusion (OWF).

IX. PERFORMANCE COMPARISON AND CHANNEL
INFLUENCE

A. Comparison of Relaying and Decoding Strategies

We first compare the learning rates of the various strategies.
For M = 5 relays, we select pi = p and qi = p for all
i ∈ [1,M ], and vary p ∈ [0, 0.5). As Fig. 4b confirms, the op-
timal scheme always yields the largest learning rate of all the
schemes. For both full matrix and optimally-weighted fusion
at the destination, the learning rates with simple forwarding
dominate sequential best guessing when the noise parameter
is small. However, as p increases, sequential best guessing has
the higher learning rate.

Next, we compare the learning rates of simple forwarding
and sequential best guessing at the relays with optimally-

14

This article has been accepted for publication in IEEE Transactions on Information Theory. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TIT.2023.3292356

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.  See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Purdue University. Downloaded on September 04,2023 at 17:58:42 UTC from IEEE Xplore.  Restrictions apply. 



(a) Higher learning rate: blue = SF+OWF; yellow = SBG+OWF
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Fig. 5: (a) Learning rate comparison of SF + OWF and SBG + OWF;
(b) Learning rate comparison of SBG + FMF and SBG + OWF.

weighted fusion at the destination.3 We set M=5, and
parameterize the S→R and R→D channel parameters as
P = [p, p/2, p/3, p/4, p/5] and Q = [q, q/2, q/3, q/4, q/5],
respectively, so that the channel qualities among the M
relays vary, hence the sub-decoders have different weights.
Fig. 5a shows that the superior relaying protocol depends on
the crossover probabilities. Optimally-weighted fusion applies
more weight to more reliable sub-decoders. Simple forwarding
dominates when the crossover probabilities are low (Fig. 5a
for p, q ∈ [0, 0.05]). Thus, simple forwarding dominates over
a wider range of channel parameters, due to assigning more
weight to the superior sub-decoders.

In Fig. 5b, we compare full matrix and optimally-weighted
fusion for M=5 relays employing sequential best guessing.
The S → R crossover probabilities are P = [p, p, p, p, p/100],
with p ∈ [0, 0.5). We set Q = P , so that the reliability of
the first four relaying channels are equal, and the fifth relay
channel has links with 100× higher reliability. For small p,
the learning rate is higher with full matrix fusion, since a final

3We omit a comparison of the alternative relaying strategies paired with
full matrix fusion due to the high degree of similarity seen with optimally-
weighted fusion.

decoding decision is made with all generally reliable bits of the
received signal matrix. This outperforms optimally-weighted
fusion, since the sub-decoders quantize information. As p
increases, performance with full matrix fusion is throttled due
to four unreliable relay channels outvoting the single reliable
channel. Conversely, optimally-weighted fusion adjusts the
sub-decoder weights to largely ignore unreliable outcomes,
leading to a higher learning rate than full matrix fusion in
the high-noise regime.

B. Influence of Channel Parameters

Consider the superchannel noise of relay channel i, given
by si = pi ∗ qi = pi(1− qi) + qi(1− pi). For a fixed value of
si ∈ [0, 0.5), the set that gives the same superchannel noise is

S(si) =

{(
r,
si − r
1− 2r

) ∣∣∣∣ r ∈ [0, si]

}
. (95)

The superchannel noise si of relay channel i represents the
effective single crossover probability between the source and
destination if relay i employs simple forwarding. It allows
for simple forwarding (the simplest relaying strategy) to act
as a benchmark for comparing the influence of the channel
parameters. Using simple forwarding, any combination of
crossover probabilities belonging to S(si) will induce identical
distributions of the received signal vi at the destination. In
contrast, any combination of crossover probabilities that is not
a member of S(si) will result in a different distribution of vi
at the destination. Therefore, the set S(si) encompasses all
possible crossover pairs that induce a particular distribution
in vi when simple forwarding is used, making it suitable for
comparing the influence of the channel parameters. Given si
and a joint relaying and destination decoding strategy, we wish
to determine which allocation of noise, i.e., (p∗i , q

