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Abstract

A powerful concept behind much of the recent progress in machine learning
is the extraction of common features across data from heterogeneous sources
or tasks. Intuitively, using all of one’s data to learn a common representation
function benefits both computational effort and statistical generalization by leaving
a smaller number of parameters to fine-tune on a given task. Toward theoretically
grounding these merits, we propose a general setting of recovering linear operators
M from noisy vector measurements y = Mx+ w, where the covariates x may be
both non-i.i.d. and non-isotropic. We demonstrate that existing isotropy-agnostic
meta-learning approaches incur biases on the representation update, which causes
the scaling of the noise terms to lose favorable dependence on the number of
source tasks. This in turn can cause the sample complexity of representation
learning to be bottlenecked by the single-task data size. We introduce an adaptation,
De-bias & Feature-Whiten (DFW), of the popular alternating minimization-
descent (AMD) scheme proposed in [1], and establish linear convergence to the
optimal representation with noise level scaling down with the total source data
size. This leads to generalization bounds on the same order as an oracle empirical
risk minimizer. We verify the vital importance of DFW on various numerical
simulations. In particular, we show that vanilla alternating-minimization descent
fails catastrophically even for iid, but mildly non-isotropic data. Our analysis
unifies and generalizes prior work, and provides a flexible framework for a wider
range of applications, such as in controls and dynamical systems.

1 Introduction

A unifying paradigm belying recent exciting progress in machine learning is learning a common
feature space or representation for downstream tasks from heterogeneous sources. This forms the
core of fields such as meta-learning, transfer learning, and federated learning. A shared theme across
these fields is the scarcity of data for a specific task out of many, such that designing individual
models for each task is both computationally and statistically inefficient, impractical, or impossible.
Under the assumption that these tasks are similar in some way, a natural alternative approach is to use
data across many tasks to learn a common component, such that fine-tuning to a given task involves
fitting a much smaller model that acts on the common component. Over the last few years, significant
attention has been given to framing this problem setting theoretically, providing provable benefits of
learning over multiple tasks in the context of linear regression [1–6] and in identification/control of
linear dynamical systems [7–9]. These works study the problem of linear representation learning,
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where the data for each task is generated noisily from an unknown shared latent subspace, and the
goal is to efficiently recover a representation of the latent space �̂ from data across different task
distributions. For example, in the linear regression setting, one may have data of the form

y(h)
i

= ✓(h)
>
�x(h)

i
+ noise, y(h)

i
2 R, x(h)

i
2 Rdx ,� 2 Rr⇥dx ,

with i = 1, . . . , N iid data points from h = 1, . . . , H task distributions. Since the representation �
is shared across all tasks, one may expect the generalization error of an approximate representation
�̂ fit on HN data points to scale as dxr

HN
, where dxr is the number of parameters determining the

representation. This is indeed the flavor of statistical guarantees from prior work [3–5, 9], which
concretely demonstrates the benefit of using data across different tasks.

However, existing work, especially beyond the scalar measurement setting, is limited in one or more
important components of their analysis. For example, it is common to assume that the covariates x(h)

i

are isotropic across all tasks. Furthermore, statistical analyses often assume access to an empirical
risk minimizer, even though the linear representation learning problem is non-convex and ill-posed
[3, 9, 10]. Our paper addresses these problems under a unified framework of linear operator recovery,
i.e. recovering linear operators M 2 Rdy⇥dx from (noisy) vector measurements y = Mx+w, where
the covariates x may not be independent or isotropic. This setting subsumes the scalar measurement
setting, and encompasses many fundamental control and dynamical systems problems, such as linear
system identification and imitation learning. In particular, the data in these settings are incompatible
with the common distributional assumptions (e.g., independence, isotropy) made in prior work.

Contributions: Toward this end, our main contributions are as follows:
• We demonstrate that naive implementation of local methods for linear representation learning fail

catastrophically even when the data is iid but mildly non-isotropic. We identify the source of the
failure as interaction between terms incurring biases in the representation gradient, which do not
scale down with the number of tasks.

• We address these issues by introducing two practical algorithmic adjustments, De-bias &
Feature-Whiten (DFW), which provably mitigate the identified issues. We then show that DFW is
necessary for gradient-based methods to benefit from the total size of the source dataset.

• We numerically show our theoretical guarantees are predictive of the efficacy of our proposed
algorithm, and of the key importance of individual aspects of our algorithmic framework.

Our main result can be summarized by the following descent guarantee for our proposed algorithm.

Theorem 1 (main result, informal) Let �̂ be the current estimate of the representation, and �? the
optimal representation. Running one iteration of DFW yields the following improvement

dist(�̂+,�?)  ⇢ · dist(�̂,�?) +
C

p
# tasks⇥ # data per task

, ⇢ 2 (0, 1), C > 0.

Critically, the second term of the right hand side scales jointly in the number of tasks and datapoints
per task, whereas naively implementing other iterative methods may be bottlenecked by a term that
scales solely with the amount of data for a single task, which leads to suboptimal sample-efficiency.

1.1 Related Work

Multi-task linear regression: Directly related to our work are results demonstrating the benefits of
multi-task learning for linear regression [1–5, 10], under the assumption of a shared but unknown
linear feature representation. In particular, our proposed algorithm is adapted from the alternating
optimization scheme in [1], and extends these results to the vector measurement setting and introduces
algorithmic modifications to extend its applicability to non-iid and non-isotropic covariates. We
also highlight that in the isotropic linear regression setting, [5] provide an alternating minimization
scheme that results in near minimax-optimal representation learning. However, the representation
update step simultaneously accesses data across tasks, which we avoid in this work due to motivating
applications, e.g. federated learning, that impose data locality or privacy constraints.

Meta/multi-task RL: There is a wealth of literature in reinforcement learning that seeks empirically
to solve different tasks with shared parameters [11–14]. In parallel, there is a body of theoretical
work which studies the sample efficiency of representation learning for RL [15–17]. This line
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of work considers MDP settings, and thus the specific results are often stated with incompatible
assumptions (such as bounded states/cost functions and discrete action spaces), and are suboptimal
when instantiated in our setting.

System identification and control: Multi-task learning has gained recent attention in controls, e.g.
for adaptive control over similar dynamics [18–21], imitation learning for linear systems [9, 22], and
notably linear system identification [7, 8, 23–26]. In many of these works [23–25], task similarity is
quantified by a generic norm closeness of the dynamics matrices, and thus the benefit of multiple
tasks extends only to a radius around optimality. Under the existence of a shared representation, our
work provides an efficient algorithm and statistical analysis to establish convergence to optimality.

Federated learning and non-IID data: Shared global information and local models conditioned on
global information appears in federated learning under the banner of personalization [1, 27–29] (see
[30] for a survey). Recently, intense attention has been given to designing algorithms that generalize
across heterogeneous agents as well as non-iid data [31–33] (see [34, 35] for surveys). However,
these methods are either empirical or are not well-specified for our data assumptions. Like in [1], our
algorithm is compatible with common data locality or privacy constraints.

2 Problem Formulation

Notation: the Euclidean norm of a vector x is denoted kxk. The spectral and Frobenius norms of a
matrix A are denoted kAk and kAk

F
, respectively. For symmetric matrices A,B, A 4 B denotes

B � A is positive semidefinite. The largest/smallest singular and eigenvalues of a matrix A are
denoted �max(A), �min(A), and �max(A), �min(A), respectively. The condition number of a matrix
A is denoted (A) := �max(A)/�min(A). Define the indexing shorthand [n] := {1, . . . , n}. We
use big-O notation O(·), ⇥(·), ⌦(·) to omit universal numerical factors, and Õ(·), ⇥̃(·), ⌦̃(·) to
additionally omit polylog factors in the argument.

Regression Model. Let a covariate sequence be an indexed set {x[t]}t�1 ⇢ Rdx . We denote
a distribution Px over covariate sequences, which we assume to have bounded second moments
for all t � 1, i.e. E

⇥
x[t]x[t]>

⇤
is finite for all t � 1. Defining the filtration {F [t]}t�0 where

F [t] := �({x[k]}t+1
k=1, {w[k]}

t

k=1) is the �-algebra generated by the covariates up to t+ 1 and noise
up to t, we assume that {w[t]}t�1 is a �2

w
-subgaussian martingale difference sequence (MDS):

E
⇥
v>w[t] | Ft�1

⇤
= 0, E

⇥
exp

�
�v>w[t]

�
| Ft�1

⇤
 exp

⇣
�2
kvk2 �2

w

⌘
a.s. 8� 2 R, v 2 Rdy .

Assuming a ground truth operator M? 2 Rdy⇥dx , our observation model is given by

y[t] = M?x[t] + w[t], t � 1,

for y[t] the labels, and w[t] the label noise. We further define ⌃x,T := 1
T

P
T

t=1 E[x[t]x[t]>].

Multi-Task Operator Recovery. We consider the following instantiation of the above linear
operator regression model over multiple tasks. In particular, we consider heterogeneous data
{(x(h)

i
[t], y(h)

i
[t])}T,N

t=1,i=1, consisting of N independent trajectories of length T , generated by
h = 1, . . . , H task distributions. For simplicity, we assume that the number and length of tra-
jectories N,T are the same across training tasks. For each task h, the observation model is

y(h)
i

[t] = M (h)
? x(h)

i
[t] + w(h)

i
[t], (1)

where M (h)
? = F (h)

? �? admits a decomposition into a ground-truth representation �? 2 Rr⇥dx

common across all tasks h 2 [H] and a task-specific weight matrix F (h)
? 2 Rdy⇥r, r  min{dx, dy}.

We denote the joint distribution over covariates and observations {x(h)
i

[t], y(h)
i

[t]}t�1 by P(h)
x,y. We

assume that the representation �? is normalized to have orthonormal rows to prevent boundedness
issues, since F (h)

?
0 = F (h)

? Q�1, �0
?
= Q�? are valid decompositions for any invertible Q 2 Rr⇥r.

