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Abstract

We address the problem of learning linear system models from observing multiple trajectories from
different system dynamics. This framework encompasses a collaborative scenario where several systems
seeking to estimate their dynamics are partitioned into clusters according to their system similarity. Thus,
the systems within the same cluster can benefit from the observations made by the others. Considering this
framework, we present an algorithm where each system alternately estimates its cluster identity and performs
an estimation of its dynamics. This is then aggregated to update the model of each cluster. We show that
under mild assumptions, our algorithm correctly estimates the cluster identities and achieves an approximate
sample complexity that scales inversely with the number of systems in the cluster, thus facilitating a more
efficient and personalized system identification process.

1 Introduction

System identification is the data-driven process of estimating a dynamic model of a system based on obser-
vations of the system trajectories. It plays a crucial role in aiding our understanding of complex systems and
is a fundamental problem in numerous fields, including time-series analysis, control theory, robotics, and re-
inforcement learning d&_tr_{im_an.d_E;zkh.fo, hﬂﬂ; |ij.m§, |_12%J). The effective utilization of available data is
pivotal in obtaining an accurate model estimate with a measure of uncertainty quantification. Traditional system
identification, methods ,@) have focused on asymptotic analysis, which, although insightful, is re-
strictive when dealing with small to medium sized data sets. Motivated by this, and the fact that data generation
is often costly and time consuming, modern approaches focus on developing sample complexity bounds (i.e.,
non-asymptotic convergence analysis).

Results on the estimation of both fully (lS_arkar_an_d_Rakhhﬂ |De_an_e_t_alJ |2Q2d [Slm_chgmu_tz_e_t_alj
2018) and partially (Oymak and Oz aﬁ 201 Q Sun QLaJ 202 !j Tu et al.,2017;|Simchowitz et alJ, 201 Q Zheng and Li,

2020) observed LTI systems have demonstrated that a more precise characterization of error bounds is essential

for designing efficient and robust control systems (IDe_an_e_t_alJ, ;tDJ_e_t_alJ, |2Qlj; |Zhsm_e_t_al.|, hﬂ&d). These

studies provide non-asymptotic bounds that are functions of the number of observed trajectories (see Table 1 of
i, ) for a summary of the bounds).

A recent body of work has begun to formalize methods for improving sample efficiency by considering data
(or models generated from data) from multiple systems Xmn_Qt_aL, , ; , ; ,

2023;Zhang et al .|, 202 2], 2023;|Wang et al., 2!)2;35). Leveraging data from similar systems provides a promising

approach although clarifying the effect of the heterogeneity in the systems and their environments is crucial.
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The aforementioned work have demonstrated that the benefit of collaboration typically reduces the sample
complexity by a factor of the number of collaborators, when compared to the single-agent setting where each
system estimate its dynamics from its own observations.

However, the approaches discussed in (Xin et al., [2( 222, 2023; Wang et al., 2023a) compute a common es-

timation for all participants, thereby restricting the ability to obtain personalized estimations. Furthermore, the
sample complexity bounds achieved in those studies are subject to an unavoidable heterogeneity bias that cannot
be controlled by the number of trajectories or systems, thus leading to an estimation error that scales with the
measure of heterogeneity among the considered systems. Specifically in (Xin et al., w, M; Wang et al.,

) the error of the system identification process is shown to be of order O(\/—:lﬁ + €net) Where epe; charac-

terizes the worst case heterogeneity and /V is the number of trajectories across all systems.

Personalization in collaborative settings aims to provide tailored solutions (e.g. model estimates) to in-
dividual agents with distinct objectives, while enabling inter-agent collaboration (e.g. model sharing). This
encompasses diverse topics such as representation learning (Zhan 1 ,M; Bengio et al., M; Finn et alJ,
|2Qlj; |C&llins_el_aﬂ, |ZQZﬂ) and clustering m ), both widely studied in machine learning and
data analysis. The present work address the aforementioned challenges by leveraging clustering techniques to
achieve personalized model estimations. The idea is simple: cluster systems into groups that have identical
system dynamics, and then apply collaborative learning algorithms to the clusters in order to improve sample
complexity (by reducing the heterogeneity induced error epe;) and achieve personalization even for heteroge-
neous settings.

Recent work on clustered federated learning that includes (Ghosh et al., [2( !21i), (Ghosh et al., 2!)22]), (Sattler et al.,

) have shown the potential of clustering techniques to collaboratively train models in heterogeneous set-
tings with non-i.i.d. data. Building upon this success, this paper aims to apply clustering to the system iden-
tification problem, which poses unique challenges due to the dynamical nature of the system that results in
non-i.i.d. data. This is in contrast to the linear regression and model training settings explored in the aforemen-
tioned work. Further details on these challenges are discussed later.

