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0. Overview

The main result in this paper is a certain “homology localization” of lattice
vertex algebras on “loop Grassmannian” spaces associated to a symmetric integral
matrix (Theorem 3.2). Much of the paper recalls relevant topics in a slightly
nonstandard (“quasi-physical”) language of “interaction of particles on an algeb-
raic curve over a commutative ring”.

While one could describe our setting in various ways, our choice of interaction
language is motivated by the construction of loop Grassmannians associated to
symmetric matrices from [MYZ] (see Section 3 below) as well as by geometric
forms of Class Field Theory recalled in Section 1. The motivating goal is to try to
set the stage and a uniform language, in order to (hopefully) understand better
something old rather than to directly compute something new.

0.1. Heuristics

One wish in the background in this paper is to reconstruct key objects of the
geometric Langlands program over a curve C (local or global) by a single procedure
H∗(C, C) (using a coefficient system C). This will be variously described as inner

homology in Algebraic Geometry, free generation, distributions, or moduli of inter-

actions of particles on a curve.

0.2. Contents

Section 1 deals with the abelian case, i.e., the geometric Class Field Theory. In the
above story, the coefficients C are just the integers Z, or even N. The construction
H∗ recovers the Hilbert scheme HC of points of C, and the Jacobian BuncC(Gm),
i.e., the moduli of compactly supported line bundles in the sense of 1.1.2.

In Section 2, we recall some local nonabelian constructions. Here the coefficient
system is a symmetric integral matrix κ, i.e., the corresponding lattice ([M1], [M2],
[MYZ]). We get zastava spaces Zκ, semiinfinite spaces1 Sκ and loop Grassmanni-

ans Gκ. When κ is the Cartan matrix of a semisimple group G, these are the same-
named traditional spaces Z(G), S(G),G(G) that arise for G. Spaces Zκ, Sκ,Gκ are
constructed from a simple interaction of particles given by the matrix κ. We prove
some foundational facts on these objects.

In Section 3, our main Theorem 3.2 provides localization of a lattice vertex
algebra L

κ (associated to the matrix κ) on the Grassmannian Gκ. This is a version
of the Beilinson–Drinfeld “abelian” localization of Lκ on the loop Grassmannian
G(T ) of a torus T ([BD, Prop. 3.10.8]). In our picture, torus T is Gm

I where I is the
set of kinds of particles. The κ-Grassmannian Gκ contains the loop Grassmannian
G(T ), but it also remembers κ and provides more space for constructions.

0.3. The inner homology idea

In Geometric Representation Theory one restates problems in Algebraic Geometry.
Then one uses some kind of a “topological” formalism in Algebraic Geometry,
say, cohomology, perverse sheaves or D-modules. The above “inner homology” H∗

should be an example of such topological formalisms.

1 Not to be confused with the semi-infinite Grassmannians.
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As we will see, the “free generation” intuition on H∗ is inspiring in simple cases
but may have a limited range of literal validity. The situation is analogous to
(and inspired by) the Dold–Thom theorem in algebraic topology. It says that the
homology groups of a based topological space X can be calculated as homotopy
groups of the group completion Ŝ∞X of the monoid S∞X, the infinite symmetric
power of X. (An elementary proof is in [Ha], [BL], and for manifolds, a modern
proof is in [Ba].) My present terminology of “free generation mechanisms” origi-

nates from replacing the precise constructions S∞X and Ŝ∞X by terminology of
a commutative topological monoid and group “freely generated” by X.

The Dold–Thom theorem has also been used as a motivation for introducing
Suslin’s construction of the motivic complexes ([Fr, Sect. 1]). Suslin’s construction
led to Voevodsky’s motivic homology of algebraic varieties with values in abelian
groups ([Voe]). In contrast, I would like to have a “homology theory” H∗(X, C)
which is inner to Algebraic Geometry. Ideally, H∗(X,Z) would be the part of
motivic homology of X that is representable by an algebro-geometric object. For
these reasons, I will heuristically describe H∗(X,Z) as an “abelian group object in
Algebraic Geometry”, which is “freely generated” by variety X.2

I find that the need for such an inner (nonabelian) (co)homology theory is
suggested by the standard Geometric Langlands Program, because it is formulated
via categories that are defined only because cohomology spaces for curves carry
algebro-geometric structures.3

We will only consider candidates for H∗(C, C) for smooth curves C. Here the
construction is known in a sense (see Section 1). Also, this H∗ produces various
kinds of “spaces of distributions’ of additive, multiplicative, and projective nature.
In 1.2.1, we comment on how H∗(C,Z) reflects the idea of free generation. Similarly,
in 1.2.2, H∗(C,Z) is interpreted as a space of distributions.

0.4. Local spaces over a curve C

The locality principle in physics says that the experiments at causally separated
points a, b in a spacetime are independent. When we denote by Ex the set of
possible outcomes of experiment at x, we can write this as Ea,b

∼= Ea×Eb. On the
quantum level, one has a vector space Vx of states of a system at x and locality
becomes Va,b

∼= Va⊗Vv. We say that a single state v ∈ Va,b is compatible with the
spacetime separation if it is a pure tensor v = va⊗vb. For simplicity, I say that
such state v is local though the standard terminology is unentangled.4

In the case of complex curves, our framework is closely related to Vertex Algeb-
ras and therefore to very special Quantum Field Theories, the 2-dimensional chiral
Conformal Field Theories on complex curves. In this case, the causal separation
of points a, b on a curve reduces to a 6= b (see [Kac]), which is what we use on
algebraic curves.

2 While not adequate in general, this description is still going to be precise in cases of
interest in this paper.

3Also, this application suggests that H∗ should not be homotopy invariant in contrast
to Voevodsky’s construction.

4 The definition of unentangled states in QFT is algebraically the same as what we
call local states—the pure tensors in a tensor product.
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These ideas will motivate the definition of C-local versions of some standard
notions over the Hilbert scheme of points HC×I of a curve C colored by I colors
(1.1.1) Over HC×I , we consider local spaces Y , local vector bundles V , and their
local projective spaces Ploc(V ) ⊆ P(V ) (see 2.1.2). The last is the “local” or
“unentangled” part of the projective bundle P(V ). I will think of Ploc(V ) as re-
cording all collisions of fibers P(Vai) at points ai ∈ C×I, that are allowed by the
“rules” supplied by the local vector bundle V —this will really mean that collisions
are inside the projective bundle P(V ).

Our zastava space Zκ is constructed as such local projective space. The corres-
ponding local vector bundle V κ comes from the interaction κ.

0.5. Interactions and loop Grassmannians

In our setup, the interaction between I-many kinds of particles on a curve C is
given by a symmetric integer matrix (κij), i, j ∈ I. We view it also as a symmetric
bilinear form on the based lattice Z[I]. Its geometric form will be a local line bundle
L
κ over HC×I (see 2.1.1).

We will induce the local line bundle L
κ to a local vector bundle Ind(Lκ) over

HC×I by an “exponentiation” process of passing from a finite subscheme D ∈
HC×I to its “Grassmannian” Gr(D) ⊆ HC×I , which is the moduli of all subschemes
of D.5 This produces the zastava space over the Hilbert scheme HC×I , as the

corresponding local projective space Zκ = P
loc

[Ind(Lκ)v].

We define the loop Grassmannian Gκ of the matrix κ in Subsection 2.3 as a
certain repackaging of pieces of Z(κ). An intermediate step in repackaging will be
the semi-infinite space Sκ (see Subsection 2.3). This is a “positive half” of Gκ in
analogy with a Borel in a reductive Lie group. The spaces Zκ, Sκ,Gκ will turn out
to be certain moduli of unentangled collisions of projective lines P1. In the case,
when κ is the Cartan matrix of a semisimple simply laced group G, then Gκ is just
the Beilinson–Drinfeld version GHC

(G)→ HC of the standard loop Grassmannian

G(G)
def
= G((z))/G[[z]] of G, see Theorem 2.5.

