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Learning Personalized Models with Clustered System

Identification

Leonardo F. Toso, Han Wang, and James Anderson*

Abstract

We address the problem of learning linear system models from observing multiple trajectories from
different system dynamics. This framework encompasses a collaborative scenario where several systems
seeking to estimate their dynamics are partitioned into clusters according to their system similarity. Thus,
the systems within the same cluster can benefit from the observations made by the others. Considering this
framework, we present an algorithm where each system alternately estimates its cluster identity and performs
an estimation of its dynamics. This is then aggregated to update the model of each cluster. We show that
under mild assumptions, our algorithm correctly estimates the cluster identities and achieves an approximate
sample complexity that scales inversely with the number of systems in the cluster, thus facilitating a more
efficient and personalized system identification process.

1 Introduction

System identification is the data-driven process of estimating a dynamic model of a system based on obser-

vations of the system trajectories. It plays a crucial role in aiding our understanding of complex systems and

is a fundamental problem in numerous fields, including time-series analysis, control theory, robotics, and re-

inforcement learning (Åström and Eykhoff, 1971; Ljung, 1998). The effective utilization of available data is

pivotal in obtaining an accurate model estimate with a measure of uncertainty quantification. Traditional system

identification, methods (Ljung, 1998) have focused on asymptotic analysis, which, although insightful, is re-

strictive when dealing with small to medium sized data sets. Motivated by this, and the fact that data generation

is often costly and time consuming, modern approaches focus on developing sample complexity bounds (i.e.,

non-asymptotic convergence analysis).

Results on the estimation of both fully (Sarkar and Rakhlin, 2019; Dean et al., 2020; Simchowitz et al.,

2018) and partially (Oymak and Ozay, 2019; Sun et al., 2020; Tu et al., 2017; Simchowitz et al., 2019; Zheng and Li,

2020) observed LTI systems have demonstrated that a more precise characterization of error bounds is essential
for designing efficient and robust control systems (Dean et al., 2020; Tu et al., 2017; Zhou et al., 1996). These

studies provide non-asymptotic bounds that are functions of the number of observed trajectories (see Table 1 of

(Zheng and Li, 2020) for a summary of the bounds).

A recent body of work has begun to formalize methods for improving sample efficiency by considering data

(or models generated from data) from multiple systems (Xin et al., 2022, 2023; Wang et al., 2023a; Chen et al.,

2023; Zhang et al., 2022, 2023; Wang et al., 2023b). Leveraging data from similar systems provides a promising

approach although clarifying the effect of the heterogeneity in the systems and their environments is crucial.
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The aforementioned work have demonstrated that the benefit of collaboration typically reduces the sample

complexity by a factor of the number of collaborators, when compared to the single-agent setting where each

system estimate its dynamics from its own observations.

However, the approaches discussed in (Xin et al., 2022, 2023; Wang et al., 2023a) compute a common es-

timation for all participants, thereby restricting the ability to obtain personalized estimations. Furthermore, the

sample complexity bounds achieved in those studies are subject to an unavoidable heterogeneity bias that cannot

be controlled by the number of trajectories or systems, thus leading to an estimation error that scales with the

measure of heterogeneity among the considered systems. Specifically in (Xin et al., 2022, 2023; Wang et al.,

2023a) the error of the system identification process is shown to be of order O( 1√
N

+ εhet) where εhet charac-

terizes the worst case heterogeneity and N is the number of trajectories across all systems.

Personalization in collaborative settings aims to provide tailored solutions (e.g. model estimates) to in-

dividual agents with distinct objectives, while enabling inter-agent collaboration (e.g. model sharing). This

encompasses diverse topics such as representation learning (Zhang et al., 2023; Bengio et al., 2013; Finn et al.,

2017; Collins et al., 2021) and clustering (Xu and Wunsch, 2005), both widely studied in machine learning and

data analysis. The present work address the aforementioned challenges by leveraging clustering techniques to

achieve personalized model estimations. The idea is simple: cluster systems into groups that have identical

system dynamics, and then apply collaborative learning algorithms to the clusters in order to improve sample
complexity (by reducing the heterogeneity induced error εhet) and achieve personalization even for heteroge-

neous settings.

Recent work on clustered federated learning that includes (Ghosh et al., 2020), (Ghosh et al., 2022), (Sattler et al.,

2020) have shown the potential of clustering techniques to collaboratively train models in heterogeneous set-

tings with non-i.i.d. data. Building upon this success, this paper aims to apply clustering to the system iden-

tification problem, which poses unique challenges due to the dynamical nature of the system that results in

non-i.i.d. data. This is in contrast to the linear regression and model training settings explored in the aforemen-

tioned work. Further details on these challenges are discussed later.

Specifically, we investigate the scenario where we have M dynamical systems, with each of them belonging

to one of K different system types (which we refer to as a “cluster”). Which cluster a system belongs to is not

initially disclosed. Our objective is to simultaneously identify the correct cluster identities for each of the
M systems and obtain a system model by collaboratively learning with the systems in the same cluster. Our

approach can lead to significant reductions in the amount of data required to accurately estimate the system

models, as illustrated in the following theorem.

Theorem 1. (main result, informal) Suppose the K system types are sufficiently different, and we observe the

same number of trajectories from each system. Then, for a given cluster, with high probability, the estimation

error between the learned and ground truth model is bounded by:

estimation error !
1√

# systems × # trajectories
+ misclass. rate ,

with

misclass. rate ! exp(−# trajectories × misclass. const.).

where #systems denotes the number of systems in the cluster, and #trajectories represents the number of trajec-

tories observed by each of them.

The first term captures the error in learning the system dynamics from systems’ observations within the

same cluster. It shows what one would hope; as the number of systems and observations increase, the error

decreases. However, this speedup does not come for free. The second term is the penalty paid for assigning



one of the M systems to one of the incorrect K clusters. One of the main results from our work is to show that

both terms can be controlled by adjusting the number of observed trajectories. Moreover, the misclassification

rate is dominated by the first term, thus leading to a an approximate sample complexity that is scale inversely

with the number of system within the cluster. This is in stark contrast to (Xin et al., 2022, 2023; Wang et al.,

2023a) which is where the heterogeneity introduces a bias ε which is not a function of the number of systems

or the volume of data at our disposal. Our work shows that by controlling both sources of error, our approach

can accurately estimate the system dynamics with fewer samples, when compared to the single agent case, and

provides better estimation in heterogeneous settings when compared to (Xin et al., 2022, 2023; Wang et al.,

2023a).