∗
i ) ∈ S(si),

maximizes the learning rate.
Optimal Scheme: For the optimal scheme, the noise allocation
is in closed form. Recall the learning rate Lopt (P ,Q) =∑M
i=1Dkl(0.5||max{pi, qi}). For each i ∈ [1,M ], the optimal

noise allocation is

p∗i = min
r∈[0,si]

max

{
r,
si − r
1− 2r

}
, q∗i =

si − p∗i
1− 2p∗i

, (96)

which simplifies to choosing p∗i = q∗i = t∗i , where t∗i satisfies
2t∗i (1 − t∗i ) = si, and t∗i ∈ [0, 0.5). Thus, when using the
optimal scheme and given superchannel noises {si}Mi=1, the
learning rate is largest when the reliability of the i-th S → R
and R → D links are equal. In other words, the noise should
be equally distributed for a total superchannel noise.
Alternative Schemes: First, we consider optimally-weighted
fusion with simple forwarding and sequential best guessing
at the relays. For simple forwarding, the sub-decoder learning
rates are `SFi (pi, qi) = Dkl(0.5||pi ∗ qi), for each i ∈ [1,M ].
Thus for a given superchannel noise si = pi ∗ qi, the learning
rate is unchanged by the specific allocation (pi, qi) ∈ S(si).
With sequential best guessing, however, we observe in Fig.
6a, for a multitude of superchannel values si, that the learning
rate of sub-decoder i is maximized when the S → R crossover
probability pi is smaller than theR → D crossover probability
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(a) Sub-decoder learning rate of SBG vs. pi.
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Fig. 6: (a) Sub-decoder learning rate with SBG vs. pi. Implicitly,
qi = (si − pi)/(1 − 2pi). Each sub-plot indicates the crossover
probabilities of the maximum learning rate. (b) Learning rate of SBG
+ FMF vs. p1 of the first relay channel (for M = 2 relays with
superchannel noises s1 = 0.14 and s2 = 0.18). Implicitly, q1 =
(s1−p1)/(1−2p1). Shown for two cases of fixed channel parameters,
(pa2 , q

a
2 ) and (pb2, q

b
2), on the second relay channel.

qi. In essence, given the superchannel value, higher reliability
should be allocated to the S → R link.

Next, we consider full matrix fusion with the alternative
relaying strategies. With simple forwarding at the relays, the
learning rate with full matrix fusion is LFSF (P ,Q) = Î(0,P ∗
Q), which remains unchanged by the specific allocations
(pi, qi) ∈ S(si). For full matrix fusion with sequential best
guessing, however, the noise allocation is not definitive. Con-
sider M = 2 relays and superchannel noise values s1 = 0.14
and s2 = 0.18. Fig. 6b shows how the learning rate changes
with p1 (and implicitly q1) for two cases of channel parameters
on the second relay channel, namely, (pa2 , q

a
2 ) = (0.1, 0.1) and

(pb2, q
b
2) = (0.06, 0.1364). For (pa2 , q

a
2 ), the learning rate is

maximized when the R → D link is more reliable than the
S → R link on the first relay channel. For (pb2, q

b
2), learning

rate is maximized when the S → R link is more reliable.

X. CONCLUSION

In this paper, we studied the joint design of distributed
relaying and destination decoding strategies. Generalizing the
teaching and learning framework, we upper bounded the
learning rate of the final decoding decision at the destina-
tion and showed that an M parallel-relay generalization of
the scheme in [15] achieves the optimal learning rate. To
address implementation shortcomings of the asymptotically
optimal scheme, we analyzed alternative strategies. Lastly, we
compared the performance of all strategies, investigated the
influence of the channel parameters, and explored multi-relay
scaling behavior to quantify spatial diversity gains.

APPENDIX A
PROOF OF THEOREM 1

For given channel parameters P and Q, consider a subset
given by

U (P ,Q) =
{

(s, r) ∈ [0, 0.5)M × [0, 0.5)M
∣∣∣

(si, ri) ∈ {(pi, 0), (0, qi)} , ∀i ∈ [1,M ]
}
.