To measure closeness of an approximate representation �̂ to optimality, we define a subspace metric.

Definition 1 (Subspace Distance [1, 36]) Let �,�? 2 Rr⇥dx be matrices whose rows are orthonor-
mal. Furthermore, let �?,? 2 R(dx�r)⇥dx be a matrix such that

⇥
�>

?
�>

?,?
⇤

is an orthogonal
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matrix. Define the distance between the subspaces spanned by the rows of � and �? by

dist(�,�?) :=
����>

?,?
��
2

(2)

In particular, the subspace distance quantitatively captures how well-aligned two subspaces are,
interpolating smoothly between 0 (occurring iff span(�?) = span(�̂)) and 1 (occurring iff
span(�?) ? span(�̂)). We define the task-specific stacked vector notation by capital letters, e.g.,

X(h) =
h
x(h)
1 [0] · · · x(h)

1 [T ] · · · x(h)
i

[t] · · · x(h)
N

[T ]
i>
2 RNT⇥dx .

The goal of multi-task operator recovery is to estimate {F (h)
? }

H

h=1 and �? from data collected across
multiple tasks {(x(h)

i
[t], y(h)

i
[t])}T,N

t=1,i=1, h = 1, . . . , H . Some prior works [3, 9, 10] assume access
to an empirical risk minimization oracle, i.e. access to

{F̂ (h)
}
H

h=1, �̂ 2 argmin
{F (h)},�

HX

h=1

NX

i=1

TX

t=1

���y(h)i
[t]� F (h)�x(h)

i
[t]
���
2
,

focusing on the statistical generalization properties of an ERM solution. However, the above
optimization is non-convex even in the linear setting, and thus it is imperative to design and analyze
efficient algorithms for recovering optimal matrices {F (h)

? }
H

h=1 and �?. To address this problem in
the linear regression setting, Collins et al. [1] propose FedRep, an alternating minimization-descent
scheme, where on a fresh data batch, the weights {F̂ (h)

} are computed on local data via least-squares.
An estimate of the representation gradient is then computed with respect to local data and aggregated
across tasks to perform gradient descent. This algorithmic framework is intuitive, and thus forms a
reasonable starting point toward a provably sample-efficient algorithm in our setting.

3 Sample-Efficient Linear Representation Learning

We begin by describing the vanilla alternating minimization-descent scheme proposed in Collins
et al. [1]. We show that in our setting with label noise and non-isotropy, interaction terms arise in the
representation gradient, which cause biases to form that do not scale down with the number of tasks
H . In §3.2, we propose alterations to the scheme to remove these biases, which we then show in §3.3
lead to fast convergence rates that allow us to recover near-oracle ERM generalization bounds.

3.1 Perils of (Vanilla) Gradient Descent on the Representation

We begin with a summary of the main components of an alternating minimization-descent method
analogous to FedRep [1]. During each optimization round, a new data batch is sampled for each
task: {(x(h)

i
[t], y(h)

i
[t])}T,N

t=1,i=1, h 2 [H]. We then compute task-specific weights F̂ (h) on the
corresponding dataset, keeping the current representation estimate �̂ fixed. For example, F̂ (h) may
be the least-squares weights conditioned on �̂ [1]. Define z(h)

i
[t] := �̂x(h)

i
[t], and the empirical

covariance matrices ⌃̂(h)
x,NT

:= 1
NT

X(h)>X(h), ⌃̂(h)
z,NT

:= 1
NT

Z(h)>Z(h). The least squares
solution F̂ (h) is given by the convex quadratic minimization

F̂ (h) = argmin
F

NX

i=1

TX

t=1

���y(h)i
[t]� Fz(h)

i
[t]
���
2

= F (h)
? �?X

(h)>Z(h)(⌃̂(h)
z,NT

)�1 +W (h)>Z(h)(⌃̂(h)
z,NT

)�1, (3)

where we derive (3) through standard matrix calculus [37] and expanding (1). For each task, we then
fix the weight matrix F̂ (h) and perform a descent step with respect to the representation conditioned on
the local data. The resulting representations are averaged across tasks to form the new representation.
When the descent direction is the gradient, the update rule is given by

�
(h)
+ = �̂�

⌘

2NT
r�

�����

NX

i=1

TX

t=1

y(h)
i

[t]� F̂ (h)�̂x(h)
i

[t]

�����

2

, �+ =
1

H

HX

h=1

�
(h)
+ (4)
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where ⌘ > 0 is a given step size. We normalize �+ to have orthonormal rows, e.g. by (thin/reduced)
QR decomposition [38], to produce the final output �̂+, i.e. �+ = R�̂+, R 2 Rr⇥r, leading to

R�̂+ = �̂�
⌘

H

HX

h=1

F̂ (h)>
⇣
F̂ (h)�̂� F (h)

? �?

⌘
⌃̂(h)

x,NT
�

⌘

HNT

HX

h=1

F̂ (h)>W (h)>X(h). (5)

As in [1], we right-multiply both sides of (5) by �>
?,?, recalling k��>

?,?k2 =: dist(�,�?). Crucially,
Collins et al. [1] assume x(h)

i
[t] has mean 0 and identity covariance, and w(h)

i
[t] ⌘ 0 across t, i, h.

Therefore, the label noise terms F̂ (h)>W (h)>X(h) disappear, and the sample covariance for each
task ⌃̂(h)

x,NT
concentrates to identity. Under these assumptions, we get

���R�̂+�
>
?,?

��� =

������̂�
>
?,? �

⌘

H

HX

h=1

F̂ (h)>
⇣
F̂ (h)�̂� F (h)

? �?

⌘
⌃̂(h)

x,NT
�>

?,?

�����

.
�����I �

⌘

H

HX

h=1

F̂ (h)>F̂ (h)

�����
| {z }

Contraction term

dist
⇣
�̂,�?

⌘
+O

 
1

H

HX

h=1

���⌃̂(h)
x,NT

� Idx

���

!

| {z }
Covariance concentration term

.

where we note �?�>
?,? = 0. Therefore, under appropriate choice of ⌘ and bounding the effect of

the orthonormalization factor R, linear convergence to the optimal representation can be established.
However, two issues arise when label noise w(h)

i
[t] is introduced and when x(h)

i
[t] has non-identity

covariance.

1. When label noise w(h)
i

[t] is present, since F̂ (h) is computed on Y (h), X(h), the gradient noise
term is generally biased: 1

NT
E[F̂ (h)W (h)>X(h)] 6= 0. Even in the simple case that all task

distributions P(h)
x,y are identical, ⌘

HNT

P
H

h=1F̂
(h)>W (h)>X(h) concentrates to its bias, and thus

for large H the size of noise term is bottlenecked at ⌘

NT
E
h���F̂ (h)>W (h)>X(h)

���
i
. This critically

causes the noise term to lose scaling in the number of tasks H , even when the tasks are identical.
2. When x(h)

i
[t] has non-identity covariance, the decomposition into a contraction and covari-

ance concentration term no longer holds, since generally �⇤E[⌃̂(h)
x,NT

]�>
?,? 6= 0. This causes

a term whose norm otherwise concentrates around 0 in the isotropic case to scale with
�max(⌃̂

(h)
x,NT

) � �min(⌃̂
(h)
x,NT

) in the worst case. Unlike prior work that assumes identical
distribution of covariates x(h)

i
[t] across tasks, this issue cannot be circumvented by whitening

the covariates x(h)
i

[t], as shifting the covariance factor to the operator F (h)
? �?⌃

(h)
x,T

1/2 in general
ruins the shared representation spanned by �?.

This motivates modifying the representation update beyond following the vanilla stochastic gradient.

3.2 A Task-Efficient Algorithm: De-bias & Feature-whiten

In the previous section, we identified two fundamental issues: 1. the bias introduced by computing
the least squares weights and representation update on the same data batch, and 2. the nuisance term
introduced by non-identity second moments of the covariates x(h)

i
[t]. Toward addressing the first

issue, we introduce a “de-biasing” step, where each agent computes the least squares weights F̂ (h)

and the representation update on independent batches of data, e.g. disjoint subsets of trajectories. To
address the second issue, we introduce a “feature-whitening” adaptation [39], where the gradient
estimate sent by each agent is pre-conditioned by its inverse sample covariance matrix. Combining
these two adaptations, the representation update becomes

R�̂+ = �̂�
⌘

H

HX

h=1

F̂ (h)>
⇣
F̂ (h)�̂� F (h)

? �?

⌘
�

⌘

H

HX

h=1

F̂ (h)>W (h)>X(h)
⇣
⌃̂(h)

x,NT

⌘�1
, (6)

where we assume {F̂ (h)
} are computed on independent data using the aforementioned batching

strategy. When x(h)
i

[t], w(h)
i

[t], t = 1, . . . , T , are all mutually independent, then the first two terms of
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Algorithm 1 De-biased & Feature-whitened (DFW) Alt. Minimization-Descent

1: Input: step sizes {⌘k}k�1, batch sizes {Nk, Tk}k�1, initial estimate �̂0.
2: for k = 1, . . . ,K do
3: for h 2 [H] (in parallel) do
4: Obtain samples {(x(h)

i
[t], y(h)

i
[t])}Tk,Nk

t=1,i=1.
5: Partition trajectories [Nk] = Nk,1 tNk,2.
6: Compute F̂ (h)

k
, e.g. via least squares on Nk,1 (7).

7: Compute task-conditioned representation gradient Ĝ(h)
Nk,2

on Nk,2 (8).

8: Compute task-conditioned representation update �̄(h)
k

(9).
9: end for

10: �̂k, __ thin_QR
⇣

1
H

P
H

h=1 �̄
(h)
k

⌘
.