Acknowledgments. I thank Andreas Hayash and Zhijie Dong for mathematical
help. I thank Eric Sommers, Renata Slovinić and the Transformation Groups
journal for patience and extensive effort towards getting this paper finished. I
particularly thank Roman Bezrukavnikov for insisting on precision and complete-
ness of arguments, which forced me to clarify ideas and correct errors. I thank the
referee for prolonged work towards making the paper more readable. This paper
has been partially supported by an NSF grant.

1. Particles on curves and Class Field Theory (CFT)

The space through which our particles wonder will be a smooth algebraic
curve C (local or global). Unless otherwise stated the curve C is defined over
a commutative ring k, for instance, as in the work of Contou-Carrère [CC].

5We also use notation Gr(X) for the moduli HX of finite subschemes of X.
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1.1. Configuration spaces of particles

We will consider two models.

1.1.1. The Hilbert scheme moduli HC of finite subschemes of C.
This is

⊔
N
Hn

C for the categorical quotient Hn
C = Cn//Sn, interpreted as a

moduli of subschemes D of C which are flat and of length n, i.e., of effective
divisors in C of degree n. The subspace of n-tuples of disjoint points Cn

r ⊆ Cn

gives an open Hn
C,r

def
= Cn

r //Sn consisting of n element subsets D = {a1, . . . , an}
of C. We view Hn

C as the (classical) configuration space of a system of n identical
particles on C. Then the degeneration of finite subsets of C to finite subschemes
models the collision of particles.

Notice that HC is a commutative monoid for the operation of adding the
divisors.

Example. If C = A1 we can encode a finite subset {a1, . . . , an} by a polynomial
P =

∏
(X − ai). Then H

n
A1 is identified with all monic polynomials P of degree n.

Such P gives a subscheme of A1, D
def
= {P = 0} = Spec(k[X]/P ).

1.1.2. The moduli AC = BuncC(Gm) of compactly supported line bundles.
By this we mean a line bundle trivialized at infinity in the following sense. Let

C be open in a smooth projective curve C. Consider the formal neighborhood ∂̂C

of the boundary ∂C = C − C and its punctured version ∂̃C = ∂̂C − ∂C.
Then we define BuncC(Gm) as the moduli of pairs (L, s) of a line bundle L over

C and an invertible section s on the part ∂̃C of C at infinity. This is a commutative
group object for the operation of tensoring line bundles.

In particle terms, I will think of “vacuum” on C (i.e., absence of particles), as
represented by L = OC and s = 1. Then the general pair (L, s) in BuncGm

(C) will
model a disturbance of the vacuum localized to the divisor div(s).

1.1.3. The Abel–Jacobi map HC → AC .

It sends a finite subscheme D ∈ HC to AJC(D)
def
= (OC(−D), 1), where the

subsheaf OC(−D) ⊆ OC consists of functions that vanish on D and 1 is the stan-
dard trivialization at ∞ (actually valid outside D).

Heuristically, one can visualize AJC(D), i.e., the inclusion OC(−D) ⊆ OC , as
the space C with a tiny hole at D. (As in General Relativity, where a particle mass
“bends” the space around it.)

1.2. Particles and Class Field Theory

The Class Field Theory is an organizational principle of Number Theory. I will
only consider it in the geometric case when the global field Q is simplified to the
field Fq(X) of rational functions over a curve over a finite field. Then we will see
that the above configuration spaces HC and AC can be viewed as the standard
setting for Class Field Theory.

1.2.1. Contou-Carrère’s Class Field Theory in Zariski topology.
I will restate the results of Contou-Carrere in a “free generation” formulation. I

will only illustrate the approach in some cases though I expect the formulation to be
eventually uniform for any smooth curve C (global or local) over any commutative
ring k.
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Examples.

(0) If C is a smooth curve or a formal disc in such curve, then the Hilbert
scheme HC is the commutative monoid freely generated by C in indschemes.

Any map f of C into a commutative monoid M extends uniquely along the
inclusion C = H1

C ⊆ HC to a homomorphism F : HC → M by using the norm
map F (D) = NDf |D.

(1) The following is known to experts though there may be no reference in
this formulation. If C is complete, then the stacky Jacobian AC = BuncGm

(C) =
BunGm

(C) is the commutative group object freely generated by C in commutative
group stacks. Then the Abel–Jacobi map AJC : HC → AC is the map defined by
free generation properties in settings of monoids and groups.

(2) The work of Contou-Carrère [CC], [CC1] covers much more than I have
stated. The simplest case is that for a formal disc d (viewed as an indscheme),
the freely generated commutative group (in indschemes) is the loop Grassmannian
G(Gm) = BuncGm

(d) of the multiplicative group [CC].

However, the corresponding statements in [CC] get more complicated for the
punctured formal disc d∗ and consequently also for the open curves.6 A history of
these ideas for global curves is found in [Se].

1.2.2. Distributional interpretations.

We consider versions of the following formalism. Consider a category of commu-
tative monoids A (with a “dualizing object” ω) defined inside a category B of
algebro-geometric objects that contains curves. We assume existence of inner ho-
momorphism functors HomA and MapB in A and B. This defines a notion of

ω-distributions on C as the double dual Disω(C)
def
= HomA[MapB(X,ω), ω] =

DωMapB(X,ω) for the “ω-Cartier duality” Dω(A) = HomA(A,ω). Under some
assumptions (that (Dω)2 is identity), Disω(C) is the universal object of A that C
maps to, i.e., a freely generated object of A.

For simplicity, let C be a smooth affine curve over a commutative ring k and
let B be the category IndSchk of indschemes over k.

Examples.

(i) If A is the category Veck of vector spaces over k, and ω = Ga is the additive
group, we get ordinary distributions DisGa(C) = HomVec[MapIndSchk

(C,Ga),Ga]
= O(C)v.

(ii) When IndAbk are the commutative affine group indschemes over k, we get
multiplicative distributions DisGm

Veck
(C) = HomIndAbk [MapIndSchk

(C,Gm),Gm] =

DGm(O∗(C)) for the Cartier duality functor DGm .

(iii) LetA be the category IndMk of commutative affine indscheme monoids and
ω = Gm be the monoid A1 with multiplication. We get the monoidal multiplicative

distributions DisGm(C) = HomIndMk
[MapIndSchk

(C,Gm),Gm] = DGm(O(C)).

Here, DGm is the Cartier duality functor in commutative monoids introduced by

Lurie. Then DisGm(C) is the Hilbert scheme HC of points of C.

6 The reason seems to be that the punctured disc d∗ is treated as a scheme while it is
more natural to use some version of rigid geometry.
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Remarks.

(0) We will also think of the projective space P[DisGa(C)] as “projective distri-
butions” on C. This will be the setting for the construction of zastava spaces Zκ

in 2.2.3.

(1) For complete curves one needs a stacky version of distributions (using stacky
Hom andMap).

(2) The following conjectural (A, ω)-version of algebro-geometric Poincaré dua-
lity for smooth curves C is known in many cases for A, ω in our examples above.
The traditional formulation is that

RΓc(C, ω)[1] ∼= Dω[RΓ(C, ω)].

When the distributional formula on the right-hand side is known to be the free A-
object generated by C, the claim is that this free object is the compactly supported
ω-cohomology on the left-hand side.7

(3) The idea that the inner homology H∗ from 0.1 should literally be given by
“free generation” works fairly well for curves, however, it does not seem adequate
already for surfaces (Sam Raskin). This is analogous to the topological case where
“free generation” is only heuristics for the symmetric power S∞ (see 0.3).8

1.2.3. Class Field Theory in étale topology.

The Langlands program is a conjectural extension of the traditional Class Field
Theory, which features Galois groups, hence étale topology. For a local or global
field F , it describes the largest commutative quotient of the Galois group ΓF of F
in terms of the Galois cohomology of a certain canonical Galois module, the “Class
Field Theory module” CF for ΓF (see [AT]).

