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Abstract

We study the problem of learning a linear system model from the observations of M clients.
The catch: Each client is observing data from a different dynamical system. This work
addresses the question of how multiple clients collaboratively learn dynamical models in
the presence of heterogeneity. We pose this problem as a federated learning problem and
characterize the tension between achievable performance and system heterogeneity. Fur-
thermore, our federated sample complexity result provides a constant factor improvement
over the single agent setting. Finally, we describe a meta federated learning algorithm,
FedSysID, that leverages existing federated algorithms at the client level.

Keywords: Federated learning; System identification; System heterogeneity

1. Introduction

The system identification problem aims to estimate the parameters of a dynamical system
from observed data. The data can take many forms, however, we focus on data sets com-
prised of a given sequence of input-state trajectories. System identification plays a crucial
role in a diverse set of applications including time-series analysis, control theory, robotics,
and reinforcement learning. Motivated by trends in big data and the explosion in IoT de-
vices, there has been an increasing interest in finite-sample complexity and non-asymptotic
analysis. This line of works can broadly be divided into two categories: i) learning fully
observed linear time-invariant (LTI) systems (Sarkar and Rakhlin, 2019; Dean et al., 2020;
Simchowitz et al., 2018); ii) learning partially observed LTI systems (Oymak and Ozay,
2019; Sun et al., 2020; Zheng and Li, 2020; Simchowitz et al., 2019). Despite the mature
body of the literature on the finite-sample properties for system identification, it appears
that a non-asymptotic convergence rate of ﬁ, where N is the number of observed trajec-
tories, is a hard limit. Such dependence on the number of trajectories places a limit on the
scalability of standard techniques for applications where sampling different trajectories is a
distinctly difficult and costly task (e.g., large-scale and safety-critical systems).

To circumvent this apparent fundamental sample-efficiency limit, we propose a modified
problem setting where multiple similar agents, orchestrated by a central server, collaborate
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to learn, from a broad data set, a common model that fits all of them well. To achieve this,
we leverage the popular federated learning (FL) paradigm (Koneény et al., 2016a; McMahan
et al., 2017b). Federated learning (FL) is a machine-learning setting where multiple clients
collaborate to train a model under the coordination of a central server. By allowing data to
be stored client-side, the FL paradigm has many favorable privacy properties and achieves
almost the same performance guarantees as centralized methods. Canonical examples of FL
include building treatment outcome models from patients’ medical records (without sharing
the sensitive data) and creating predictive text models from an ensemble of cell phone users.
Compared to traditional distributed optimization, one key challenge and characteristic of
FL is heterogeneity; both in an objective and statistical sense. In the system identification
problem we pose, this heterogeneity manifests through the fact that each client observes a
similar (but not identical) dynamical system.

We formulate an offline federated system identification problem. Our problem assumes
a central server connected to M clients. The objective is to identify a linear dynamical
system model based on observational data held locally by the M clients. The catch - clients
observe trajectories from different systems. Specifically, each client observes N; trajectories
generated by a system, with the assumption that all the systems are “similar” to each other.
Motivating examples of this scenario include modeling multiple autonomous vehicles that
operate in similar dynamic environments, based on observations from a fleet of identical
vehicles. Our objective is to answer the following questions: i) Through collaboration,
can each client achieve an improved finite-time convergence guarantee? ii) How does the
heterogeneity of the observed systems influence the convergence rate?

Contributions

e Problem formulation: To the best of our knowledge, this is the first paper to
use the FL framework for system identification. We consider the case where clients
observe similar, but not identical, dynamical systems. Although we demonstrate
our solution technique by focusing on the problem of learning fully observed linear
dynamical systems from multiple trajectories, our framework can be easily extended to
analyze system identification problems with single trajectory, from partially observed
linear dynamical systems (Oymak and Ozay, 2019; Wang and Anderson, 2022), or
sparse dynamical system models (Fattahi et al., 2019). The latter can be solved via
FedADMM (Wang et al., 2022a).