11: end for
12: return Representation estimate �̂K .

the update form the contraction, and the last term is an average of zero-mean least-squares-error-like
terms over tasks, which can be studied using standard tools [40, 41]. This culminates in convergence
rates that scale favorably with the number of tasks (§3.3).

To operationalize our proposed adaptations, let D(h) = {(x(h)
i

[t], y(h)
i

[t])}T,N

t=1,i=1, h = 1, . . . , H , be
a dataset available to each agent. For simplicity, we consider partitions of multiple trajectories, but
one can also subsample along single trajectories under appropriate mixing assumptions (§3.3). For
the weights de-biasing step, we sub-sample trajectories N1 ⇢ [N ]. For each agent, we then compute
least-squares weights from N1:

F̂ (h) = argmin
F

X

i2N1

TX

t=1

���y(h)i
[t]� Fz(h)

i
[t]
���
2
. (7)

We then sub-sample trajectories N2 ⇢ [N ] \ N1, and compute the task-conditioned representation
gradients from N2:

Ĝ
(h)
N2

= r�
1

2

�����
X

i2N2

TX

t=1

y(h)
i

[t]� F̂ (h)�̂x(h)
i

[t]

�����

2

. (8)

Lastly, each agent updates its local representation via feature-whitened gradient step to yield �̄(h)
+ . The

global representation update is computed by averaging the updated task-conditioned representations
�̄(h)

+ and performing orthonormalization:

�̄(h)
+ := �̂� ⌘Ĝ(h)

N2

⇣
⌃̂(h)

x,N2T

⌘�1
, R�̂+ =

1

H

HX

h=1

�̄(h)
+ , (9)

We present the full algorithm in Algorithm 1. The above de-biasing and feature whitening steps
ensure that the expectation of the representation update is a contraction (with high probability):

E
h
dist(�̂+,�?)

i
= E

"�����R
�1

 
Idx �

⌘

H

HX

h=1

F̂ (h)>F̂ (h)

!�����

#
dist(�̂,�?), (10)

where the task and trajectory-wise independence ensures that the variance of the gradient scales
inversely in HNT .

Remark 1 (Choice of weights F̂ (h) vs. descent rate) By observing the contraction expression (10),
the contraction rate is seemingly solely controlled by the (average) conditioning of the weight
matrices F̂ (h). Since the choice of algorithm for computing F̂ (h) is user-determined, this motivates
choosing well-conditioned F̂ (h). However, the hidden trade-off lies in the orthonormalization factor
R; arbitrary F̂ (h) may lead to R that undoes progress. As in [1], we analyze F̂ (h) generated by
representation-conditioned least squares (7), but an optimal balance between conditioning of F̂ (h)

and R can be struck by `2-regularized least squares weights F̂ (h)(�) (see, e.g. [42]).
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3.3 Algorithm Guarantees

We present our main result in the form of convergence guarantees for Algorithm 1. To instantiate our
bounds, we make the following assumption on the covariates.

Assumption 1 (Subgaussian covariates) We assume the marginal distributions of x(h)
i

[t], for all
t, i, h, to be zero-mean and �2-subgaussian:

E[x(h)
i

[t]] = 0, E
h
exp

⇣
�v>x(h)

i
[t]
⌘i
 exp

⇣
�2
kvk2 �2

⌘
a.s. 8� 2 R, v 2 Rdx .

Our final convergence rates depend on a notion of task-coverage, which we quantify as the following.

Definition 2 (Task diversity) We define the quantities

�̃F

min := �min

 
1

H

HX

h=1

F (h)
?

>F (h)
?

!
, �̃F

max := �max

 
1

H

HX

h=1

F (h)
?

>F (h)
?

!
. (11)

We further denote ̃F := �̃F

max/�̃
F

min.

We now present our main result for the iid setting.

Theorem 2 (Main result, iid setting) Let x(h)
i

[t], w(h)
i

[t] be independent for all t, i, h and iden-
tically sampled for t = 1, . . . , T . Let Assumption 1 hold with constant �. As-
sume the current representation iterate �̂ satisfies dist(�̂,�?) < ⌫ < 1, and NT �

⌦̃
⇣
poly

⇣
̃F ,maxh (⌃

(h)
x ), �, 1/⌫

⌘
(max {dy, r}+ log(1/�))

⌘
. Then there exist universal con-

stants c1, c2 > 0 such that the following is true: given ⌘  1
c1�̃

F
max

, with probability greater than
1� �, the next iterate outputted by DFW (Algorithm 1) satisfies

dist
⇣
�̂+,�?

⌘


⇣
1� ⌘c2�̃

F

min

⌘1/2
dist

⇣
�̂,�?

⌘
+

⌘maxh kF
(h)
? k�

(h)
w

p
dxr

p
HNT

, (12)

where ⌘c2�̃F

min < 1.

We note that the first term on the RHS of (12) induces a contraction, while the second term cor-
responding to the variance of the gradient estimate, has the “correct” scaling: noise multiplied by
# parameters of the representation, divided by the total amount of data H,N, T .

Remark 2 (Initialization) We note that Theorem 2 relies on the representation �̂ being sufficiently
close to �?. We do not address this issue in this paper, and refer to Collins et al. [1], Tripuraneni
et al. [4], Thekumparampil et al. [5] for initialization schemes in the iid linear regression setting.
Our experiments suggest that a good initialization is unnecessary, which mirrors the experimental
findings in Thekumparampil et al. [5, Sec. 6]. We leave constructing an initialization scheme for our
general setting, or proving it is unnecessary, to future work.

A key benefit of having (12) scale properly in H,N, T is that we may construct representations on
fixed datasets whose error scales on the same order as the oracle empirical risk minimizer by running
Algorithm 1 on appropriately partitioned subsets of a given dataset.

Corollary 1 (Approximate ERM, iid setting) Let the assumptions of Theorem 2 hold. Let �̂0

be an initial representation satisfying dist(�̂0,�?) < ⌫, and define ⇢ := ⌘c2�̃F

min. Let D :=

{{(x(h)
i

[t], y(h)
i

[t])}T,N

t=1,i=1}h2[H] be a given dataset. There exists a partition of D into independent
batches B1, . . . ,BK , such that iterating DFW on Bk, k 2 [K] yields with probability greater than
1� �:

dist(�̂K ,�?)
2
 Õ

 
C(⇢)

maxh�
(h)
w

2(dxr + log(1/�))

HNT

!
, (13)

where C(⇢) > 0 is a constant depending on the contraction rate ⇢.
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In particular, given a fine-tuning dataset of size N 0T 0 sampled from a task H + 1 that shares
the representation �?, computing the least squares weights F̂ (H+1) conditioned on �̂K yields a
high-probability bound on the parameter error
���F̂ (H+1)�̂K �M (H+1)

?

���
2

F

. dist(�̂K ,�?)
2 + �(H+1)

w

2 dyr + log(1/�)

N 0T 0

. C(⇢)
maxh�

(h)
w

2(dxr + log(1/�))

HNT
+

�(H+1)
w

2
(dyr + log(1/�))

N 0T 0 ,

where we omit task-related quantities for clarity. We note that the above parameter recovery bound
mirrors ERM risk bounds [3, 4, 9], where we note the latter term scales with dyr (the number of
parameters in F (H+1)) as opposed to r in the linear regression setting (dy = 1).

We note that the results in this section also hold for sequentially dependent data, i.e. {x(h)[t]}t�1

are �-mixing [43–45], which we describe in detail in Appendix A.3. In particular, this opens up
the applicability of DFW to settings where the data is fundamentally non-IID and non-isotropic. We
instantiate our results to the fundamental setting of linear dynamical systems [46] in Appendix B, as
well as numerically in the sequel.

4 Numerical Results

We present numerical experiments to demonstrate the effectiveness of Algorithm 1. We consider
two scenarios: 1) linear regression with IID, non-isotropic data, and 2) linear system identifica-
tion The linear regression experiments highlight the necessity of our proposed De-biasing &
Feature-whitening steps, and our system identification experiments demonstrate the ability of our
algorithm to extend to sequential non-i.i.d. and non-isotropic data. We show that DFW allows us to
harness the full dataset by its improved performance and variance compared to its single-task variant
and FedRep. Full experimental details and additional experiments can be found in Appendix C.

4.1 Linear Regression with IID and Non-isotropic Data

We consider the observation model from (1), where we set the operator dimensions and rank as dx =
dy = 50 and r = 7. We set the number of samples N = 100 across all H = 10 tasks. We generate
the H operators using the following steps: 1) the ground truth representation �? 2 Rr⇥dx is randomly
generated through the thin_svd operation applied to a random matrix with values drawn iid from
N (0, 1), 2) a nominal task weight matrix F0 2 Rdy⇥r is randomly generated, with its elements drawn
from N (0, 1), 3) to generate the task-specific weights F (h)

? 2 Rdy⇥r, h 2 [H], random rotations
around the identity are applied to F0. The covariates are drawn iid from a Gaussian distribution
x(h)
i
⇠ N (0,⌃x), where the covariance matrix is expressed ⌃x = diag([1, 1+�, . . . , 1+(dx�1)�]),

such that the value of � controls the non-isotropy of the covariates x(h)
i

. Note that � = 0 recovers
isotropy. Figures (1a-1b) illustrate the influence of varying the degree of non-isotropy �: we examine
its impact on the performance of DFW (Algorithm 1) and compare it with the vanilla alternating
minimization-descent algorithm FedRep [1], which does not incorporate de-biasing and feature-
whitening. The � = 0 case corresponds to an identity covariance matrix, and our results show both
algorithms are effective at recovering the representation as expected. Consistent with our theoretical
guarantees, we find that DFW remains effective when the non-isotropy measure � is increased; in
contrast, Figure 1b shows how FedRep fails when dealing with even mildly non-isotropic data. This
aligns with our findings in §3.1 and highlights the limitations of the vanilla representation gradient in
handling non-isotropic feature data.