Contributions: This is the first work to introduce clustering in order to provide sample complexity gains
to the collaborative system identification problem. We derive an upper bound on the estimation error (The-

orem 2) that decomposes into two terms (as shown above), where each term can be controlled by adjusting

the number of observed trajectories. We offer theoretical guarantees on the probability of cluster identity mis-

classification (Lemma 1) and thus convergence (Corollary 1). We show that under a mild assumption on the

number of observed trajectories, our approach correctly estimates the cluster identities, with high probability.

Moreover, we show that our method achieves an improved convergence rate when compared to the single-agent

system identification process. In contrast to the federated setting (Wang et al., 2023a; Chen et al., 2023) and

that of (Xin et al., 2022, 2023), we are able to provide personalized models as opposed to a single generic

model, thus expanding the use cases for collaborative system identification.

1.1 Notation

Given a matrix G ∈ Rm×n, the Frobenius norm of G is denoted by ‖G‖F =
√

Tr(GG#). ‖G‖ = σmax(G),
where σmax(G) is the largest singular value of G. Consider a symmetric matrix Σ, λmin(Σ) and λmax(Σ) denote

its minimum and maximum eigenvalues, respectively. For systems, we use superscript (i) to denote the system

index and subscript t for time. For models, subscript denotes the cluster identity, and superscript (r) is the

iteration counter.

2 Problem Formulation and Algorithm

Consider M linear time-invariant (LTI) systems

x
(i)
t+1 = A(i)x

(i)
t +B(i)u

(i)
t + w

(i)
t , t = 0, 1, . . . , T − 1 (1)

where x
(i)
t ∈ Rnx , u

(i)
t ∈ Rnu and w

(i)
t ∈ Rnx are the state, input, and process noise at time t, for sys-

tem i ∈ [M ]. We assume that {u(i)t }T−1
t=1 , {w(i)

t }T−1
t=1 are random vectors distributed according to u

(i)
t

i.i.d.∼
N
(
0,σ2

u,iInu

)
and w

(i)
t

i.i.d.∼ N
(
0,σ2

w,iInx

)
. Furthermore, it is assumed that x

(i)
0

i.i.d.∼ N
(
0,σ2

x,iInx

)
.

We consider the setting where we have access to M datasets corresponding to observed system trajectories.

Each of the datasets is generated by one of K different systems. We consider the case where K ' M . We will

from now on refer to the K types of different systems as “clusters”, which we label as C1, . . . , CK . We denote
(Aj , Bj) as the ground truth system matrices of cluster j ∈ [K]. That is, A(i) = Aj , and B(i) = Bj , for any

i ∈ Cj . Note that due to the noise in model (1), two datasets generated by cluster Cj will be different.

The state-input pair of a single trajectory {x(i)t , u
(i)
t } of system i ∈ Cj is referred to as rollout. We consider

the setting where multiple rollouts of length T are collected and stored as
{
x
(i)
l,t , u

(i)
l,t

}T−1

t=0
, for l = 1, . . . Ni,



with l denoting the l-th rollout and t the t-th time-step of the corresponding rollout. Thus, for any system i ∈ Cj
and cluster j ∈ [K], the system dynamics is described by:

x
(i)
l,t+1 = Θjz

(i)
l,t + w

(i)
l,t ∀ 1 ≤ l ≤ Ni and 0 ≤ t ≤ T − 1, (2)

where z
(i),#
l,t "

[
x
(i),#
l,t u

(i),#
l,t

]
∈ Rnx+nu corresponds to the augmented state-input pair of system i ∈ Cj over

rollout l at time t, and Θj " [Aj Bj] denotes the concatenation of the ground truth system matrices Aj and

Bj . The state update x
(i)
l,t+1 can be expanded recursively as follows:

x
(i)
l,t = G

(i)
t





u
(i)
l,0
...

u
(i)
l,t−1



+ F
(i)
t





w
(i)
l,0
...

w
(i)
l,t−1



+At
jx

(i)
l,0,

where, G
(i)
t "

[
At−1

j Bj At−2
j Bj · · · Bj

]
and Ft "

[
At−1

j At−2
j · · · Inx

]
for all t ≥ 1.

The state-input pair z
(i)
l,t is distributed according to a Gaussian distribution with zero mean and covariance

matrix Σ(i)
t , where,

Σ(i)
0 "

[
σ2
x,iInx 0
0 σ2

u,iInu

]
+ 0, for t = 0,

and

Σ(i)
t "

[
σ2
u,iG

(i)
t G

(i),!
t + σ2

w,iF
(i)
t F

(i),!
t + σ2

x,iA
t
j(A

t
j)

! 0
0 σ2

u,iInu

]

,

for all t ≥ 1 and i ∈ Cj , ∀j ∈ [K], as detailed in (Wang et al., 2023a).

Next, we define the offline batch matrices for each system i ∈ Cj , ∀j ∈ [K]. For a single rollout l, the

data is concatenated according to X
(i)
l =

[
x
(i)
l,T · · · x

(i)
l,1

]
∈ Rnx×T , Z

(i)
l =

[
z
(i)
l,T−1 · · · z

(i)
l,0

]
∈

R(nx+nu)×T , and W
(i)
l =

[
w

(i)
l,T−1 · · · w

(i)
l,0

]
∈ Rnx×T . This is then further stacked to construct the

batch matrices X(i) =
[
X

(i)
1 . . . X

(i)
Ni

]
∈ Rnx×NiT , Z(i) =

[
Z

(i)
1 · · · Z

(i)
Ni

]
∈ R(nx+nu)×NiT ,

and W (i) =
[
W

(i)
1 · · · W

(i)
Ni

]
∈ Rnx×NiT . Therefore, for each system i ∈ Cj , ∀j ∈ [K], its state, input,

noise, and model parameters are related according to

X(i) = ΘjZ
(i) +W (i), (3)

where each column of Z(i) and W (i) are sampled according to Gaussian distributions with zero means and

covariance matrices Σ(i)
t , σ2

w,iInx , respectively. With that said, we are now able to introduce the clustered

system identification problem.