e Improved convergence rate: Our solution provides a convergence rate that is a
constant factor better than if a single agent tries to learn a model independently.
In particular, the convergence rate is improved by a factor of /M, where M is the
number of clients, if each client has the same amount of local data. As the number of
agents increases, the benefit from collaboration increases. Since the number of clients
in FL is usually large, the benefit from collaboration always shows up.

e Influence of heterogeneity: We assume that the systems participating in the col-
laboration are similar but not identical. We provide a theoretical analysis of how the
dissimilarity amongst those systems influences the non-asymptotic convergence rate
of the proposed technique.
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e Meta Algorithm: We present FedSysID, a federated learning algorithm to solve
the proposed system identification problem. FedSysID can call any FL optimization
method as a subroutine. Furthermore, we analyze the convergence property of this
algorithm for the specific case of FedAvg (McMahan et al., 2017b) and FedLin (Mitra
et al., 2021).

Notation: Given a matrix A € R"™*", the Frobenius norm of A is denoted by ||A||r =

Tr(AAT). ||A|| corresponds to the spectral norm of A, namely, ||A|| = omax(A), where
Omax(A) is the largest singular value of A. Consider a symmetric matrix X, Apin(X) and
Amax(2) denote its minimum and maximum eigenvalues, respectively.

2. Related Work

System identification: Classically, system identification methods provided asymptotic
results, see for example (Ljung, 1998). Unfortunately, these results prove consistency using
the central limit theorem and law of large numbers type theorems, thus requiring the number
of data samples to tend to infinity. Finite-time (i.e., non-asymptotic) analysis of system
identification problems is now an active area of research. Subspace methods (Verhaegen and
Verdult, 2007; Van Overschee and De Moor, 2012) are often widely used in practice, however,
recent work (Jedra and Proutiere, 2020; Sarkar and Rakhlin, 2019; Simchowitz et al., 2018)
has shown that the least squares estimator (that we consider) is nearly-optimal in the
fully-observed setting using finite-time analysis. System theoretic properties quantifying
controllability (Dean et al., 2020; Tsiamis and Pappas, 2021) and stability (Sarkar and
Rakhlin, 2019) frequently appear in sample complexity bounds. Broadly, identification
techniques can be broken down into two categories, depending on whether they require
a single trajectory (most suitable for stable systems) or multiple trajectories (suitable for
unstable, requires the ability to reset the system). Upper and lower bounds on the sample
complexities for such algorithms are concisely reviewed in (Tsiamis et al., 2022). Specifically,
various algorithms are shown to have an O(ﬁ) upper bound on the sample complexity.
Our work is motivated by the results of (Xin et al., 2022), who introduced the idea of
learning system dynamics by leveraging data from a similar system. However, the authors
do not formulate the system identification problem in a federated manner. Moreover, they
did not establish a connection between their results and the centralized solution where the
system has access to the data sets from all the systems.

Federated learning (FL): FL is a distributed machine learning framework with the objec-
tive of training a model from multiple client’s data (McMahan et al., 2017a; Kairouz et al.,
2021). Motivated by the proliferation of Internet of Things (IoT) devices, FL aims to: i)
provide privacy by ensuring data does not leave the client device (Truex et al., 2019); ii)
reduce communication costs by reducing the volume of communication between the clients
and the server (Koneény et al., 2016b); iii) gracefully handle client dropout (Tran Dinh
et al., 2021; Wang et al., 2022a). Typical FL applications comprise of a massive number of
clients. Not all clients may be able to fully participate, for example, a cell phone may lose
signal and be forced to drop out; iv) handle data heterogeneity (Sahu et al., 2018) — the
distributions characterizing client data sets is likely to vary. Although peer-to-peer model
exists in the architecture of FL (Yang et al., 2019), we focus on the classical server-client
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model where a single server periodically aggregates data from its clients. Clients maintain
their own data and cannot communicate directly with each other. Numerous FL algorithms
have been developed and analyzed. While our algorithm is independent of a specific FL
implementation, we highlight results using the classical FedAvg (McMahan et al., 2017Db)
and the more recent FedLin (Mitra et al., 2021) which can handle data heterogeneity.

