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0. Overview

The main result in this paper is a certain “homology localization” of lattice
vertex algebras on “loop Grassmannian” spaces associated to a symmetric integral
matrix (Theorem 3.2). Much of the paper recalls relevant topics in a slightly
nonstandard (“quasi-physical”) language of “interaction of particles on an algeb-
raic curve over a commutative ring”.

While one could describe our setting in various ways, our choice of interaction
language is motivated by the construction of loop Grassmannians associated to
symmetric matrices from [MYZ] (see Section 3 below) as well as by geometric
forms of Class Field Theory recalled in Section 1. The motivating goal is to try to
set the stage and a uniform language, in order to (hopefully) understand better
something old rather than to directly compute something new.

0.1. Heuristics

One wish in the background in this paper is to reconstruct key objects of the
geometric Langlands program over a curve C (local or global) by a single procedure
H.,.(C,C) (using a coeflicient system C). This will be variously described as inner
homology in Algebraic Geometry, free generation, distributions, or moduli of inter-
actions of particles on a curve.

0.2. Contents

Section 1 deals with the abelian case, i.e., the geometric Class Field Theory. In the
above story, the coefficients C are just the integers Z, or even N. The construction
H., recovers the Hilbert scheme H¢ of points of C, and the Jacobian Bung (G, ),
i.e., the moduli of compactly supported line bundles in the sense of 1.1.2.

In Section 2, we recall some local nonabelian constructions. Here the coefficient
system is a symmetric integral matrix k, i.e., the corresponding lattice ([M1], [M2],
[MYZ]). We get zastava spaces Z*, semiinfinite spaces' S*® and loop Grassmanni-
ans G*. When & is the Cartan matrix of a semisimple group G, these are the same-
named traditional spaces Z(G), S(G),G(G) that arise for G. Spaces Z", S*, G" are
constructed from a simple interaction of particles given by the matrix x. We prove
some foundational facts on these objects.

In Section 3, our main Theorem 3.2 provides localization of a lattice vertex
algebra L" (associated to the matrix ) on the Grassmannian G”*. This is a version
of the Beilinson—Drinfeld “abelian” localization of L” on the loop Grassmannian
G(T) of a torus T ([BD, Prop. 3.10.8]). In our picture, torus T is G}, where I is the
set of kinds of particles. The xk-Grassmannian G* contains the loop Grassmannian
G(T), but it also remembers x and provides more space for constructions.

0.3. The inner homology idea

In Geometric Representation Theory one restates problems in Algebraic Geometry.
Then one uses some kind of a “topological” formalism in Algebraic Geometry,
say, cohomology, perverse sheaves or D-modules. The above “inner homology” H,
should be an example of such topological formalisms.

1 Not to be confused with the semi-infinite Grassmannians.
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As we will see, the “free generation” intuition on H, is inspiring in simple cases
but may have a limited range of literal validity. The situation is analogous to
(and inspired by) the Dold—Thom theorem in algebraic topology. It says that the
homology groups of a based topological space X can be calculated as homotopy
groups of the group completion S°° X of the monoid S*° X, the infinite symmetric
power of X. (An elementary proof is in [Ha], [BL], and for manifolds, a modern
proof is in [Ba].) My present terminology of “free generation mechanisms” origi-
nates from replacing the precise constructions S*°X and Seo X by terminology of
a commutative topological monoid and group “freely generated” by X.

The Dold—Thom theorem has also been used as a motivation for introducing
Suslin’s construction of the motivic complexes ([Fr, Sect. 1]). Suslin’s construction
led to Voevodsky’s motivic homology of algebraic varieties with values in abelian
groups ([Voe]). In contrast, I would like to have a “homology theory” H,(X,C)
which is inner to Algebraic Geometry. Ideally, H,(X,Z) would be the part of
motivic homology of X that is representable by an algebro-geometric object. For
these reasons, I will heuristically describe H, (X, Z) as an “abelian group object in
Algebraic Geometry”, which is “freely generated” by variety X.2

I find that the need for such an inner (nonabelian) (co)homology theory is
suggested by the standard Geometric Langlands Program, because it is formulated
via categories that are defined only because cohomology spaces for curves carry
algebro-geometric structures.3

We will only consider candidates for H, (C,C) for smooth curves C. Here the
construction is known in a sense (see Section 1). Also, this H, produces various
kinds of “spaces of distributions’ of additive, multiplicative, and projective nature.
In 1.2.1, we comment on how H, (C, Z) reflects the idea of free generation. Similarly,
in 1.2.2, H,(C, Z) is interpreted as a space of distributions.

0.4. Local spaces over a curve C

The locality principle in physics says that the experiments at causally separated
points a,b in a spacetime are independent. When we denote by FE, the set of
possible outcomes of experiment at x, we can write this as E, = EqxEp. On the
quantum level, one has a vector space V, of states of a system at z and locality
becomes V, ;, = V,®V,. We say that a single state v € V3, is compatible with the
spacetime separation if it is a pure tensor v = v,®uvp. For simplicity, I say that
such state v is local though the standard terminology is unentangled.*

In the case of complex curves, our framework is closely related to Vertex Algeb-
ras and therefore to very special Quantum Field Theories, the 2-dimensional chiral
Conformal Field Theories on complex curves. In this case, the causal separation
of points a,b on a curve reduces to a # b (see [Kac]), which is what we use on
algebraic curves.

2 While not adequate in general, this description is still going to be precise in cases of
interest in this paper.

3 Also, this application suggests that Hx should not be homotopy invariant in contrast
to Voevodsky’s construction.

4 The definition of unentangled states in QFT is algebraically the same as what we
call local states—the pure tensors in a tensor product.
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These ideas will motivate the definition of C'-local versions of some standard
notions over the Hilbert scheme of points Hex of a curve C colored by I colors
(1.1.1) Over Hexr, we consider local spaces Y, local vector bundles V', and their
local projective spaces P°¢(V) C P(V) (see 2.1.2). The last is the “local” or
“unentangled” part of the projective bundle P(V'). I will think of P°¢(V) as re-
cording all collisions of fibers P(V,;) at points ai € C'x I, that are allowed by the
“rules” supplied by the local vector bundle V' — this will really mean that collisions
are inside the projective bundle P(V).

Our zastava space Z" is constructed as such local projective space. The corres-
ponding local vector bundle V* comes from the interaction .

0.5. Interactions and loop Grassmannians

In our setup, the interaction between I[-many kinds of particles on a curve C is
given by a symmetric integer matrix (k;;), 4,5 € 1. We view it also as a symmetric
bilinear form on the based lattice Z[I]. Its geometric form will be a local line bundle
L* over Hoxr (see 2.1.1).

We will induce the local line bundle L* to a local vector bundle Ind(L"*) over
Hexr by an “exponentiation” process of passing from a finite subscheme D €
Hexr toits “Grassmannian” Gr(D) C Heox g, which is the moduli of all subschemes
of D.5 This produces the zastava space over the Hilbert scheme Hcxz, as the
corresponding local projective space Z* = P'° [Ind(L")Y].