We now compare the benefit of multi-task setting over single-task. The problem dimensions
dx, dy, r,N are carried over from the previous experiment. We now introduce a different covariance
matrix parameterization: ⌃x = dx⌃̃x

Tr(⌃̃x)
, where ⌃̃x = 1

2 (U + U>), U = 5 · Idx + V , with V being
a random matrix whose values are drawn from Unif(0, 1). Figure 2a compares the performance
of Algorithm 1 for the single-task (H = 1) and multi-task settings (H = 25), as well as FedRep
(H = 25). The figure highlights that DFW is able to make use of all source data to decrease variance
and learn an accurate low-rank representation. As anticipated by our theoretical guarantees, Figure
2a demonstrates a significant reduction in the subspace distance as the number of tasks increases.
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(a) DFW alt. minimization-descent (Algorithm 1) (b) Vanilla alt. minimization-descent (FedRep [1])

Figure 1: We compare subspace distance between the current and ground truth representation with respect to the
number of iterations, where we vary non-isotropy through �. DFW suffers no degradation in performance when
non-isotropy of the covariates increases, while FedRep fails catastrophically even under mild non-isotropy.

Furthermore, the figure reveals that the vanilla alternating descent algorithm is not able to improve
beyond a certain point, as predicted in §3.1.

4.2 System Identification

We consider a discrete-time linear system identification (sysID) problem, with dynamics

x[t+ 1] = Ax[t] +Bu[t] + w[t], t = 0, . . . , T � 1,

where x[t] is the state of the system and u[t] is the control input. In contrast to the previous example,
the covariates are now additionally non-iid due to correlation over time. In particular, we can
instantiate multi-task linear sysID in the form of (1),

x(h)[t+ 1] = M (h)
? z(h)[t] + w(h)[t], t = 0, . . . , T � 1

where M (h)
? := [A(h) B(h)] = F (h)�? 2 Rdx⇥dz . The state-action pair at time instant t for all

tasks h 2 [H] is embedded as z(h)[t] = [x(h)[t]> u(h)[t]>]>. The process noise w(i)[t] and control
action u(h)[t] are assumed to be drawn from Gaussian distributions N (0,⌃w) and N (0,�2

u
Idu),

respectively, where du represents the dimension of the control action. We set the state dimension
dx = 25, control dimension du = 2, latent dimension r = 6, horizon T = 100, and input variance
�2
u

= 1. The generation process of the ground truth system matrices M (h)
? follows a similar

approach as described in the linear regression problem, with the addition of normalization step of the
nominal weight matrix F0 to ensure system stability for all tasks h 2 [H]. Furthermore, the process
noise covariance ⌃w is parameterized in a similar manner as in the linear regression example, with
U = 5 · Idx + 2 · V . The initial state x(h)[0] is drawn iid across tasks from the system’s stationary
distribution N (0,⌃(h)

x ), which is determined by the solution to the discrete Lyapunov equation
⌃(h)

x = A(h)⌃(h)
x (A(h))> + �2

u
B(h)(B(h))> + ⌃w. We note this implies the covariates x(h)

i
[t] are

inherently non-isotropic. Figure 2b again demonstrates the advantage of leveraging multi-task data to
reduce the error in computing a shared representation across the system matrices M (h)

? . In line with
our theoretical findings, DFW continues to benefit from multiple tasks, even when the data is non-iid.
We see that FedRep remains suboptimal in this non-iid, non-isotropic setting.

5 Discussion and Future Work

We propose an efficient algorithm to provably recover linear operators across multiple tasks to
optimality from non-iid non-isotropic data, recovering near oracle empirical risk minimization rates.
We show that the benefit of learning over multiple tasks manifests in a lower noise level in the
optimization and smaller sample requirements for individual tasks. These results contribute toward
a general understanding of representation learning from an algorithmic and statistical perspective.
Some immediate open questions are: whether good initialization of the representation is necessary,
and whether the convergence rate of DFW can be optimized e.g., through `2-regularized weights F̂ (h).
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(a) IID linear regression with random covariance (b) Linear system identification

Figure 2: We plot the subspace distance between the current and ground truth representation with respect to the
number of iterations, comparing between the single and multiple-task settings of Algorithm 1 and the multi-task
FedRep. We observe performance improvement and variance reduction for multi-task DFW as predicted.

Resolving these questions has important implications for the natural extension of our framework:
as emphasized in [1], the alternating empirical risk minimization (holding representation fixed) and
gradient descent (holding task-specific weights fixed) framework naturally extends to the nonlinear
setting. Providing guarantees for nonlinear function classes is an exciting and impactful avenue for
future work, which concurrent work is moving toward, e.g. for 2-layer ReLU networks [47] and
kernel ridge regression [48]. It remains to be seen whether a computationally-efficient algorithm
can be established for nonlinear meta-learning in the non-iid and non-isotropic data regime, while
preserving joint scaling in number of tasks and data.
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A Theoretical Analysis of DFW (Algorithm 1)

A.1 Preliminaries

We introduce some preliminary concepts and results that recur throughout our analysis. A fundamental
concept in the analysis of least-squares solutions is the self-normalized martingale [40, 41].

Lemma 1 (cf. Zhang et al. [9, Lemma B.3]) Let {xt}t�1 be a Rd-valued process adapted to a
filtration {Ft}t�1. Let {⌘t}t�1 be a Rm-valued process adapted to {Ft}t�2. Suppose that {⌘t}t�1

is a �2-subgaussian martingale difference sequence, i.e.,:

E[⌘t | Ft] = 0, (14)

E[exp(�v>⌘t) | Ft]  exp

 
�2�2

kvk2

2

!
8Ft-measurable � 2 R, v 2 Rm. (15)

For ⇤ 2 Rm⇥d, let {Mt(⇤)}t�1 be the R-valued process:

Mt(⇤) = exp

 
1

�

tX

i=1

h⇤xi, ⌘ii �
1

2

tX

i=1

k⇤xik
2

!
. (16)

Then, the process {Mt(⇤)}t�1 satisfies E[Mt(⇤)]  1 for all t � 1.

In particular, this implies the following self-normalized martingale inequality that handles multiple
matrix-valued self-normalized martingales. This can be seen as an instantiation of the Hilbert space
variant from [41].

Proposition 1 (cf. Zhang et al. [9, Prop. B.1]) Fix H 2 N+. For h 2 [H], let {xh

t
, ⌘h

t
}t�1 be a

Rd
⇥ Rm-valued process and {F

h

t
}t�1 be a filtration such that {xh

t
}t�1 is adapted to {F

h

t
}t�1,

{⌘h
t
}t�1 is adapted to {F

h

t
}t�2, and {⌘h

t
}t�1 is a �2-subgaussian martingale difference sequence.

Suppose that for all h1 6= h2, the process {xh1
t
, ⌘h1

t
} is independent of {xh2

t
, ⌘h2

t
}. Fix (non-random)

positive definite matrices {V h
}
H

h=1. For t � 1 and h 2 [H], define:

V̄ h

t
:= V h + V h

t
, V h

t
:=

tX

i=1

xix
>
i
, Sh

t
:=

tX

i=1

xi⌘
>
i
. (17)

For any fixed T 2 N+, with probability at least 1� �:
HX

h=1

���(V̄ h

T
)�1/2Sh

T

���
2

F

 2�2

"
HX

h=1

log det((V̄ h

T
)m/2(V h)�m/2) + log(1/�)

#
. (18)

We also consider the spectral norm variant of the self-normalized martingale bound.

Proposition 2 (Sarkar et al. [49, Proposition 8.2]) Let {xt}t�1 be an Rd-valued stochastic pro-
cess adapted to filtration {Ft}t�1 and {⌘t}t�1 ⇢ Rm be a �2-subgaussian martingale difference
sequence adapted to {Ft}t�2 as defined in Lemma 1. Fix a � 2 (0, 1) and a non-random positive
definite matrix V 2 Rd⇥d. For t � 1, define V̄t := V + Vt, Vt :=

P
t

i=1 xix>
i

, St :=
P

t

i=1 xi⌘>i .
Then with probability at least 1� �,

���(VT )
�1/2ST

���
2
 8�2

h
log

⇣
5m det(V̄T )

1/2 det(V )�1/2
⌘
+ log(1/�)

i
. (19)

We introduce the following useful two-sided concentration inequality for the sample covariance of iid
subgaussian covariates.

Lemma 2 (Du et al. [3, Lemma A.6]) Let x1, . . . , xT 2 Rd be iid random vectors that satisfy
E[xt] = 0, E

⇥
xtx>

t

⇤
= Id, and xt is �2-subgaussian. Fix � 2 (0, 1). Suppose T &

�2 (d+ log(1/�)). Then with probability at least 1� �, the following holds

0.9Id �
1

T

TX

i=1

xtx
>
t
� 1.1Id. (20)
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In order to instantiate our bounds for non-iid covariates, we introduce the notions of �-mixing
stationary processes [45, 50].

Definition 3 (�-mixing) Let {xt}t�1 be a Rd-valued discrete-time stochastic process adapted to
filtration {Ft}

1
t=1. We denote the stationary distribution ⌫1. We define the �-mixing coefficient

�(k) := sup
t�1

E{x`}t
`=1

⇥��Pxt+k(· | Ft)� ⌫1
��
tv

⇤
, (21)

where k·ktv denotes the total variation distance between probability measures.

Intuitively, the �-mixing coefficient measures how quickly on average a process mixes to the stationary
distribution along any sample path. To see how �-mixing is instantiated, let {xt}

T

t=1 be a sample
path from a �-mixing process. Consider the following subsampled paths formed by taking every a-th
covariate of {xt}:

XT

(j) := {xt : 1  t  T, (t� 1 mod a) = j � 1} , j = 1, . . . , a. (22)

Let the integers m1, . . . ,ma and index sets I(1), . . . I(a) denote the sizes and indices of
XT

(1), . . . , X
T

(a), respectively. Finally, let Xmj
1 denote a sequence of mj iid draws from the sta-

tionary distribution ⌫1. The following is a key lemma in relating a correlated process to iid draws.