3. Centralized System Identification

Given state trajectory data, the centralized system identification problem is to learn a linear,
time-invariant invariant (LTI) system model that best fits the observations. The LTI model
takes the form

xt+1:Axt+But+wt, t:0,1,2,...,T*1 (1)

where z; € R", u; € R? and w; € R™ are the state, input, and process noise of the system at
time ¢, respectively. Moreover, it is assumed that {u:}7°, {w;};2, are independent and iden-
tically distributed random variables, namely, u; LR N (O, Uglp) and wy R N (0, afufn). It
is further assumed that the initial state xg N (0, agln). The state-input trajectory pair
{z¢,us} from a single experiment is referred to as a rollout. Multiple rollouts of length T are
allowed, with the resulting data set stored as {x;, ul,t}z:ol’ forl=1,...N, where [ denotes
I-th rollout and t denotes t-th time-step in the rollout. We work from the assumption that
the data set is generated by (1) and the objective is to provide estimates (A, B) of best fit.
We now revisit the standard least-square estimation procedure.

3.1. Least-Square Procedure

Denote © £ [ A B } € R™*("P) where A and B correspond to the ground truth system (1)

that generated the data. The augmented state input pair of rollout [ at time t, is 2, £

x .
[ ul’t ] € R™*?. Therefore, the state update x;¢41 can be written as
1t

$17t+1:@/2l7t+wl’t VlSZSNand()gth—l,

where z;; can be expanded recursively as follows

Uz,0 w0
T =Gy : + F : + Alzpg, t=1,2,...,T—1
U t—1 Wy t—1
with Gy £ [ A™'B A"?B ... Bland ;£ A"t AY2 ... [, |forallt>1.

Lemma 1 Let uj, wyy, and x;9 be drawn from i.i.d. Gaussian distributions. It holds for
ol (0,%), and for all t > 1, that

A O'aGt(Gt)T +O',L20Ft(Ft)T +0'Z-27xAt(At)T 0
N 0 021,

21t

hIV = 0.

Proof All proofs can be found in Wang et al. (2022b) (the extended version of this paper).
|
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For each rollout I, the data is concatenated as X; = [ T T ] e RT, 7, =
[ 21T-1 " 20 ] S R(n-l—p)XT’ and W; = [ wyr—1 -t Wi ] S R™7T We further
stack the data from all the rollouts to obtain the batch matrices X = [ X7 ... Xy ] IS
RN 7 =2 - Zy] € RPN and W = [ Wy -+ Wy | € RN,
Pulling it all together, the state, input noise, and model parameters are related via the
system of linear equations,

X=0Z+W.

From this system description, an estimate of system dynamics can be obtained by solving
the unconstrained least-square problem:

A~

©2 [ A B =argminggaxmn|X —0OZ|%. (2)
Proposition 2 ! (Dean et al., 2020) Assume we collect data from the linear, time-invariant
system initialized at rog = 0, using inputs u, ik N(O,JZIP) fort =1,--- T. Suppose
wy K (0,021,) and N > 8(n+ p) 4+ 161og(4/6). Thus, with probability at least 1 — 6,
the least squares estimator using only the final sample of each trajectory satisfies

max {4 — 4| | B~ B||} < 22 (1 + 2p) 1og(36/0)

VvV Amin (B7-1) N

The above proposition indicates that the estimation error for the least-squares method
scales as O(N _%) However, the magnitude of N is typically small due to the difficulty and
cost of collecting samples, especially for large-scale and safe-critical systems, leading us to
a large estimation error. In order to address this issue of insufficient data volume for sys-
tem identification, we exploit the federated learning (FL) framework, where N = Zf‘i 1 N
rollouts are generated from similar, but not idential LTI systems, that each generates IV;
rollouts. Moreover, the number of clients M is usually large, which enables each client
to borrow other clients’ data indirectly in order to achieve a better sample efficiency, e.g.