We define the loop Grassmannian G* of the matrix k in Subsection 2.3 as a
certain repackaging of pieces of Z(k). An intermediate step in repackaging will be
the semi-infinite space S* (see Subsection 2.3). This is a “positive half” of G* in
analogy with a Borel in a reductive Lie group. The spaces Z*, 5%, G will turn out
to be certain moduli of unentangled collisions of projective lines P!. In the case,
when « is the Cartan matrix of a semisimple simply laced group G, then G* is just
the Beilinson-Drinfeld version Gy (G) — He of the standard loop Grassmannian

G(G) ¥ G((2))/G][2]] of G, see Theorem 2.5.

Acknowledgments. 1 thank Andreas Hayash and Zhijie Dong for mathematical
help. I thank Eric Sommers, Renata Slovini¢ and the Transformation Groups
journal for patience and extensive effort towards getting this paper finished. I
particularly thank Roman Bezrukavnikov for insisting on precision and complete-
ness of arguments, which forced me to clarify ideas and correct errors. I thank the
referee for prolonged work towards making the paper more readable. This paper
has been partially supported by an NSF grant.

1. Particles on curves and Class Field Theory (CFT)

The space through which our particles wonder will be a smooth algebraic
curve C' (local or global). Unless otherwise stated the curve C' is defined over
a commutative ring k, for instance, as in the work of Contou-Carrere [CC].

®We also use notation Gr(X) for the moduli Hx of finite subschemes of X.
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1.1. Configuration spaces of particles
We will consider two models.

1.1.1. The Hilbert scheme moduli Ho of finite subschemes of C.

This is | | H¢ for the categorical quotient H¢ = C™/S,, interpreted as a
moduli of subschemes D of C' which are flat and of length n, i.e., of effective
divisors in C' of degree n. The subspace of n-tuples of disjoint points C}* C C"

gives an open H¢ def C /Sy, consisting of n element subsets D = {aq,...,a,}
of C. We view H, as the (classical) configuration space of a system of n identical
particles on C. Then the degeneration of finite subsets of C to finite subschemes
models the collision of particles.

Notice that H¢ is a commutative monoid for the operation of adding the
divisors.
Example. If C' = A! we can encode a finite subset {a1,...,a,} by a polynomial
P =[[(X —a;). Then H}, is identified with all monic polynomials P of degree n.

dcf
{P =0} = Spec(k[X]/P).
1.1.2. The moduli Ac = Bung(G,y,) of compactly supported line bundles.
By this we mean a line bundle trivialized at infinity in the following sense. Let

C be open in a smooth projective curve C. Consider the formal nelghborhood aC

of the boundary 9C = C — C and its punctured version aC = dC — aC.
Then we define Bung (G,,,) as the moduli of pairs (L, s) of a line bundle L over

Such P gives a subscheme of A!, D

C and an invertible section s on the part 9C of C' at infinity. This is a commutative
group object for the operation of tensoring line bundles.

In particle terms, I will think of “vacuum” on C (i.e., absence of particles), as
represented by L = O¢ and s = 1. Then the general pair (L, s) in Bung, (C) will
model a disturbance of the vacuum localized to the divisor div(s).

1.1.3. The Abel-Jacobi map He — Ac.

It sends a finite subscheme D € H¢ to AJo(D) = def (Oc(—D),1), where the
subsheaf O¢(—D) C O¢ consists of functions that vanish on D and 1 is the stan-
dard trivialization at co (actually valid outside D).

Heuristically, one can visualize AJo (D), i.e., the inclusion Oc(—D) C O¢, as
the space C' with a tiny hole at D. (As in General Relativity, where a particle mass
“bends” the space around it.)

1.2. Particles and Class Field Theory

The Class Field Theory is an organizational principle of Number Theory. I will
only consider it in the geometric case when the global field Q is simplified to the
field Fy(X) of rational functions over a curve over a finite field. Then we will see
that the above configuration spaces H¢o and A¢ can be viewed as the standard
setting for Class Field Theory.

1.2.1. Contou-Carreére’s Class Field Theory in Zariski topology.

I will restate the results of Contou-Carrere in a “free generation” formulation. I
will only illustrate the approach in some cases though I expect the formulation to be
eventually uniform for any smooth curve C (global or local) over any commutative
ring k.
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Examples.

(0) If C is a smooth curve or a formal disc in such curve, then the Hilbert
scheme H¢ is the commutative monoid freely generated by C' in indschemes.

Any map f of C into a commutative monoid M extends uniquely along the
inclusion C = H{, C Hc to a homomorphism F : He — M by using the norm
map F'(D) = Npf|p.

(1) The following is known to experts though there may be no reference in
this formulation. If C' is complete, then the stacky Jacobian Ac = Bung (C) =
Bung,, (C) is the commutative group object freely generated by C' in commutative
group stacks. Then the Abel-Jacobi map AJe : Ho — Ac¢ is the map defined by
free generation properties in settings of monoids and groups.

(2) The work of Contou-Carrere [CC], [CCI1] covers much more than I have
stated. The simplest case is that for a formal disc d (viewed as an indscheme),
the freely generated commutative group (in indschemes) is the loop Grassmannian
G(G,,) = Bung, (d) of the multiplicative group [CC].

However, the corresponding statements in [CC|] get more complicated for the
punctured formal disc d* and consequently also for the open curves.® A history of
these ideas for global curves is found in [Se].

1.2.2. Distributional interpretations.

We consider versions of the following formalism. Consider a category of commu-
tative monoids A (with a “dualizing object” w) defined inside a category B of
algebro-geometric objects that contains curves. We assume existence of inner ho-
momorphism functors Hom4 and Mapg in A and B. This defines a notion of
w-distributions on C as the double dual Dis“(C) o Homa[Mapp(X,w),w] =
DY Mapp(X,w) for the “w-Cartier duality” D2(A) = Hom4(A,w). Under some
assumptions (that (D<)? is identity), Dis<(C) is the universal object of A that C
maps to, i.e., a freely generated object of A.

For simplicity, let C' be a smooth affine curve over a commutative ring k and
let B be the category IndSchy of indschemes over k.

Examples.

(i) If A is the category Vecy of vector spaces over k, and w = G, is the additive
group, we get ordinary distributions Dis® (C') = Homyec[Mapp,ggen, (C, Ga), Ga)
= 0O(C)".

(ii) When IndAby are the commutative affine group indschemes over k, we get
multiplicative distributions Dis%g;k(C) = Hommaan [Mapr,asen, (C,Gm), Gr] =
DE= (O*(C)) for the Cartier duality functor D%m .

(iii) Let A be the category Ind My of commutative affine indscheme monoids and
w = G,, be the monoid A with multiplication. We get the monoidal multiplicative
distributions Dis®m(C) = Hommar, [IMapmasen, (C:Gm),Gr] = DE=(0(C)).
Here, D®m is the Cartier duality functor in commutative monoids introduced by
Lurie. Then Dis®= (C) is the Hilbert scheme H¢ of points of C.