(97)

We construct the subset by hard-wiring one of the S→R or
R→D crossover probabilities to be zero for each relay channel
i ∈ [1,M ]. If si = 0 and ri = qi, the i-th S → R link is
perfectly reliable, and relay i learns θ ∈ {0, 1} from the first
channel use. Thus, relay i can perform simple forwarding,
which is equivalent to transmitting the correct codeword c
from relay i to the destination. If si = pi and ri = 0, the i-th
R→D link is perfectly reliable, and the signal vi received at
the destination equals zi. Thus, relay i does not need to correct
bits in its received signal, and any additional processing used
to form the transmitted signal zi is unnecessary.

Thus for (s, r) ∈ U(P ,Q), the relays can perform simple
forwarding with ML decoding at the destination to minimize
the error probability [32]. Following this joint strategy, for any
(s, r) ∈ U(P ,Q), the link between the source and the destina-
tion behaves as a set of M parallel and independent point-to-
point BSCs, whose i-th crossover probability is max{si, ri}.
In this equivalent M -output system, the learning rate is

LUB(s, r) =
M∑
i=1

Dkl(0.5||max{si, ri}), (98)

which follows from the Gärtner-Ellis theorem [29]. Specif-
ically, the Gärtner-Ellis theorem can be used to de-
termine the learning rate of the i-th branch (namely,
Dkl(0.5||max{si, ri})) of the equivalent M -output system.
This is done by first determining the scaled cumulant gen-
erating function of a sequence of n i.i.d. Bernoulli random
variables with crossover probability max{si, ri} and taking
the Legendre-Fenchel transform [29]. Since each of the M
parallel branches are independent, the learning rates sum
together, as in (98).4

4See the proof of Lemma 3 in Appendix C for an example of using the
Gärtner-Ellis theorem on an M -output system, with each parallel branch
consisting of a sequence of independent (but not necessarily identical)
Bernoulli random variables.
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Since any (s, r) ∈ U(P ,Q) either retains or improves the
reliability of every S → R and R → D BSC characterized
by channel parameters P and Q, the learning rate of any
joint relaying and destination decoding scheme with channel
parameters P and Q satisfies

L(P ,Q) ≤ LUB(s, r), ∀(s, r) ∈ U(P ,Q). (99)

Letting

L∗(P ,Q) = min
(s,r)∈U(P,Q)

LUB(s, r)

=
M∑
i=1

Dkl(0.5||max{pi, qi}), (100)

then by (99), we have

L(P ,Q)≤L∗(P ,Q) =
M∑
i=1

Dkl(0.5||max{pi, qi}), (101)

completing the proof.

APPENDIX B
PROOF OF LEMMA 1

When the destination makes a final decoding decision with
sub-decoder outcomes θ̂K , the error probability is minimized
with a likelihood ratio test [32]. Since sub-decoder outcomes
are independent when conditioned on θ, we have

θ̂K =


0,

∏M
i=1 P(θ̂i,K |θ=0)∏M
i=1 P(θ̂i,K |θ=1)

≥ 1,

1,
∏M
i=1 P(θ̂i,K |θ=0)∏M
i=1 P(θ̂i,K |θ=1)

< 1.

(102)

Taking the logarithm of the likelihood ratios and dividing by
−n, the test is re-expressed as

θ̂K =


0, − 1

n

∑M
i=1 log

P(θ̂i,K | θ=0)
P(θ̂i,K | θ=1)

≤ 0,

1, − 1
n

∑M
i=1 log

P(θ̂i,K | θ=0)
P(θ̂i,K | θ=1)

> 0.
(103)

Let {`i}Mi=1 be generic sub-decoder learning rates. As n→∞,
the test reduces to

θ̂K =

{
0,

∑M
i=1(−1)θ̂i,K `i ≥ 0,

1,
∑M
i=1(−1)θ̂i,K `i < 0.