When F contains a finite field Fq, then F corresponds to the generic point η of
a smooth curve C over k = Fq (local or global). If the field F is local, the module

CF is given by invertible elements F
∗
of the separable closure. For a global field,

CF is the idele class group of F .

We will describe the Class Field Theory module CF for F , uniformly in the local
and global case, in terms of the above Zariski Class Field Theory for the associated
curve η.

Theorem. The Class Field Theory module is the group of Fq-points of H0(Aη):

CF = [H0(Aη)](Fq).

Following the above description of the Class Field Module, one checks this
separately in local and global cases.

7 The versions of Poincaré duality in [Ma], [La], [HR] are rather in the spirit of the
étale Class Field Theory in 1.2.3 below.

8A better formulation may involve factorization homology as in [Ba] or in Lurie’s
noncommutative Poincaré duality?
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2. Interaction of particles, zastavas, and loop Grassmannians

The algebraic notion of a vertex algebra will only be used in stating the story.
We will actually work with its geometric incarnations from [BD] (see Subsection
3.1 below).

In Subsection 2.1, we start with an algebro-geometric model of I-many kinds of
particles on a smooth algebraic curve C. This is the Hilbert scheme of points HC×I

as in Subsection 1.1, except that the curve C has been replaced by the colored curve
C×I. In this model, the interactions are given by a symmetric integral matrix
κ ∈ MI(Z). This setting involves the notion of “locality” for objects over HC×I

but with respect to the curve C. This includes local spaces over HC×I , local vector
bundles over HC×I and their local projective spaces (see 2.1.2).

These ideas lead to construction of several moduli of collisions of these particles.
The basic one is the zastava space Zκ introduced in Subsection 2.2. One repackages
it into the loop Grassmannian Gκ in 2.4.5, and there is an intermediate space, the
semi-infinite spaces Sκ (see Subsection 2.3). In the sequence Zκ, Sκ,Gκ, the next
space is a union of copies of the preceding space. More on structure and relations
between these spaces is summarized in Lemma in 2.4.5.

The spaces Gκ generalize loop Grassmannians of reductive groups (see Subsec-
tion 2.5).

2.1. A geometric model of interaction of particles

We consider I kinds of particles on our curve C. We can think of particles of type

i ∈ I as living on the curve Ci
def
= C×i ⊆ C×I.

If there are ai particles of the kind i ∈ I, the total number of particles is

α =
∑

i∈I aii ∈ N[I] and the configuration space of these is Hα
C×I

def
=

∏
i∈I H

ai

Ci
.

An I-colored divisor D ∈ HC×I is therefore a family of component divisors Di ⊆ C

for i ∈ I. The total space is HC×I
def
=

⊔
α∈N[I]H

α
C×I .

Interactions between these particles will be given by a matrix κ ∈MI(Z) (which
will be symmetric as in Newton’s first law). Intuitively, κij is the intensity of
interaction of i and j particles at (x, y) ∈ Ci×Cj near the diagonal x = y, i.e., as
they collide when y approaches x.

2.1.1. A geometrization of interaction.
For i, j ∈ I we define the (i, j)-diagonal divisor ∆ij ⊆ H = HC×I . When i 6= j,

the condition forD ∈ ∆ij is that the component divisorsDi andDj meet. Also, ∆ii

is a discriminant divisor, a subscheme D ∈ HC lies in ∆ii if Di is not discrete, i.e.,
some point has multiplicity > 1. We call the complement Hr

C×I of
⋃
∆ij ⊆ HC×I

the regular part of the configuration space.
Our geometric encoding of the interaction κ ∈MI(Z) will be the line bundle on

the configuration space HC×I denoted

L = L
κ def
= OH(−κ∆),

where κ∆ is the divisor
∑

i≤j κij∆ij in HC×I .

Remark. We can visualize L
κ as the space H with holes of depth κij along the

divisors ∆ij .
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2.1.2. Locality ([M1], [M2], [MYZ]).
A locality structure on a space Y over HC×I is a system of isomorphisms for

fibers at disjoint D′, D′′ ∈ HC×I ,

YD′
⊔

D′′

∼=
←− YD′×YD′′ ,

that satisfies the associative, commutative and unital properties.9 Similarly, a local

structure on a vector bundle V overHC×I is a system of isomorphisms VD′
⊔

D′′

∼=
←−

VD′⊗VD′′ that satisfies the same kind of properties. Our basic example of local line
bundles are the interaction line bundles Lκ for symmetric matrices κ.

Remark. One can likewise define local spaces and local vector bundles over any
local space Y → HC×I .

To a local vector bundle V over HC×I we will now associate its local projective
space Ploc(V ) ⊆ P(V ). First, at a point D = ai ∈ C×I ⊆ HC×I the locality
condition is empty, so Ploc(V )ai is the whole fiber P(V )ai = P(Vai). The locality
requirement now forces the fiber at a regular divisorD ∈ Hr

C×I , i.e., a finite colored
subset of C, to be

Ploc(V )D
def
=

∏

ai∈D

P(Vai).

The locality structure isomorphism VD
∼=

⊗
ai∈D Vai now gives the Segre

embedding Ploc(V )D↪→P(V )D. So we have constructed a subspace Ploc
reg(V ) ⊆

P(V )|Hr
C×I

over the open subspace Hr
C×I ⊆ HC×I of regular divisors.

Finally, define the local projective space Ploc(V ) as the closure of Ploc
reg(V ) in

P(V ). By its definition Ploc
reg(V ) has a canonical structure of a local space over

Hr
C×I , so its closure Ploc(V ) is a local space over HC×I .

Remark. Heuristically, the fiber Ploc(V )D at D ∈ HC×I consists of lines M in VD

which in some sense respect the geometry of the subscheme D of C. We call such
lines “local” (see Subsection 0.4) or “unentangled”.

Moreover, one can view a fiber Ploc(V )D at a general D ∈ HC×I as a limit of
nearby fibers Ploc(V )E ∼=

∏
ai∈E P(Vai) for regular E ∈ H

r
C×I . This degeneration

of products of projective spaces models “collision” of “quantum particles” P(Vai).

2.1.3. A motivation: Lattice Vertex Algebras.
By a lattice we mean a pair (K, κ̃) of a group K ∼= Zn and an integral symmetric

bilinear form κ̃ on K (a “quadratic form”). These parameterize the lattice vertex
algebras Lκ̃ (see [Kac]). A symmetric matrix κ ∈MI(Z) is the same as a quadratic
form κ̃ on a based lattice Z[I], so it defines a vertex algebra that we denote L

κ.
However, we have noticed that such κ also defines a local line bundle L

κ on
the configuration space HC×I . This will lead in Subsections 2.2–2.4 to certain
indschemes Zκ, Sκ,Gκ associated to the matrix κ, and this will provide (see Theo-
rem in Subsection 3.2) a geometric setting for the lattice vertex algebra L

κ.

9 This is just a version of the Beilinson–Drinfeld factorization structure from [BD].
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2.2. Zastava space Z
κ

2.2.1. Induction of local vector bundles over HC×I .
Our first step is to induce the local line bundle L

κ over HC×I to a local
vector bundle Iκ = Ind(Lκ) over HC×I . This will use at each D ∈ HC×I the
“Grassmannian” moduli Gr(D) = HD of all subschemes D′ ⊆ D. This is a
subscheme of HC×I of length |Gr(D)| = 2|D| =

∏
i∈I 2

|Di|. Then the fiber of
the vector bundle I at D ∈ H is the space ID = Γ[Gr(D), L] of sections of L on
Gr(D). This is the space of states of all subschemes of D.

