t.)

et Conformal Prediction for STL Runtime Verification

Lars Lindemann®
llindema@usc.edu
University of Southern California
Los Angeles, California, USA

Jyotirmoy V. Deshmukh
jyotirmoy.deshmukh@usc.edu
University of Southern California
Los Angeles, California, USA

ABSTRACT

We are interested in predicting failures of cyber-physical systems
during their operation. Particularly, we consider stochastic systems
and signal temporal logic specifications, and we want to calcu-
late the probability that the current system trajectory violates the
specification. The paper presents two predictive runtime verifica-
tion algorithms that predict future system states from the current
observed system trajectory. As these predictions may not be ac-
curate, we construct prediction regions that quantify prediction
uncertainty by using conformal prediction, a statistical tool for
uncertainty quantification. Our first algorithm directly constructs
a prediction region for the satisfaction measure of the specifica-
tion so that we can predict specification violations with a desired
confidence. The second algorithm constructs prediction regions
for future system states first, and uses these to obtain a prediction
region for the satisfaction measure. To the best of our knowledge,
these are the first formal guarantees for a predictive runtime verifi-
cation algorithm that applies to widely used trajectory predictors
such as RNNs and LSTMs, while being computationally simple and
making no assumptions on the underlying distribution. We present
numerical experiments of an F-16 aircraft and a self-driving car.

CCS CONCEPTS

« Computer systems organization — Robotics; - Theory of
computation — Logic and verification; Modal and temporal

logics; « General and reference — Verification.

KEYWORDS

Predictive runtime verification, stochastic system verification, sig-

nal temporal logic, conformal prediction.

ACM Reference Format:

Lars Lindemann, Xin Qin, Jyotirmoy V. Deshmukh, and George J. Pappas.
2023. Conformal Prediction for STL Runtime Verification. In ACM/IEEE 14th

“Both authors contributed equally to this research.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.
ICCPS °23, May 9-12, 2023, San Antonio, TX, USA

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 979-8-4007-0036-1/23/05...$15.00
https://doi.org/10.1145/3576841.3585927

142

Xin Qin”
xingin@usc.edu
University of Southern California
Los Angeles, California, USA

George J. Pappas
pappasg@seas.upenn.edu
University of Pennsylvania
Philadelphia, Pennsylvania, USA

International Conference on Cyber-Physical Systems (with CPS-IoT Week 2023)
(ICCPS °23), May 9-12, 2023, San Antonio, TX, USA. ACM, New York, NY,
USA, 12 pages. https://doi.org/10.1145/3576841.3585927

1 INTRODUCTION

Cyber-physical systems may be subject to a small yet non-zero
failure probability, especially when using data-enabled perception
and decision making capabilities, e.g., self-driving cars using high-
dimensional sensors. Rare yet catastrophic system failures hence
have to be anticipated. In this paper, we aim to detect system failures
with high confidence early on during the operation of the system.

Verification aims to check the correctness of a system against
specifications expressed in mathematical logics, e.g., linear temporal
logic [55] or signal temporal logic (STL) [53]. Automated verifica-
tion tools were developed for deterministic systems, e.g., model
checking [7, 23] or theorem proving [68, 69]. Non-deterministic
system verification was studied using probabilistic model checking
[13, 33, 38, 41] or statistical model checking [42, 43, 83, 84]. Such
offline verification techniques have been applied to verify cyber-
physical systems, e.g., autonomous race cars [36, 37, 47], cruise
controller and emergency braking systems [75, 76], autonomous
robots [72], or aircraft collision avoidance systems [8, 9].

These verification techniques, however, are: 1) applied to a sys-
tem model that may not capture the system sufficiently well, and 2)
performed offline and not during the runtime of the system. We may
hence certify a system to be safe a priori (e.g., with a probability of
0.99), but during the system’s runtime we may observe an unsafe
system realization (e.g., belonging to the fraction of 0.01 unsafe
realizations). Runtime verification aims to detect unsafe system
realizations by using online monitors to observe the current real-
ization (referred to as prefix) to determine if all extensions of this
partial realization (referred to as suffix) either satisfy or violate the
specification, see [12, 19, 45] for deterministic and [39, 70, 80] for
non-deterministic systems. The verification answer can be incon-
clusive when not all suffixes are satisfying or violating. Predictive
runtime verification instead predicts suffixes from the prefix to
obtain a verification result more reliably and quickly [6, 56, 81].

We are interested in the predictive runtime verification of a sto-
chastic system, modeled by an unknown distribution 9, against
a system specification ¢ expressed in STL. Particularly, we want
to calculate the probability that the current system execution vio-
lates the specification based on the current observed trajectory, see
Figure 1. To the best of our knowledge, existing predictive runtime

ICCPS °23, May 9-12, 2023, San Antonio, TX, USA

Lindemann et al.

Direct predictive runtime verification algorithm

Observations Predictions
1 X2)
| /./—\/7'r/ — LSTM |— -
[T Tiyl N
' T Tt+3

Prediction region :
—P{p’(X) > p%(3) = C} > 1-d

—

i Indirect predictive runtime verification algorithm

Observations Predictions
3 () Tpeo P
: /—\/ﬂ.r/ — LSTM |—=~
! T3 T4l -
i1 Tt+3

State prediction regions

Figure 1: Overview of the proposed STL predictive runtime verification algorithms. Both algorithms use past observations

(x0,...,x;) to obtain state predictions (X;+1, X742, ...). The direct algorithm calculates the satisfaction measure ,0‘/5 (%) of the

specification ¢ based on these predictions, and obtains a prediction region C for the unknown satisfaction measure p? (x) using

conformal prediction. The indirect method obtains prediction regions for the unknown states x;11, xr42, . .