5 The reason seems to be that the punctured disc d* is treated as a scheme while it is
more natural to use some version of rigid geometry.
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Remarks.

(0) We will also think of the projective space P[Dis®(C)] as “projective distri-
butions” on C'. This will be the setting for the construction of zastava spaces Z"
in 2.2.3.

(1) For complete curves one needs a stacky version of distributions (using stacky
Hom and Map).

(2) The following conjectural (A, w)-version of algebro-geometric Poincaré dua-
lity for smooth curves C' is known in many cases for A, w in our examples above.
The traditional formulation is that

RT.(C,w)[1] = D¥RI(C,w)].

When the distributional formula on the right-hand side is known to be the free A-
object generated by C, the claim is that this free object is the compactly supported
w-cohomology on the left-hand side.”

(3) The idea that the inner homology H, from 0.1 should literally be given by
“free generation” works fairly well for curves, however, it does not seem adequate
already for surfaces (Sam Raskin). This is analogous to the topological case where
“free generation” is only heuristics for the symmetric power S* (see 0.3).%

1.2.8. Class Field Theory in étale topology.

The Langlands program is a conjectural extension of the traditional Class Field
Theory, which features Galois groups, hence étale topology. For a local or global
field F, it describes the largest commutative quotient of the Galois group 'y of F'
in terms of the Galois cohomology of a certain canonical Galois module, the “Class
Field Theory module” Cp for I'p (see [AT]).

When F' contains a finite field F,, then F' corresponds to the generic point n of
a smooth curve C over k = F, (local or global). If the field F' is local, the module
Cr is given by invertible elements F" of the separable closure. For a global field,
Cr is the idele class group of F.

We will describe the Class Field Theory module Cr for F', uniformly in the local
and global case, in terms of the above Zariski Class Field Theory for the associated
curve 7).

Theorem. The Class Field Theory module is the group of Fy-points of H°(A,):
Cr = [H(A4y)](E,).

Following the above description of the Class Field Module, one checks this
separately in local and global cases.

" The versions of Poincaré duality in [Ma], [La], [HR] are rather in the spirit of the
étale Class Field Theory in 1.2.3 below.

8A better formulation may involve factorization homology as in [Ba] or in Lurie’s
noncommutative Poincaré duality?
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2. Interaction of particles, zastavas, and loop Grassmannians

The algebraic notion of a vertex algebra will only be used in stating the story.
We will actually work with its geometric incarnations from [BD] (see Subsection
3.1 below).

In Subsection 2.1, we start with an algebro-geometric model of I-many kinds of
particles on a smooth algebraic curve C. This is the Hilbert scheme of points Hex s
as in Subsection 1.1, except that the curve C' has been replaced by the colored curve
CxI. In this model, the interactions are given by a symmetric integral matrix
k € M;(Z). This setting involves the notion of “locality” for objects over Heowr
but with respect to the curve C. This includes local spaces over H¢o w1, local vector
bundles over Hex; and their local projective spaces (see 2.1.2).

These ideas lead to construction of several moduli of collisions of these particles.
The basic one is the zastava space Z" introduced in Subsection 2.2. One repackages
it into the loop Grassmannian G in 2.4.5, and there is an intermediate space, the
semi-infinite spaces S* (see Subsection 2.3). In the sequence Z", 5% G", the next
space is a union of copies of the preceding space. More on structure and relations
between these spaces is summarized in Lemma in 2.4.5.

The spaces G" generalize loop Grassmannians of reductive groups (see Subsec-
tion 2.5).

2.1. A geometric model of interaction of particles
We consider I kinds of particles on our curve C'. We can think of particles of type

1 € I as living on the curve C; f Oxi C CxlI.

If there are a; particles of the kind i € I, the total number of particles is
a =) ,;a;i € N[I] and the configuration space of these is Hg,, & [Lics HE -
An I-colored divisor D € He w1 is therefore a family of component divisors D; C C

for i € I. The total space is Hoxr f UQGN[I] He -

Interactions between these particles will be given by a matrix k € M(Z) (which
will be symmetric as in Newton’s first law). Intuitively, x;; is the intensity of
interaction of ¢ and j particles at (z,y) € C;xC; near the diagonal z =y, i.e., as
they collide when y approaches x.

2.1.1. A geometrization of interaction.

For i, j € I we define the (i, j)-diagonal divisor A;; € H = Hexr. When @ # j,
the condition for D € A;; is that the component divisors D; and D; meet. Also, Ay;
is a discriminant divisor, a subscheme D € H¢ lies in A;; if D; is not discrete, i.e.,
some point has multiplicity > 1. We call the complement Hp,, ; of |JA;; € Hexr
the regular part of the configuration space.

Our geometric encoding of the interaction x € M;(Z) will be the line bundle on
the configuration space Ho«; denoted

L=L" < 0y(—kA),

where A is the divisor Ziq kij A in Hoxr.

Remark. We can visualize L™ as the space H with holes of depth x;; along the
divisors A;;.
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2.1.2. Locality ([M1], [M2], [MYZ]).
A locality structure on a space Y over Hoxy is a system of isomorphisms for
fibers at disjoint D', D" € Hox,

YD/ LI D" (i YD’ XYD//’

that satisfies the associative, commutative and unital properties.? Similarly, a local

structure on a vector bundle V' over Hox 1 is a system of isomorphisms Vp/ | | pr <—
Vp®@Vpr that satisfies the same kind of properties. Our basic example of local line
bundles are the interaction line bundles L* for symmetric matrices «.

Remark. One can likewise define local spaces and local vector bundles over any
local space Y — Hoxr.

To a local vector bundle V' over Hc 7 we will now associate its local projective
space P°¢(V) C P(V). First, at a point D = ai € OxI C Hcoxs the locality
condition is empty, so P°¢(V),; is the whole fiber P(V),; = P(V,;). The locality
requirement now forces the fiber at a regular divisor D € H{,, ;, i.e., a finite colored
subset of C, to be

Pee(V)p € T P(Var)-

ai€D

The locality structure isomorphism Vp = @,.cp Vai now gives the Segre
embedding P¢(V)p—=P(V)p. So we have constructed a subspace PiS(V) C
P(V)]3, , over the open subspace Hgy ; € Hoxr of regular divisors.

Finally, define the local projective space P°°(V) as the closure of PX¢(V) in

reg

P(V). By its definition Pi2¢(V) has a canonical structure of a local space over

HL,. 5, o its closure P°¢(V) is a local space over Hox .

Remark. Heuristically, the fiber P1°°(V)p at D € Hcx consists of lines M in Vp
which in some sense respect the geometry of the subscheme D of C. We call such
lines “local” (see Subsection 0.4) or “unentangled”.

Moreover, one can view a fiber P1°°(V)p at a general D € Hcoxs as a limit of
nearby fibers P°°(V)p = [],;c5P(Vai) for regular E € Hy,, ;. This degeneration
of products of projective spaces models “collision” of “quantum particles” P(V,;).