We can state this in terms of the subscheme T ⊆ HC×I×(C×I) which is
locally finite and flat over HC×I . This is the tautological scheme with fibers
TD = D at D ∈ HC×I . Then the relative Hilbert scheme Gr(T /HC×I) has fibers
Gr(T /HC×I)D = Gr(D). In terms of sheaves, the induction is Iκ = q∗p

∗
L
κ for the

correspondence HC×I
p
←− Gr(T /HC×I)

q
−→ HC×I given by D′ ←p (D′ ⊆ D) 7→ D.

Now the fact that I is indeed a vector bundle follows from the next lemma.

Lemma. For p = (p1 ≤ · · · ≤ pk), let Grp(T /HC×I) be the scheme over HC×I

such that the fiber at D ∈ HC×I consists of flags of subschemes D1 ⊆ · · · ⊆ Dk ⊆
D with Di of length pi. This is a flat locally finite scheme over HC×I , which is

irreducible over each connected component of HC×I .

Proof. For simplicity, let I be a point and fix a component Hn
C = SnC of the

base. The claim holds for full flags Gr1,...,n since this space is just Cn. The claim
for general p follows from the forgetful map Gr1,...,n → Grp since its fibers are
products of smaller full flags. �

2.2.2. Interaction κ defines a local vector bundle V = V κ over HC×I .
Local vector bundles are closed under duality and tensoring. We will really use

the dual V κ def
= (Iκ)v and think of the fibers V κ

D = Γ[Gr(D), L]v at D ∈ HC×I

as “L-twisted additive distributions Dis(Gr(D), L)” over Gr(D). Dualizing gives
the Kodaira embedding of Gr(D) into the space P(VD) of “L-twisted projective
distributions over Gr(D)”.

So, at any D ∈ HC×I , we have a vector space VD and its projective space
P(V )D, defined as some kind of spaces of “quantum states of a subscheme of D”.
(We often just say “quantum states of D”.) By definition, P(VD) contains the space
Gr(D) of corresponding “classical states”.

Example. Let D be a point ai in C×I, i.e., a point a in C, colored by i ∈ I.
Then Gr(ai) = {∅, ai}, so Vai = L

∗
∅ ⊕ L

∗
ai
∼= k ⊕ L

∗
ai and the corresponding fiber

of the projective bundle is P(V )ai ∼= P1.

2.2.3. The zastava space Zκ of a symmetric matrix κ.
It is defined as the local projective space of the local vector bundle V κ, so it is

the space Zκ = Zκ
HC×I

def
= Ploc(V ) ⊆ P(V κ) over HC×I .

Heuristically, we can say that Zκ models the moduli of (Lκ-twisted) local quan-
tum states of subschemes of D ∈ HC×I . Moreover, these “quantum states” are just
the collisions allowed by the interaction κ of quantum particles P(V κ

ai)
∼= P1 that

are indexed by i ∈ I and positioned at points a ∈ C. Here, the “collision rules”
κ are felt through the background P(V κ), in which the collisions are allowed to
happen.
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Example.
(a) At a point D = ai ∈ C×I ⊆ HC×I , there are no locality conditions and the

space Zai of local states of a quantum particle at ai is the whole fiber P(V )ai =
P(Vai) ∼= P1 (independently of the color i ∈ I).

(b) For two particles, the fiber of Zκ at a regular D = ai+bj ∈ HC×I (meaning
that a 6= b), is P1×P1, which is given in P(Vai+bj) = P3 by the locality equation
xy = uv. Then the collision as b → a degenerates this smooth quadric into one
of the form z21 + · · · + z2k = 0 in P3 with 1 ≤ k ≤ 4. The simplest degeneration
(the case k = 3), is the one point compactification of the tangent bundle of P1. It
appears when the quadratic form κ corresponds to the group G = PGL(2) in the
sense of Theorem in Subsection 2.5 below.

2.2.4. K-triples.
For a sheaf L on a space A over S, we denote the corresponding sheaf on S by

LA/S
def
= (A→ S)∗L.

The K-triples (A,L,B) over S will consist of a very ample line bundle L over
A and an embedding B ↪→ P[Lv

A/S ] such that

• the Kodaira embedding of A is into B;
• the restriction OB(1)B/S → LA/S is an isomorphism,

where OB(1) is the restriction of OP[Γ(A,L)v](1) to B.

Lemma (The “weak flatness” [MYZ, Cor. 2.4.3]).

(a) (Gr(T /HC×I), pr
∗
2L

κ, Zκ
HC

) is a K-triple over HC×I . In other words, at

D ∈ HC×I , one has Γ(Zκ
D,OP(V κ)(1))

∼=
−→ Γ(Gr(D), Lκ).

(b) For the torus T = Gm
I , the fixed point subscheme (Zκ

HC×I
)T is Gr(T /HC×I).

So we will denote by OZκ(1) the restriction of OP(V κ)(1) for the embedding
Zκ
HC
⊆ P(V κ).

2.3. Semi-infinite spaces S
κ

HC
of matrices κ

Let κ ∈MI(Z) be a symmetric matrix.

2.3.1. The defect action.
Let T → HC×I denote the tautological scheme, i.e., TD = D for D ∈ HC×I .

Then the relative Hilbert scheme Gr(T /HC×I) with fibers Gr(T /HC×I)D=Gr(D)
lies in Zκ. First, Gr(T /HC×I) ↪→ P(V κ) is the Kodaira embedding as VD =
Γ[Gr(D), Lκ]∗. Then Gr(T /HC×I) actually lies in Ploc(V κ) = Zκ because this
is true over the regular part Hr

C×I and Gr(T /HC×I) is irreducible over each
connected component of HC×I (Lemma in 2.2.1).

Lemma.

(a) There is a unique action of HC×I on the space Zκ over HC×I that preserves

Gr(T /HC×I) and such that for E,D ∈ HC×I , the action Gr(T /HC×I)D
E
−→

Gr(T /HC×I)D+E, i.e., Gr(D)→ Gr(D + E), is just the inclusion. This is

called the defect action.10 Then the maps Zκ
D

E
−→Zκ

D+E are closed inclusions.

10Because it takes the generic part of Zκ
D to the boundary of the generic part of Zκ

D+E .
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(b) The zastava space
(
Zκ,OZκ(1)

)
over HC×I has a “growth structure”, i.e.,

a consistent system of closed embedding γD′,D : ZD′ ↪→ ZD for D′ ⊆ D ∈
HC×I , compatible with the line bundle OZκ(1).

Proof. (a) For an affine test scheme S, let E,D be two S-points of HC×I so
that F = D + E contains D. The inclusion Gr(D) ⊆ Gr(F ) of affine schemes
yields a surjection Γ[Gr(F ), Lκ] → Γ[Gr(D), Lκ]. Dually we have VD ⊆ VF hence
P(VD) ⊆ P(VF ). If F is regular, the first inclusion is the tensor product of inclusions
Vai∩D ⊆ Vai over points ai ∈ F . Then the F -product of inclusions P(Vai∩D) ⊆
P(Vai) gives P

loc(VD) ⊆ Ploc(VF ). By the closure definition of Ploc(V ), this implies
the same for all F ∈ HC×I .