. using conformal

prediction first, and then obtains a lower of the unknown satisfaction measure p¢ (x) based on the state prediction regions.

verification algorithms do not provide formal correctness guaran-
tees unless restrictive assumptions are placed on the prediction
algorithm or the underlying distribution 9. We allow the use of
complex prediction algorithms such as recurrent neural networks
(RNN) and long short-term memory (LSTM) networks, while mak-
ing no assumptions on . Our contributions are as follows:

e We present two predictive runtime verification algorithms
that are illustrated in Figure 1 and that use: i) trajectory
predictors to predict future system states, and ii) conformal
prediction to quantify prediction uncertainty.

e We show that our algorithms enjoy valid verification guar-
antees, i.e., the verification answer is correct with a user-
defined confidence, with minimal assumptions on the predic-
tor and the underlying distribution 9. We provide technical
proofs of Theorems and Lemmas in an appendix.

e We provide realistic empirical validation of our approach of
an F-16 aircraft and a self-driving car, and compare the two
proposed runtime verification algorithms.

1.1 Related Work

Statistical model checking. Statistical model checking is a light-
weight alternative to computationally expensive probabilistic model
checking used to verify black-box systems [42, 43, 83, 84]. The idea
is to sample system trajectories and use statistical tools to get
valid verification guarantees. Statistical model checking has gained
popularity due to the complexity of modern machine learning ar-
chitectures for which it is difficult to obtain meaningful, i.e., not
overly conservative, analytical results.

We focus on signal temporal logic (STL) as a rich specification
language [53] that admits robust semantics to quantify how robustly
a system satisfies a specification spatially and/or temporally [25, 27,
58]. Statistical model checking under STL specifications was first
considered in [10, 11], while [38, 64, 65] proposed a combination
of a statistical and a model-based approach. The authors in [59,
78,79, 87] use statistical testing to derive high confidence bounds
on the probability of a cyber-physical system satisfying an STL
specification. In [1, 2, 21, 47, 49] risk verification algorithms were
proposed using mathematical notions of risk.

143

Predictive Runtime Verification. Runtime verification com-
plements system verification by observing the current system exe-
cution (prefix) to determine if all extensions (suffixes) either satisfy
or violate the specification [12, 19, 39, 45, 70, 80]. Runtime verifi-
cation is an active research area [16, 51, 61], and algorithms were
recently proposed for verifying STL properties and hyperproperties
in [24, 31, 66] and [29, 32], respectively. While the verification re-
sult in runtime verification can be inconclusive, predictive runtime
verification predicts a set of possible suffixes (e.g., a set of poten-
tial trajectories) to provide a verification result more reliably and
quickly. In [3, 40, 54, 81, 85, 86], knowledge of the system is assumed
to obtain predictions of system trajectories. However, the system
is not always exactly known so that in [5, 6, 28] a system model is
learned first, while in [22, 56, 73, 82] future system trajectories are
predicted from past observed data using trajectory predictors. To
the best of our knowledge, none of these works provide valid veri-
fication guarantees unless the system is exactly known or strong
assumptions are placed on the prediction algorithm.

Conformal Prediction. Conformal prediction was introduced
in [67, 77] as a statistical tool to quantify uncertainty of prediction
algorithms. In [52], conformal prediction was used to obtain guar-
antees on the false negative rate of an online monitor. Conformal
prediction was used for verification of STL properties in [57] by
learning a predictive model of the STL semantics. For reachable
set prediction, the authors in [14, 15, 17] used conformal predic-
tion to quantify uncertainty of a predictive runtime monitor that
predicts reachability of safe/unsafe states. However, the works in
[14, 15, 17, 57] train task-specific predictors while we use task-
independent trajectory predictors to predict future system states
from which we infer information about the satisfaction of the task.
This is significant as no expensive retraining is required when
the specification changes. The authors of the work in [18], which
appeared concurrently with our paper, also consider predictive
runtime verification under STL specifications. Similar to our work,
they provide probabilistic guarantees for the quantitative seman-
tics of STL, but consider a different runtime verification setting in
which systems have to be Markovian. Again, their predictors are
task-specific while our predictors are task-independent so that we
avoid expensive retraining when specifications change.

Conformal Prediction for STL Runtime Verification

2 PROBLEM FORMULATION

Let D be an unknown distribution over system trajectories that
describe our system, ie., let X = (X, X7...) ~ D be a random
trajectory where X; denotes the state of the system at time 7 that is
drawn from R"™. Modeling stochastic systems by a distribution D
provides great flexibility, and O can generally describe the motion
of Markov decision processes. It can capture stochastic systems
whose trajectories follow the recursive update equation X4 =
f(Xz, wr) where wy is a random variable and where the (unknown)
function f describes the system dynamics. Stochastic systems can
describe the behavior of engineered systems such as robots and
autonomous systems, e.g., drones or self-driving cars, but they can
also describe weather patterns, demographics, and human motion.
We use lowercase letters x; for realizations of the random variable
X:. We make no assumptions on the distribution D, but assume
availability of training and calibration data drawn from D.

AssUMPTION 1. We have access to K independent realizations
x = (xél),xl(l), ...) of the distribution D that are collected in the
dataset D = {x(l), . ..,x(K)}.

Informal Problem Formulation. Assume now that we are
given a specification ¢ for the stochastic system D, e.g., a safety or
performance specification defined over the states X; of the system.
In “offline” system verification, e.g., in statistical model checking, we
are interested in calculating the probability that (Xo, X1,...) ~ D
satisfies the specification. In runtime verification, on the other
hand, we have already observed the partial realization (x, ..., x;)
of (Xp, ..., X;) online at time ¢, and we want to use this informa-
tion to calculate the probability that (Xo, X1, ...) ~ D satisfies the
specification.! In this paper, we use predictions %7|¢ of future states
X for this task in a predictive runtime verification approach.