Problem 1. We consider M dynamical systems as in (1) that are equipped with batch matrices X(i), Z(i),

and W (i). Each system i ∈ [M ] is associated with its own cost function C(i)(Θ) = ‖X(i) − ΘZ(i)‖2F , and

is unaware of its cluster identity. We aim to estimate the systems’ cluster identities Ĉ1, . . . , ĈK and use it to

estimate a model Θ̂j = [Âj B̂j ] which is close to the ground truth Θj , ∀j ∈ [K].

To obtain a faster and more accurate estimation, we frame the system identification problem in the setting
where systems within the same cluster can leverage data from each other. Further in this paper, we provide

theoretical guarantees to support these statements.



The problem described above can be framed into an alternating optimization problem, as the actual cluster

identity of each system (i.e., C1, . . . , CK ) is not disclosed to the systems in advance. Therefore, our objective is

twofold: firstly, we aim to classify the correct cluster identities of the systems by employing the Mean Square

Error (MSE) as the clustering criterion, with the resulting output being the cluster estimation (CE); secondly,

we use that estimation to identify the model dynamics of each cluster with a model estimation (ME) step. Next,

we introduce our clustered system identification algorithm to solve this problem.

Algorithm 1 Clustered System Identification

1: Initialization: number of clusters K , step-size ηj , and model initialization Θ̂(0)
j ∀j ∈ [K],

2: for each iteration r = 0, 1, . . . , R− 1 do

3: The systems receive the models {Θ̂(r)
1 , . . . , Θ̂(r)

K }, ∀j ∈ [K],
4: Cluster estimation (CE):

5: for each system i ∈ [M ]

6: ĵ = argminj∈[K]‖X(i) − Θ̂(r)
j Z(i)‖2F ,

7: define ei = {ei,j}Kj=1 with ei,j = {j = ĵ},

8: end for

9: Model estimation (ME):

10: Θ̂(r+1)
j = Θ̂(r)

j + 2ηj∑
i∈[M] ei,j

∑
i∈[M ] ei,j(X

(i) − Θ̂(r)
j Z(i))Z(i),! for all j ∈ [K]

11: end for

12: Return Θ̂(R)
j for all j ∈ [K].

The initial step of Algorithm 1 involves the initialization of the number of clusters and the provision of an

initial guess for the dynamics of each cluster. Subsequently, the algorithm iterates from line 2 to 11, during

which each system estimates its corresponding cluster identity and stores this information in the form of a

one-hot encoding vector denoted by ei. The one-hot encoding vector comprises K elements, with one in the

position of the estimated cluster identity and zero elsewhere. After the estimation of the cluster identity, the

cluster model is updated by performing a single gradient descent iteration in line 10, with the gradient being

the average of the gradients of each individual system’s cost function that belongs to the cluster.

Remark 1. Note that Algorithm 1 is an alternating minimization algorithm, where it performs an iterative

clustering step followed by a model estimation process. Prior to the start of collaboration, each system i ∈ [M ]
collects data and stores it in batch matrices X(i), Z(i), and W (i). Moreover, it is worth noting that Algorithm 1

uses the same batch matrices for both cluster identity and model estimation.

The following definitions and assumptions are required in order to analyze Algorithm 1. Subsequently, we

provide the intuition behind them.

Definition 1. The minimum and maximum separation between the clusters are defined as

∆min " min
j &=j′

‖Θj −Θj′‖ and ∆max " max
j &=j′

‖Θj −Θj′‖,

respectively.

We define ρ(i) " ∆2
min

σ2
w,i

as the signal-to-noise ratio ∀i ∈ [M ].

Assumption 1. The initial model estimate Θ̂(0)
j satisfy ‖Θ̂(0)

j − Θj‖ ≤
(
1
2 − α(0)

)
∆min,∀j ∈ [K], where

0 < α(0) < 1
2 .



Assumption 2. For any fixed and small δ, the number of trajectories satisfies Ninx #
(

ρ(i)‖Σ(i)
t ‖+√

nx

α(0)ρ(i)‖Σ(i)
t ‖

)2

log(MT
δ ),

for all i ∈ [M ]. We also assume that ∆min # 1 + ∆max
∑

i∈[M ]

∑T−1
t=0 exp

(

−cNinx

(
α(0)ρ(i)‖Σ(i)

t ‖
ρ(i)‖Σ(i)

t ‖+√
nx

)2
)

for some constant c.

Assumption 1 implies that the initial guess for the model estimates is superior to a random initialization.

This assumption is standard for alternating minimization algorithms, particularly for learning mixture models

(Balakrishnan et al., 2017). The condition on the number of trajectories in Assumption 2 is a common require-

ment in the concentration bound analysis. This is used to guarantee that the cluster estimation procedure of

Algorithm 1 correctly estimate the cluster identities, with high probability. Note that this is a mild assumption

since for well-behaved systems where Σ(i)
t is well conditioned, Ninx is typically in the same or superior to

the order of log
(
MT
δ

)
. The condition on ∆min in Assumption 2 is to ensure that any two clusters are well-

separated. This is a standard assumption in the literature of clustering (Dunn, 1974; Kumar and Kannan, 2010).

Similar assumptions are exploited in (Ghosh et al., 2020) in the context of the linear regression problem.

3 Theoretical Guarantees

We begin our analysis by examining a single iteration of Algorithm 1. For simplicity, we omit the superscript

r that denotes the iteration counter. Let us assume that we have the current estimated model Θ̂j for all clusters

j ∈ [K] at a given iteration, such that ‖Θ̂j −Θj‖ ≤
(
1
2 − α

)
∆min for all j ∈ [K], with 0 < α < 1

2 .