(b) This is a restatement of (a) since γD′,D is given by the defect action of

E = D −D′. The identification of line bundles OZκ(1)|Zκ

D′

∼=
−→ γ∗

D,D′OZκ(1)|ZκD

is also by the construction of the defect action in (a). �

2.3.2. Semi-infinite spaces Sκ.
Due to Lemma in 2.3.1, we can define the space Sκ = Sκ

HC
over HC with fibers

at the divisor D ∈ HC :

Sκ
D

def
= lim
−→HC×I3F⊆D̂×I

ZF = lim
−→α∈N[I]

Zκ
αD,

given by the union over all colored divisors F ∈ HC×I that (once we forget the

colors) lie in the formal neighborhood D̂ of the divisor D. Space Zκ
HC

carries the
line bundle OS(1) that on pieces Zκ

F ⊆ Sκ
D
equals OZκ(1)|Zκ

F
(by part (b) of the

same Lemma).

2.4. Loop Grassmannians Gκ

HC
of matrices κ

As in passing from Zκ to Sκ by the defect action (in 2.3.2), one glues Gκa from Zκ
a

(in 2.4.5), using the “shift” action on Sκ
a of the monoid N[I] = π0(HC).

However, such shift action and formulation of Gκ are only valid in the presence
of a local coordinate z. A global formulation uses the shift action of a submonoid
Lκ
HC

(T )† of the central extension Lκ
HC

(T ) of the loop group LHC
(T ) over HC (the

notation is in 2.4.1–2.4.3). Again, one has π0(L
κ
HC

(T )†) = N[I].
While the defect action on Zκ becomes trivial already on the level of the

semiinfinite space Sκ (see 2.3.2), on the loop Grassmannian Gκ the shift action
will shift the semiinfinite orbits by zλ for λ ∈ X∗(T ) (see 2.4.5).

2.4.1. Formal discs.
Here we introduce notation for loop groups defined over the Hilbert scheme HC .

For a subscheme Y ⊆ X, we denote by Ŷ the formal neighborhood of Y in X and
by Ỹ the punctured formal neighborhood Ŷ − Y .

In particular, for a finite subscheme D of a curve C, we have the “formal disc”
D̂ ⊆ C and the “formal punctured disc” D̃ ⊆ C. These give for affine schemes
X, the mapping spaces LDX = Map(D̃,X) and L+

DX = Map(D̂,X) of “loops”
and “discs” in X. Each of these spaces is defined as a functor from k-algebras A
to sets. For instance, when D is a point a ∈ C with a local parameter z, then
(L+

a X)(A) = X
(
A[[z]]) ⊆ (LaX)(A) = X

(
A((z))

)
.
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An example is given by the lifts of functions on D̃ ⊆ D̂ to indschemes KHC

def
=

LHC
A1 ⊇ OHC

def
= L+

HC
A1 over HC with fibers KD = LDA1 and OD = L+

DA1.

Actually, both KHC
⊇ OHC

have structures of Tate vector bundles over HC .
11

2.4.2. Central extensions of loop groups over the Hilbert scheme of a curve.

We will use 2.4.1 for the curve C×I. The Tate vector bundle structure on
KHC×I

produces for the group indscheme bundle GL(KHC×I
) of k-linear operators

on KHC×I
, the Tate central extension GL[(KHC×I

) by Gm. These are given by the
determinant line bundle on the space of lattices in the Tate vector bundle KHC×I

over HC×I (see [BBE]). This central extension restricts to Tate’s extension 0 →
Gm → L

[
HC×I

Gm → LHC×I
Gm → 0 of the subgroup LHC×I

Gm of GL(KHC×I
).

In [BBE], one considers the case I = pt and D = a, a point of C ⊆ HC , i.e.,
the extension 0→ Gm → L

[
aGm → LaGm → 0, and proves that the corresponding

commutator map LaGm×LaGm → Gm is Contou-Carrère’s tame symbol [CC].

The projection C×I → C comes with a map Π : HC → HC×I , D 7→ D×I.
The Π-pullback Π∗LHC×I

(Gm) is the analogous loop group indscheme LHC
T over

HC . In [BD, 3.10.13], the Tate central extension L[
HC×I

Gm was combined with a

symmetric bilinear form κ over Z[I] to give a central Gm-extension Lκ
HC

T of LHC
T

(unique up to an isomorphism), with fibers Lκ
D
T at D ∈ HC .

12 In particular, one
gets the commutator map LHC

T×HC
LHC

T → Gm.

2.4.3. Positive submonoids of loop groups.

The loop Grassmannian of a group G at a point a ∈ C is defined as

Ga(G)
def
= BuncG(â),

i.e., as the moduli of G-torsors over â trivialized at its infinity ã
def
= â − a. (A

local coordinate z at a identifies this with G((z))/G[[z]].) The Abel–Jacobi map
AJâ : Hâ → Ga(Gm) embeds the Hilbert scheme monoid of finite subschemes of the
formal neighborhood â into the loop Grassmannian at a (see 1.1.3). The restriction

of an object X over Ga(Gm) to Ga(Gm)†
def
= HC will be called the “positive part”

X† of X.

We will extend this formally from Grassmannians Ga(Gm) = La(Gm)/L+
a (Gm)

to their Beilinson–Drinfeld deformations GHC
(Gm)

def
= LHC

(Gm)/L+
HC

(Gm) over
HC .

First, we modify the tautological subbundle T of HC×I×(C×I) to the pullback
T of T by the mapHC ↪→ HC×I ,D 7→ D×I. So, forD ∈ HC we have (T /HC)D =

TD×I = D×I. Now let T̂ (a shorthand for T̂ /HC) be the relative formal neighbor-

hood of the HC-subspace T /HC of HC×(C×I), i.e., (T̂ )D = T̂ D = D̂×I.

11 “Tate modules” and more generally “Tate vector bundles” are algebro-geometric
versions of the notion of Tate vector spaces, see [Dr] or [BBE, 2.11].

12 Formally, this argument in [BD] was written at a point a ∈ C rather than over the
Hilbert scheme HC but the argument is the same.
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Again, we define the positive part GHC
(T )† ⊆ GHC

(T ) of the Beilinson–Drinfeld
loop Grassmannian of a torus, as the relative (“vertical”) Hilbert scheme of points

H(T̂ /HC) = Gr(T̂ /HC). The fiber at D ∈ HC is Gr(T̂ /HC)D = HD̂×I , hence

the space is {(D,F ) ∈ HC×HC×I ; F ⊆ D̂×I}, a nonsymmetric colored Hilbert

scheme version of ∆̂C .
It is embedded by the relative Abel–Jacobi map AJHC

: H(T̂ /HC) ↪→ GHC
(T )

with the usual formula AJHC
(D,F )

def
= (D,OD̂(−D), 1) (see 1.1.3).

Now we can restrict Lκ
HC

(T )�LHC
(T )�GHC

(T ) to monoids Lκ
HC

(T )†�LHC
(T )†

�GHC
(T )† by fibered products such as

Lκ
HC

(T )†
def
= Lκ

HC
(T )×GHC

(T ) GHC
(T )†.

By the argument in [BBE], the Gm-extension Lκ
HC

(T ) splits canonically over the

disc subgroup L+
HC

(T )⊆LHC
(T ). Then the quotient Lκ

HC
(T )/L+

HC
(T ) is an Lκ

HC
(T )-

equivariant Gm-torsor over the loop Grassmannian GHC
(T ) = LHC

(T )/L+
HC

(T ).
The corresponding line bundle L

κ over GHC
(T ) is Lκ

HC
(T )-equivariant.

On the subspace GHC
(T )†, we have another line bundle, the pullback pr∗2L

κ for
the natural map

GHC
(T )† = Gr(T̂ /HC)

pr2−−→ HC×I .

Lemma. The line bundle pr∗2L
κ over GHC

(T )† naturally extends to the Lκ
HC

(T )-
equivariant line bundle L

κ over GHC
(T ).