While in “offline” verification all realizations of D are taken into
account, only a subset of these are relevant in runtime verifica-
tion. One hence gets different types of verification guarantees, e.g.,
consider a stochastic system (X, X3, ...) ~ D of which we have
plotted ten realizations in Figure 2 (left). In an offline approach,
this system satisfies the specification inf ¢ [150,250] X7 € [0,3] > 0
with a probability of 0.5. However, given an observed partial real-
ization (xi,...,X100), we are able to give a better answer. In this
case, we used LSTM predictions %99 (red dashed lines), to more
confidently say if the specification is satisfied. While the stochastic
system in Figure 2 (left) has a simple structure, the same task for the
stochastic system in Figure 2 (right) is already more challenging.

2.1 Signal Temporal Logic

To express system specifications, we use signal temporal logic (STL).
Let x := (xg, X1, .. .) be a discrete-time signal, e.g., a realization of
the stochastic system (Xp, Xj, . ..). The atomic elements of STL are
predicates that are functions p : R” — {True, False}. For conve-
nience, the predicate p is often defined via a predicate function
h : R" — R as p(x;) = True if h(x;) = 0 and p(x;) := False
otherwise. The syntax of STL is recursively defined as

¢ == True | p | —|¢’ | ¢’ A ¢” | ¢/UI¢N | ¢/Q1¢N (1)

1We note that we consider unconditional probabilities in this paper.

144

ICCPS 23, May 9-12, 2023, San Antonio, TX, USA

100 150 200

Figure 2: Ten realizations of two stochastic systems (solid
lines) and corresponding LSTM predictions at time ¢ := 100
(red dashed lines). The specification is that trajectories should
be within the green box between 150 and 250 time units.

where ¢’ and ¢”” are STL formulas. The Boolean operators — and
A encode negations (“not”) and conjunctions (“and”), respectively.
The until operator ¢’U;¢p”” encodes that ¢’ has to be true from
now on until ¢”’ becomes true at some future time within the time
interval I C R . The since operator encodes that ¢’” was true at
some past time within the time interval I and since then ¢’ is true.
We can further derive the operators for disjunction (¢’ Vv ¢"" :=
(=g’ A =¢")), eventually (F¢ := TU;g), once (F;¢p = TU;¢),
always (Gr¢ := ~Fr—¢), and historically (G;¢ := —F;).

To determine if a signal x satisfies an STL formula ¢ that is
enabled at time 7, we can define the semantics as a relation |5, i.e.,
(x,70) | ¢ means that ¢ is satisfied. While the STL semantics are
fairly standard [53], we recall them in Appendix A. Additionally, we
can define robust (sometimes referred to as quantitative) semantics
p?(x, 7)) € R that indicate how robustly the formula ¢ is satisfied
or violated [25, 27], see Appendix A. Larger and positive values of
p? (x, 70) indicate that the specification is satisfied more robustly.
Importantly, it holds that (x, 79) E ¢ if p? (x, 79) > 0. We make the
following assumption on the class of STL formulas in this paper.

AsSUMPTION 2. We consider bounded STL formulas ¢, i.e., all time
intervals I within the formula ¢ are bounded.

Satisfaction of bounded STL formulas can be decided by finite
length signals [63]. The minimum length is indicated by the formula
length L?, i.e., knowledge of (xy, . . ., X, +L¢) is enough to determine

if (x,79) E ¢. We recall the definition of L% in Appendix A.

2.2 Trajectory Predictors

Given an observed partial sequence (xy, . .., x;) at the current time
t > 0, we want to predict the states (x;41, . . ., x+f7) for a prediction
horizon of H > 0. Our runtime verification algorithm is in general
compatible with any trajectory prediction algorithm. Assume there-
fore that PREDICT is a measurable function that maps observations
(%0, - - -, x¢) to predictions (Xp41)s - - > XprH|e) Of (Xe41, -+, XpeH)-

Trajectory predictors are typically learned. We therefore split
the dataset D into training and calibration datasets Dirain and De,),
respectively, and learn PREDICT from Dyyaip.

A specific example of PREDICT are recurrent neural networks
(RNNs) that have shown good performance [50, 62]. For 7 < ¢, the
recurrent structure of an RNN is given as

a%— = Alxy, a}—_l),

ICCPS °23, May 9-12, 2023, San Antonio, TX, USA

i i i-1
ay = A(xr,a;_,a;),

Yrstle = Y (a),
where x is the input that is sequentially applied to the RNN and
where A is a function that can parameterize different types of RNNs,
e.g., LSTMs [35]. Furthermore, d is the RNN’s depth and a}, el a‘f
are the hidden states. The output y;,qj; == (X41)s5 - - -» Xr4H|¢) PYO-
vides an estimate of (xy+1,...,X;+q) via the function Y which
typically parameterizes a linear last layer.

Vie{2...d}

2.3 Predictive Runtime Verification

We recall that (xo, x1, . . .) denotes a realization of X := (Xp, X1, ...) ~
D. Assume that we have observed xgps = (xo,...,x;) at time ¢,

i.e., all states up until time ¢ are known, while the realizations of
Xun = (Xt4+1, Xt42, . . .) are not known yet. Consequently, we have

that X := (Xyps» Xun).2 In this paper, we are interested in calculating

the probability that (X, 7o) [¢ as formally stated next.?

ProBLEM 1. Given a distribution (Xo, X1,...) ~ D, the current
time t, the observations x,ps == (X0, . .., xt), a bounded STL formula
¢ that is enabled at 1o, and a failure probability § € (0, 1), determine
ifP((X,70) E ¢) = 1— 8 holds.