O(%), by participating in FL. and benefiting from the participation of other clients.
i=14V1

4. Federated System Identification

We now pose the federated system identification problem, introduce FedSysID - a federated
learning algorithm for system identification, and analyze its performance. Let there be M
clients collaborating to solve the system identification problem under the coordination of
a central server. We consider a client-server model of computation, i.e., there is no direct
communication between clients, and communication between the central server and client
only happens periodically. Each client observes and collects data from a separate dynamical
system that is assumed to follow the LTI system dynamics,

azgl = A(i)xgi) +B(i)u§i) +w§i) 5

1. It is important to remark that (Dean et al., 2020) consider the last time-step of ¥; with o = 0 for
the sample complexity characterization, whereas, in our work, we include the information of ¥; from all
time steps with m((f) ~N (O, aﬁzIn) to characterize the non-asymptotic convergence rate of our federated
system identification approach.
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for i € [M]. To reduce notation, we assume that each system is observed for T' time steps.
All the results presented carry over to the case where each client collects measurements
over differing time horizons. Client ¢ performs N; rollouts of length T where they excite

their systems with an i.i.d. Gaussian input ugi) ~ N <0,azqu>, process noise wgi) ~
N (0,012@[”), and an initial state mg) ~ N <0,03$In>. The resulting data set for each

client is defined as {:Ul(t),ul(zt)} ,forl=1,...N;.
t=

The objective of the federated system identification problem is to find a common es-
timation of the system matrices © = [ A B ] which provides a small estimation error
with respect to each client i’s true system O = [ AW B ] However, each client ¢
maintains its own data (without sharing it) and can estimate its unknown system dynamics
(A® B@W) via the least-square procedure (2) described previously. We aim to answer the
question: Can clients in the FL setting achieve a lower estimation error and a better sample
complexity cost compared to the centralized setting? To answer this question, we first need
to make the following heterogeneity assumption regarding each client’s system dynamics.

Assumption 1 (Bounded System Heterogeneity) There exists a constant € such that

max |[A® — AV)|| <€, and max |BY — BY)| <e,  holds for alli,j € [M].
i,5€[M] i,j€[M]
At the heart of the federated system identification problem is determining when collabora-
tion helps the identification. Intuitively, when clients observe very similar systems, it makes
sense to collaborate. For wildly divergent systems, the collaboration will be detrimental.
One of our objectives is to provide a more subtle characterization of the effect of system
heterogeneity on identification performance. We use € to characterize this heterogeneity, we
will see that it explicitly appears in FedSysID’s performance analysis.

Intuitively, each client can cooperate to take advantage of other clients’ data successfully
through FL if the system heterogeneity parameter € is small. Concretely, the objective of
the federated system identification problem can be formulated as

0= [/_1 B i ;argmmeewx(nm“){ N —ez0 )H (4)
where, X(®) = [ Xl(i) X](\Z[) } € RVNT - and Xl(i) = { l(z% xl(? } € R™T and

similarly for Z(®) and W . We characterize the distance between the estimated system
dynamics ©, given by Eq (4), and each client’s true system ©() in the following theorem.

Theorem 3 For any fixed § > 0, let N; > max {S(n +p)+ 16log %, (4n + 2p) log %}
Then, with probability at least 1 — 30, the estimated dynamics © in (4) satisfies

max{HA—A@ (i) }
<1 CO\/ZZ 1% H (=) ) 9% (S0 |24 )2
Ch:error constant Ca:heterogeneity constant
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for all i € [M], where Cy = 16\/(2n+p) log% and Egi) is the covariance of zl(it) =

(47 7] em

Proof All proofs can be found in Wang et al. (2022b) (extended version of this paper). B

Examining Theorem 3, the estimation errors consist of two terms. The first term matches
the estimation error of the centralized setting in the setting where each client has access to
all the data from all clients, i.e., access to all N £ Zf\i 1 N; rollouts. The error constant Cy
in Eq (5) comes from the noise that each client’s system is subject to. Approximately, this
is similar to the average signal-noise ratio of all systems across all time steps. The second
term is due to the heterogeneity of the clients. Theorem 3 confirms our intuition that
each client can improve its estimation performance from O(N;~'/?) to O((Zf\il N;)1/?)
by participating in the collaboration, if the system heterogeneity € is small i.e., when the
first term dominates the second term in Theorem 3.