2.1.8. A motivation: Lattice Vertex Algebras.

By a lattice we mean a pair (K, k) of a group K = Z" and an integral symmetric
bilinear form K on K (a “quadratic form”). These parameterize the lattice vertex
algebras Lz (see [Kac]). A symmetric matrix x € M;(Z) is the same as a quadratic
form ¥ on a based lattice Z[I], so it defines a vertex algebra that we denote L".

However, we have noticed that such k also defines a local line bundle L* on
the configuration space Hoxy. This will lead in Subsections 2.2-2.4 to certain
indschemes Z%, S* G associated to the matrix x, and this will provide (see Theo-
rem in Subsection 3.2) a geometric setting for the lattice vertex algebra L.

9 This is just a version of the Beilinson-Drinfeld factorization structure from [BD].
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2.2. Zastava space Z*

2.2.1. Induction of local vector bundles over Hox -

Our first step is to induce the local line bundle L* over Hexr to a local
vector bundle I* = Ind(L") over Hoxy. This will use at each D € Heoxs the
“Grassmannian” moduli Gr(D) = Hp of all subschemes D’ C D. This is a
subscheme of Hcxy of length |Gr(D)| = 2/PI = [, 2/l Then the fiber of
the vector bundle I at D € H is the space Ip = I'[Gr(D), L] of sections of L on
Gr(D). This is the space of states of all subschemes of D.

We can state this in terms of the subscheme 7 C Hexyx(CxI) which is
locally finite and flat over Hcoxy. This is the tautological scheme with fibers
Tp = D at D € Hexr. Then the relative Hilbert scheme Gr(7 /Hexr) has fibers
Gr(T /Hexr)p = Gr(D). In terms of sheaves, the induction is I* = g,p*L" for the
correspondence Hex < Gr(T /Hoxr) 2 Hewr given by D < (D' € D)~ D.
Now the fact that I is indeed a vector bundle follows from the next lemma.

Lemma. Forp = (p1 < --- < pg), let Grp(T/Hexr) be the scheme over Heoxr
such that the fiber at D € Hoxy consists of flags of subschemes Dy C --- C Dy, C
D with D; of length p;. This is a flat locally finite scheme over Hoxyr, which is
irreducible over each connected component of Hoxr-

Proof. For simplicity, let I be a point and fix a component Hg = S"C of the
base. The claim holds for full flags Gr; .., since this space is just C". The claim
for general p follows from the forgetful map Gry . , — Gr, since its fibers are
products of smaller full flags. O

2.2.2. Interaction k defines a local vector bundle V.=V"* over Hoxr.

Local vector bundles are closed under duality and tensoring. We will really use

the dual V* &' (I")¥ and think of the fibers V5 = I'[Gr(D),L]Y at D € Hexr

as “L-twisted additive distributions Dis(Gr(D),L)” over Gr(D). Dualizing gives
the Kodaira embedding of Gr(D) into the space P(Vp) of “L-twisted projective
distributions over Gr(D)”.

So, at any D € Hcxy, we have a vector space Vp and its projective space
P(V)p, defined as some kind of spaces of “quantum states of a subscheme of D”.
(We often just say “quantum states of D”.) By definition, P(Vp) contains the space
Gr(D) of corresponding “classical states”.

Example. Let D be a point ai in C'xI, i.e., a point a in C, colored by i € I.
Then Gr(ai) = {@,ai}, so Vo = Ly @ L, 2 k@ L%, and the corresponding fiber
of the projective bundle is P(V),; = P*.

2.2.3. The zastava space Z* of a symmetric matriz k.

It is defined as the local projective space of the local vector bundle V%, so it is

the space Z" = Zf, 4 ploc(1) C P(V*) over Hexy.

Heuristically, we can say that Z* models the moduli of (L*®-twisted) local quan-
tum states of subschemes of D € Ho . Moreover, these “quantum states” are just
the collisions allowed by the interaction x of quantum particles P(V) = P! that
are indexed by i € I and positioned at points a € C. Here, the “collision rules”
k are felt through the background P(V*), in which the collisions are allowed to
happen.
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Example.

(a) At a point D = ai € C'xI C Hewr, there are no locality conditions and the
space Zg; of local states of a quantum particle at ai is the whole fiber P(V),; =
P(V,;) = P! (independently of the color i € I).

(b) For two particles, the fiber of Z* at a regular D = ai+bj € Hoxs (meaning
that a # b), is P! xP!, which is given in P(Vy44;) = P? by the locality equation
xy = uv. Then the collision as b — a degenerates this smooth quadric into one
of the form 22 4 --- + z,% = 0 in P? with 1 < k < 4. The simplest degeneration
(the case k = 3), is the one point compactification of the tangent bundle of P!, It
appears when the quadratic form & corresponds to the group G = PGL(2) in the
sense of Theorem in Subsection 2.5 below.

2.2.4. K-triples.

For a sheaf L on a space A over S, we denote the corresponding sheaf on S by
Lass (A= 9).L.
The K-triples (A, L, B) over S will consist of a very ample line bundle L over

A and an embedding B — IP’[L‘A/S] such that

e the Kodaira embedding of A is into B;

e the restriction Op(1)p/s — La,s is an isomorphism,
where Op(1) is the restriction of Opp(a, (1) to B.

Lemma (The “weak flatness” [MYZ, Cor.2.4.3]).
(a) (Gr(T/HCXI),p@L”,ZZC) is a K-triple over Hoxy. In other words, at
D € Hoxr, one has T(Z5, Opgyey (1)) = T(Gr(D), L5).

(b) For the torus T = G,%, the fized point subscheme (25, )" is Gr(T /Hexr).

So we will denote by Oz«(1) the restriction of Op(y«)(1) for the embedding
z5, CB(VF).

2.3. Semi-infinite spaces S3,  of matrices Kk
Let k € M;(Z) be a symmetric matrix.
2.8.1. The defect action.

Let T — Hcexr denote the tautological scheme, ie., Tp = D for D € Heoxg.
Then the relative Hilbert scheme Gr(7 /Hc 1) with fibers Gr(T /Hexr)p =Gr(D)
lies in Z*. First, Gr(T/Hexi) < P(V") is the Kodaira embedding as Vp =
L[Gr(D),L*]*. Then Gr(T/Hcxr) actually lies in Pl¢(V*) = Z* because this
is true over the regular part H{,; and Gr(7/Hcxr) is irreducible over each
connected component of Heoxr (Lemma in 2.2.1).

Lemma.

(a) There is a unique action of Hoxy on the space Z* over Heoxy that preserves

Gr(T /Hexr) and such that for E, D € Hoxr, the action Gr(T /Hoxr)p £,
Gr(T/Hexi) ok, i-e., Gr(D) = Gr(D + E), is just the inclusion. This is

called the defect action.'® Then the maps A £>ZB+E are closed inclusions.

10Because it takes the generic part of ZT, to the boundary of the generic part of Z , .
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(b) The zastava space (Z*,0z~(1)) over Hoxy has a “growth structure”, i.e.,
a consistent system of closed embedding vp'.p : Zp — Zp for D' C D €
Hexr, compatible with the line bundle Oz« (1).