Several comments are in order. Note that we use the system
specification ¢ (and not its negation —¢) to determine if ¢ is satisfied.
From P((X, 1) | ¢) > 1-8, we can infer that P((X, 79) E —¢) < 6,
i.e., we get an upper bound on the probability that the specification
is violated. We further remark that, as a byproduct of our solution
to Problem 1, we obtain a probabilistic lower bound C € R on the
robust semantics p¢ (X, 19), i.e., so that P(p¢ (X,7) >2C) 21-6.

We would like to point out two special instances of Problem 1.
When 7 := 0, we recover the “standard” runtime verification prob-
lem in which a specification is enabled at time zero, such as in the
example inf ¢ |150250] Xr € [0, 3] shown in Figure 2. When 7o := ¢,
the current time coincides with the time the specification is enabled.
This may, for instance, be important when monitoring the current
quality of a system, e.g., when monitoring the output of a neural
network used for perception in autonomous driving.

3 CONFORMAL PREDICTION FOR
PREDICTIVE RUNTIME VERIFICATION

In this section, we first provide an introduction to conformal predic-
tion for uncertainty quantification. We then propose two predictive
runtime verification algorithms to solve Problem 1. We refer to these
algorithms as direct and indirect. This naming convention is moti-
vated as the direct method applies conformal prediction directly to
obtain a prediction region for the robust semantics p? (X, 7). The
indirect method uses conformal prediction to get prediction regions
for future states X; first, which are subsequently used indirectly to
obtain a prediction region for p? (X, o), see Figure 2.

3.1 Introduction to Conformal Prediction

Conformal prediction was introduced in [67, 77] to obtain valid
prediction regions for complex prediction algorithms, i.e., neural

2For convenience, we chose the notations of Xops, Xun, and X that do not explicitly
reflect the dependence on the current time ¢.

3We remark that the semantics and the robust semantics are measurable so that
probabilities over these functions are well defined [11, 47].

145

Lindemann et al.

networks, without making assumptions on the underlying distribu-
tion or the prediction algorithm [4, 20, 30, 44, 74].

We first provide a brief introduction to conformal prediction.
Let R(O), .. ,R(k) be k + 1 independent and identically distributed
random variables. The variable R() is usually referred to as the
nonconformity score. In supervised learning, it may be defined as
RO = ||Y(i) - y(X<i)) || where the predictor p attempts to predict
an output Y based on an input X M A large nonconformity score
indicates a poor predictive model.

Our goal is to obtain a prediction region for R based on
R(l), e, R(k), i.e., the random variable R(® should be contained
within the prediction region with high probability. Formally, given a
failure probability & € (0, 1), we want to construct a valid prediction
region C that depends on RW, .. R®) such that

PR® <) >1-6.

As C depends on R(l), .. ,R(k), the probability measure P is de-
fined over the product measure ofR(O), .. ,R(k). This is an impor-
tant observation as conformal prediction guarantees marginal cov-
erage but not conditional coverage, see [4] for a detailed discussion.
By a surprisingly simple quantile argument, see [74, Lemma 1], one
can obtain C to be the (1—4)th quantile of the empirical distribution
of the values R(l), .. .,R(k) and co. By assuming that R(l), R R
are sorted in non-decreasing order, and by adding RK+D = oo we
can equivalently obtain C := R(P) where p=[(k+1)(1-9)],1ie,
C is the pth smallest nonconformity score.

3.2 Direct STL Predictive Runtime Verification

Recall that we can obtain predictions %7 |; of x for all future times
7 > t using the PreDICT function. However, the predictions £, are
only point predictions that are not sufficient to solve Problem 1 as
they do not contain any information about the uncertainty of % ;.

We first propose a solution by a direct application of conformal
prediction. Let us therefore define H := 79 +L? — t as the maximum
prediction horizon that is needed to estimate the satisfaction of the
bounded STL specification ¢. Define now the predicted trajectory

@)

which is the concatenation of the current observations x,},s and
the predictions of future states £;41|s, ..., X;4+p|;- For an a priori
fixed failure probability § € (0, 1), our goal is to directly construct
a prediction region defined by a constant C so that

X = (xobs>xt+1\t> .- ~sxt+H|t)

P(p? (%, 70) - p? (X, 1) <C) = 1-6. 3)
Note that p‘/5 (%, 70) is the predicted robust semantics for the spec-
ification ¢ that we can calculate at time ¢ based on the observa-
tions x,ps and the predictions X;41 s, . - ., X1 7|- Now, if equation
(3) holds, then we know that p¢(J€, 79) > C is a sufficient condition
for P(p? (X, 0) > 0) > 1 — & to hold.

To obtain the constant C, we thus consider the nonconformity
score R := p¢(3?, 79) — p¢ (X, 70). In fact, let us compute the non-

conformity score for each calibration trajectory x() e D, as

RO — p¢(;f(i),1-0) _p¢(x(i),1-0)

Conformal Prediction for STL Runtime Verification

é{;)s, fcg)llt, el ﬁt(-f-)H\t) resembles equation (2), but

now defined for the calibration trajectory x4 A positive non-

where () = (x

conformity score R indicates that our predictions are too opti-
mistic, i.e., the predicted robust semantics ,04S (fc(i), 70) is greater
than the actual robust semantics p‘}S (x(), 19) obtained when using
the ground truth calibration trajectory x(D) Conversely, a negative
value of R) means that our prediction are too conservative.

We can now directly obtain a constant C that makes equation (3)
valid, and use this C to solve Problem 1, by a direct application of
[74, Lemma 1]. Therefore assume, without loss of generality, that
the values of R() are sorted in non-decreasing order and let us add
RUPall*1) .= oo as the (|Deg| + 1)th value.

THEOREM 1. Given a distribution (Xo, X1,...) ~ D, the current
time t, the observations x,ps == (X0, . .., xt), a bounded STL formula
¢ that is enabled at 1y, the dataset Dy, and a failure probability
& € (0,1). Then the prediction region in equation (3) is valid with C
defined as

C:=RP) where p:=[(|Degl + 1)(1-8)], (4)

and it holds that P((X,70) | ¢) = 1 -8 if p® (%, 70) > C.