Proof. The apparent difference between L
κ and pr∗2L

κ is that the first has a
factorization property along the base HC of GHC

(T ) and the second has a locality
structure on the fibers GκD(T )† (for D ∈ HC) of G

κ
HC

(T )† → HC .
In [BD, Prop. 3.10.7], one finds an equivalence of categories of factorization

line bundles λ on GHC
(T ) (which is there called “X∗(T )-divisors” and denoted

Div
(
X,X∗(T )

)
) and the “theta data” (κ(λ), λ′, c) where κ(λ) is a symmetric bili-

near form on Z[I] and (λ′, c) amounts to a line bundle µ on C×I. Here, κ(λ)ij is
the order of vanishing of the factorization isomorphism for λ along the diagonal in
C2 and µ is the restriction of λ to C ⊆ HC . In our case, λ = L

κ, the restriction µ
is the trivial line bundle on C×I, and κ(λ) is κ.

In [MYZ, Rem. 2.1.3], it was noticed that when one restricts such λ to Hâ×I =
Ga(T )

† that lies in the fiber Ga(T ) at a point a ∈ C, one gets our local line bundle
L
κ(λ) on Hâ×I (from 2.1.1).13 This proves that Lκ|GHC

(T )† is pr∗2L
κ. �

2.4.4. The shift action on Sκ
HC

.
By Lemma in 2.4.3, the action of the extended loop group Lκ

HC
(T ) on the line

bundle L
κ over GHC

(T ) restricts to an action of the submonoid LHC
(T )† on the

line bundle pr∗2L
κ over GHC

(T )† = Gr(T̂ /HC).

13 The reason in [MYZ] is that the “horizontal” version of the Abel–Jacobi map that
is used to measure κ(λ) differs from the “vertical” Abel–Jacobi map that measures the
corresponding matrix for Lκ only in a nonessential way—both are pullbacks of an Abel–
Jacobi map into the rational loop Grassmannian Grat(T ).
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Proposition.

(a) Space GHC
(T )† = Gr(T̂ /HC) has a Kodaira embedding into Sκ

HC
by the line

bundle pr∗2L
κ.

(b) The action of the monoid LHC
(T )† on GHC

(T )† extends canonically to the

space Sκ
HC

. We will call this the shift action of LHC
(T )†.

(c) This lifts canonically to an action of its central extension Lκ
HC

(T )† on the

line bundle OSκ

HC

(1).

Proof. (a) At a fixed D ∈ HC this embedding Gr(D̂×I) ↪→ Sκ
D = lim

−→α
Zκ
αD×I is

the union of the Kodaira embeddings from the definition of zastava Gr(F ) ↪→ Zκ
F

(over F ∈ HD̂×I) that uses the line bundle L
κ restricted to Gr(F ) ⊆ HC×I .

(b) Since Lκ
HC

(T )† acts on the line bundle pr∗Lκ over GHC
(T )†, it also acts on

the projective space P[(pr∗2L
κ)GHC

(T )†/HC

v] over HC and on its line bundle O(1).
We will see that it preserves Sκ

HC
and therefore also the restriction of the line

bundle line O(1) to Sκ
HC

.

First, the action of LHC
(T )† on the base GHC

(T )† factors through the quotient
LHC

(T )†�GHC
(T )†. If f ∈ LD(T )† has image E ∈ GD(T )† = HD̂×I , then f acts

on X ∈ HD̂×I by addition X 7→ X + E.
This gives for F ∈ HD̂×I an isomorphisms of Gr(F ) with Gr(E + F/E), the

moduli of all A ∈ HD̂×I such that E ⊆ A ⊆ E + F . Now, any lift φ ∈ Lκ
D(T )

of f gives an isomorphism of line bundles L
κ|Gr(F ) and L

κ|Gr(F,E) (above the
isomorphism of spaces given by E). The corresponding isomorphism of projective
spaces of global sections is independent of the choice of φ, so we get

P[Γ(Gr(F ), Lκ)v]
φ
−→
∼=

P[Γ(Gr(F + E,E), Lκ)v] ⊆ P[Γ(Gr(F + E), Lκ)v].

This restricts to an inclusion ιf ;Z
κ
F ↪→ Zκ

F+E (as in the construction of the defect
action).

Passing to the inductive limit over all F ∈ HD̂×I , this yields ιf ;S
κ
D ↪→ Sκ

D.
Claim (c) is essentially the action of the lift φ in the argument of (b). �

Remark. The shift action is “vertical” in the sense that it preserves fibers of Sκ
HC
→

HC and the defect action is “horizontal”, i.e., nontrivial on the base HC×I .

2.4.5. Loop Grassmannian GκHC
of matrices κ.

The space GκHC
lies over HC and carries a line bundle OGκ(1). These are defined

as an associated bundle for the shift action of LHC
(T )† from Proposition in 2.4.4,

which amounts to a certain inductive system (which is just a union):14

14 For a submonoid M of a group A we have the action category AM with objects
Ob(AM ) = A and there is a unique morphism a

m
−→ a + m for a ∈ A, m ∈ M . AM is

directed iff M − M = A (for any a, b ∈ A, we need m,n ∈ M with a + m = b + n, i.e.,
b− a = m = n ∈ M −M).

Any M -space X defines a functor X̃ on AM so that for a ∈ A, we have X̃a
def
= X, and

for m ∈ M , the morphism X̃a
m
−→ X̃a+m is given by X

m
−→ X. Then by the “associated

bundle” A×MX we mean lim
−→AM

X̃. For instance, A×MM = A. If for each m ∈ M the

action m : X → X is a closed embedding, then A×MX is a union of copies of X.
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(
GκHC

,OGκ(1)
) def
= Lκ

HC
(T )×Lκ

HC
(T )†

(
Sκ,OSκ(1)

)
= lim
−→Lκ

HC

(
Sκ
HC

,OSκ(1)
)
.

Remarks.

(0) The definition of the space itself does not involve the central extension:

Gκ
def
= LHC

(T )×LHC
(T )†S

κ.

(1) Once one chooses a local coordinate z at a point a, then the restriction of
the shift action to the fiber Sκ,a can be viewed as an action of N[I], where α ∈ N[I]

acts by zα ∈ La(T ), which is the composition ã
z
−→ Gm

λ
−→ T . So, in a presence

of a coordinate, the definition can be stated as Gκ = Z[I]×N[I] S
κ. This was the

point of view in [MYZ].
(2) Sκ and Gκ are just repackaged versions of the zastava space Zκ. Say, Gκ is

covered by copies of Sκ, which is also a union of copies of ZD’s for D ∈ HC×I .
(Actually, this procedure can be reversed.)

(3) For any lattice L that contains Z[I], we can define the corresponding loop

Grassmannian as G(L, κ)
def
= LHC

(TL)×LHC
(T )G

κ for the torus TL = L⊗Z[I]T .

Lemma.

(a) We have embeddings (i) ⊆ (ii) ⊆ (iii) of K-triples (see 2.2.4) for
(i)

(
Gr(T /HC), pr

∗
2L

κ, Zκ
HC

)
;

(ii)
(
Gr(T̂ /HC),pr

∗
2L

κ, Sκ
HC

)
;

(iii)
(
GHC

(T ), Lκ,GκHC

)
.15

(b) Sκ,Gκ descend to the de Rham space HCdR
of HC . (Similarly, one can

define the Ran space versions Sκ
Ran,G

κ
Ran over the Ran space RanC of the

curve.)
(c) The compatible locality and growth structures on zastava

(
Zκ,OZκ(1)

)
in-

duce the same on
(
Sκ,OSκ(1)

)
and then also on

(
Gκ,OZκ(1)

)
.

Also, these locality structures on Sκ
HC

,GκHC
become the factorization struc-

tures from [BD] on the corresponding Ran space versions Sκ
Ran,G

κ
Ran.