Lemma 3 (Kuznetsov and Mohri [45, Proposition 2]) Let g(·) be a real-valued Borel-measurable
function satisfying �M1  g(·) M2 for some M1,M2 � 0. Then, for all j = 1, . . . , a.

���E[g(Xmj
1 )]� E[g(XT

(j))]
���  (M1 +M2)mj�(a).

In our analysis, we often instantiate Lemma 3 with g(·) as an indicator function on a success event.
For appropriately selected block length a, we are thus able to relate simpler iid analysis on X

mj
1 to

the original process XT

(j), accruing an additional factor in the failure probability. Lastly, we introduce
a standard matrix concentration inequality.

Lemma 4 (Matrix Hoeffding [51]) Let {Xh}
H

h=1 ⇢ Rd⇥d be a sequence of independent, random
symmetric matrices, and let {Bh}

H

h=1 be a sequence of fixed symmetric matrices. Assume each
random matrix satisfies

E [Xh] = 0, X2
h
� B2

h
almost surely.

Then for all t � 0,

P
"
�max

 
HX

h=1

Xh

!
� t

#
 d · exp

✓
�

t2

8�2

◆
, �2 :=

�����

HX

h=1

B2
h

����� .

In particular, for general rectangular {Mh}
H

h=1 ⇢ Rd1⇥d2 , we may define Xh :=


0 Mh

M>
h

0

�
to

yield a singular value concentration inequality. Assume each Mh satisfies

E [Mh] = 0, X2
h
� B2

h
almost surely.

Then for all t � 0,

P
"
�max

 
HX

h=1

Mh

!
� t

#
 (d1 + d2) · exp

✓
�

t2

8�2

◆
, �2 :=

�����

HX

h=1

B2
h

����� .

As hinted by the indexing of the matrices, by leveraging the independence of processes across tasks
h, Lemma 4 can be used to bound various quantities averaged across tasks, under the important
caveat that the matrices are zero-mean, which ties back to the necessity of our de-biasing and
feature-whitening adjustments.
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A.2 The IID Setting

We recall that given the current representation iterate �̂, an iid draw of a multitask dataset
{(x(h)

i
[t], y(h)

i
[t])}T,N

t=1,i=1, h = 1, . . . , H , and DFW trajectory partitions N1,N2, the least squares
weights F̂ (h) can be written as

F̂ (h) = argmin
F

X

i2N1

TX

t=1

���y(h)i
[t]� Fz(h)

i
[t]
���
2

= F (h)
? �?X

(h)
N1

>Z(h)
N1

⇣
⌃̂(h)

z,N1T

⌘�1
+W (h)

N1

>Z(h)
N1

⇣
⌃̂(h)

z,N1T

⌘�1

= F (h)
? �?�̂

> + F (h)
? �?

⇣
Idx � �̂>�̂

⌘
X(h)

N1

>Z(h)
N1

⇣
⌃̂(h)

z,N1T

⌘�1
+W (h)

N1

>Z(h)
N1

⇣
⌃̂(h)

z,N1T

⌘�1
.

(23)

Now recalling the DFW representation update in the iid setting (6), we have

R�̂+ = �̂�
⌘

H

HX

h=1

F̂ (h)>
⇣
F̂ (h)�̂� F (h)

? �?

⌘
�

⌘

H

HX

h=1

F̂ (h)>W (h)
N2

>X(h)
N2

⇣
⌃̂(h)

x,NT

⌘�1
. (24)

Right multiplying the update by �>
?,?, we get

R�̂+�
>
?,? = �̂�>

?,? �
⌘

H

HX

h=1

F̂ (h)>
⇣
F̂ (h)�̂� F (h)

? �?

⌘
�>

?,? �
⌘

H

HX

h=1

F̂ (h)>W (h)
N2

>X(h)
N2

⇣
⌃̂(h)

x,N2T

⌘�1
�>

?,?

=

 
Idx �

⌘

H

HX

h=1

F̂ (h)>F̂ (h)

!
�̂�>

?,? �
⌘

H

HX

h=1

F̂ (h)>W (h)
N2

>X(h)
N2

⇣
⌃̂(h)

x,N2T

⌘�1
�>

?,?

This naturally decomposes into a contraction term and a noise term. We start with an analysis of
the noise term. We observe that since F̂ (h) is by construction independent of W (h)

N2
, X(h)

N2
, by the

independence of x(h)
i

[t] across t and i, and the noise independence w(h)
i

[t] ? x(h)
i

[t], we find

E
"
1

H

HX

h=1

F̂ (h)>W (h)
N2

>X(h)
N2

⇣
⌃̂(h)

x,N2T

⌘�1
#
=

1

H

HX

h=1

E
h
F̂ (h)

i>
E
h
W (h)

N2

i
E

X(h)

N2

⇣
⌃̂(h)

x,N2T

⌘�1
�
= 0.

Therefore, we set up for an application of Lemma 4. Toward doing so, we prove the following
two ingredients: 1. a high probability bound on

���F̂ (h)
���, 2. a high probability bound on the least-

squares noise-esque term
����F̂

(h)>W (h)
N2

>X(h)
N2

⇣
⌃̂(h)

x,N2T

⌘�1
����. We then condition on these two high-

probability events to instantiate the almost-sure boundedness in Lemma 4. We start with the analysis
of F̂ (h). We observe trivially that
���F̂ (h)

��� 
���F (h)

?

���+
���F (h)

?

���
���?P

?
�̂

��
����X

(h)
N1

>Z(h)
N1

⇣
⌃̂(h)

z,N1T

⌘�1
����+

����W
(h)
N1

>Z(h)
N1

⇣
⌃̂(h)

z,N1T

⌘�1
���� .

Lemma 5 Let |N1|T & �2 (max {dy, r}+ log(1/�)). Then, with probability greater than 1� �, we
have ����X

(h)
N1

>Z(h)
N1

⇣
⌃̂(h)

z,N1T

⌘�1
���� 

2

3

⇣

⇣
⌃(h)

x

⌘
+ 1

⌘
, (25)

����W
(h)
N1

>Z(h)
N1

⇣
⌃̂(h)

z,N1T

⌘�1
����  6�(h)

w

s
dy + log(1/�)

�min(⌃
(h)
x )|N1|T

. (26)

Therefore, setting |N1|T & max
n
�2, �

(h)
w

2

�min(⌃
(h)
x )

o
(dy + log(1/�)), under the assumption that

����?P
?
�̂

���  3



⇣
⌃(h)

x

⌘
+1

, we get a high-probability bound on F̂ (h).
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Lemma 6 Assume |N1|T & max
n
�2, �

(h)
w

2

�min(⌃
(h)
x )

o
(max {dy, r}+ log(1/�)) and

����?P
?
�̂

��� 
3



⇣
⌃(h)

x

⌘
+1

. Then with probability at least 1� �

���F̂ (h)
���  2

���F (h)
?

��� . (27)

Denote the event on which Lemma 6 holds with probability at least 1 � � as E
F̂ (h)(�). Then,

conditioned on E
F̂ (h)(�), we observe that F̂ (h)W (h)

N2
is a 4�(h)

w
2
kF (h)

? k
2-subgaussian MDS supported

on Rr. Therefore, bounding����F̂
(h)>W (h)

N2

>X(h)
N2

⇣
⌃̂(h)

x,N2T

⌘�1
���� 

����F̂
(h)W (h)

N2

>X(h)
N2

⇣
⌃̂(h)

x,N2T

⌘�1/2
�����min(⌃̂

(h)
x,N2T

)�1/2,

we invoke Proposition 2 and Lemma 2, we get the following bound

Lemma 7 Let the conditions of Lemma 6 hold. Then, conditioned on the success event E
F̂ (h)(�),

with probability at least 1� �,
����F̂

(h)>W (h)
N2

>X(h)
N2

⇣
⌃̂(h)

x,N2T

⌘�1
����  12�(h)

w
kF (h)

? k

s
dx + log(1/�)

�min(⌃
(h)
x )|N2|T

. (28)

Therefore, we have provided a high-probability bound on the task-wise noise term. Define the
matrices

B(h) := 12
�(h)
w kF

(h)
? k

H

s
dx + log(H/�)

�min(⌃
(h)
x )|N2|T

· Idy+r.

Union-bounding over the high probability bound events of Lemma 7 with probability 1� �/H each
and setting B(h) as above, we may apply Lemma 4 with �2 :=

P
h
B(h)2 to yield the following

bound.

Lemma 8 Conditioning on the bounds of Lemma 7 holding with probability at least 1� �/H for
each h 2 [H], we have with probability at least 1� �,
�����
⌘

H

HX

h=1

F̂ (h)>W (h)
N2

>X(h)
N2

⇣
⌃̂(h)

x,N2T

⌘�1
����� . max

h

⌘�(h)
w kF

(h)
? kp

H|N2|T

s
dx + log(H/�)

�min(⌃
(h)
x )

log

✓
dy + r

�

◆
.

Importantly, setting |N2| = ⇥(N), we note that this establishes the desired Õ
⇣
1/
p
HNT

⌘
scaling

of the noise term. We note that our application of Matrix Hoeffding is rather crude, and the above
bound can likely be improved in terms of polylog(1/�) factors.

We now move on to bounding the contraction term. Defining

�(h) := F (h)
? �?

⇣
Idx � �̂>�̂

⌘
X(h)

N1

>Z(h)
N1

⇣
⌃̂(h)

z,N1T

⌘�1

E(h) := W (h)
N1

>Z(h)
N1

⇣
⌃̂(h)

z,N1T

⌘�1
,

we write (23) as F̂ (h) = F (h)
? �?�̂> +�(h) + E(h). Expanding

F̂ (h)>F̂ (h) = �̂�>
?
F (h)
?