3.1 Probability of Cluster Identity Misclassification

Consider a system i ∈ [M ] within cluster Cj . Let Mj,j′

i be the event in which system i is inaccurately classified

as belonging to cluster Cj′. The event when system i is correctly classified is denoted as Mj,j
i . The following

lemma provides an upper bound on the probability of misclassification.

Lemma 1. Suppose that i ∈ Cj . There exist universal constants c1 and c2, such that for any j′ ,= j,

P

{
Mj,j′

i

}
≤ c1

T−1∑

t=0

exp



−c2Ninx

(
αρ(i)‖Σ(i)

t ‖
ρ(i)‖Σ(i)

t ‖+√
nx

)2


 .

We prove Lemma 1 in Appendix 6.1. By combining Lemma 1 with the condition on Ninx from Assump-

tion 2, our algorithm can ensure that the probability of misclassifying system i to cluster Cj′ is at most δ, where

δ can be arbitrarily small. Moreover, it is noteworthy that if we assume the data X(i), Z(i), and W (i) to be i.i.d.

with T = 1 and nx = 1, and the columns of Z(i) to have an identity covariance matrix, we can recover the

probability of misclassification in the linear regression problem, as discussed in (Ghosh et al., 2020).

3.2 Convergence Analysis

We now examine the convergence of Algorithm 1. The theorem below is a single-iteration convergence analysis

of our algorithm. Here we assume that, at a given iteration, an estimation Θ̂j is obtained, which closely

approximates the true model Θj , i.e., ‖Θ̂j −Θj‖ ≤
(
1
2 − α

)
∆min, ∀j ∈ [K] and 0 < α < 1

2 . We demonstrate

that Θ̂j converges to Θj up to a small bias.



Theorem 2. For any fixed 0 < δ < 1, with Ni ≥ max
{
8(nx + nu) + 16 log 2MT

δ , (4nx + 2nu) log
MT
δ

}
,

∀i ∈ [M ], and selected step-size ηj =
|Cj |

λmin

(∑
i∈Cj

Ni

∑T−1
t=0 Σ(i)

t

) , with probability at least 1− 3δ, it holds that,

‖Θ̂+
j −Θj‖ ≤ 1

2
‖Θ̂j −Θj‖+ c̄0 ×

1√∑
i∈Ĉj Ni

+ c̄1∆max

∑

i∈[M ]

T−1∑

t=0

exp



−c̄2Ninx

(
αρ(i)‖Σ(i)

t ‖
ρ(i)‖Σ(i)

t ‖+√
nx

)2


 ,

(4)

for all j ∈ [K], where c̄0, c̄1, c̄2 > 0 are problem dependent constants.

The proof of Theorem 2 is detailed in Appendix 6.2. This theorem provides an upper bound for the esti-
mation error per iteration of our algorithm. Specifically, this bound consists of three terms. The first term is

a contraction term that decreases to zero as the number of iterations increases. The second term is a constant

error that decreases as the total number of observed trajectories by the systems within the cluster increases. The

final term is the misclassification rate, which decays exponentially with the number of observed trajectories.

Note that although our setting is different from (Ghosh et al., 2020), which leads to a different estimation

error expression, our per-iteration estimation error is also composed of a contractive term added to a constant

error that can be controlled by the amount of data (i.e., the number of observed trajectories). We proceed to

show the convergence of our algorithm by demonstrating that α(r) is non-decreasing throughout iterations and

using Assumptions 1 and 2 to show that ‖Θ̂(r+1)
j −Θj‖ ≤ ‖Θ̂(r)

j −Θj‖ for all r ∈ [R].

Therefore, equipped with the aforementioned result, the following corollary characterizes the convergence

of Algorithm 1 by providing the number of iterations required to attain a certain small and near optimal error ε,

i.e., ‖Θ̂(R)
j −Θj‖ ≤ ε, for all clusters j ∈ [K].

Corollary 1. Frame the hypotheses of Theorem 2 and Assumptions 1 and 2. Select the step-size as ηj =
|Cj |

λmin

(∑
i∈Cj

Ni

∑T−1
t=0 Σ(i)

t

) for all j ∈ [K]. Then, after R ≥ 2 + log(∆min
4ε ) parallel iterations, we have ‖Θ̂(R)

j −

Θj‖ ≤ ε, with

ε = c̃0 ×
1√∑
i∈Cj Ni

+ c̃1∆max

∑

i∈[M ]

T−1∑

t=0

exp



−c̃2Ninx

(
ρ(i)‖Σ(i)

t ‖
ρ(i)‖Σ(i)

t ‖+√
nx

)2


 , (5)

for all j ∈ [K], where c̃0, c̃1, c̃2 > 0 are problem dependent constants.

The proof of Corollary 1 can be found in Appendix 6.3. Our proof builds upon similar arguments as in

(Ghosh et al., 2020), which considers the linear regression setting. To establish the non-decreasing property of

α(r) for all r ∈ [R] and a decrease in the additive error term over the iterations, we rely on Assumptions 1 and

2. Furthermore, we demonstrate that our algorithm achieves a sufficiently large value of α(r) ≥ 1
4 after only

a small number of iterations R ≥ 2. This indicates that after a suitable number of iterations, our Algorithm 1

produces an estimation error that scales down with the number of systems within the cluster, and is independent

of the initial closeness parameter α(0).

This corollary highlights the benefits of collaboration. It demonstrates that the estimation error scales

inversely with the number of agents within a cluster, implying that as the number of systems in the cluster

increases, this error decreases. This leads to a smaller error when compared to the single agent setting, where

each system estimates its dynamics using only its own observations.

Importantly, the presented error bound differs from that of (Wang et al., 2023a). Here the misclassifica-

tion rate exponentially decays with the number of observed trajectories, whereas the heterogeneity bias εhet in



(Wang et al., 2023a) cannot be controlled by the number of trajectories. This indicates that under heterogeneous

settings where the systems are significantly different, our clustering-based approach outperforms (Wang et al.,

2023a) by providing better control over the sources of error. However, it is worth mentioning that when the

systems are similar and personalization is not required, the approaches introduced in (Xin et al., 2022, 2023;

Wang et al., 2023a) may be more favorable as their error bounds scale down with the total number of systems

and do not necessitate a clustering step.