Proof. (a) For an affine test scheme S, let E,D be two S-points of Hexr so
that ' = D + E contains D. The inclusion Gr(D) C Gr(F') of affine schemes
yields a surjection I'[Gr(F), L®] — T'[Gr(D),L"]. Dually we have Vp C Vp hence
P(Vp) C P(VE). If F is regular, the first inclusion is the tensor product of inclusions
Vainp C Vi; over points ai € F. Then the F-product of inclusions P(V,;~p) C
P(Va:) gives P¢(Vp) C P¢(VE). By the closure definition of P°¢(V'), this implies
the same for all F € Hoxr.

(b) This is a restatement of (a) since yps p is given by the defect action of

E = D — D'. The identification of line bundles Ozx(1)|zx, =N vp.p'Oz~(1)|z+D
is also by the construction of the defect action in (a). O

2.3.2. Semi-infinite spaces S*.
Due to Lemma in 2.3.1, we can define the space S™ = SY;  over Hc with fibers
at the divisor D € H¢:

P def T K
S lﬂHCXIBFCDxI o 11AEMEN[I] ab>

given by the union over all colored divisors F' € Hcx that (once we forget the
colors) lie in the formal neighborhood D of the divisor D. Space Zj;, carries the
line bundle Og(1) that on pieces Zj C Sf equals Oz« (1)|zx (by part (b) of the
same Lemma).

2.4. Loop Grassmannians G7,  of matrices

As in passing from Z* to S* by the defect action (in 2.3.2), one glues G from Z”
(in 2.4.5), using the “shift” action on S¥ of the monoid N[I] = mo(Hc).

However, such shift action and formulation of G* are only valid in the presence
of a local coordinate z. A global formulation uses the shift action of a submonoid
L5 (T)' of the central extension L5, (T) of the loop group L3 (T) over Hc (the
notation is in 2.4.1-2.4.3). Again, one has mo (L% (T)1) = N[I].

While the defect action on Z" becomes trivial already on the level of the
semiinfinite space S* (see 2.3.2), on the loop Grassmannian G* the shift action
will shift the semiinfinite orbits by z* for A € X, (T) (see 2.4.5).

2.4.1. Formal discs.

Here we introduce notation for loop groups defined over the Hilbert scheme Hc.
For a subscheme Y C X, we denote by Y the formal neighborhood of Y in X and
by Y the punctured formal neighborhood Y — Y.

In particular, for a finite subscheme D of a curve C, we have the “formal disc”
D C C and the “formal punctured disc” D C C. These give for affine schemes
X, the mapping spaces LpX = Map(D X) and L5X = Map(D X) of “loops”
and “discs” in X. Each of these spaces is defined as a functor from k-algebras A
to sets. For instance, when D is a point a € C with a local parameter z, then

(L X)(A) = X (A[[2]]) € (LaX)(4) = X (A((2)))-
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An example is given by the lifts of functions on D C D to indschemes Kue def

LyucA' D Oy € LI, A over He with fibers Kp = LpA' and Op = LHAL.

Actually, both Ky 2 Oy, have structures of Tate vector bundles over Hc.

2.4.2. Central extensions of loop groups over the Hilbert scheme of a curve.

We will use 2.4.1 for the curve CxI. The Tate vector bundle structure on
Ko, produces for the group indscheme bundle GL(Ky., ;) of k-linear operators
on Ky, ,, the Tate central extension GL’(Ky.,) by G,,. These are given by the
determinant line bundle on the space of lattices in the Tate vector bundle K., ,
over Heoxy (see [BBE]). This central extension restricts to Tate’s extension 0 —
G — Eg_[C“Gm — Ly, Gm — 0 of the subgroup Ly, , Gy, of GL(Ky(,,)-

In [BBE], one considers the case I = pt and D = a, a point of C C H¢, i.e.,
the extension 0 — G,,, — £2Gm — L,G,, — 0, and proves that the corresponding
commutator map L,G,, X L,G,, = Gy, is Contou-Carrere’s tame symbol [CC].

The projection CxI — C comes with a map II : He — Hexr, D — DxI.
The I-pullback IT* Ly, , (G,,) is the analogous loop group indscheme £, T over
Hce. In [BD, 3.10.13], the Tate central extension EQ{C“Gm was combined with a
symmetric bilinear form  over Z[I] to give a central G,,-extension LY, T of Ly, T
(unique up to an isomorphism), with fibers L5T at D € Hc.'? In particular, one
gets the commutator map Ly T Xy LreT — G

2.4.3. Positive submonoids of loop groups.
The loop Grassmannian of a group G at a point a € C' is defined as

G.(G) % Bun& (@),

i.e., as the moduli of G-torsors over @ trivialized at its infinity @ ©a - a (A
local coordinate z at a identifies this with G((2))/G[[z]].) The Abel-Jacobi map
AJ; : Hg — Gu(G,,) embeds the Hilbert scheme monoid of finite subschemes of the
formal neighborhood @ into the loop Grassmannian at a (see 1.1.3). The restriction
of an object X over Go(G,,) to Go(G,,)T def Hce will be called the “positive part”
XTof X.

We will extend this formally from Grassmannians G, (G,,) = L4(Gy,) /L (G)

to their Beilinson-Drinfeld deformations Gy (Gp,) 2ef L3, (G) /,C;f[c (G,n) over

He.

First, we modify the tautological subbundle T of He w1 x (C'xI) to the pullback
T of T by the map He — Hewxr, D~ DxI. So, for D € He we have (T /Ho)p =
Toxr = DxI. Now let T (a shorthand for 7{/?0) be the relative formal neighbor-
hood of the Hc-subspace T /He of Hox (CxI), ie., (’i’)p = 7/’5 = DxI.

I “Tate modules” and more generally “Tate vector bundles” are algebro-geometric
versions of the notion of Tate vector spaces, see [Dr] or [BBE, 2.11].

12 Formally, this argument in [BD] was written at a point a € C' rather than over the
Hilbert scheme H but the argument is the same.
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Again, we define the positive part Gy, (T)" C Gy (T) of the Beilinson-Drinfeld
loop Grassmannian of a torus, as the relative (“vertical”) Hilbert scheme of points
H(T /Hc) = Gr(T /Hc). The fiber at D € He is Gr(T /He)p = Hp,;, hence
the space is {(D,F) € HoxHexr; F C f)x]}, a nonsymmetric colored Hilbert

scheme version of Ag.

It is embedded by the relative Abel-Jacobi map AJy.: H(T /He) < Guo (T)

with the usual formula AJy . (D, F) Lf (D,0p(—=D),1) (see 1.1.3).

Now we can restrict L5, (1)L (T)—G(T) to monoids E%C(T)T—»E’HC(T)T
—+Gn. (T)' by fibered products such as

P def g
£'Hc(T)T = £'Hc(T)XgHC(T) g’HC(T)T

By the argument in [BBE], the G,,,-extension L%, (T') splits canonically over the
disc subgroup L3, (T) € L3,(T). Then the quotient £, (T)/LF, (T)is an L%, (T)-
equivariant G,,-torsor over the loop Grassmannian Gy (T) = Ly, (T)/ﬁ;;c(T).
The corresponding line bundle L" over Gy, (T') is L5, ,(T)-equivariant.