Specifically, we investigate the scenario where we have M dynamical systems, with each of them belonging
to one of K different system types (which we refer to as a “cluster”’). Which cluster a system belongs to is not
initially disclosed. Our objective is to simultaneously identify the correct cluster identities for each of the
M systems and obtain a system model by collaboratively learning with the systems in the same cluster. Our
approach can lead to significant reductions in the amount of data required to accurately estimate the system
models, as illustrated in the following theorem.

Theorem 1. (main result, informal) Suppose the K system types are sufficiently different, and we observe the
same number of trajectories from each system. Then, for a given cluster, with high probability, the estimation
error between the learned and ground truth model is bounded by:

1

estimation error < - — + misclass. rate
V# systems X # trajectories

with
misclass. rate < exp(—# trajectories x misclass. const.).

where #systems denotes the number of systems in the cluster, and #trajectories represents the number of trajec-
tories observed by each of them.

The first term captures the error in learning the system dynamics from systems’ observations within the
same cluster. It shows what one would hope; as the number of systems and observations increase, the error
decreases. However, this speedup does not come for free. The second term is the penalty paid for assigning



one of the M systems to one of the incorrect K clusters. One of the main results from our work is to show that
both terms can be controlled by adjusting the number of observed trajectories. Moreover, the misclassification
rate is dominated by the first term, thus leading to a an approximate sample complexity that is scale inversely
with the number of system within the cluster. This is in stark contrast to (Xin et al., M, M; Wang et al.,

) which is where the heterogeneity introduces a bias € which is not a function of the number of systems
or the volume of data at our disposal. Our work shows that by controlling both sources of error, our approach
can accurately estimate the system dynamics with fewer samples, when compared to the single agent case, and
Erovides better estimation in heterogeneous settings when compared to , , 2023; Wéné éi él;,

).

Contributions: This is the first work to introduce clustering in order to provide sample complexity gains
to the collaborative system identification problem. We derive an upper bound on the estimation error (The-
orem [2) that decomposes into two terms (as shown above), where each term can be controlled by adjusting
the number of observed trajectories. We offer theoretical guarantees on the probability of cluster identity mis-
classification (Lemma [I) and thus convergence (Corollary [I). We show that under a mild assumption on the
number of observed trajectories, our approach correctly estimates the cluster identities, with high probability.
Moreover, we show that our method achieves an improved convergence rate when compared to the single-agent
system identification process. In contrast to the federated setting (Wang et al., [2023a; (Chen et alJ, M) and
that of (Xi , ,|ZQZ3|), we are able to provide personalized models as opposed to a single generic
model, thus expanding the use cases for collaborative system identification.

1.1 Notation

Given a matrix G € R™*", the Frobenius norm of G is denoted by ||G||r = VTr(GGT). |G| = omax(G),
where o (G) is the largest singular value of G. Consider a symmetric matrix 2, Apin(2) and Apax(2) denote
its minimum and maximum eigenvalues, respectively. For systems, we use superscript () to denote the system
index and subscript ¢ for time. For models, subscript denotes the cluster identity, and superscript (7) is the
iteration counter.

2 Problem Formulation and Algorithm

Consider M linear time-invariant (LTI) systems
2 = A0 4 B@Oy® L p =01, T —1 (1)

where :cf) € R"=, ugi) € R™ and wgi) € R™ are the state, input, and process noise at time ¢, for sys-

j VA i)\ T— - . i) iid.
tem ¢ € [M]. We assume that {utl) = {th)}g“:11 are random vectors distributed according to ugl) Ky

N (0, Ui,Jm) and wgi) N (0, 012072-]”1). Furthermore, it is assumed that :L'((]i) N <0, U%7ilnz>.

We consider the setting where we have access to M datasets corresponding to observed system trajectories.
Each of the datasets is generated by one of K different systems. We consider the case where K < M. We will
from now on refer to the K types of different systems as “clusters”, which we label as Cy,...,Cx. We denote
(A;, B;) as the ground truth system matrices of cluster j € [K]. Thatis, A”) = A;, and B®"Y) = B;, for any
i € C;. Note that due to the noise in model (L), two datasets generated by cluster C; will be different.