It is important to note that the direct method, as well as the
indirect method presented in the next subsection, do not need to
retrain their predictor when the specification ¢ changes, as in exist-
ing work such as [14, 57]. This is since we use trajectory predictors
to obtain state predictions X, that are specification independent.

REMARK 1. Note that Theorem 1 assumes a fixed failure proba-
bility 8. If one wants to find the tightest bound with the smallest
failure probability & so that P((X,19) E ¢) > 1— & holds, we can
(approximately) find the smallest such § by a simple grid search over
é € (0,1) and repeatedly invoke Theorem 1.

REMARK 2. We emphasize that the prediction regions in equa-
tion (3), and hence the result that P((X,10) > 0 E ¢) > 1 -6 if
p?(%,10) > C, guarantee marginal coverage. This means that the
probability measure P is defined over the randomness of the test trajec-
tory X and the randomness of the calibration trajectories in D,. We
thereby obtain probabilistic guarantees for the verification procedure,
but we do not obtain guarantees conditional on D .

3.3 Indirect STL Predictive Runtime Verification

We now present the indirect method where we first obtain predic-
tion regions for the state predictions %41z, . - -, Xr4f|¢, and then use
these prediction regions to solve Problem 1. We later discuss advan-
tages and disadvantages between the direct and the indirect method
(see Remark 4), and compare them in simulations (see Section 4).

For a failure probability of § € (0, 1), our first goal is to construct
prediction regions defined by constants C; so that

P(IX; = %7l <Cp, Ve e{t+1,...,t+H}) 21-6, (5)

i.e., C; should be such that the state X; is C;-close to our predictions
%7|¢ for all relevant times 7 € {t +1,...,¢ + H} with a probability

4This means that £() is the concatenation of the observed calibration trajectory

. 4] ¢ obtained from x

_ (D (i) -~ .
Xops = (xo ,...,x,) and the predictions TR W obs*

146

ICCPS 23, May 9-12, 2023, San Antonio, TX, USA

of at least 1 — J. Let us thus consider the following nonconformity
score that we compute for each calibration trajectory x() € Dy as

R = e =20

T|t
NG

where we recall that X is the prediction obtained from the ob-

served calibration trajectory xé;)s. A large nonconformity score
fciiz of xii)
while a small score indicates accurate predictions. Assume again

indicates that the state predictions are not accurate,

that the values of Rii) are sorted in non-decreasing order and define
R;ID“HH) := 00 as the (|Dy| + 1)th value. To obtain the values of

C; that make equation (5) valid, we use the results from [46, 71].

LemMA 1 ([46, 71]). Given a distribution (Xo, X1,...) ~ D, the
current time t, the observations x,ps == (xo, - . ., Xt), the dataset D,
and a failure probability § € (0,1). Then the prediction regions in
equation (5) are valid with C; defined as

Cr = RY) where pi=[(|Deqtl +1)(1 - 8)] and § := 8/H. (6)

Note the scaling of § by the inverse of H, as expressed in §.
Consequently, the constants C; increase with increasing prediction
horizon H, i.e., with larger formula length L?, as larger H result in
smaller § and consequently in larger p according to (6).

We can now use the prediction regions of the predictions £,
from equation (5) to obtain prediction regions for p¢ (X, 70) to solve
Problem 1. The main idea is to calculate the worst case of the robust
semantics p¢ over these prediction regions. To be able to do so, we
assume that the formula ¢ is in positive normal form, i.e., that the
formula ¢ contains no negations. This is without loss of generality
as every STL formula ¢ can be re-written in positive normal form,
see e.g., [63]. Let us next define a worst case version p¢ of the
robust semantics p? that incorporates the prediction regions from
equation (5). For predicates y, we define these semantics as

TN h(xz)
H =
P {infgeza, h($)

where we recall the definition of the predicted trajectory X in equa-
tion (2) and where B; := {{ € R"|||{ — ;|| < C;} is a ball of size
Cr centered around the prediction X, |;, i.e., B, defines the set of
states within the prediction region at time 7. The intuition behind
this definition is that we know the value of the robust semantics
pH(X, 1) = pH(%,) if r < t since x; is known. For times 7 > ¢, we
know that X; € B; holds with a probability of at least 1 — § by
Lemma 1 so that we compute p¥ (X,) := infsc g, h({) to obtain a
lower bound for p#(X, r) with a probability of at least 1 — &.

ifr <t

otherwise

REMARK 3. For convex predicate functions h, computinginfycg_h({)
is a convex optimization problem that can efficiently be solved. How-
ever, note that the optimization probleminf e g_h({) may need to be
solved for different times t and for multiple predicate functions h. For
non-convex functions h, we can obtain lower bounds of infycg_h(¢)
that we can use instead. Particularly, let Ly, be the Lipschitz constant
of b, ie, let |h({) — h(%;)| < LII{ = % ¢ ||. Then, we know that

inf h({) > h(x;;) — LpCr.
b B 2 hry) = LiCe

For instance, the constraint h({) = ||{1 — (21| — 0.5, which can encode
collision avoidance constraints, has Lipschitz constant one.

ICCPS °23, May 9-12, 2023, San Antonio, TX, USA

The worst case robust semantics 5% for the remaining operators
(True, conjunctions, until, and since) are defined in the standard
way, i.e., the same way as for the robust semantics p?, and are
summarized in Appendix A for convenience. We can now use the
worst case robust semantics to solve Problem 1.

THEOREM 2. Let the conditions of Lemma 1 hold. Given a bounded
STL formula ¢ in positive normal form that is enabled at 7y. Then it
holds that P((X, 1) E ¢) = 1 -8 if p? (%, 1) > 0.