On the subspace Gy, (T)T, we have another line bundle, the pullback prjL" for
the natural map

Goo (T = Gr(T/He) 22 Hews

Lemma. The line bundle pryL® over Gy (T)" naturally extends to the L5, (T)-
equivariant line bundle L™ over Gy (T).

Proof. The apparent difference between L™ and prilL”® is that the first has a
factorization property along the base H¢ of Gy (T') and the second has a locality
structure on the fibers G (T)T (for D € Hc) of G (Tt = He.

In [BD, Prop.3.10.7], one finds an equivalence of categories of factorization
line bundles A on Gy (T) (which is there called “X,(T')-divisors” and denoted
Div(X, X.(T))) and the “theta data” (k(X), N, c) where £()) is a symmetric bili-
near form on Z[I] and ()X, ¢) amounts to a line bundle yx on C'xI. Here, k(\);; is
the order of vanishing of the factorization isomorphism for A along the diagonal in
C? and p is the restriction of A to C C Hc. In our case, A = L”, the restriction u
is the trivial line bundle on CxI, and x(A) is &.

In [MYZ, Rem. 2.1.3], it was noticed that when one restricts such A to Hgxy =
G.(T)T that lies in the fiber G,(T') at a point a € C, one gets our local line bundle
L*N on Hgyx s (from 2.1.1).13 This proves that L%g,, (ryr is prsLe. O

2.4.4. The shift action on SY .

By Lemma in 2.4.3, the action of the extended loop group £, (T') on the line
bundle L* over Gy, (T) restricts to an action of the submonoid L3, (T)" on the
line bundle priL* over Gy (T)" = Gr(T /Hc).

13 The reason in [MYZ] is that the “horizontal” version of the Abel-Jacobi map that
is used to measure k(A) differs from the “vertical” Abel-Jacobi map that measures the
corresponding matrix for L™ only in a nonessential way — both are pullbacks of an Abel—-
Jacobi map into the rational loop Grassmannian Grat(T).
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Proposition.
(a) Space Gy (T)T = Gr(T /Hc) has a Kodaira embedding into S5, by the line
bundle priL”~.
(b) The action of the monoid Ly (T)" on Gy (T)' estends canonically to the
space Sy . We will call this the shift action of L (T)T.
(c) This lifts canonically to an action of its central evtension L%, (T)" on the
line bundle Os;{c (1).

Proof. (a) At a fixed D € H¢ this embedding Gr(DxI) — S5 = im Z5p. is
the union of the Kodaira embeddings from the definition of zastava Gr(F) < Z%
(over F' € Hp, ;) that uses the line bundle L” restricted to Gr(F) C Hoxr-

(b) Since L%, (T)! acts on the line bundle pr*L* over Gy, (T)T, it also acts on
the projective space P[(pr3L")g,, (1)t /#."] over Hc and on its line bundle O(1).
We will see that it preserves S7;  and therefore also the restriction of the line
bundle line O(1) to S5, ..

First, the action of Ly (T)" on the base Gy (T)" factors through the quotient
Lo (T)1—>Gy (T)1. If f € Lp(T)" has image E € Gp(T)' = H 5, ;. then f acts
on X € Hp, ; by addition X — X + E.

This gives for F' € Hp, ; an isomorphisms of Gr(F) with Gr(E + F/E), the
moduli of all A € Hp, ; such that £ C A C E + F. Now, any lift ¢ € L}(T)
of f gives an isomorphism of line bundles L*|qyry and L*|qyrpm) (above the
isomorphism of spaces given by E). The corresponding isomorphism of projective
spaces of global sections is independent of the choice of ¢, so we get

P[[(Gr(F), L¥)"] 2 P[T(Gr(F + E, E),L%)¥] € P[[(Gr(F + E), L%)].

[ l@

This restricts to an inclusion ¢f; Z% < Zj_, 5 (as in the construction of the defect
action).
Passing to the inductive limit over all F' € Hp_,, this yields ¢; ST, < Sp.
Claim (c) is essentially the action of the lift ¢ in the argument of (b). O

Remark. The shift action is “vertical” in the sense that it preserves fibers of 53, . —
Hce and the defect action is “horizontal”, i.e., nontrivial on the base Hox .

2.4.5. Loop Grassmannian Gz, of matrices k.
The space G, lies over Hc and carries a line bundle Ogx (1). These are defined

as an associated bundle for the shift action of L3, (T) from Proposition in 2.4.4,
14

which amounts to a certain inductive system (which is just a union):

4 For a submonoid M of a group A we have the action category Ajp; with objects
Ob(Aps) = A and there is a unique morphism a By a+mforace A, me M. Ay is
directed iff M — M = A (for any a,b € A, we need m,n € M with a +m = b+ n, ie.,
b—a=m=neM-M).

Any M-space X defines ;}Vfunctofrv)? on Ajs so that for a € A, we have X def X, and
for m € M, the morphism X, ﬂ>~Xa_~_m is given by X % X. Then by the “associated
bundle” AX ;X we mean @AMX’ For instance, Ax pyM = A. If for each m € M the
action m : X — X is a closed embedding, then Ax ;X is a union of copies of X.
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(g;gwogm(l)) def gtj_tc(T)xﬁ%c(T)T (8%,05x(1)) = h—n}cg{c (Sff{w(’)sm(l)).

Remarks.

(0) The definition of the space itself does not involve the central extension:

def
gr = [,7.[0 (T) XL‘HC(T)TSN'

(1) Once one chooses a local coordinate z at a point a, then the restriction of
the shift action to the fiber Sy , can be viewed as an action of N[I], where o € N[I]
acts by 2® € L,(T), which is the composition @ = G,), AT So, in a presence
of a coordinate, the definition can be stated as G* = Z[I]xy(;; S*. This was the
point of view in [MYZ].

(2) S* and G" are just repackaged versions of the zastava space Z*. Say, G" is
covered by copies of S*, which is also a union of copies of Zp’s for D € Hcoxy.
(Actually, this procedure can be reversed.)

(3) For any lattice L that contains Z[I], we can define the corresponding loop

Grassmannian as G(L, k) def L3 (TL)XEHC (1)G" for the torus T, = Lz T.

Lemma.
(a) We have embeddings (i) C (ii) C (iii) of K-triples (see 2.2.4) for
() (Gr(T/He).prsL", 23, ):
(ii) (Gr(T/Hc),prsL”, S5, .);
(111) (ch (T)’ L g'ilc) 10
(b) S*%,G" descend to the de Rham space Hc,, of Hc. (Similarly, one can
define the Ran space versions Sg,,, Ihan over the Ran space Ranc of the
curve.)
(c) The compatible locality and growth structures on zastava (Z%, 0z« (1)) in-
duce the same on (S*,Og«(1)) and then also on (G*,Ozx(1)).
Also, these locality structures on Sg, ., Gy, . become the factorization struc-
tures from [BD] on the corresponding Ran space versions Sg,., Gfian-

Proof. (a) The K-triple (i) is established in the lemma 2.2.4, its Kodaira embedding
is given on fibers by Gr(D)—Z%.