The state-input pair of a single trajectory {xgl) , ugl)} of system i € C; is referred to as rollout. We consider

Ny T—1
the setting where multiple rollouts of length 7" are collected and stored as {xl(zt) , ul(lt) } ,forl =1,...N;,
LBt Ji=0



with [ denoting the [-th rollout and ¢ the ¢-th time-step of the corresponding rollout. Thus, for any system i € C;
and cluster j € [K], the system dynamics is described by:

2 =027 ) ¥1<I<Nyand0<t<T-1, )
where zl( t) = [xl(zt) T ul(lt) ’T} € R+ corresponds to the augmented state-input pair of system ¢ € C; over

rollout [ at time ¢, and ©; = [A; B,] denotes the concatenation of the ground truth system matrices A; and

Bj. The state update 2" can be expanded recursively as follows:

Lt+1
(%) (%)
' U, ‘ Wy o
sl =GO | o [+EO ] |+ AL,
(4) (%)
U1 Wyt 1
where, ng’) £ A;_lBj A;_2Bj .-+ Bj Jand F; £ | A§_1 A§_2 oo I, |forallt > 1.
The state-input pair zl(? is distributed according to a Gaussian distribution with zero mean and covariance
matrix Ey), where,
: 2.1 0
£ & [ Tzitne =0, fort=0,
0 O-u7’iInu
and
520 & o2 Gy l)G(Z) Ty o2 F(Z)F(l) T+ o2 AL (At) 0 ‘|
£ 0 o2 .1, ’

forallt > 1and i € C;, Vj € [K|, as detailed in (Mang_e_t_aL, M).

Next, we define the offline batch matrices for each system i € C;, Vj € [K]. For a single rollout I, the

data is concatenated according to Xl(i) = [ l(% ajl(? ] € RnexT, Zl(i) = [ zl(’l%_l zl(’lg €
R(metnu)xT and VVl(Z) = { wl(l% R 1(3 } e R™>T_ This is then further stacked to construct the
batch matrices X = [Xfi) XJ(\Z,z ] € RaxXNT - 7() = { Zfi) Z](\Z,B } € R(tnu)xNiT
and W) = { le‘) W](\;) ] € RNl Therefore, for each system i € Cj, Vj € [K], its state, input,
noise, and model parameters are related according to

X0 =0,z + w®, 3)

where each column of Z* (@) and W are sampled according to Gaussian distributions with zero means and
covariance matrices EEZ), 2 Inz, respectively. With that said, we are now able to introduce the clustered
system identification problem.

Problem 1. We consider M dynamical systems as in (1) that are equipped with batch matrices X @), 7@,
and WO, Each system i € [M] is associated with its own cost function C)(0) = | X — 02|32, and
is unaware of its cluster identity. We aim to estimate the systems’ cluster identities CAl, .. ,CA x and use it to
estimate a model @j = [A\J EJ] which is close to the ground truth ©;, Vj € [K].

To obtain a faster and more accurate estimation, we frame the system identification problem in the setting
where systems within the same cluster can leverage data from each other. Further in this paper, we provide
theoretical guarantees to support these statements.



The problem described above can be framed into an alternating optimization problem, as the actual cluster
identity of each system (i.e., C1, ... ,Ck) is not disclosed to the systems in advance. Therefore, our objective is
twofold: firstly, we aim to classify the correct cluster identities of the systems by employing the Mean Square
Error (MSE) as the clustering criterion, with the resulting output being the cluster estimation (CE); secondly,
we use that estimation to identify the model dynamics of each cluster with a model estimation (ME) step. Next,
we introduce our clustered system identification algorithm to solve this problem.

Algorithm 1 Clustered System Identification

1: Initialization: number of clusters K, step-size 7);, and model initialization @§0) vy € [K],
2: for each iteration r = 0,1,..., R — 1 do

3 The systems receive the models {@Y), ce @)%)}, Vj e [K],

4 Cluster estimation (CE):

5 for each system i € [M]

6 J = argmin; ¢ e[| X — @Y)Z“’H%,

7 define e; = {em};{:l with e; ; = 1{j =7},

8 end for

9 Model estimation (ME):

10: et =l 4 ﬁ Y e €. (X@ =8 Z20) 2T forall j € [K]
11: end for

12: Return (:)g-R) forall j € [K].

The initial step of Algorithm [Ilinvolves the initialization of the number of clusters and the provision of an
initial guess for the dynamics of each cluster. Subsequently, the algorithm iterates from line 2 to 11, during
which each system estimates its corresponding cluster identity and stores this information in the form of a
one-hot encoding vector denoted by e;. The one-hot encoding vector comprises K elements, with one in the
position of the estimated cluster identity and zero elsewhere. After the estimation of the cluster identity, the
cluster model is updated by performing a single gradient descent iteration in line 10, with the gradient being
the average of the gradients of each individual system’s cost function that belongs to the cluster.

Remark 1. Note that Algorithm (Il is an alternating minimization algorithm, where it performs an iterative
clustering step followed by a model estimation process. Prior to the start of collaboration, each system i € [ M|
collects data and stores it in batch matrices X (i), VA (i), and W@, Moreover; it is worth noting that Algorithm 1]
uses the same batch matrices for both cluster identity and model estimation.