Finally, let us point out conceptual differences with respect to
the direct STL predictive runtime verification method.

REMARK 4. The state prediction regions (5) obtained in Lemma 1
may lead to conservatism in Theorem 2, especially for larger prediction
horizons H due to the scaling of § with the inverse of H. In fact, we
require larger calibration datasets D, compared to the direct method
to achieve p < |D.q| (recall that C; = oo if p > |Dgg|). On the
other hand, the indirect method is more interpretable and allows to
identify parts of the formula ¢ that may be violated by analyzing the
uncertainty of predicates via the worst case robust semantics p* (%, 7).
This information may be helpful and can be used subsequently in a
decision making context for plan reconfiguration.

4 CASE STUDIES

We present two case studies in which we verify an aircraft and
a self-driving car. We remark upfront that, in both case studies,
we fix the calibration dataset Dy, a-priori and then evaluate our
proposed runtime verification method on several test trajectories.
As eluded to in Remark 2, one would technically have to resample a
calibration dataset for each test trajectory. This is impractical and,
in fact, shown to not be needed when the size of the calibration
dataset is large enough, see [4, Section 3.3] for a detailed discussion
on this topic.

4.1 F-16 Aircraft Simulator

In our first case study, we consider the F-16 Fighting Falcon, which
is a highly-maneuverable aircraft - a brief summary of the system is
provided in Appendix D. We use a ground collision avoidance ma-
neuver, and are thus primarily interested in the plane’s altitude that
we denote by h. We collected Dyyain := 1520 training trajectories,
De,1 := 5680 calibration trajectories, and Dyegt := 100 test trajecto-
ries. From Dy,in, We trained an LSTM of depth two and width 50
to predict future states of h.> We show the LSTM performance in
predicting h in Figure 3. Particularly, we show plots of the best five
and the worst five LSTM predictions, in terms of the mean square
error, on the test trajectories Diest in Figure 3 (left and left-mid).

We are interested in a safety specification expressed as ¢ :=
Gio,r)(h > 750) that is enabled at time 79 := t, i.e., a specification
that is imposed online during runtime. Hereby, we intend to monitor
if the airplane dips below 750 meters within the next T := 200
time steps (the sampling frequency is 100 Hz). Additionally, we set
6 :=0.05 and fix the current time to t := 230.

Let us first use the direct predictive runtime verification algo-
rithm and obtain prediction regions of p? (%, 7o) — p¢ (X, 70) by cal-
culating C according to Theorem 1. We show the histograms of R®

SWe only used the observed sequence of altitudes (hy, . . ., i;) as the input of the LSTM.
Additionally using other states is possible and can improve prediction performance.

147

Lindemann et al.

over the calibration data D, in Figure 3 (right-mid). The prediction
regions C (i.e., the RP)th nonconformity score) are highlighted as
vertical lines. In a next step, we empirically evaluate the results of
Theorem 1 by using the test trajectories Diegt. In Figure 3 (right),
we plot the predicted robustness p? (£, 79) and the ground truth
robustness p¢ (x(i), 70). We found that for 100 of the 100 = |Dyegt|
trajectories it holds that p? (D) > C implies (xD) @,
confirming Theorem 1. We also validated equation (3) and found
that 96/100 trajectories satisfy p¢ (D,) — p¢ (xD,) < C.

Let us now use the indirect predictive runtime verification algo-
rithm. We first obtain prediction regions of || Xz — %7 ;|| by calculat-
ing C; according to Lemma 1. We show the histograms for three
different 7 in Figure 4 (left, left-mid, right-mid). We also indicate the
prediction regions C; by vertical lines (note that § = §/200 in this
case). We can observe that larger prediction times 7 result in larger
prediction regions C;. This is natural as the trajectory predictor is
expected to perform worse for larger 7. In a next step, we empir-
ically evaluate the results of Theorem 2 by calculating the worst
case robust semantic /3¢ (3?<i), 70) for the test trajectories Dyegt. In
Figure 4 (right), we plot the worst case robustness p¢ (%, 0) and
the ground truth robustness p¢ (x, 10). We found that for 100 of
the 100 = | Dyegt| trajectories it holds that ﬁ¢(fc(i), 79) > 0 implies
(xD,) E ¢, confirming Theorem 2.

By a direct comparison of Figures 3 (right) and 4 (right), we ob-
serve that the indirect method is more conservative than the direct
method in the obtained robustness estimates. Despite this conser-
vatism, the indirect method allows us to obtain more information
in case of failure by inspecting the worst case robust semantics
p?(%,1) as previously remarked ins Remark 4.

4.2 Autonomous Driving in CARLA

We consider the case study from [47] in which two neural network
lane keeping controllers, an imitation learning (IL) controller [60]
and a learned control barrier function (CBF) controller [48], are ver-
ified within the autonomous driving simulator CARLA [26] using
offline trajectory data. The controllers are supposed to keep the
car within the lane during a long 180 degree left turn, see Figure 9
(right) in the Appendix. The authors in [47] provide offline proba-
bilistic verification guarantees, and find that not every trajectory
satisfies the specification. This motivates our predictive runtime
verification approach in which we would like to alert of poten-
tial violations of the specification already during runtime. For the
analysis, we consider the cross-track error c, (deviation of the car
from the center of the lane) and the orientation error 6, (difference
between the orientation of the car and the lane).

Within CARLA, the control input of the car is affected by additive
Gaussian noise and the initial position of the car is drawn uniformly
from (ce, 6e) € [—1,1] X [—0.4,0.4]. We obtained 1000 trajectories
for each controller, and use |Dy,jy | := 700 trajectories to train an
LSTM, while we use |D.y| := 200 trajectories to obtain conformal
prediction regions. The remaining |Diest| := 100 trajectories are
used for testing.