4 Numerical Results

The following simulations1 illustrate the efficiency of Algorithm 1. Our analysis considers M = 50 systems,

each described by an LTI model as in (1) where K = 3 clusters and the number of systems in each cluster is

|C1| = 10, |C2| = 24, and |C3| = 16. The systems matrices for each cluster are described as follows:

A1 =




0.5 0.3 0.1
0.0 0.2 0.0
0.1 0.0 0.3



 , A2 =




−0.3 0.0 0.0
0.1 0.4 0.0
0.2 0.3 0.5



 , A3 =




−0.1 0.1 0.1
0.1 0.15 0.1
0.1 0.0 0.2



 ,

B1 =




1 0.5
0.1 1
0.75 1.5



 , B2 =




1 0.5
0.1 1
0.75 1.5



 , B3 =




0.8 0.1
0.1 1.5
0.4 0.8



 ,

where the initial state, input, and process noise standard deviations, for each cluster, are set to σx,i = σu,i =
σw,i = 0.11, ∀i ∈ C1, σx,i = σu,i = σw,i = 0.12, ∀i ∈ C2, and σx,i = σu,i = σw,i = 0.05, ∀i ∈ C3. We

consider the same number of trajectories Ni = 100 for all i ∈ [M ]. Moreover, the trajectory length is set

to T = 50. We use a fixed step-size ηj = 10−3, ∀j ∈ [3]. For each iteration r, the estimation error e
(j)
r is

defined as the spectral norm distance between the estimated model Θ̂(r)
j and the ground truth model Θj , i.e.,

e
(j)
r = ‖Θ̂(r)

j −Θj‖, for all clusters j ∈ [K].

Figure 1 depicts the estimation error e
(j)
r as a function of the number of iterations r for all the three consid-

ered clusters. The top plots compare the performance of Algorithm 1 with and without the clustering procedure

(i.e., line 5 of Algorithm 1). These plots reveals that the estimation error decreases significantly when systems

with the same model are clustered and cooperate to estimate their dynamics. Conversely, in the absence of

clustering, the significant heterogeneity level across the systems leads to a poor common estimation, resulting

in a large estimation error and unpersonalized solutions. This confirms our theoretical results, showing that

the misclassification rate in (5) outperforms the heterogeneity constant of (Xin et al., 2022, 2023; Wang et al.,

2023a), when dealing with heterogeneous settings.

The bottom plots of Figure 1 demonstrates the benefits of collaboration among systems to learn their dy-

namics. This shows that the estimation error is considerably reduced when multiple systems within the same
cluster (i.e., |C1| = 10, |C2| = 24, and |C3| = 16) leverage the data from each other to identify their dynamics,

compared to the case where a single system estimate its dynamics by using its own observations. This also

confirms our theoretical results, where the statistical error in (5) scales down with the number of systems in

the cluster, thus highlighting the benefit of collaboration in improving estimation accuracy in a multi-system

setting.

1Code can be downloaded from https://github.com/jd-anderson/cluster-sysID

https://github.com/jd-anderson/cluster-sysID
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Figure 1: Estimation error as a function of iteration count. The plot on the top considers Algorithm 1 with and

without clustering, whereas the bottom plot consider the single and multiple agents settings.
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Figure 2: Number of misclassification as a function of iteration count.

Figure 2 presents the misclassifications of Algorithm 1 as a function of iterations r. It depicts the number

of systems whose cluster identity is incorrectly estimated. The figure illustrates the effect of the number of

observed trajectories on the misclassification rate. As anticipated and consistent with our theoretical results, an

increase in the number of trajectories leads to a considerable reduction in the number of iterations needed to

correctly classify all the systems into their respective clusters.

5 Conclusions and Future Work

We presented an approach to address the system identification problem through the use of clustering. Our

method involves partitioning different systems that observe multiple trajectories into disjoint clusters based

on the similarity of their dynamics. This approach enjoys an improved convergence rate that scales inversely



with the number of systems in the cluster, along with an additive misclassification rate that has been shown

to be negligible under mild assumptions. Our approach enables systems within the same cluster to learn their

dynamics more efficiently. Future work will involve extending the proposed formulation to online system iden-

tification and proposing an adaptive clustering approach that eliminates the necessity for the warm initialization

and well-separated clusters assumptions.
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6 Appendix

6.1 Proof of Lemma 1

Without loss of generality, we can analyze only the first cluster M1,j
i for some j ,= 1. By definition, we have

M1,j
i =

{
‖X(i) − Θ̂jZ

(i)‖2F ≤ ‖X(i) − Θ̂1Z
(i)‖2F

}

where the batch matrices X(i), Z(i) and W (i) are related according to X(i) = Θ1Z
(i) + W (i). Note that

z
(i)
l,t

i.i.d.∼ N
(
0,Σ(i)

t

)
and w

(i)
l,t

i.i.d.∼ N
(
0,σ2

w,iInx

)
are independent across trajectories (i.e., the columns of Z(i)

and W (i) are independent). Thus, we can write

P

{
M1,j

i

}
= P

{∥∥∥(Θ1 − Θ̂1)Z
(i) +W (i)

∥∥∥
2

F
≥
∥∥∥(Θ1 − Θ̂j)Z

(i) +W (i)
∥∥∥
2

F

}

= P

{
T−1∑

t=0

Ni∑

l=1

m
(i),#
l,t m

(i)
l,t ≥

T−1∑

t=0

Ni∑

l=1

n
(i),#
l,t n

(i)
l,t

}

,

where m
(i)
l,t = (Θ1 − Θ̂1)z

(i)
l,t + w

(i)
l,t ∼ N

(
0, Σ̄(i)

t

)
, n

(i)
l,t = (Θ1 − Θ̂j)z

(i)
l,t + w

(i)
l,t ∼ N

(
0, Σ̃(i)

t

)
, with

Σ̄(i)
t = (Θ1 − Θ̂1)Σ

(i)
t (Θ1 − Θ̂1)

# + σ2
w,iInx , Σ̃(i)

t = (Θ1 − Θ̂j)Σ
(i)
t (Θ1 − Θ̂j)