The following definitions and assumptions are required in order to analyze Algorithm 1. Subsequently, we
provide the intuition behind them.

Definition 1. The minimum and maximum separation between the clusters are defined as
A . A
Apin = min H@] — @j/” and A, = max ”@j — @j’”7
J#J J#J

respectively.

. 2
We define p() £ ﬁmi“ as the signal-to-noise ratio Vi € [M].

2
w,i

Assumption 1. The initial model estimate @§0) satisfy \|(:)§-0) —9j] < (3 —a®) Ay, Vi € [K], where
0<a < %



. 2
(3) )52 (4)
. : : : , PN I+ MT
Assumption 2. For any fixed and small 0, the number of trajectories satisfies N;n, 2 (W log(5-),

ILi € [M]. Weal hat Apin > 1+ A T N, (20010 )
forall i € [M]. We also assume that Api, 2 1+ maXZie[M} Yoo exp | —cNing FOTE U=

for some constant c.

Assumption [I] implies that the initial guess for the model estimates is superior to a random initialization.
This assumption is standard for alternating minimization algorithms, particularly for learning mixture models
(Balakrishnan et al., M). The condition on the number of trajectories in Assumption 2is a common require-
ment in the concentration bound analysis. This is used to guarantee that the cluster estimation procedure of
Algorithm [1] correctly estimate the cluster identities, with high probability. Note that this is a mild assumption
since for well-behaved systems where ZEZ) is well conditioned, N;n, is typically in the same or superior to
the order of log (%) The condition on A, in Assumption [2 is to ensure that any two clusters are well-
separated. This is a standard assumption in the literature of clustering d]lmn [liMJ; |]Q.1maLan.d_Ka.nnan |2Qld).
Similar assumptions are exploited in (Ghosh et al., M) in the context of the linear regression problem.

3 Theoretical Guarantees

We begin our analysis by examining a single iteration of Algorithm [Il For simplicity, we omit the superscript
r that denotes the iteration counter. Let us assume that we have the current estimated model © ; for all clusters
j € [K] at a given iteration, such that [|©; — ©;|| < (3 — @) Ay, forall j € [K], with 0 < o < 3.

3.1 Probability of Cluster Identity Misclassification

Consider a system ¢ € [A] within cluster C;. Let Mf 7' be the event in which system ¢ is inaccurately classified
as belonging to cluster C;s. The event when system 1 is correctly classified is denoted as M?”. The following
lemma provides an upper bound on the probability of misclassification.

Lemma 1. Suppose that i € C;. There exist universal constants ci and ca, such that for any j' # j,

T-1 ; j 2
Ny a2
P {./\/lzj } <c exp | —coN;ny, t

o PO + rm

We prove Lemma[llin Appendix [6.1l By combining Lemma [1] with the condition on N;n, from Assump-
tion[2] our algorithm can ensure that the probability of misclassifying system i to cluster C; is at most &, where
0 can be arbitrarily small. Moreover, it is noteworthy that if we assume the data X (i), A4 (i), and W to be i.i.d.
with T" = 1 and n, = 1, and the columns of Z (©) to have an identity covariance matrix, we can recover the
probability of misclassification in the linear regression problem, as discussed in (Ghosh et al., M).

3.2 Convergence Analysis

We now examine the convergence of Algorithm[Il The theorem below is a single-iteration convergence analysis
of our algorithm. Here we assume that, at a given iteration, an estimation ©; is obtained, which closely

(:)j -0, < (% — a) Amin, Vj € [K]and 0 < o < % We demonstrate
that © ;j converges to ©; up to a small bias.

approximates the true model ©;, i.e.,




Theorem 2. For any fixed 0 < § < 1, with N; > max {S(nx +ny) + 161og %, (4ng + 2n,) log % ,
IG5
Amin (Ziecj Ni 23:701 EEZ))

Vi € [M], and selected step-size 1); = , with probability at least 1 — 36, it holds that,

— 2 2
o La 1 05
H@j -6l < 5”63' — 0| + ¢ X —=—=+C1Amax Z Zexp A ( ap|[%, | )

\/ Zie@ Ni ie[M] t=0 p® ||E§Z) |+ /1

4)
forall j € [K], where ¢y, ¢1, ¢2 > 0 are problem dependent constants.

The proof of Theorem [2 is detailed in Appendix [6.2] This theorem provides an upper bound for the esti-
mation error per iteration of our algorithm. Specifically, this bound consists of three terms. The first term is
a contraction term that decreases to zero as the number of iterations increases. The second term is a constant
error that decreases as the total number of observed trajectories by the systems within the cluster increases. The
final term is the misclassification rate, which decays exponentially with the number of observed trajectories.