The remaining claims follow because one defines triples (ii) form (i), and (iii)
from(ii), by inductive limits (which are just unions) by definitions of S* in 2.3.2,
and G® in 2.4.5.

15 We picture these embeddings starting with the vertical inclusions of spaces A C B;
then we list the compatible line bundles on these spaces:

Gr(T/He) = Gr(T/He) = Gre (Gm) prsl*  pril®  L”

R

75— S -85 —S- G5 (Gm) Oz:(1) Oge(1)  Oze(1)
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(b) For S*, this is by definition since S}, = U,en(s Zap (see 2.3.2) depends
only on the formal neighborhood of D. Then the same holds for G*.

(c) For spaces S*, this is evident: Sprypr = hgn Zo(prupry = hgq Zopr X Zoprr =
SprxSpr. Also, if D C E, then SB = hﬂ Zaop C hg Zog = SE.

For G = Lp(T) X2t (1) 5%, all three factors are manifestly local in D = D’'LUD".
The growth structure under D C FE is known for S*, we will check that the first
functor £(T') is functorial in D C E.

Notice that each factor in G, is invariant under passing from D to a multiple
nD. For D C E, intersection EN D lies in some nD, therefore, E-FE - D—nD =
D — D giving an injective restriction map LpT — LgT. This implies the same for
the positive part £p(T), and the resulting map G% — G& is injective (because
Lp(T)Nepery LE(T) = Lp(T)).

The above proof of claims for inductive limits S*, G" also carries over to the
line bundles Og« (1), Ogx(1). O

2.5. Spaces G* generalize loop Grassmannians of reductive groups

Theorem ([MYZ]). Let I be the set of simple roots of a semisimple group G
(simply connected and simply laced) and let k be the Cartan matriz K;; = (0, &;).
Then the loop Grassmannian GY, . is just the Beilinson-Drinfeld version Gy (G) —
He of the loop Grassmannian G(G) = G((z))/G|[z]] of G. (The same reconstructi-
on holds for zastavas and semi-infinite spaces.)

Proof. The proof in [MYZ] only covers the version at a point a € C: GF = G,(G).
However, with the above definitions it works as well for the Beilinson—Drinfeld
version g;;c. O

Remarks.

(0) The paper [MYZ] with Yaping Yang and Gufang Zhao also contains a
quantum version and an arithmetic version of constructions Z*, 5" G". It also
explains the relation to representations of quivers and provides a conjectural exten-
sion of this theorem to all reductive groups.

(1) This reconstruction motivates a search for “Noncommutative Poincaré dua-
lity in Zariski topology’ that should extend the multiplicative Poincaré duality
conjectured in 1.2.2. First, recall that the usual loop Grassmannians G,(G) of a
group G is the compactly supported cohomology Bung (a) of a formal disc @ with
coefficients in G (see the first paragraph of 2.4.3). On the other hand, one can
view the above construction of GJ as a kind of a “noncommutative” homology of
a with coefficients in the interaction s, because we reconstruct G(G) from pieces
(finite subschemes) of the disc a. The Poincaré duality claim is the coincidence of
the two constructions.

3. Lattice vertex algebras and Grassmannians G~

Consider the lattice vertex algebra L" that corresponds to the lattice defined
by a symmetric integral matrix . In Theorem in Subsection 3.2 we localize L"”
over the corresponding space G from 2.4.5. This result is a byproduct of the
“collision” reconstruction of loop Grassmannians of reductive groups in Theorem in



IVAN MIRKOVIC

Subsection 2.5 above, which itself was motivated by developments in the geometric
Langlands program.

3.1. Factorization algebras

We will be interested in two geometric incarnations of the notion of vertex algebras.
On any smooth curve C, Beilinson and Drinfeld have introduced equivalent notions
of a chiral algebra A and a factorization algebra A*. The equivalence is by tensoring
with a canonical bundle: A = A’@w¢, this exchanges the natural structures of a
left D-module over the curve C' on A and a right D-module structure on A. The
chiral algebras are of “Lie nature” and more directly related to representations of
affine Lie algebras. The factorization algebras are of “commutative nature”.

Taking the global sections then provides an equivalence of chiral algebras on A'
equivariant under translations and vertex algebras. For versions of this equivalence
see [BD, 0.15].

3.1.1. Factorization algebras [BD].
By a factorization algebra on a smooth curve C' we will mean a quasicoherent
sheaf B over H¢ = | |y S"C together with the following two compatible structures:

e the locality (=factorization) structure ¢, which is a natural system of isomor-

phisms cp/ pr : Bp®&Bpn = Bp/pr that involve fibers of B at disjoint
divisors D', D" € H¢ (see Subsection 0.4),

e the growth structure v, which is a natural system of maps yp/ p» : Bpr —
Bp of fibers associated to inclusions D’ C D" in Ho

such that!®

(1) cis commutative and associative, while «y is functorial in the inclusion poset
HC”

(2) restriction of B to the point HY is k,

(3) B has no nonzero local sections supported at the discriminant divisor in H¢.

Remarks.

(a) In [BD], factorization algebras are given several equivalent formulations
using slightly different settings. The standard notion uses the Ran space of the
curve C (see [BD, 3.4.4]), we will use the one in terms of effective Cartesian divisors
on C' (see [BD, 3.4.6]). There, B is described as a functor Bz p on Z-families D
of effective Cartier divisors in C. This agrees with our definition since moduli of
such divisors are represented by the Hilbert scheme H¢.

(b) Condition (3) ensures that the restriction functor from factorization algebras
to Ox-modules is faithful.

16 Added in proof. Actually, the definition of factorization algebras in 3.1.1 and of
factorization monoids in 3.1.2 also requires a further condition that the growth structure
~y stabilizes under multiples, i.e., Yp 2p is an isomorphism. We will call the above weaker
notions “locality algebras” and “locality monoids”.

As a consequence, in the main Theorem in Subsection 3.2 below, the space Z" (and
its subspace) is only a locality monoid and provides a locality algebra, while the claims
for Z™,G" (and their subspaces) are correct as stated.
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3.1.2. Factorization monoids [BD].
A factorization (or chiral) monoid over a curve C is an indscheme G over H¢
together with the following two compatible structures:

e the local space structure ¢ (from 2.1.2), i.e., a natural system of isomorphisms
cp'.pr: GpoXGpr — Gprupr,

e the growth structure ~ which is a natural'” system of closed embeddings
vpr.p» 2 Gpr — Gpr of fibers associated to inclusions D’ C D" in He.

One also requires that Gy is a point and that the restriction to the regular part
Gl3z, is dense.

A G, -extension of a factorization monoid G (see [BD]) is a local line bundle
over the local space G which is compatible with the growth structure.