The results of Theorem 3 characterize the optimal solution of the least squares prob-
lem (4). Once this optimal solution © is found, this estimation is a good fit for all the
similar clients participating in the collaboration. In order to compute ©, we now propose
FedSysID, a federated algorithm (see Algorithm 1 below) that explicitly describes the client-
server interaction. Although not the focus of this paper, the algorithm can also handle the
case where only a subset of clients participate in each round.

At the beginning of the algorithm, each client has an initial guess ©° about its dynamics
and chooses « as the step size. At each round r, the subset of active users S, is uniformly
sampled from [M].2 All clients in S, execute the ClientUpdate K;-times using their local
trajectories before communicating to the server (line 7). By performing multiple local
model updates and communicating with the central server for a limited time, the algorithm
resolves the core bottleneck of the limited communicating capabilities of clients. Once the
local updates are completely performed, each client sends its local model update (:)7(31 to
the server (line 8). The server computes an improved global model O, by averaging the
clients’ local model updates and sends O, back to each client (line 11). Full details are
presented in Algorithm 1.

We describe two different implementations of ClientUpdate in Algorithm 1: i) Feder-
ated Averaging algorithm (FedAvg) (McMahan et al., 2017b); ii) Linear Convergent Feder-
ated algorithm (FedLin) (Mitra et al., 2021).

e FedAvg: For each client in [M], ClientUpdate iterates execute:

@fjl)c = @Sl)q—l +a(X® — @7(”il)<:_1z(i))z(z'),T’ k=12, K; (5)

)

with input @% = O, and output @7(21 = @£Z)Ki' From (Pathak and Wainwright, 2020;
Mitra et al., 2021), it is known that both i:edAvg cannot converge with a constant
step size a. Thus, with an appropriately chosen stepsize for FedAvg, FedSysID will
converge sub-linearly, i.e., E|@r — 0| < O(#5), where the expectation is taken
with respect to the sampling scheme, to the optimal solution of problem (4). See

Theorem 3 in (Woodworth et al., 2020) for details.

2. This random sampling step is necessary when a large number of participants are involved as clients may
lose connection to the central server due to connectivity or power issues.
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Algorithm 1 FedSysID
1: Initialize the server with O and step size « ;
2: Initialize each client i € [M] with O} = Op;
3: For each round r =0,1,...,R—1do
4: uniformly sample S, C {1,2,--- , M}

5 > Client side:

6: For each client ¢ € S, in parallel do

7: @Ql = ClientUpdate(i, ©,, K;)

8 send G)i_)H back to the server

9 end for

10: > Server side:

11: update O, = M ZZ 1 @(1 11 and send ©,41 to each client
12: end for

13: Return Op

e FedLin: Consider the following updating rule of ClientUpdate for all the clients:

o) =el)_ +a [(X@ —0lh_,2M)zOT (X0 - 8,20 zOT 1 g,|,
! ZM XD _ @ 7)1 K ©
- 1) __ ? 1); =1.2.--.
g’l‘ M i:1< r ) 9 k 9 <y 9

with input @% = O, and output @ff_)ﬂ = 97{2)&. Note that g, is the negative gra-
dient of the global function in problem (4). Each client can obtain it by exploiting
memory without communication. See Mitra et al. (2021) for more details. With
proper constant step sizes, FedLin converges linearly to the minimum solution O, i.e.,
E|6r—0W| < O(e~PR), where the expectation is taken with respect to the sampling
scheme® and 3 is the condition number of problem (4).

Corollary 4 Frame the hypotheses of Theorem 3. For all R > 1, the output Op given by
the FedSysID algorithm satisfies

_ . _ : 1 1
max {]EHAR — A9, E|Bg — B(’)||} <0 + x C1 + e x Cy (7)

KR \ Zi\il Ni

with the ClientUpdate being performed according to the local updating rule of FedAvg. And,

1
—BR
max {EHAR Al H EHBR B ||} e + 7\/7 x C1 + € x Cy (8)
Zi:ll ?

with the ClientUpdate selected from the local updating rule of FedLin.
Proof All proofs can be found in Wang et al. (2022b) (extended version of this paper). B

3. Even though, Mitra et al. (2021) does not mention it, FedLin can also be extended to handle partial
participation of clients.
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5. Experimental Results