Note that although our setting is different from (Ghosh et al., M), which leads to a different estimation
error expression, our per-iteration estimation error is also composed of a contractive term added to a constant
error that can be controlled by the amount of data (i.e., the number of observed trajectories). We proceed to
show the convergence of our algorithm by demonstrating that o(") is non-decreasing throughout iterations and

using Assumptions [1]and 2l to show that H(:)g-rﬂ) - 09,]| < H(:)gr) — O] for all r € [R].

Therefore, equipped with the aforementioned result, the following corollary characterizes the convergence
of Algorithm [L by providing the number of iterations required to attain a certain small and near optimal error e,

ie., \|(:)§-R) — O] <, for all clusters j € [K].

Corollary 1. Frame the hypotheses of Theorem [2l and Assumptions (Ll and 2] Select the step-size as 1; =

‘C]‘ - Amin 7 7 A(R)
— for all 7 € |K|. Then, after R > 2 4+ log(2®=in) parallel iterations, we have ||©} 7 —
Amin (ZiGCj Ni Zf;()l ZE”) f ’ [ ] f g( i ) b H J
@]H <'e, with
T-1 . () 2
- 1 5 ~ @)%
€ =0y X ————— + 1 Amax Z Zexp —CoN;ny, ( . p (Jl il > , (5
\/ ZieCj Ni ie[M] t=0 P27 + VN

forall j € [K], where ¢y, ¢1, ¢2 > 0 are problem dependent constants.

The proof of Corollary 1 can be found in Appendix [6.3l Our proof builds upon similar arguments as in
(Ghosh et al., M), which considers the linear regression setting. To establish the non-decreasing property of
(") for all € [R] and a decrease in the additive error term over the iterations, we rely on Assumptions [ and
2. Furthermore, we demonstrate that our algorithm achieves a sufficiently large value of ") > i after only
a small number of iterations R > 2. This indicates that after a suitable number of iterations, our Algorithm [1]
produces an estimation error that scales down with the number of systems within the cluster, and is independent
of the initial closeness parameter a(?).

This corollary highlights the benefits of collaboration. It demonstrates that the estimation error scales
inversely with the number of agents within a cluster, implying that as the number of systems in the cluster
increases, this error decreases. This leads to a smaller error when compared to the single agent setting, where
each system estimates its dynamics using only its own observations.

Importantly, the presented error bound differs from that of (Mang_e_t_aL M). Here the misclassifica-
tion rate exponentially decays with the number of observed trajectories, whereas the heterogeneity bias epe; in



dﬂan.g_e_t_aL, |ZQZ3_J) cannot be controlled by the number of trajectories. This indicates that under heterogeneous
settings where the systems are significantly different, our clustering-based approach outperforms (Wéné éi él;,

) by providing better control over the sources of error. However, it is worth mentioning that when the
systems are similar and personalization is not required, the approaches introduced in (Xin et al., w, M;
Man.g_e_t_aL, |2923d) may be more favorable as their error bounds scale down with the total number of systems
and do not necessitate a clustering step.

4 Numerical Results

The following simulation illustrate the efficiency of Algorithm [Il Our analysis considers M = 50 systems,
each described by an LTI model as in (1) where K = 3 clusters and the number of systems in each cluster is
|C1] = 10, |C2| = 24, and |C3] = 16. The systems matrices for each cluster are described as follows:

0.5 0.3 0.1 ~0.3 0.0 0.0 —0.1 0.1 0.1
A = (00 02 00|, A4o=1]01 04 00|, A3=1]01 015 0.1],
0.1 0.0 03 02 03 05 0.1 0.0 02
(1 05 1 05 0.8 0.1
Bi=101 1|, Bo=|01 1], By=101 15|,
0.75 1.5 0.75 1.5 0.4 0.8]

where the initial state, input, and process noise standard deviations, for each cluster, are set to 0, ; = 0,; =
Ow,i = 0.11, Vi € Cq, Oz = Ouj = Ow,i = 0.12, Vi € Cq, and Oz = Ouj = Ow,i = 0.05, Vi € C3. We
consider the same number of trajectories N; = 100 for all ¢ € [M]. Moreover, the trajectory length is set

to T' = 50. We use a fixed step-size 1; = 1073, Vj € [3]. For each iteration r, the estimation error e&j ) is

)

defined as the spectral norm distance between the estimated model (:)y
e = H(:)gr) — O], for all clusters j € [K].