# + σ2
w,iInx .

Therefore, we obtain

P

{
M1,j

i

}
= P

{
T−1∑

t=0

Ni∑

l=1

v
(i),#
l,t Σ̄(i)

t v
(i)
l,t ≥

T−1∑

t=0

Ni∑

l=1

u
(i),#
l,t Σ̃(i)

t u
(i)
l,t

}

,

with m
(i)
l,t = (Σ̄(i)

t )
1
2 v

(i)
l,t and n

(i)
l,t = (Σ̄(i)

t )
1
2u

(i)
l,t for some standard normal random vectors v

(i)
l,t , u

(i)
l,t ∼

N (0, Inx). Then, the above expression can be rewritten as follows

P

{
M1,j

i

}
= P

{
T−1∑

t=0

Ni∑

l=1

v
(i),#
l,t Σ̄(i)

t v
(i)
l,t ≥

T−1∑

t=0

Ni∑

l=1

‖Σ̃(i)
t ‖u(i),#l,t u

(i)
l,t

}

= P

{
T−1∑

t=0

Ni∑

l=1

v
(i),#
l,t Σ̄(i)

t v
(i)
l,t ≥

T−1∑

t=0

Ni∑

l=1

c
(i)
t u

(i),#
l,t u

(i)
l,t

}

with c
(i)
t = ‖Θ1 − Θ̂j‖2‖Σ(i)

t ‖+ σ2
w,i

√
nx, which implies

P

{
M1,j

i

}
= P

{
T−1∑

t=0

Ni∑

l=1

v
(i),#
l,t Σ̄(i)

t v
(i)
l,t ≥

T−1∑

t=0

Ni∑

l=1

c
(i)
t u

(i),#
l,t u

(i)
l,t

}

≤ P

{
T−1∑

t=0

Ni∑

l=1

c
(i)
t u

(i),#
l,t u

(i)
l,t ≤ t̄

}

+ P

{
T−1∑

t=0

Ni∑

l=1

v
(i),#
l,t Σ̄(i)

t v
(i)
l,t > t̄

}

,

for any t̄ ≥ 0. Therefore , by using v
(i),#
l,t Σ̄(i)

t v
(i)
l,t ≤ d

(i)
t v

(i),#
l,t v

(i)
l,t with d

(i)
t = ‖Θ1 − Θ̂1‖2‖Σ(i)

t ‖ + σ2
w,i

√
nx

we obtain

P

{
M1,j

i

}
≤ P

{
T−1∑

t=0

c
(i)
t V

(i)
t ≤ t̄

}

+ P

{
T−1∑

t=0

d
(i)
t V

(i)
t > t̄

}

,



where V
(i)
t are standard Chi-squared distributions with Ninx degrees of freedom, for all t ∈ {0, 1, . . . , T − 1}.

Moreover, by using Definition 1 and Assumption 1,

P

{
M1,j

i

}
≤ P

{
T−1∑

t=0

f
(i)
t V

(i)
t ≤ t̄

}

+ P

{
T−1∑

t=0

g
(i)
t V

(i)
t > t̄

}

,

with f
(i)
t = (12 + α)2∆2

min‖Σ
(i)
t ‖ + σ2

w,i

√
nx and g

(i)
t = (12 − α)2∆2

min‖Σ
(i)
t ‖ + σ2

w,i

√
nx, since c

(i)
t =

‖Θ1 − Θ̂j‖2‖Σ(i)
t ‖+ σ2

w,i

√
nx ≥ (12 + α)2∆2

min‖Σ
(i)
t ‖+ σ2

w,i

√
nx, with ‖Θj − Θ̂1‖ ≥ ‖Θj −Θ1‖ − ‖Θ̂j −

Θj‖ = (12 + α)∆min and d
(i)
t = ‖Θ1 − Θ̂1‖2‖Σ(i)

t ‖ + σ2
w,i

√
nx ≤ (12 − α)2∆2

min‖Σ
(i)
t ‖ + σ2

w,i

√
nx, where

‖Θ1 − Θ̂1‖ ≤ (12 − α)∆min according to Assumption 1. Therefore, to characterize the above tail bounds, we

can exploit well-established concentration inequalities as detailed in (Boucheron et al., 2013; Vershynin, 2010).
To this end, we can use union bound to write

P

{
M1,j

i

}
≤

T−1∑

t=0

P

{
f
(i)
t V

(i)
t ≤ t̄

}
+ P

{
g
(i)
t V

(i)
t > t̄

}
,

where P

{
f
(i)
t V

(i)
t ≤ t̄

}
can be rewritten as follows

P

{
f
(i)
t V

(i)
t ≤ t̄

}
= P





V

(i)
t ≤ 4t̄

σ2
w,i

√
nx

(
(1 + 2α)2ρ(i) ‖Σ

(i)
t ‖√
nx

+ 4

)





,

thus, by choosing t̄ = Ninx

(
(14 + α2)∆2

min‖Σ
(i)
t ‖+ σ2

w,i

√
nx

)
we obtain

P

{
f
(i)
t V

(i)
t ≤ t̄

}
= P

{
V

(i)
t

Ninx
− 1 ≤ −4α‖Σ(i)

t ‖
(1 + 2α)2ρ(i)‖Σ(i)

t ‖+ 4
√
nx

}

,

as per the concentration of standard Chi-squared distributions in (Wainwright, 2019), it is established that there

exist universal constants c1 and c2, such that

P

{
f
(i)
t V

(i)
t ≤ t̄

}
≤ c1 exp



−c2Ninx

(
αρ(i)‖Σ(i)

t ‖
ρ(i)‖Σ(i)

t ‖+√
nx

)2


 . (6)

Similarly, P
{
g
(i)
t V

(i)
t > t̄

}
can be rewritten as follows

P

{
g
(i)
t V

(i)
t ≤ t̄

}
= P

{
V

(i)
t

Ninx
− 1 ≤ 4α‖Σ(i)

t ‖
(1− 2α)2ρ(i)‖Σ(i)

t ‖+ 4
√
nx

}

,

and by the concentration of Chi-squared distribution

P

{
g
(i)
t V

(i)
t ≤ t̄

}
≤ c3 exp



−c4Ninx

(
αρ(i)‖Σ(i)

t ‖
ρ(i)‖Σ(i)

t ‖+√
nx

)2


 , (7)

where the proof is completed by combining (6) and (7) to obtain

P

{
M1,j

i

}
≤ c1

T−1∑

t=0

exp



−c2Ninx

(
αρ(i)‖Σ(i)

t ‖
ρ(i)‖Σ(i)

t ‖+√
nx

)2


 .