Numerical results are now shown to illustrate and assess the efficiency FedSysID.* We
consider clients characterized by dynamical systems with n = 3 states and p = 2 inputs,
for which the standard deviations of their initial state, input, and process noise are set to
be 0, = 0, = 0 = 1. Following (Xin et al., 2022), we consider the nominal system (A,
By), and uniformly distributed variables (’yii),’yéi)) « U(0,¢€), such that A® = Ay + ’yii)V
and B® = B, + 'yéi)U , where V € R3*3 and U € R3*? represent the modification patterns
applied to the nominal system described by,

0.6 05 04 0 00 1 05 10
Ap=10 04 03|, V=1]01 0|, By=|05 1|, U=1]0 0
0 0 03 0 01 0.5 0.5 0 1

Note that we use the same amount of data for each client, i.e., N; = N; for all 4, j € [M],
and we set T = 5 for each client. Once © is computed according to (4) via FedSysID, the
estimation error is defined as the average of the distances between an estimation ¢ at the
r-th global iteration, ©f, and the fixed true system, ©(), for different estimations (i.e.,

estimations made from different data sets). That is, e, = % 71161 — eW||, where
q = 25.
—e=0.01
—e=0.1
——e=0.25
e=05
——e=0.75

Figure 1: FedLin - Estimation error with respect to the number of global iterations with
varying M, N; and e, where each client performs K; = 10 local updates with step
size 107%. (a) N; = 25, € = 0.01 (b) M = 50, ¢ = 0.01 and (c) M = 50, N; = 25.

Figure 1 illustrates the estimation error with respect to the number of global iterations
with varying M, N;, and €, when the ClientUpdate is set to the FedLin update. Figure
1 (a) describes the effect of the number of clients M participating in the collaboration
on the estimation error, for a fixed number of rollouts N; = 25 and a small dissimilarity
parameter € = 0.01. This figure shows that the estimation error is considerably reduced
when the number of clients participating increases. Whilst the estimation error is large for
the centralized setting, M = 1 (i.e., each client learns its dynamics from its own data), it
can be reduced by about 10 times when 100 clients collaborate to learn their dynamics by

4. All simulations were developed in MATLAB. Codes can be downloaded from https://github.com/
jd-anderson/Federated-1ID
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leveraging data from similar systems. This highlights how the non-asymptotic convergence
rate can be improved and scaled by a factor of v/M in the low heterogeneity regime.

Moreover, Figure 1(b—c) illustrate how the estimation error changes when the number
of rollouts N; and the system’s dissimilarity e increase. Overall, the figures show that the
estimation error reduces with a factor of /M N; and it increases as the heterogeneity of
the systems increase. Figure 2 details a similar analysis in which the same conclusions can
be noticed with the FedAvg ClientUpdate update rule. As expected from Corollary 4,
FedSysID converges faster with FedLin when compared to the ClientUpdate chosen from
the local updating rule of FedAvg.

M=1 1 | —e=0.01
—e=0.1
——€=0.25
e=05
—e=0.75
N g—
0
50 100 150 200

Figure 2: FedAvg - Estimation error with respect to the number of global iterations with
varying M, N; and €, where each client performs K; = 10 local updates with
linear decreasing step size starting at 1074, (a) N; = 25, ¢ = 0.01 (b) M = 50,
e =0.01 and (c) M =50, N; = 25.

6. Conclusions

In this paper, we considered a federated approach for the system identification problem,
where a central server orchestrates the collaboration of M clients, with similar dynamics, to
identify a common dynamics that suits well all the clients. We demonstrated that a better
non-asymptotic convergence rate scaled by v/M is achieved when similar systems learn
their dynamics by leveraging data from each other in an FL setting. We also provided a
FedSysID algorithm that can be used with any FL optimization method as a subroutine. To
illustrate the potential of the proposed approach, numerical experiments were demonstrated
considering both FedLin and FedAvg updating rules. Future work will explore an extension
of the proposed approach for developing an online sample version of the FedSysID. We are
currently investigating data-driven and system theoretic heterogeneity metrics.
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