Figure [I/depicts the estimation error efnj ) as a function of the number of iterations r for all the three consid-
ered clusters. The top plots compare the performance of Algorithm [1l with and without the clustering procedure
(i.e., line 5 of Algorithm[1). These plots reveals that the estimation error decreases significantly when systems
with the same model are clustered and cooperate to estimate their dynamics. Conversely, in the absence of
clustering, the significant heterogeneity level across the systems leads to a poor common estimation, resulting
in a large estimation error and unpersonalized solutions. This confirms our theoretical results, showing that
the misclassification rate in (3)) outperforms the heterogeneity constant of dXin_e_t_aL, |2Q22J, ;Mang_ﬁzt_aL,
), when dealing with heterogeneous settings.

and the ground truth model O, i.e.,

The bottom plots of Figure [I] demonstrates the benefits of collaboration among systems to learn their dy-
namics. This shows that the estimation error is considerably reduced when multiple systems within the same
cluster (i.e., |C1| = 10, |Ca| = 24, and |C3| = 16) leverage the data from each other to identify their dynamics,
compared to the case where a single system estimate its dynamics by using its own observations. This also
confirms our theoretical results, where the statistical error in (3) scales down with the number of systems in
the cluster, thus highlighting the benefit of collaboration in improving estimation accuracy in a multi-system
setting.

!Code can be downloaded fromhttps://github.com/jd-anderson/cluster—sysID


https://github.com/jd-anderson/cluster-sysID
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Figure 1: Estimation error as a function of iteration count. The plot on the top considers Algorithm [1] with and
without clustering, whereas the bottom plot consider the single and multiple agents settings.
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Figure 2: Number of misclassification as a function of iteration count.

Figure [2 presents the misclassifications of Algorithm [1]as a function of iterations r. It depicts the number
of systems whose cluster identity is incorrectly estimated. The figure illustrates the effect of the number of
observed trajectories on the misclassification rate. As anticipated and consistent with our theoretical results, an
increase in the number of trajectories leads to a considerable reduction in the number of iterations needed to

correctly classify all the systems into their respective clusters.

5 Conclusions and Future Work

We presented an approach to address the system identification problem through the use of clustering. Our
method involves partitioning different systems that observe multiple trajectories into disjoint clusters based
on the similarity of their dynamics. This approach enjoys an improved convergence rate that scales inversely



with the number of systems in the cluster, along with an additive misclassification rate that has been shown
to be negligible under mild assumptions. Our approach enables systems within the same cluster to learn their
dynamics more efficiently. Future work will involve extending the proposed formulation to online system iden-
tification and proposing an adaptive clustering approach that eliminates the necessity for the warm initialization
and well-separated clusters assumptions.
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6 Appendix

6.1 Proof of Lemmal/ll

Without loss of generality, we can analyze only the first cluster le 7 for some j # 1. By definition, we have
M7 = {IXO - 8,20 < | X0 - 6,203}

where the batch matrices X, Z() and W are related according to X = 0,Z® + W@ _ Note that
zl(lt) N (O, EE”) and wl(zt) N (O o2 Z-IM) are independent across trajectories (i.e., the columns of Z)

) w,

and W are independent). Thus, we can write

where ml(lt) = (01 — @1)7:1(7? + wl(ft) ~N <0, z’:ﬁ“) , nl(lt) = (07 — (:)j)zl(? + wl(ft) ~N <0, if)), with
5 = (@1 - 005 (0161 + 0l L. 5 = (016,201 - 6))" + 07 L.

Therefore, we obtain

T—-1 N; T—1 N;
1,j i), T(), (i ), T (), (i
R PR TES Sh AL S
t=0 1=1 t=0 I=1
with ml(zt) = (iy))%vl(? and nl(zt) = (iy))%ul(zt) for some standard normal random vectors vl(’it), ul(lt) ~

N (0, I,,, ). Then, the above expression can be rewritten as follows

=0 I=1 =0 I=1
T—-1 N; T-1 N;

<P { D070 <l { ST t} |
t=0 =1 7 7 t=0 (=1 7 7

for any ¢ > 0. Therefore , by using "Ul(i)’Tigi)’ul(l) < dﬁ")v}
we obtain



where Vt(i) are standard Chi-squared distributions with N;n, degrees of freedom, for all ¢ € {0,1,...,7 —1}.
Moreover, by using Definition [Iland Assumption [}

T—1 T—1
P{mj7} <P {Z v < f} +P {Z gV > f} ,
t=0 t=0

with fti) = ( + a)?A2. HEEZ)H + J?U“/nx and gti) = (— a)?A?. HE(i | + J?UZ\/E, since ng’) =

min min

H@1—@jH2HE§Z |+ 02 /e = (5 + )2 A2, 5| + 02 /i, with [0 — 64| > H@ e - 6; -

0jl = (3 + @) Auin and 4} = [©1 = Ou|PE7] + 0% iz < (5 — @)? A%, |15 + 02 5y, where

|01 — @1 | < (— — @)Apin according to Assumption [1l Therefore, to characterize the above tail bounds, we

can exploit well-established concentration inequalities as detailed in (Boucheron et al .| 201 j Vgrshymﬂ 201 ii)