>F (h)
? �?�̂

> +�(h)>�(h) + E(h)>E(h)

+ Sym(�(h)>F (h)
? �?�̂

>) + Sym(E(h)>F (h)
? �?�̂

>) + Sym(�(h)>E(h)),

where Sym(A) := A + A>. From Lemma 6, we immediately get an upper bound on

�max(F̂ (h)>F̂ (h))  4
���F (h)

?

���
2
. To lower bound �min(F̂ (h)>F̂ (h)), we observe that the diago-

nal terms �(h)>�(h), E(h)>E(h) are pd, and thus can be ignored. We then observe that by Weyl’s
inequality [52], we have

�min(F̂
(h)>F̂ (h)) � �min

⇣
�̂�>

?
F (h)
?

>F (h)
? �?�̂

>
⌘

� �max

⇣
Sym(�(h)>F (h)

? �?�̂
>) + Sym(E(h)>F (h)

? �?�̂
>) + Sym(�(h)>E(h))

⌘
.
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We further observe that

�max(Sym(A)) = max
kxk=1

x>(A+A>)x

 max
kuk,kvk=1

x>Av + x>A>v

 2 kAk ,

such that the cross terms may be bounded as

�max

⇣
Sym(�(h)>F (h)

? �?�̂
>) + Sym(E(h)>F (h)

? �?�̂
>) + Sym(�(h)>E(h))

⌘

 2
����(h)>F (h)

? �?�̂
>
���+ 2

���E(h)>F (h)
? �?�̂

>
���+ 2

����(h)>E(h)
���

= 2
����(h)

���
���F (h)

?

���+ 2
���E(h)

���
���F (h)

?

���+ 2
����(h)

���
���E(h)

��� .

Applying a similar analysis as in Lemma 5, we derive the following.

Lemma 9 Assume |N1|T & max
n
�2, �

(h)
w

2

�min(⌃
(h)
x )

kF?k2

�min(F
(h)
? )4

o
(max {dy, r}+ log(1/�)), and

����?P
?
�̂

���  3
2

c



⇣
⌃(h)

x

⌘
+1

�min(F
(h)
? )2

kF?k , where c > 0 is a sufficiently small, fixed numerical constant.

Then with probability at least 1� �,

�max

⇣
Sym(�(h)>F (h)

? �?�̂
>) + Sym(E(h)>F (h)

? �?�̂
>) + Sym(�(h)>E(h))

⌘
 3c�min(F

(h)
? )2.

Now, using the fact that

�min

⇣
�̂�>

?
F (h)
?

>F (h)
? �?�̂

>
⌘
= min

kxk=1
x>�̂�>

?
F (h)
?

>F (h)
? �?�̂

>x

� �min

⇣
F (h)
?

>F (h)
?

⌘
min
kxk=1

x>�̂�>
?
�?�̂

>x

= �min

⇣
F (h)
?

>F (h)
?

⌘
�2
min

⇣
�?�̂

>
⌘
.

To further lower bound �2
min

⇣
�?�̂>

⌘
, we observe that

�̂�̂> = �̂
�
�>

?
�? + �>

?,?�?,?
�
�̂>

=) 1 = �max(�̂�̂
>)  �min

⇣
�̂�>

?
�?�̂

>
⌘
+ �max

⇣
�̂�>

?,?�?,?�̂
>
⌘

Weyl’s inequality

=) �2
min

⇣
�?�̂

>
⌘
� 1�

����?,?�̂
>
���
2
.

Under the assumption that
����?,?�̂>

��� =
����?P

?
�̂

��� is sufficiently small, e.g.,
����?,?�̂>

���  1/2 such

that 1 �
����?,?�̂>

���
2
� 3/4, then we have the following lower bound on �min(F̂ (h)>F̂ (h)): with

probability at least 1� �

�min(F̂
(h)>F̂ (h)) �

✓
3

4
� 3c

◆
�min(F

(h)
?

>F (h)
? ).

As such, for ⌘  minh
1

4kF (h)
? k2

we may bound the contraction factor by

�����Idx � ⌘
1

H

HX

h=1

F̂ (h)>F̂ (h)

����� 
 
1� ⌘

✓
3

4
� 3c

◆
1

H

HX

h=1

�min(F
(h)
? )2

!
.

Piecing this together, we have the following
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Lemma 10 Assume |N1|T & max
n
�2, �

(h)
w

2

�min(⌃
(h)
x )

kF?k2

�min(F
(h)
? )4

o
(max {dy, r}+ log(H/�)), and

����?P
?
�̂

���  min

⇢
3
16

1



⇣
⌃(h)

x

⌘
+1

�min(F
(h)
? )2

kF?k , 1/2

�
. Let ⌘  minh 1/4kF

(h)
? k

2. There exists nu-

merical constant C > 0 such that the following holds: with probability at least 1� �,
���R�̂+�

>
?,?

��� 
 
1�

3⌘

8

1

H

HX

h=1

�min(F
(h)
? )2

!����̂�>
?,?

���+max
h

C
⌘�(h)

w kF
(h)
? kp

H|N2|T

s
dx + log(H/�)

�min(⌃
(h)
x )

log

✓
dy + r

�

◆
,

The last remaining step is to bound the effect of the orthogonalization factor R. We want to upper
bound kR�1

k = 1/�min(R), and thus it suffices to lower bound �min(R). By definition, we have

RR> = (R�̂+)(R�̂+)
>

=

 
�̂�

⌘

H

HX

h=1

F̂ (h)>
⇣
F̂ (h)�̂� F (h)

? �?

⌘
�

⌘

H

HX

h=1

F̂ (h)>W (h)>X(h)
⇣
⌃̂(h)

x,NT

⌘�1
!

 
�̂�

⌘

H

HX

h=1

F̂ (h)>
⇣
F̂ (h)�̂� F (h)

? �?

⌘
�

⌘

H

HX

h=1

F̂ (h)>W (h)>X(h)
⇣
⌃̂(h)

x,NT

⌘�1
!>

⌫ Ir � Sym

 
⌘

H

HX

h=1

F̂ (h)>
⇣
F̂ (h)�̂� F (h)

? �?

⌘
�̂>

!
� Sym

 
⌘

H

HX

h=1

F̂ (h)>W (h)>X(h)
⇣
⌃̂(h)

x,NT

⌘�1
�̂>

!

+ Sym

0

@ ⌘2

H2
F̂ (h)>

⇣
F̂ (h)�̂� F (h)

? �?

⌘>
 

HX

h=1

F̂ (h)>W (h)>X(h)
⇣
⌃̂(h)

x,NT

⌘�1
!>1

A ,

where we discarded the pd diagonal terms of the expansion. Focusing on the first cross term, we have
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Conditioning on the high probability bound events of Lemma 5 and Lemma 6, we repeat a similar
analysis as Lemma 9 to yield
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Therefore, for appropriately chosen numerical constant c > 0, we have
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Combining the above lemmas culminates in the final descent guarantee.

Theorem 3 (Full version of Theorem 2) Assume |N1|T & max
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A.3 The Non-IID Setting

To extend our analysis to the non-iid setting, we first instantiate our covariates as �-mixing stationary
processes [43, 45].

Assumption 2 (Geometric mixing) For each h, assume the process {x(h)
i

[t]}t�1 is a mean-zero
stationary �-mixing process, with stationary covariance ⌃(h)

x and �(k) := �µk.

We note that exact stationarity is unnecessary as long as the marginal distributions converge to
stationarity sufficiently fast; however, we assume exact stationarity for convenience. We now invoke
the blocking technique on each set of N independent trajectories, where each trajectory is subsampled
into a trajectories of length m (we assume T = ma for notational convenience). We may then apply
the analysis of the iid setting on a deflated dataset of HNm data points drawn from the respective
stationary distributions to yield:

Proposition 3 Let x(h)
i
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Now applying Lemma 3, setting g(·) as the indicator function for the burn-in requirement and the
final descent bound, we have for all j = 1, . . . , a.
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Setting �0 = �/a and union bounding over each j = 1, . . . , a, we may invert T�(a) = � to find
a := log

�
�T
�

�
/ log

⇣
1
µ

⌘
. This yields the final descent guarantee.

Theorem 4 Let Assumption 2 hold for the processes {x(h)
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A.4 Converting to Sample Complexity Bounds

To highlight the importance of the task scaling H in our descent guarantees, we demonstrate how to
convert general descent lemmas to sample complexity guarantees.

Lemma 11 For a sequence of positive integers {Mk}k�1 ⇢ N, define {dk}k�1 ⇢ R+ as a sequence
of non-negative real numbers dependent on {Mk} that satisfy the relation

dk+1  ⇢ · dk +
C

Mk

,

for some ⇢ 2 (0, 1) and C > 0. Let d0 = ⌧ . Given a positive integer M , we may partition
M =

P
K

k=1 Mk, where

K :=

$
1

2
log

✓
2

1 + ⇢

◆�1 M⌧2
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1� ⇢

2

◆3

+ 1

%
,

such that the following guarantee holds on dK:

dK  ⌧
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2C
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✓
2

1� ⇢

◆3

.

The proof of Lemma 11 follows by setting each Mk such that ⇢ · dk + C

Mk
=
� 1+⇢

2

�
dk, and setting

K as the maximal K such that
P

K

k=1 Mk  M . Evaluating dK  ⌧
� 1+⇢

2

�K
yields the result.

For convenience, we do not consider burn-in times Mk � M0 8k or pseudo-linear dependence
Cpolylog(Mk)

Mk
. However, these will only lead to inflating dK by a polylog(M) factor.

In essence, Lemma 11 demonstrates how a fixed offline dataset of size M can be partitioned into
independent blocks of increasing size such that the final iterate satisfies an approximate ERM bound
scaling as 1p

M
, inflated by a function of the contraction rate ⇢. Instantiating Lemma 11 with the

problem parameters of Theorem 2 yields Corollary 1.