We have trained two LSTMs for each controller from Dy, using
the same settings as in the previous section. In Figures 5 and 6, we
show the LSTMs performances in predicting ¢, and 6, for each
controller, respectively. Particularly, the plots show the best five

Conformal Prediction for STL Runtime Verification ICCPS °23, May 9-12, 2023, San Antonio, TX, USA

2750 1400
2400 - Ground Truth for h
7, 2500
—— Prediction X230 / - | 1200 2000
22 = -
2009 __ Opservation xr [2250 1000 1500 I ?
2000
2000 Grou.ndv Tru}h forh 4o :
17501 T — Prediction X3 C=30.55 1000
1800 1500 —— Observation x¢ 600 o i
- 500 23
1250 400
1600 Robustness ground truth p?(x, 230)
1000 200 0 N
Predicted robustness p?(x, 230)
1400 750 o 2

100 200 300

Time stens

200 500 100 200 300

Time steps

400 500 -150 -100 =50 0 50

Nonconformity Score

100 20 40 60

Trajectories

80 100

Figure 3: LSTM predictions of the altitude 4 on Dyegt (left, left-mid) and direct predictive runtime verification method (right-mid,
right). Left: five best (in terms of mean square error) predictions on Diegt, left-mid: five worst predictions on Dyest, right-mid:

histogram of the nonconformal score R on De,1 for direct method, right: predicted robustness p? (20 1) and ground truth
robustness p¢ (x(i), 70) on Diest.

1400 2600 1200
2000
1400
1200 1006
1200
1000 1500
1000 800
800 1000
C=26.85 00 C=60.70 - €=195.70
600 600 500
400
400 400,
200 0 d Robustness ground truth p?(x, 230)
200 K N o~
200 4 Predicted robustness p%(x, 230)
0 0 0 -500{
0 5 10 15 20 25 0 10 20 30 40 50 60 0 25 50 75 100 125 150 175 200 0 20 40 60 80 100

Nonconformity Score

Nonconformity Score

Nonconformity Score

Trajectories

Figure 4: Indirect predictive runtime verification method. Left, left-mid, and right-mid: histograms of the nonconformal scores

R of ¢ step ahead prediction on D, for 7 € {50, 100,200} and the indirect method, right: worst case predicted robustness
ﬁ¢ (ﬁ(i), 79) and ground truth robustness p¢ (x(i), 70) on Diest.

2.0 7 03
25 Ground Truth for ce A o3
15 204 — Prediction X273 \ 02 b2
—— Observation x-
10 £ ° 01 01
10
05 0.0 0.0
0.5
0.0 -01 =0i
0.0 ly,
- ---- Ground Truth for ce 02 - Ground Truth for 6 0.2 - Ground Truth for 6
’ —— Prediction %73 -0.5 —— Prediction X273 —— Prediction Xr273
; -0.3 ; -03 a
-L0 —— Observation x¢ -1.0 —— Observation x¢ —— Observation x¢
0 50 100 150 200 250 300 350 0 50 100 150 200 250 300 350 0 50 100 150 200 250 300 350 0 50 100 150 200 250 300 350
Time steps Time steps Time steps Time steps

Figure 5: LSTM predictions of the imitation learning controller on Diest. Left: five best (in terms of mean square error) c
predictions, left-mid: five worst c, predictions, right-mid: five best ., predictions, right: five worst 6, predictions.

15
2.0 02
10
15
01
0.5 10
0.0 05 L
-0.5 0.0 -0.1
~10 Ground Truth force | -05 Ground Truth force | -0.2 - Ground Truth for6e | -0.2 Ground Truth for 6
—— Prediction Xqj190 ~10 —— Prediction X100 B3 —— Prediction Xgj100 55 —— Prediction Xgj100
-15 : . -0. . .
—— Observation x¢ _15 —— Observation x¢ —— Observation x¢ —— Observation x¢
g -0.4
0 50 100 150 200 250 0 50 100 150 200 250 0 50 100 150 200 250 0 50 100 150 200 250
Time steps Time steps

Time steps

Time steps

Figure 6: LSTM predictions of the control barrier function controller on Diest. Left: five best (in terms of mean square error) c
predictions, left-mid: five worst ¢, predictions, right-mid: five best 0. predictions, right: five worst 0, predictions.

148

ICCPS °23, May 9-12, 2023, San Antonio, TX, USA

and the worst five LSTM predictions (in terms of the mean square
error) on the test trajectories Diest.

For the verification of the car, we consider the following two
STL specifications that are enabled at 7y := 0:

¢1 = G[]O,oo)] (|Ce| < 2.25),
$2 = Gl10,00) ((Ice| = 1.25) = Fj5)G[o5](Ice| < 1.25)).

The first specification is a safety specification that requires the cross-
track error to not exceed a threshold of 2.25 in steady-state (after
10 seconds of driving). The second specification is a responsiveness
requirement that requires that a cross-track error above 1.25 is
followed immediately within the next 5 seconds by a phase of 5
seconds where the cross-track error is below 1.25. As previously
mentioned, we can use the same LSTM for both specifications,
and we do not need any retraining when the specification changes
which is a major advantage of our method over existing works.

We set § := 0.05 and fix the current time to t := 273 for the
IL controller and t := 190 for the CBF controller. At these times,
the cars controlled by each controller are approximately at the
same location in the left turn (this difference is caused by different
sampling times). As we have limited calibration data D, available
(CARLA runs in real-time so that data collection is time intensive),
we only evaluate the direct STL predictive runtime verification
algorithm for these two specifications.® We hence obtain prediction
regions of p? (%, 79) — p? (X, o) for each specification ¢ € {1, g2}
by calculating C according to Theorem 1.