(104)

By substituting generic sub-decoder learning rates according
to the relaying strategy used, the results (41) and (42) are
obtained, completing the proof.

APPENDIX C
PROOF OF LEMMA 3

Since the Ui,j and Vi,j terms are independent Bernoulli
random variables, we can use the moment generating function
(MGF) of the Bernoulli distribution to derive the scaled
cumulant generating (SCGF) function of W̄ . The MGF of a
generic Bernoulli random variable X ∈ {0, 1} with success

probability ω ∈ [0, 1] is E
[
eλX

]
= eλω + 1−ω. Therefore,

the SGCF of W̄ is

Λ(λ) = lim
n→∞

1

n
logE

[
enλW̄

]

= lim
n→∞

logE
[
e
λ
M

{∑M
i=1

(∑n−bρinc
j=1 Ui,j+

∑bρinc
j=1 Vi,j

)}]
n

(a)
=

M∑
i=1

(
ρ̄i log

(
e
λ
M q̄i+qi

)
+ρi log

(
e
λ
M qi+q̄i

))
,

(105)

where (a) follows from the MGFs of independent Bernoulli
random variables and evaluating the limit. Since Λ(λ) is
differentiable for λ ∈ R, then W̄ satisfies the large deviation
principle. Letting ρ = (ρ1, ρ2, . . . , ρM ), we denote the rate
function of W̄ as Iρ (w,Q), which is determined via the
Gärtner-Ellis theorem by taking the Legendre-Fenchel trans-
form of Λ(λ) [29], i.e.,

Iρ (w,Q) = sup
λ∈R
{λw − Λ(λ)}

= sup
λ∈R

{
λw −

M∑
i=1

(
ρ̄i log

(
eλ/M q̄i + qi

)
+ ρi log

(
eλ/Mqi + q̄i

))}
. (106)

Since Λ(λ) is strictly convex with respect to λ ∈ R, the unique
supremum in (106) is achieved by differentiating λw − Λ(λ)
with respect to λ, i.e.,

d [λw − Λ(λ)]

dλ

= w − 1

M

[
M∑
i=1

(
ρ̄i

eλ/M q̄i
eλ/M q̄i + qi

+ ρi
eλ/Mqi

eλ/Mqi + q̄i

)]
,

(107)

setting d [λw − Λ(λ)] /dλ = 0, and solving for λ. This
completes the proof.

APPENDIX D
PROOF OF LEMMA 4

The asymptotic learning rate of (92) can be expressed as

lim
M→∞

Lopt(P(M,p, α),Q(M, q, α))

(a)
= lim

M→∞
−1

2
log

(1−
4
(

1
2 −max{p, q}

)2
M2α

)M2α
M
M2α

(b)
= lim
M→∞

2
(

1
2 −max{p, q}

)2
M2α−1

, (108)
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where (a) follows from algebraic manipulation, and (b) follows
from applying the limit definition of the exponential function.
The convergence of the limit depends on α as

lim
M→∞

2
(

1
2 −max{p, q}

)2
M2α−1

=


+∞, α < 0.5,

2
(

1
2 −max{p, q}

)2
, α = 0.5,

0, α > 0.5.

(109)

APPENDIX E
PROOF OF LEMMA 5

The asymptotic learning rate of (94) can be expressed as

lim
M→∞

LΠ∗

SF (P(M, t, α),Q(M, t, α))

(a)
= lim

M→∞
−M

4
log

(
1−

16
(

1
2 − t

)4
M4α

)

(b)
= lim
M→∞

−1

4
log

(1−
16
(

1
2 − t

)4
M4α

)M4α
1

M4α−1

(c)
= lim
M→∞

4
(

1
2 − t

)4
M4α−1

, (110)

where parts (a)–(b) follow from algebraic manipulation. Part
(c) follows from the limit definition of the exponential func-
tion. The convergence of the limit depends on α as

lim
M→∞

4
(

1
2 − t

)4
M4α−1

=


+∞, α < 1/4,

4
(

1
2 − t

)4
, α = 1/4,

0, α > 1/4.

(111)
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