Proof. (a) The K-triple (i) is established in the lemma 2.2.4, its Kodaira embedding
is given on fibers by Gr(D)↪→Zκ

D.
The remaining claims follow because one defines triples (ii) form (i), and (iii)

from(ii), by inductive limits (which are just unions) by definitions of Sκ in 2.3.2,
and Gκ in 2.4.5.

15 We picture these embeddings starting with the vertical inclusions of spaces A ⊆ B;
then we list the compatible line bundles on these spaces:

Gr(T /HC)
⊆
//

↪→

��

Gr(T̂ /HC)
⊆

//

↪→

��

GHC
(Gm)

↪→

��

Zκ ⊆
// Sκ

HC

⊆
// Gκ

HC
(Gm)

and

pr∗2L
κ pr∗2L

κ
L
κ

OZκ(1) OSκ(1) OZκ(1)

.
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(b) For Sκ, this is by definition since Sκ
D =

⋃
α∈N[I] ZαD (see 2.3.2) depends

only on the formal neighborhood of D. Then the same holds for Gκ.

(c) For spaces Sκ, this is evident: SD′tD′′ = lim
−→

Zα(D′tD′′) = lim
−→

ZαD′×ZαD′′ =
SD′×SD′′ . Also, if D ⊆ E, then Sκ

D = lim
−→

ZαD ⊆ lim
−→

ZαE = SE .

For GκD = LD(T )×L+

D
(T )S

κ
D, all three factors are manifestly local inD = D′tD′′.

The growth structure under D ⊆ E is known for Sκ, we will check that the first
functor L(T ) is functorial in D ⊆ E.

Notice that each factor in GκD is invariant under passing from D to a multiple

nD. For D ⊆ E, intersection E∩ D̂ lies in some nD, therefore, Ê−E ⊆ D̂− n̂D =
D̂−D giving an injective restriction map LDT → LET . This implies the same for
the positive part LD(T )†, and the resulting map GκD → G

κ
E is injective (because

LD(T )
⋂

LE(T ) LE(T )
† = LD(T )†).

The above proof of claims for inductive limits Sκ,Gκ also carries over to the
line bundles OSκ(1),OGκ(1). �

2.5. Spaces Gκ generalize loop Grassmannians of reductive groups

Theorem ([MYZ]). Let I be the set of simple roots of a semisimple group G
(simply connected and simply laced) and let κ be the Cartan matrix κij = 〈αi, α̌j〉.
Then the loop Grassmannian GκHC

is just the Beilinson–Drinfeld version GHC
(G)→

HC of the loop Grassmannian G(G) = G((z))/G[[z]] of G. (The same reconstructi-

on holds for zastavas and semi-infinite spaces.)

Proof. The proof in [MYZ] only covers the version at a point a ∈ C: Gκa
∼= Ga(G).

However, with the above definitions it works as well for the Beilinson–Drinfeld
version GκHC

. �

Remarks.

(0) The paper [MYZ] with Yaping Yang and Gufang Zhao also contains a
quantum version and an arithmetic version of constructions Zκ, Sκ,Gκ. It also
explains the relation to representations of quivers and provides a conjectural exten-
sion of this theorem to all reductive groups.

(1) This reconstruction motivates a search for “Noncommutative Poincaré dua-

lity in Zariski topology” that should extend the multiplicative Poincaré duality
conjectured in 1.2.2. First, recall that the usual loop Grassmannians Ga(G) of a
group G is the compactly supported cohomology BuncG(â) of a formal disc â with
coefficients in G (see the first paragraph of 2.4.3). On the other hand, one can
view the above construction of Gκa as a kind of a “noncommutative” homology of
â with coefficients in the interaction κ, because we reconstruct G(G) from pieces
(finite subschemes) of the disc â. The Poincaré duality claim is the coincidence of
the two constructions.

3. Lattice vertex algebras and Grassmannians Gκ

Consider the lattice vertex algebra L
κ that corresponds to the lattice defined

by a symmetric integral matrix κ. In Theorem in Subsection 3.2 we localize L
κ

over the corresponding space Gκ from 2.4.5. This result is a byproduct of the
“collision” reconstruction of loop Grassmannians of reductive groups in Theorem in
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Subsection 2.5 above, which itself was motivated by developments in the geometric
Langlands program.

3.1. Factorization algebras

We will be interested in two geometric incarnations of the notion of vertex algebras.
On any smooth curve C, Beilinson and Drinfeld have introduced equivalent notions
of a chiral algebra A and a factorization algebra A`. The equivalence is by tensoring
with a canonical bundle: A = A`⊗ωC , this exchanges the natural structures of a
left D-module over the curve C on A` and a right D-module structure on A. The
chiral algebras are of “Lie nature” and more directly related to representations of
affine Lie algebras. The factorization algebras are of “commutative nature”.

Taking the global sections then provides an equivalence of chiral algebras on A1

equivariant under translations and vertex algebras. For versions of this equivalence
see [BD, 0.15].

3.1.1. Factorization algebras [BD].

By a factorization algebra on a smooth curve C we will mean a quasicoherent
sheaf B overHC =

⊔
N
SnC together with the following two compatible structures:

• the locality (=factorization) structure c, which is a natural system of isomor-

phisms cD′,D′′ : BD′⊗BD′′

∼=
−→ BD′tD′′ that involve fibers of B at disjoint

divisors D′, D′′ ∈ HC (see Subsection 0.4),

• the growth structure γ, which is a natural system of maps γD′,D′′ : BD′ →
BD′′ of fibers associated to inclusions D′ ⊆ D′′ in HC

such that16

(1) c is commutative and associative, while γ is functorial in the inclusion poset
HC ,

(2) restriction of B to the point H0
C is k,

(3) B has no nonzero local sections supported at the discriminant divisor in HC .

Remarks.

(a) In [BD], factorization algebras are given several equivalent formulations
using slightly different settings. The standard notion uses the Ran space of the
curve C (see [BD, 3.4.4]), we will use the one in terms of effective Cartesian divisors
on C (see [BD, 3.4.6]). There, B is described as a functor BZ,D on Z-families D
of effective Cartier divisors in C. This agrees with our definition since moduli of
such divisors are represented by the Hilbert scheme HC .

(b) Condition (3) ensures that the restriction functor from factorization algebras
to OX -modules is faithful.

16Added in proof. Actually, the definition of factorization algebras in 3.1.1 and of
factorization monoids in 3.1.2 also requires a further condition that the growth structure
γ stabilizes under multiples, i.e., γD,2D is an isomorphism. We will call the above weaker
notions “locality algebras” and “locality monoids”.

As a consequence, in the main Theorem in Subsection 3.2 below, the space Zκ (and
its subspace) is only a locality monoid and provides a locality algebra, while the claims
for Zκ,Gκ (and their subspaces) are correct as stated.
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3.1.2. Factorization monoids [BD].
A factorization (or chiral) monoid over a curve C is an indscheme G over HC

together with the following two compatible structures:

• the local space structure c (from 2.1.2), i.e., a natural system of isomorphisms

cD′,D′′ : GD′×GD′′

∼=
−→ GD′tD′′ ,

• the growth structure γ which is a natural17 system of closed embeddings
γD′,D′′ : GD′ → GD′′ of fibers associated to inclusions D′ ⊆ D′′ in HC .

One also requires that G∅ is a point and that the restriction to the regular part
G|Hr

C
is dense.

A Gm-extension of a factorization monoid G (see [BD]) is a local line bundle
over the local space G which is compatible with the growth structure.

3.1.3. Factorization algebras from Gm-extensions of factorization monoids.

Proposition. Let λ be a Gm-extension of a factorization monoid π : G → HC .