A.4.1 Near-ERM Transfer Learning

An important consequence of Lemma 11 (thus Corollary 1) is that near-ERM parameter recovery
bounds can be extracted. In particular, given some h 2 [H + 1], for a given representation �̂, and the
least squares weights F̂ (h) computed with respect to some independent dataset of size NT ,
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where the last line follows from applying Lemma 5. We observe that the parameter error nicely
decomposes into a term quadratic in dist(�̂,�?) and least squares fine-tuning error scaling with 1

NT
.

For a fixed dataset of size HNT , one can crudely set aside ⇥(NT ) samples for each task, and use
the rest of the ⇥(HNT ) samples to compute �̂. Invoking Corollary 1 and using the set-aside ⇥(NT )
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samples to compute F̂ (h) conditioned on �̂, we recover the near-ERM high probability generalization
bound on the parameter error

���M̂ (h)
�M (h)

?
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2
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? k
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(h)
x )NT

!
.

B Case Study: Linear Dynamical Systems

To understand the importance of permitting non-isotropy and sequential dependence in multi-task
data, we consider the fundamental setting of linear systems, which has served as a staple testbed for
statistical and algorithmic analysis in recent years, since it lends itself to non-trivial yet tractable
continuous reinforcement learning problems (see e.g., [50, 53–57]), as well as (online) statistical
learning problems with temporally dependent covariates [40, 41, 58–66] (see [67] for a tutorial and
literature review). In particular for our purposes, the dependence of contiguous covariates in a linear
system is intricately connected to its stability properties [66, 68, 69], such that we may instantiate the
guarantees of DFW for non-iid data in an interpretable manner.

The standard state-space linear system set-up admits the form

s[t+ 1] = A(h)s[t] +B(h)u[t] + w[t]

w[t]
i.i.d.
⇠ N (0,⌃(h)

w
), s[0] ⇠ N (0,⌃(h)

0 ),
(29)

where we preemptively index possibly task-specific quantities. We consider the following two
common linear system settings: system identification and imitation learning.

B.1 Linear System Identification

In linear system identification, the aim is to estimate the system matrices (A(h), B(h)) given state and
input measurements st, ut. In particular, we may cast the sysID problem as the following regression:

s[t+ 1] =
⇥
A(h) B(h)

⇤ s[t]
u[t]

�
+ w[t].

It is customary to consider exploratory signals that are iid zero-mean Gaussian random vectors
u[t]

i.i.d.
⇠ N (0,⌃(h)

u ) [58, 66, 67]. In the stable system case, ⇢(A(h)) < 1, we can therefore
evaluate the covariance of the stationary distribution of states s[t] induced by exploratory signal
u[t]

i.i.d.
⇠ N (0,⌃(h)

u ) by plugging in (29) into the following equation

Eu,w[s[t]s[t]
>] = Eu,w
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⇥
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⇤
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⇥
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⇤
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u
B(h)> + ⌃(h)

w

Therefore, evaluating the stationary state covariance ⌃(h)
s := E

⇥
s[1]s[1]>

⇤
amounts to solving the

Discrete Lyapunov Equation (dlyap):

⌃(h)
s

:= A(h)⌃(h)
s

A(h)> +B(h)⌃(h)
u

B(h)> + ⌃(h)
w

.

In the notation introduced earlier in the paper, casting y[t]  s[t + 1], x[t]  

s[t]
u[t]

�
, M (h)

?  

⇥
A(h) B(h)

⇤
, we may instantiate multi-task linear system identification as a non-iid, non-isotropic

linear operator recovery problem.

Definition 4 Let the initial state covariance be the stationary covariance ⌃(h)
0 = ⌃(h)

s , such that the
covariance of the marginal covariate distribution satisfies

⌃(h)
x

:= E
⇥
x[t]x[t]>

⇤
=

"
⌃(h)

s 0

0 ⌃(h)
u

#
, for all t � 0.
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We make the above standard definition for the initial state distribution for convenience, as it ensures
the marginal distributions of each state are identical. We note, however, given a different initial
state distribution, the marginal state distribution converges exponentially quickly to stationarity,
thus accumulating only a negligible factor to the final rates. We then make the following system
assumptions to instantiate our representation learning guarantees.

Assumption 3 We assume that for any task h the following hold:

1. The operators share a rowspace M (h)
? :=

⇥
A(h) B(h)

⇤
= F (h)

? �?, F (h)
? 2 Rds⇥r,

�? 2 Rr⇥(ds+du).

2. The state matrices have uniformly bounded spectral radii ⇢(A(h)) < µ < 1. Subsequently,
we assume there exists a constant �0 > 0 that satisfies

kA(h)k
k2  �0µk, for all k � 0.

The existence of a uniform �0 is guaranteed by Gelfand’s Formula [52], and quantitative
bounds may be found in, e.g., [50, 70].

The first assumption is satisfied, for example, when A(h) = P (h)
? U? and B(h) = Q(h)

? V? individually
admit low-rank decompositions. The second assumption translates to a quantitative bound on the
mixing time of the covariates x[t] by adapting a result from [50].

Proposition 4 (Adapted from Tu and Recht [50, Prop. 3.1]) For each h, let the dynamics for the
linear system evolve as described in (29). Let Assumption 3 hold with constants �0, ⇢. Define
Ps[k]⇠⌫k

[ · | s0 = s] as the conditional distribution of states s[k] given initial condition s0 = s. We
have for any k � 0 and initial state distribution ⌫0,

Es⇠⌫0

⇥��Ps[k] [ · | s0 = s]� Ps[k]

��
tv

⇤


�0

2

s

E⌫0 [ks[0]k
2] +

k⌃�1k⇤
1� µ2

· µk, (30)

where k·k⇤ indicates the nuclear norm [52], and ⌃ := B(h)⌃(h)
u B(h)> + ⌃(h)

w .

We note that by the independence of control inputs u[t], we have trivially that the total variation
distance between the conditional and marginal distributions of covariates x[t] is the same as that of
the states s[t].

��Ps[k] [ · | s0 = s]� Ps[k]

��
tv

=
��Px[k] [ · | s0 = s]� Px[k]

��
tv

Since by construction the marginal distribution of states is identically N (0,⌃(h)
s ), applying Proposi-

tion 4 to s[t], s[t+ k] for any t, k, we get the following quantitative bound on the mixing-time of the
covariates x[t] =

⇥
s[t]> u[t]>

⇤>.

Lemma 12 Following Definition 4 and Assumption 3, the covariate process
�
x(h)[t]

 
t�0

is a mean-

zero, stationary, geometrically �-mixing process with covariance ⌃(h)
x =

"
⌃(h)

s 0

0 ⌃(h)
u

#
, where

⌃(h)
s = dlyap(A(h), B(h)⌃(h)

u B(h) + ⌃(h)
w ), and mixing-time bounded by

�(k) = �µk, where
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�0

2

s

Tr
⇣
⌃(h)

s

⌘
+
k⌃�1k⇤
1� µ2

, ⌃ := B(h)⌃(h)
u

B(h)> + ⌃(h)
w

.
(31)

Thus, instantiating Lemma 12 in Theorem 4 gives us guarantees of DFW applied to multi-task linear
system identification.
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B.2 Imitation Learning

In linear (state-feedback) imitation learning (IL), the aim is to estimate linear state-feedback con-
trollers K(h)

2 Rdu⇥dx from (noisy) state-input pairs {(s[t], u[t])}
t�0 induced by unknown expert

controllers K(h)
? . In particular, we assume the expert control inputs are generated as

u[t] = K(h)
? s[t] + z[t], z[t]

i.i.d.
⇠ N (0,⌃(h)

z
),

which we observe lends itself naturally as a linear regression, casting y[t]  u[t], x[t]  s[t],
M (h)

?  K(h)
? . Plugging the expert control inputs into the dynamics (29) yields that the

states/covariates evolve as

s[t+ 1] = A(h)s[t] +B(h)
⇣
K(h)

? s[t] + z[t]
⌘
+ w[t]

=
⇣
A(h) +B(h)K(h)

?

⌘
s[t] +Bz[t] + w[t].

We make the natural assumption that the expert controller K(h)
? stabilizes the system, i.e. the spectral

radius of the closed-loop dynamics has spectral radius strictly less than 1: ⇢
⇣
A(h) +B(h)K(h)

?

⌘
< 1.

As such, similar to the linear sysID setting, we may plug the above dynamics into the stationarity
equation to yield the stationary covariance:

E[s[t]s[t]>] = E
⇥
s[t+ 1]s[t+ 1]>

⇤

=
⇣
A(h) +B(h)K(h)

?

⌘
E[s[t]s[t]>]

⇣
A(h) +B(h)K(h)

?

⌘>
+B(h)⌃(h)

z
B(h)> + ⌃(h)

w

=) ⌃(h)
s

= dlyap
⇣
A(h) +B(h)K(h)

? , B(h)⌃(h)
z

B(h)> + ⌃(h)
w

⌘
.

Analogously to linear sysID, we make the following assumptions.

Assumption 4 We assume that for any task h the following hold:

1. The initial state covariance is set to the stationary covariance ⌃(h)
0 = ⌃(h)

s , such that the
marginal covariate distributions satisfy

E
⇥
x[t]x[t]>

⇤
= ⌃(h)

s
=: ⌃(h)

x
, for all t � 0.

2. The controllers share a rowspace M (h)
? ⌘ K(h)

? = F (h)
? �?, F (h)

? 2 Rdu⇥r, �? 2 Rr⇥ds .

3. The closed-loop dynamics have uniformly bounded spectral radii ⇢
⇣
A(h) +B(h)K(h)

?

⌘
<

µ < 1. Subsequently, we assume there exists a constant �0 > 0 that satisfies
����
⇣
A(h) +B(h)K(h)

?