6.2 Proof of Theorem 2

Without loss of generality, we analyze only the first cluster. Recall that the model is updated as follows:

Θ̂+
1 =

1

|Ĉ1|

∑

i∈Ĉ1

Θ̃i =
1

|Ĉ1|

∑

i∈Ĉ1∩S1

Θ̃i +
1

|Ĉ1|

∑

i∈Ĉ1∩S1

Θ̃i (8)

with Θ̃i = Θ̂1 +2η1(X(i) − Θ̂1Z
(i))Z(i),#. Here Ĉ1 ∩ C1 corresponds to the set of systems correctly classified

to the first cluster and Ĉ1 ∩ C1 represents the set of systems that are misclassified to the first cluster, with C1
denoting the complement of C1. The above expression can be rewritten as follows

Θ̂+
1 = Θ̂1 +

2η1

|Ĉ1|

∑

i∈Ĉ1∩C1

(X(i) − Θ̂1Z
(i))Z(i),# +

2η1

|Ĉ1|

∑

i∈Ĉ1∩C1

(X(i) − Θ̂1Z
(i))Z(i),#,

where X(i) = Θ1Z
(i) +W (i) for i ∈ Ĉ1 ∩ C1, and X(i) = ΘjZ

(i) +W (i) for i ∈ Ĉ1 ∩ C1, with j ,= 1 ∈ [K].
Therefore, by manipulating the above expression, we have

Θ̂+
1 −Θ1 = (Θ̂1 −Θ1)



I − 2η1

|Ĉ1|

∑

i∈Ĉ1

Z(i)Z(i),#



+
2η1

|Ĉ1|

∑

i∈Ĉ1

W (i)Z(i),#

+ (Θj −Θ1)
2η1

|Ĉ1|
|Ĉ1 ∩ C1|

∑

i∈Ĉ1∩C1

Z(i)Z(i),#,

and thus, we obtain

‖Θ̂+
1 −Θ1‖ ≤‖H1‖+ ‖H2‖,

with,

‖H1‖ = ‖Θ̂1 −Θ1‖

∥∥∥∥∥I −
2η1

|Ĉ1|
ZZ#

∥∥∥∥∥+
2η1

|Ĉ1|

∑

i∈Ĉ1

‖WZ#‖,

‖H2‖ = ‖Θj −Θ1‖
2η1

|Ĉ1|
|Ĉ1 ∩ C1|‖Z̄Z̄#‖.

We now concatenate the batch matrices Z(i),W (i) of the systems classified to the first cluster in Z ∈
R(nx+nu)×NiT |Ĉ1| and W ∈ Rnx×NiT |Ĉ1|, and similarly the batch matrices Z(i) of the systems incorrectly

classified to the first cluster are concatenated in Z̄ ∈ R(nx+nu)×NiT |Ĉ1∩C1|. We proceed with our analysis by

controlling both terms separately. To upper bound the first term, we introduce the following propositions.

Proposition 1. (Wang et al., 2023a, Proposition 8) For any fixed 0 < δ < 1, let Ni ≥ (4nx+ 2nu) log
T |Ĉ1|
δ . It

holds, with probability at least 1− δ, that

∥∥∥WZ#
∥∥∥ ≤ 4σw,i

√

Ni(2nx + nu) log
9|Ĉ1|T

δ

T−1∑

t=0

∥∥∥(Σ(i)
t )

1
2

∥∥∥ . (9)



Proposition 2. (Adapted from (Wang et al., 2023a, Proposition 6 )) For any fixed 0 < δ < 1, let Ni ≥
8(nx + nu) + 16 log 2|Ĉ1|T

δ . It holds, with probability at least 1− δ, that

ZZ# . 1

4

∑

i∈Ĉ1

Ni

T−1∑

t=0

Σ(i)
t , (10)

‖Z̄Z̄#‖ ≤ 9

4

∑

i∈Ĉ1∩C1

T−1∑

t=0

Ni

∥∥∥Σ(i)
t

∥∥∥ . (11)

Proof. Expression (10) follows direct from Proposition 6 in (Wang et al., 2023a). For expression (11), we can

first write

‖Z̄Z̄#‖ =

∥∥∥∥∥∥

∑

i∈Ĉ1∩C1

Ni∑

l=1
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z
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where χ
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t )−
1
2 z

(i)
l,t for any fixed l, t, and i, where χi

l,t
i.i.d.∼ N (0, Inx+nu), for all l ∈ {1, 2, . . . , Ni}, we

obtain
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thus, by using Proposition 6 of (Wang et al., 2023a), with probability 1− δ
T , we have

∥∥∥∥∥

Ni∑

l=1

χ
(i)
l,tχ

(i),#
l,t

∥∥∥∥∥ ≤ 9Ni

4
,

which implies

‖Z̄Z̄#‖ ≤ 9

4

∑

i∈Ĉ1∩C1
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Ni‖Σ(i)
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Therefore, with probability 1− 2δ, we have
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i∈Ĉ1

‖WZ#‖,

= ‖Θ̂1 −Θ1‖



1− η1

2|Ĉ1|
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|Ĉ1|

∑

i∈Ĉ1

‖WZ#‖.