Suppose that G has a directed filtration by subschemes Gi projective over HC such

that each (Gi → HC)∗λ is finite and flat over HC . Then

A`(G, λ)
def
= [π∗(λ)]

v def
= Hom[π∗(λ),OHC

]

has a canonical structure of a factorization algebra.

Proof. Since (Gi → HC)∗λ is finite and flat over a smooth affine scheme HC (over

a ring k), it is locally free. Since G
π
−→ HC is an ind-projective scheme, π∗λ is a

pro-coherent sheaf and its dual A`(G, λ) is an ind-coherent sheaf. Moreover, since
the dual of each (Gi → HC)∗λ is locally free, the ind-coherent sheaf A`(G, λ) is
quasicoherent.

Moreover, even directly by the definition of A`(G, λ), as Hom[π∗(λ),OHC
] it has

no sections supported on a divisor. Let us consider fibers A`(G, λ)D
def
= Γ(GD, λ)v.

One has Γ(GD′tD′′ , λ) = Γ(GD′×ΓD′′ , λ�λ) = Γ(GD′ , λ)⊗Γ(ΓD′′ , λ). Similarly,

D ⊆ E gives GD
i
⊆ GE , and then Γ(GD, λ|GD

) ∼= Γ(GD, λ|GE
)�Γ(GE , λ|GE

), hence
Γ(GD, λ)v ↪→ Γ(GE , λ)

v. Also G∅ = {∅} and A`(G, λ) = Γ(G∅, λ)
v = (λ∅)

v = kv =
k. So, we have satisfied all conditions for a factorizations algebra from 3.1.1. �

Remarks.

(1) This proposition is a simplification of the more interesting point of view of
Beilinson and Drinfeld [BD]. They ask whether the derived version of the above

construction RA`(G, λ)
def
= π!(λ⊗π

!OHC
) is a DG-factorization algebra under sui-

table conditions (that G has a directed filtration by projective subschemes Gi).
Following a parallel of sheaf theories in topology and algebraic geometry, one can

call the proposed RA`(G, λ) the “algebro-geometric homology of G with coefficients
in λ”.

This “homology” localization is covariant in the space, hence different from
standard localizations (for instance that of Beilinson–Bernstein [BB]) which use
global sections, i.e., cohomology.

17 Here, “natural” means that the definition should be interpreted in terms of families
of objects.



IVAN MIRKOVIĆ

(2) The case of the [BD] question when G is affine is established in [BD]
after 3.10.16.1 (for the proof one is referred to the material in the proof of their
Proposition 3.8.10). In particular, they provide a construction of lattice vertex
algebras when G is GHC

(T ), the loop Grassmannian of the torus T = Gm
I and the

line bundle is Lκ from 2.4.3.

3.2. Homology localizations of lattice vertex algebras
on Grassmannians Gκ

The following is the main result of this paper.

Theorem.
(a) The spaces Zκ and Sκ

HC
,GκHC

associated to a symmetric matrix κ are facto-

rization monoids (over HC×I and HC) with canonical Gm-extensions OZκ(1) and
OSκ

HC

(1), OGκ

HC

(1). These structures are compatible with the inclusions Zκ ⊆

Sκ
HC
⊆ GκHC

and we get inclusions of the corresponding factorization algebras

A`
(
Zκ,OZκ(1)

)
⊆ A`

(
Sκ,OSκ

HC

(1)
)
⊆ A`

(
Gκ,OGκ

HC

(1)
)
.

(b) The same holds for subobjects
(
Gr(T /HC×I), pr

∗
2L

κ
)

and
(
Gr(T̂ /HC),pr

∗
2L

κ
)
,
(
GHC

(T ), Lκ
)
.

The maps of factorization algebras corresponding to these inclusions of subobjects,

are isomorphisms; say, A`(GHC
(T ), Lκ)

∼=
−→ A`

(
Gκ,OGκ

HC

(1)
)
.

(c) The vertex algebra A`
(
GHC

(T ), Lκ) is the lattice vertex algebra L
κ from

2.1.3.

Proof. (0) The basic fact. The three spaces in (a) are related by closed inclusions
Zκ ⊆ Sκ ⊆ Gκ in which the next space is union of copies of the preceding space.
Moreover, this relation also holds for subspaces Gr(T /HC×I),Gr(T̂ /HC),GHC

(T )
and for the indicated line bundles on these six spaces (see Lemma (a) in 2.4.5).

(1) Factorization monoid structures on six objects. The compatible locality and
growth structures on zastava Zκ, Sκ,Gκ and their line bundles are in Lemma (c)
in 2.4.5.

Zκ is defined as the closure of the regular part and the restriction of T to each
connected component of HC×I is irreducible. This implies that the regular parts
are dense in all six spaces in (a) and (b) since the latter ones are unions of copies
of preceding ones.

For the empty divisor ∅ by definitions one has {∅} = Zκ
∅ = Sκ

∅ = Gκ∅.
(2) Factorization algebras. According to Proposition in 3.1.3, we now only need

the filtrations required there.
For Zκ, we can take the trivial filtration (all terms are the projective schemes

Zκ itself). This provides needed filtrations on Zκ and Gκ since these spaces are
unions of copies of Zκ. For instance, Sκ has an N[I]-filtration by projective schemes

FαS
κ
HC

def
= ZαHC

, α ∈ N[I], i.e., at D ∈ HC we have FαS
κ
D

def
= ZαD, α ∈ N[I] (see

2.3.2).
One can get filtrations for subobjects in (b) by intersecting them with the

filtrations from (a), but we actually get some obvious filtrations by finite flat
schemes over configuration spaces.

(c) is the result of Beilinson and Drinfeld, see [BD, Prop. 3.10.8]. �
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Remarks.

(1) For special choices of the quadratic form κ one hopes that Gκ can be thought
of as “loop Grassmannian” spaces of the corresponding affine Lie algebras, or more
generally as “loop Grassmannian” spaces of (generalized) Kac–Moody Lie algebras.

(2) The question of localization of vertex algebras is a part of the program of
constructing vertex algebra moduli, which is developed in the book of Ben-Zvi and
Frenkel [BZFr].

(3) One may hope to extend the above localization to other vertex algebras that
are built from lattice vertex algebras (say, by orbifolding or screening operators).

3.2.1. A “Verma type” vertex algebra Mκ of a symmetric matrix κ.
As we saw in the proof of Theorem in 3.1.2, we now have two localizations of

the lattice vertex algebra L
κ on factorization monoids G(T ) ⊆ Gκ. The interest in

Gκ is that its geometry reflects the quadratic form κ. Example (2) below indicates
how this can be used.

Lemma. Let G′ ⊆ G be a factorization submonoid. The formal neighborhood Ĝ′

is also a factorization submonoid. Also, if λ is a Gm-extension of G, then its

restriction λ′ = λ|G′ is also a Gm-extension. Moreover, a filtration on G from

Proposition in 3.1.3 induces such filtration on G′.

Example.
(0) In particular, a Gm-extension λ of a factorization monoid G restricted to

the formal neighborhood of the unit in G gives a factorization algebraMG .
Then the corresponding vertex algebraMG is the global sections of the D-module

on G given by the twist of the delta distribution D-module at the unit in G by the
line bundle λ on G.

(1) When G is the loop Grassmannian G(G) of a semisimple simply laced group
G, then the corresponding vertex algebra Mκ is the Verma type vertex algebra
V1(g) of g of level one.

(2) The lattice algebra L
κ is a quotient of Mκ because Gκ is connected. Also,

the same construction defines a deformation Mkκ for k ∈ k.
In this generality, the vertex algebras Mκ may be new. The rational vertex

algebra L
κ should in some sense be the “integrable” part of the nonrational vertex

algebra Mκ.
(3) In our setting of Gκ, we can define another vertex algebra using the formal

neighborhood Ŝκ of Sκ ⊆ Gκ.
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