To this end, we can use union bound to write

P{m}I} < TZ_IP {Fv0 <t +p{gv® > 1},

t=0

where P { ft <t } can be rewritten as follows

4t
012072-‘/ <(1 + 2a)2p(®) ”\/—ml +4>

5 { FOV0 < t—} _plv®<

thus, by choosing t = N;n,, <(% +a?)A mmHE(l | + o2 ‘/nx> we obtain

N @ — A n®
]p{ft(Z)Vt(z) < t} P t 1< O‘H z(tZ)H 7
Ning (1+20)2p0 |27 || + 4y/mz
as per the concentration of standard Chi-squared distributions in ( Wainwrighj’, ZQIQ), it is established that there
exist universal constants ¢; and cs, such that

o @5 2
PONZ I + Ve

Similarly, P’ { ggi) Vt(i) > f} can be rewritten as follows

P{gv? <t} =P LA 4a”2(Z)H
- Ning T (1= 20020029 + 4/mg

and by the concentration of Chi-squared distribution

L @5 2
]P){gt(l)‘/t@) < f} < cgexp | —caNing < ( ap” |I% | ) (7)
pli

=P + vim

where the proof is completed by combining (6) and (7)) to obtain

= ap? HE(")H i
P {MZ]} < Z exp | —coN;ny
=0 O + /g




6.2 Proof of Theorem [2

Without loss of generality, we analyze only the first cluster. Recall that the model is updated as follows:

éf:ﬁZéi:é > O+ > 6 (8)

e €1 ieC1NS, €1 i€CiNS;

with ©; = @1 + 2m (X @ _ (:)1Z (i)) Z®:T Here CAl N Cy corresponds to the set of systems correctly classified
to the first cluster and (31 NnCy represents the set of systems that are misclassified to the first cluster, with Ci
denoting the complement of C;. The above expression can be rewritten as follows

6f =61+ 2L Y (X0 —8,20)707 4 241‘ 3 (X0 =8, 207017

s ICy

i€C1NC1 i€CinCy

where X = 0,20 + WO fori e CAl NCy, and X = GjZ(i) + W forie CAl N Cy, with j # 1 € [K].
Therefore, by manipulating the above expression, we have

Of —0,=(0,-0y) | I- 2m > z0zOT ) 4 2 > wzOT
C ieC 1 ieCy
+(0; - @1)|A|\cmcly > zzOT

zECl nCi

and thus, we obtain

167 — Ol <[[Ha]l + [1Hal

with,
1A 2m 7 2771 T
[Hall = |61 — 1] —ﬁZZ % |ZHWZ I
1 1 1€C1
2m sl
I=21C NCil|ZZ 7).

[Hall = 11©; — ©1 Gl

We now concatenate the batch matrices Z(*), W () of the systems classified to the first cluster in Z €
R(=+7)XNTIC1| and W € R"“NZ'T‘(Z', and similarly the batch matrices Z() of the systems incorrectly
classified to the first cluster are concatenated in Z € R(=tmu)x N, iTIGNC | We proceed with our analysis by
controlling both terms separately. To upper bound the first term, we introduce the following propositions.

Proposition 1. (Wang et al., 2023d, Proposition 8) For any fixed 0 < § < 1, let N; > (4nz+ 2n,,) log T‘C” Lt
holds, with probability at least 1 — 6, that

7] <t tn + s S
t=0



Proposition 2. (Adapted from d_Wang_amLJ |2&ial Proposition 6 )) For any fixed 0 < 6 < 1, let N; >

8(ng + ny) + 161og 2|Cl|T . It holds, with probability at least 1 — 6, that
1 T-1
77 Ly s
iEél t=0
o 9
AESS
ieCincy =0

(10)

(1D

Proof. Expression (1Q) follows direct from Proposition 6 in (Wang et al., 2023a). For expression (LL)), we can

first write
N; T—-1
5T (@) (@), T
12z = 2: E:Zuzu
Z’eé\lna =1 t=0
N; T—1
(@) (@), T
< Rl Rt
ieCincy 111=1 =0

where X(Z) (ZS)) %zl(z) for any fixed [, ¢, and i, where Xlt Y N (0, I, 4n,), forall I € {1,2

t
obtain

z z,T
7 7

1ZzT < > Z g

7,601 nc, = 0

thus, by using Proposition 6 of (Mang_e_t_aL, |2923d), with probability 1 — %, we have