Hence, by selecting η1 =
|Ĉ1|

λmin

(∑
i∈Ĉ1

Ni

∑T−1
t=0 Σ

(i)
t

) , we obtain

‖H1‖ ≤ 1

2
‖Θ̂1 −Θ1‖+

8
∑

i∈Ĉ1 σw,i

√
Ni(2nx + nu) log

9|Ĉ1|T
δ

∑T−1
t=0

∥∥∥(Σ(i)
t )

1
2

∥∥∥

λmin

(
Ni
∑T−1

t=0 Σ(i)
t

)

≤ 1

2
‖Θ̂1 −Θ1‖+

8

√
(2nx + nu) log

9|Ĉ1|T
δ

√
∑

i∈S1
σ2
w,i

(∑T−1
t=0

∥∥∥(Σ(i)
t )

1
2

∥∥∥
)2

√∑
i∈Ĉ1 Ni ×min

i∈Ĉ1 λmin

(∑T−1
t=0 Σ(i)

t

)

=
1

2
‖Θ̂1 −Θ1‖+ c̄0 ×

1√∑
i∈Ĉ1 Ni

, (12)

with Ni ≥max{8(nx + nu) + 16 log 2|Ĉ1|T
δ , (4nx +2nu) log

|Ĉ1|T
δ }, for all i ∈ Ĉ1. To control the second term

‖H2‖, we first use the Definition 1 to write

‖H2‖ ≤ ∆max|Ĉ1 ∩ C1|
9
∑

i∈Ĉ1∩C1 Ni
∑T−1

t=0 ‖Σ(i)
t ‖

2λmin

(∑
i∈Ĉ1 Ni

∑T−1
t=0 Σ(i)

t

) ,

which implies

‖H2‖ ≤ c5∆max|Ĉ1 ∩ C1|,

by using Jensen and Cauchy-Schwartz inequalities in the denominator and numerator, respectively, where we

define c5 =
9
∑

i∈Ĉ1∩C1

∑T−1
t=0 ‖Σ(i)

t ‖

2min
i∈Ĉ1

(∑T−1
t=0 Σ(i)

t

) . Therefore, we proceed with our analysis to control |Ĉ1 ∩ C1|. To do so, we

use Lemma 1 and obtain

E

[
|Ĉ1 ∩ C1|

]
≤ c6

∑

i∈[M ]

T−1∑

t=0

exp



−c7Ninx

(
αρ(i)‖Σ(i)

t ‖
ρ(i)‖Σ(i)

t ‖+√
nx

)2


 ,

which yields

P




|Ĉ1 ∩ C1| ≤ c6
∑

i∈[M ]

T−1∑

t=0

exp



−c7
2
Ninx

(
αρ(i)‖Σ(i)

t ‖
ρ(i)‖Σ(i)

t ‖+√
nx

)2









≥ 1−
∑

i∈[M ]

T−1∑

t=0

exp



−c7
2
Ninx

(
αρ(i)‖Σ(i)

t ‖
ρ(i)‖Σ(i)

t ‖+√
nx

)2


 ≥ 1− δ,

by using Markov’s inequality and Assumption 2 with Ninx ≥ c

(
ρ(i)‖Σ(i)

t ‖+√
nx

αρ(i)‖Σ(i)
t ‖

)2

log(MT
δ ), for some large

enough constant c such that 1
c < c7, with 0 < δ < 1 for all i ∈ [M ]. Thus, we obtain

‖H2‖ ≤ c̄1∆max

∑

i∈[M ]

T−1∑

t=0

exp



−c̄2Ninx

(
αρ(i)‖Σ(i)

t ‖
ρ(i)‖Σ(i)

t ‖+√
nx

)2


 , (13)

with probability at least 1− δ. The proof is completed by combining (12) and (13).



6.3 Proof of Corollary 1

We first recall that at iteration r we posses an estimation for the model such that ‖Θ̂(r)
j −Θj‖ ≤ (12−α(r))∆min,

for all j ∈ [K] with α(r) ∈ R. Moreover, according to Theorem 2, we have

‖Θ̂(r+1)
j −Θj‖ ≤ 1

2
‖Θ̂(r)

j −Θj‖+ c̄0 ×
1√∑

i∈Ĉ(r)
j

Ni

+ c̄1∆max

∑

i∈[M ]

T−1∑

t=0

exp



−c̄2Ninx

(
α(r)ρ(i)‖Σ(i)

t ‖
ρ(i)‖Σ(i)

t ‖+√
nx

)2


 ,

where by using Assumption 2 and 0 < α(0) < 1
2 we can guarantee that ‖Θ̂(r+1)

j −Θj‖ ≤ ‖Θ̂(r)
j −Θj‖ for any

r ∈ [R]. This implies that α(r+1) ≥ α(r), for any r ∈ [R]. First, we aim to show that after a small number of

iterations, we obtain a sufficiently large value of α(r) ≥ 1
4 . To do so, let

εr := c̄0 ×
1√∑

i∈Ĉ(r)
j

Ni

+ c̄1∆max

∑

i∈[M ]

T−1∑

t=0

exp



−c̄2Ninx

(
α(r)ρ(i)‖Σ(i)

t ‖
ρ(i)‖Σ(i)

t ‖+√
nx

)2


 , (14)

be the error at iteration r, and note that εr+1 ≤ εr for any r ∈ [R] since α(r+1) ≥ α(r). Then, after R′ iterations

of Algorithm 1, we obtain

‖Θ̂(R′)
j −Θj‖ ≤ (1− µj)

R′

(
1

2
− α(0)

)
∆min + 2ε0

for R′ ≥ 2. Therefore, we need to guarantee that after R′ ≥ 2 parallel iterations, the right hand side of the

above expression is upper bounded by 1
4∆min. For the first term, since 0 < α(0) < 1

2 , it suffices to show that

(12 )
R′ ≤ 1

4 , which is satisfied for any R′ ≥ 2. On the other hand, 2ε0 ≤ 1
8∆min follows directly from the

minimum separation condition of Assumption 2. Therefore, we have ‖Θ̂(r)
j − Θj‖ ≤ 1

4∆min, for any r ≥ R′.

Then, after R′′ ≥ R′, we have

‖Θ̂(R′′)
j −Θj‖ ≤

(
1

2

)R′′

∆min

4
+ 2ε0

which implies ‖Θ̂(R)
j −Θj‖ ≤ ε after R = R′ +R′′ ≥ 2 + log(∆min

4ε ), with ε as defined in (5).
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