⌘k
����
2

 �0µk.

The existence of uniform �0 is guaranteed by Gelfand’s Formula [52].

By using a result almost identical to Proposition 4, we yield the following quantitative bound on the
mixing time of covariates generated by stabilizing expert controllers.

Lemma 13 Following Assumption 4, the covariate process
�
x(h)[t]

 
t�0

is a mean-zero, sta-

tionary, geometrically �-mixing process with covariance ⌃(h)
x = ⌃(h)

s , where ⌃(h)
s =

dlyap
⇣
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⌘
, and mixing-time bounded by
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Tr
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⌘
+
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z
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w

.
(32)

Thus, instantiating Lemma 12 in Theorem 4 gives us guarantees of DFW applied to multi-task linear
imitation learning.
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C Additional Numerical Experiments and Details

We present additional numerical experiments to demonstrate the effectiveness of DFW (Algorithm
1) and provide a more detailed explanation of the task-generating process for constructing random
operators in linear regression and system identification examples. Furthermore, we introduce an
additional setting, imitation learning, to illustrate the advantages of collaborative learning across
tasks in learning a linear quadratic regulator by leveraging expert data to compute a shared common
representation across all tasks. In this latter setting, we also emphasize the importance of feature
whitening when dealing with non-i.i.d. and non-isotropic data.

• Random rotation: For all the numerical experiments presented in this paper, the application
of a random rotation around the identity is employed for both task-specific weight generation
and the initialization of the representation. This random rotation is defined as Rrot = exp(L̃),
where L̃ = L�L

>

2 and L = �S. Here, S is a random matrix with entries drawn from a
standard normal distribution, dl is the corresponding dimension of the high-dimensional
latent space, and � corresponds to the scale of the rotation. We set � = 0.01 for generating
different task weights and � = 1 for initializing the representation.

• Step-sizes: The step-size ⌘ used to update the common representation is carefully selected
to ensure a fair comparison between Algorithm 1 and the vanilla alternating minimization-
descent approach employed in FedRep [1]. For example, to obtain the results depicted in
Figure 1a, we set ⌘ = 7, 5⇥ 10�3, while for the alternating minimization-descent approach,
which demonstrates better performance with a smaller step-size, we set ⌘ = 5⇥ 10�5 to
achieve the results presented in Figure 1b. In Figure 2a, both the single-task and multi-task
implementations of Algorithm 1 adopt ⌘ = 7, 5 ⇥ 10�3, whereas the vanilla alternating
minimization-descent approach uses ⌘ = 7.5⇥ 10�3 for a fair comparison. Similarly, in
Figure 2b, both the single-task and multi-task versions of Algorithm 1 use ⌘ = 1⇥ 10�1,
while the vanilla alternating minimization-descent approach utilizes ⌘ = 2⇥ 10�3.

C.1 Linear Regression with IID and Non-isotropic Data

Continuing our experiments for the linear regression problem, this time with different random linear
operators as illustrated in Figure 2b, we present the results for an extended range of tasks using
Algorithm 1 and the alternating minimization-descent approach (FedRep [1]). In this analysis,
we utilize the same specific parameters as discussed in §4. Additionally, we set the step-size
⌘ = 7.5 ⇥ 10�3 for both the single-task and multi-task implementations of Algorithm 1, and
⌘ = 7.5⇥ 10�5 for both the single-task and multi-task alternating minimization-descent.

Figure 3 presents a comparison of the performance between Algorithm 1 and the vanilla alternating
minimization approach in both single and multi-task settings. In line with our theoretical results,
the figure demonstrates that as the number of tasks H increases, the error between the current
representation and the ground truth representation significantly diminishes. In the specific case
of linear regression with iid and non-isotropic data, this figure emphasizes that a small number of
tasks (H = 5), is sufficient to achieve a low error in computing a shared representation across the
tasks. Furthermore, the depicted figure reveals that while the multi-task alternating descent algorithm
outperforms the single-task case, it is worth noting that this algorithm remains sub-optimal and is
unable to surpass the limitation imposed by the presence of bias in the non-isotropic data. Despite its
improved performance, the multi-task alternating descent algorithm still encounters challenges in
overcoming the inherent noise barrier.

C.2 System Identification

Building upon the results presented in §4, we conduct an extended experiment involving a larger range
of tasks while maintaining the parameters specified in §4.2. Specifically, we generate distinct random
operators different from those utilized to obtain the results illustrated in Figure 2b. In this current
analysis, we present the outcomes for the expanded range of tasks using Algorithm 1 and compare
them to the single-task and multi-task vanilla alternating minimization-descent algorithms. The
step-size ⌘ is set to 1⇥ 10�1 for both the single-task and multi-task implementations of Algorithm 1,
while for the single-task and multi-task vanilla alternating minimization-descent algorithms, we set ⌘
to 2⇥ 10�3.
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Figure 3: We plot the subspace distance between the current and ground truth representation with respect
to the number of iterations, comparing between the single and multiple-task settings of Algorithm 1 and the
multi-task FedRep for the IID linear regression with random covariance. We observe performance improvement
and variance reduction for multi-task DFW as predicted.

In alignment with our main theoretical findings, Figure 4 provides compelling evidence regarding
the advantages of the proposed algorithm (Algorithm 1) compared to the vanilla alternating descent
approach when computing a shared representation for all tasks. Consistent with the trend observed
in Figure 3 for the linear regression problem, Figure 4 illustrates a significant reduction in the
error between the current representation and the ground truth representation as the number of tasks
increases. Additionally, it is noteworthy that while the multi-task alternating descent outperforms
the single-task scenario, the single-task variant of Algorithm 1 achieves even better results. This
observation underscores the importance of incorporating de-biasing and feature-whitening techniques
when dealing with non-iid and non-isotropic data.

C.3 Imitation Learning

Our focus now turns to the problem of learning a linear quadratic regulator (LQR) controller, denoted
as K(H+1) = F (H+1)

? �?, by imitating the behavior of H expert controllers K(1),K(2), . . . ,K(H).
These controllers share a common low-rank representation and can be decomposed into the form
K(h) = F (h)

? �?, where F (h)
? represents the task-specific weight and �? corresponds to the common

representation across all tasks. To achieve this, we exploit Algorithm 1 to compute a shared low-rank
representation for all tasks by leveraging data obtained from the expert controllers. Within this
context, we consider a discrete-time linear time-invariant dynamical system as follows:

x(h)[t+ 1] = Ax(h)[t] +Bu(h)[t], t = 0, 1, . . . , T � 1,

with nx = 4 states and nu = 4 inputs, for all h 2 [H + 1], where u(h)[t] = K(h)x(h)[t] + z(h)[t],
with z(h)[t] ⇠ N (0, Inu) being the input noise. In our current setting, rather than directly observing
the state, we obtain a high-dimensional observation derived from an injective linear function of the
state. Specifically, we assume that y(h)[t] = Gx(h)[t] + w(h)[t], where G 2 R25⇥4 represents the
high-dimensional linear mapping. The injective linear mapping matrix G is generated by applying a
thin_svd operation to a random matrix with values drawn from a normal distribution N (0, 1). This
process ensures injectiveness with a high probability.
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Figure 4: We plot the subspace distance between the current and ground truth representation with respect to the
number of iterations, comparing between the single and multiple-task settings of Algorithm 1 multi-task FedRep
for the linear system identification with random covariance. We observe performance improvement and variance
reduction for multi-task DFW as predicted.

For this aforementioned multi-task imitation learning setting, we adopt a scheme in which we gather
observations of the form {{y(h)[h], u(h)[t]}T�1

t=0 }
H

h=1 from the initial H expert controllers to learn
the controller K(H+1). These observations are obtained by following the dynamics:

y(h)[t] = (Ã+ B̃K̃(h))y[t] + B̃z(h)[t] + w(h)[t]

with Ã = GAG†, B̃ = GB, K̃(h) = K(h)G†, and process noise w(h)[t] ⇠ N (0,⌃w).

The collection of stabilizing LQR controllers K(1),K(2), . . . ,K(H+1) is generated by assigning
different cost matrices, namely R = 1

4Inu and Q(h) = ↵(h)Inx , where ↵(h)
2 logspace(0, 3, H).

These matrices are then utilized to solve the Discrete Algebraic Ricatti Equation (DARE): P (h) =
A>P (h)A>+A>P (h)B(B>P (h)B+R)�1B>P (h)A+Q(h), and compute K(h) = �(B>P (h)B+
R)�1B>P (h)A, for all h 2 [H+1]. Moreover, the system matrices A and B are randomly generated,
with elements drawn from a uniform distribution. The trajectory length T = 75 remains consistent
for all tasks. The shared representation is initialized by applying a random rotation to the true
representation, denoted as �? = G†.

Figure 5 presents a comparative analysis between Algorithm 1 and the vanilla alternating
minimization-descent approach (FedRep in [1]) for computing a shared representation across linear
quadratic regulators. This shared representation is then utilized to derive the learned controller
K(H+1) in a few-shot learning manner. Consistent with our theoretical findings and in alignment with
the trends observed in Figures 3-4, Figure 5 demonstrates a substantial reduction in the error between
the current representation and the ground truth representation when leveraging data from multiple
tasks, compared to the single-task scenario in Algorithm 1. Furthermore, this figure underscores the
significance of de-biasing and whitening the feature data in overcoming the bias barrier introduced by
non-iid and non-isotropic data. In contrast, the vanilla alternating descent algorithm fails to address
this challenge adequately and yields sub-optimal solutions.
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Figure 5: We plot the subspace distance between the current and ground truth representation with respect to the
number of iterations, comparing between the single and multiple-task settings of Algorithm 1 and the multi-task
FedRep for the imitation learning with random covariance. We observe performance improvement and variance
reduction for multi-task DFW as predicted.
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