8.1.8. Factorization algebras from G,,-extensions of factorization monoids.

Proposition. Let A be a G,,-extension of a factorization monoid w : G — Hc.
Suppose that G has a directed filtration by subschemes G; projective over He such
that each (G; — He )« is finite and flat over Heo. Then

AYGA) E m (V)] E Hom[m,(A), O]

has a canonical structure of a factorization algebra.

Proof. Since (G; — Hc )+ A is finite and flat over a smooth affine scheme He (over
a ring k), it is locally free. Since G 5 Hce is an ind-projective scheme, m,\ is a
pro-coherent sheaf and its dual A*(G,\) is an ind-coherent sheaf. Moreover, since
the dual of each (G; — Hc)«\ is locally free, the ind-coherent sheaf A%(G,\) is
quasicoherent.

Moreover, even directly by the definition of A*(G, \), as Hom[m.()\), O] it has

no sections supported on a divisor. Let us consider fibers A*(G,\)p et ['(Gp, N\)Y.

One has F(QD/UDH, /\) = F(QD/ XFDH, /\&)\) = F(gD/, /\)®F(FD//, )\) Similarly,

D C FE gives Gp é G, and then T'(Gp, Mg, ) = T'(Gp, Mgy )« T (Gr, Mgy ), hence
[(Gp, )Y <= T(Gr,\)". Also Gy = {@} and AY(G,\) =T'(Gz,\)" = (\g)' =k' =
k. So, we have satisfied all conditions for a factorizations algebra from 3.1.1. [

Remarks.
(1) This proposition is a simplification of the more interesting point of view of
Beilinson and Drinfeld [BD]. They ask whether the derived version of the above

construction RA*(G, \) e m(A@7 Oy,.) is a DG-factorization algebra under sui-
table conditions (that G has a directed filtration by projective subschemes G;).
Following a parallel of sheaf theories in topology and algebraic geometry, one can
call the proposed RA*(G, \) the “algebro-geometric homology of G with coefficients
in \”.
This “homology” localization is covariant in the space, hence different from
standard localizations (for instance that of Beilinson-Bernstein [BB]) which use

global sections, i.e., cohomology.

17 Here, “natural” means that the definition should be interpreted in terms of families
of objects.
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(2) The case of the [BD] question when G is affine is established in [BD]
after 3.10.16.1 (for the proof one is referred to the material in the proof of their
Proposition 3.8.10). In particular, they provide a construction of lattice vertex
algebras when G is Gy, (T), the loop Grassmannian of the torus 7' = G,}, and the
line bundle is L® from 2.4.3.

3.2. Homology localizations of lattice vertex algebras
on Grassmannians G*

The following is the main result of this paper.

Theorem.

(a) The spaces Z" and 8% 9%y, associated to a symmetric matriz  are facto-
rization monoids (over Hoxy and He) with canonical G, -extensions Oz« (1) and
(’)S;{c (1), Og%c (1). These structures are compatible with the inclusions Z% C

S%. € G5, and we get inclusions of the corresponding factorization algebras
AY(Z7,02x(1)) € A*(S", Oy, (1)) € A(G", Ogy, (1))
(b) The same holds for subobjects
(Gr(T/Hexn),pr3L") and (Gr(T/Hc),priL"), (Gue (7). L"),

The maps of factorization algebras corresponding to these inclusions of subobjects,
are isomorphisms; say, A'(Gy.(T),L") — A* (g”, Og;{c (1))

(c) The vertex algebra A*(Gu(T),L") is the lattice vertex algebra L" from
2.1.3.

Proof. (0) The basic fact. The three spaces in (a) are related by closed inclusions
Z% C §% C G" in which the next space is union of copies of the preceding space.
Moreover, this relation also holds for subspaces Gr(T /Hoxr), Gr(T /He), G (T)
and for the indicated line bundles on these six spaces (see Lemma (a) in 2.4.5).

(1) Factorization monoid structures on six objects. The compatible locality and
growth structures on zastava Z", S* G" and their line bundles are in Lemma (c)
in 2.4.5.

Z" is defined as the closure of the regular part and the restriction of 7 to each
connected component of How is irreducible. This implies that the regular parts
are dense in all six spaces in (a) and (b) since the latter ones are unions of copies
of preceding ones.

For the empty divisor @ by definitions one has {@} = Z5 = S5 = G5.

(2) Factorization algebras. According to Proposition in 3.1.3, we now only need
the filtrations required there.

For Z*, we can take the trivial filtration (all terms are the projective schemes
Z* itself). This provides needed filtrations on Z* and G" since these spaces are
unions of copies of Z*. For instance, S* has an N[[]-filtration by projective schemes

Fo. S5, %ef Zoe, « € NI, i.e, at D € He we have F,S%  zp, ac N[I] (see
2.3.2).

One can get filtrations for subobjects in (b) by intersecting them with the
filtrations from (a), but we actually get some obvious filtrations by finite flat

schemes over configuration spaces.
(c) is the result of Beilinson and Drinfeld, see [BD, Prop.3.10.8]. O
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Remarks.

(1) For special choices of the quadratic form x one hopes that G* can be thought
of as “loop Grassmannian” spaces of the corresponding affine Lie algebras, or more
generally as “loop Grassmannian” spaces of (generalized) Kac-Moody Lie algebras.

(2) The question of localization of vertex algebras is a part of the program of
constructing vertex algebra moduli, which is developed in the book of Ben-Zvi and
Frenkel [BZFr].

(3) One may hope to extend the above localization to other vertex algebras that
are built from lattice vertex algebras (say, by orbifolding or screening operators).

3.2.1. A “Verma type” vertex algebra M" of a symmetric matriz x.

As we saw in the proof of Theorem in 3.1.2, we now have two localizations of
the lattice vertex algebra L" on factorization monoids G(T") C G*. The interest in
G" is that its geometry reflects the quadratic form x. Example (2) below indicates
how this can be used.

Lemma. Let G’ C G be a factorization submonoid. The formal neighborhood g
s also a factorization submonoid. Also, if A is a G,,-extension of G, then its
restriction X' = Mg is also a Gy, -extension. Moreover, a filtration on G from
Proposition in 3.1.3 induces such filtration on G’.

Example.

(0) In particular, a G,,-extension A of a factorization monoid G restricted to
the formal neighborhood of the unit in G gives a factorization algebra Mg.

Then the corresponding vertex algebra Mg is the global sections of the D-module
on G given by the twist of the delta distribution D-module at the unit in G by the
line bundle A on G.

(1) When G is the loop Grassmannian G(G) of a semisimple simply laced group
G, then the corresponding vertex algebra M" is the Verma type vertex algebra
Vi(g) of g of level one.

(2) The lattice algebra L" is a quotient of M" because G is connected. Also,
the same construction defines a deformation M** for k € k.

In this generality, the vertex algebras M" may be new. The rational vertex
algebra L” should in some sense be the “integrable” part of the nonrational vertex
algebra M".

(3) In our setting of G*, we can define another vertex algebra using the formal
neighborhood S5 of §* C Gg-.
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