N;
S @ 0. T|| ~ 9N:
Xi,t X1t 1
=1
which implies
9 T—1 '
AESE SIS
i65100_1 t=0
Therefore, with probability 1 — 29, we have
. T-1 277
A 1 j 1
IHil < €1 = Ol || = —> "N ! ZIIW "l
2’Cl‘ — t=0
1eC ZGC
0 T—1 277
A 1 j 1
=161 — O] [ 1~ — 2 Ain [ SN D= S wzT.
2|C4 | - | 1
1€Cy =0 ieCy

., N}, we



[
Ain (Sice, M Zise' 24 )

Hence, by selecting 7, = we obtain

1)\ L
8 Zzeﬁ Ow l\/N 2n, + ny,) log 9\C1\T H(g( ))2

Amin <Ni 23“2—01 Et ))

1 ~
[Hal| < §H@1 — 04| +

G 1

1 8\/(21% + ny) log £l g'T \/Zie& o*fw- < ‘ (E(l))z >

< 5l€1 =6l + e
s /Zzecl N; x mlnlec min (Z X, )

1,4 1

:§||®1—®1H+50>< —F— (12)
\ 2ied, Ni
with N; > max{8(n, + n,) + 16log 2‘61‘T , (4ng + 2n,,) log ‘CQT}, for all i € Cy. To control the second term

|| H2||, we first use the Definition [1lto wrlte

93 e mes Ni iz =)
2Amin <Z,ecl N;i Zf 01 E )

[Ha| < Amax|Ci NC1

which implies
[Hal| < e5Amax|Ci N Cil,

by using Jensen and Cauchy Schwartz inequalities in the denominator and numerator, respectively, where we

(4)
gzzeclmcl S 0 Iz

2m1nbec< = O §)>

use Lemmal[lland obtain

5 @) 1@ 2
E[|C1 001] < g Z Zexp —e7N, <p(iap “‘Zt I )

&1 10 NPl + v/

define c5 = . Therefore, we proceed with our analysis to control |€1 N Cy|. To do so, we

which yields

2
Z
P ]C1QC1\<CGZZexp —ﬂ ,nx< ” ” )
i€[M] t=0 ||E ||+\/nm

() 2(2 2
C «
T S I 1 o reay= I EEEE

i =0 p DSV + rm

. . . . . @ |x® -
by using Markov’s inequality and Assumption 2l with N;n, > ¢ <M

ap |2
enough constant ¢ such that % < ¢z, with 0 < 6 < 1 for all ¢ € [M]. Thus, we obtain

(@) 50 2
Holl < &1 Amax > Zexp —%&N, < Rl o7 ) , (13)

i) =0 PO SV + iz

with probability at least 1 — §. The proof is completed by combining (12) and (13)).

2
> log(XL), for some large




6.3 Proof of Corollary (1l

We first recall that at iteration r we posses an estimation for the model such that || (:)g-r) -0, < (3 —a)Apin,
for all j € [K] with (") € R. Moreover, according to Theorem [2, we have

1
A/ ZZEé\J(T) NZ

T-1 (r) (@) (132 (D)
+ 61 Amax Z Zexp —coNing ( a p(i) 127l
ic[M] 1=0 PONZ N + /e

X(r 1 X(r _
18V — 6| < 5118Y) — 0] + & x

where by using Assumption2land 0 < o0 < $ we can guarantee that H(:)gﬂ'l) - 0] < ||@§T) — ©,|| for any
r € [R]. This implies that "+ > ("), for any 7 € [R]. First, we aim to show that after a small number of
iterations, we obtain a sufficiently large value of ) > %. To do so, let

! S a0\
€r 1= Co X + 1A max Z Z exp | —c2Niny ) () L ) (14)
Licg) Ni i€) 10 PO+ v

be the error at iteration r, and note that €, < €, for any r € [R] since alrt1) > alr), Then, after R’ iterations
of Algorithm [I, we obtain

~ / / 1
180 5l < (1= ) (5~ a®) Amin + 20

for R' > 2. Therefore, we need to guarantee that after R’ > 2 parallel iterations, the right hand side of the
above expression is upper bounded by %Amin. For the first term, since 0 < a(?) < %, it suffices to show that

(%)R/ < i, which is satisfied for any R’ > 2. On the other hand, 2¢y < %Amin follows directly from the
minimum separation condition of Assumption 2l Therefore, we have H(:)gr) -0, < %Amin, for any r > R’
Then, after R” > R’, we have

R//
(R 1 Amin
18 — 6| < <§> 26

which implies o _go, < eafter R = R' + R" > 2+ log(2xn), with € as defined in (3).
J J 4e
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