For the first specification ¢1, we show the histograms of R®
for both controllers over the calibration data D, in Figure 7 (left:
IL, left-mid: CBF). The prediction regions C are again highlighted
as vertical lines, and we can see that the prediction regions C for
the CBF controller are smaller, which may be caused by an LSTM
that predicts the system trajectories more accurately (note that
the CBF controller causes less variability in ¢, which may make
it easier to train a good LSTM). In a next step, we empirically
evaluate the results of Theorem 1 by using the test trajectories
Drest. In Figure 8 (left: IL, left-mid: CBF), we plot the predicted
robustness p‘}Sl (%, 70) and the ground truth robustness p¢1 (X, 10).
We found that for 99 of the 100 = |Diegt| trajectories under the IL
controller and for 100/100 trajectories under the CBF controller
it holds that p¢1 #D,) > C implies (xD,) E ¢1, confirming
Theorem 1. We also validated equation (3) and found that 95/100
trajectories under the IL controller and 95/100 trajectories under
the CBF controller satisfy p¢1 (3?<i>, 70) — p¢1 (x(i), 79) < C.

For the second specification ¢,, we again show the histograms
of R for both controllers over the calibration data D, in Figure 7
(right-mid: IL, right: CBF). We can now observe that the prediction
region C for both controllers are relatively small. However, the abso-
lute robustness is also less as in the first specification as can be seen
in Figure 8 (right-mid: IL, right: CBF). We again empirically evalu-
ate the results of Theorem 1 by using the test trajectories Diest. In
Figure 8 (right-mid: CBF, right: IL), we plot the predicted robustness
p‘r’52 (%, 70) and the ground truth robustness p¢2 (X, 79). We found
that for 99/100 trajectories under the IL controller and for 98/100
trajectories under the CBF controller it holds that ,0‘752 (J?(i), 9) > C

©The indirect STL predictive runtime verification algorithm would require more cali-
bration data, recall the discussion from Remark 4.

149

Lindemann et al.

implies (xD 9) E ¢2, confirming Theorem 1. We also validated
equation (3) and found that 98/100 trajectories under the IL con-
troller and 92/100 trajectories under the CBF controller satisfy
p¢'2 (,g(i),fo) — p¢z (x(i),) < C.

Finally, we would like to remark that we observed that the added
Gaussian random noise on the control signals made the prediction
task challenging, but the combination of LSTM and conformal
prediction were able to deal with this particular type of randomness.
In fact, poorly trained LSTMs lead to larger prediction regions.

5 CONCLUSION

We presented two predictive runtime verification algorithms to
compute the probability that the current system trajectory violates
a signal temporal logic specification. Both algorithms use i) trajec-
tory predictors to predict future system states, and ii) conformal
prediction to quantify prediction uncertainty. The use of conformal
prediction enables us to obtain valid probabilistic runtime verifica-
tion guarantees. To the best of our knowledge, these are the first
formal guarantees for a predictive runtime verification algorithm
that applies to widely used trajectory predictors such as RNNs and
LSTMs, while being computationally simple and making no assump-
tions on the underlying distribution. An advantage of our approach
is that a changing system specification does not require expensive
retraining as in existing works. We concluded with experiments of
an F-16 aircraft and a self-driving car equipped with LSTMs.

ACKNOWLEDGMENTS

Lars Lindemann and George J. Pappas were generously supported
by NSF award CPS-2038873. Xin Qin and Jyotirmoy V. Deshmukh
gratefully acknowledge the support by the National Science Foun-
dation through the following grants: SHF-1910088, CAREER award
(SHF-2048094), CNS-1932620, funding by Toyota R&D through the
USC Center for Autonomy and Al funding by Airbus Institute for
Engineering Research, and gift funding from Northrop Grumman
Aerospace Systems. Finally, the authors would like to thank the
anonymous reviewers for their feedback.

REFERENCES

[1] Prithvi Akella, Mohamadreza Ahmadi, and Aaron D Ames. 2022. A sce-
nario approach to risk-aware safety-critical system verification. arXiv preprint
arXiv:2203.02595 (2022).

Prithvi Akella, Anushri Dixit, Mohamadreza Ahmadi, Joel W Burdick, and
Aaron D Ames. 2022. Sample-Based Bounds for Coherent Risk Measures: Ap-
plications to Policy Synthesis and Verification. arXiv preprint arXiv:2204.09833
(2022).

Matthias Althoff and John M Dolan. 2014. Online verification of automated road
vehicles using reachability analysis. IEEE Transactions on Robotics 30, 4 (2014),
903-918.

Anastasios N Angelopoulos and Stephen Bates. 2021. A gentle introduction to
conformal prediction and distribution-free uncertainty quantification. arXiv
preprint arXiv:2107.07511 (2021).

Reza Babaee, Vijay Ganesh, and Sean Sedwards. 2019. Accelerated learning
of predictive runtime monitors for rare failure. In International Conference on
Runtime Verification. Springer, 111-128.

Reza Babaee, Arie Gurfinkel, and Sebastian Fischmeister. 2018. Prevent: A Predic-
tive Run-Time Verification Framework Using Statistical Learning. In International
Conference on Software Engineering and Formal Methods. Springer, 205-220.
Christel Baier and Joost-Pieter Katoen. 2008. Principles of Model Checking (1 ed.).
The MIT Press, Cambridge, MA.

Stanley Bak, Changliu Liu, and Taylor Johnson. 2021. The second international
verification of neural networks competition (vhn-comp 2021): Summary and
results. arXiv preprint arXiv:2109.00498 (2021).

[2

Conformal Prediction for STL Runtime Verification

ICCPS °23, May 9-12, 2023, San Antonio, TX, USA

C=0.06

35
30
25

€=0.09 B

-04 -02 00 02 04 06 08
Nonconformity score

Nonconformity score

ol
—=0.075-0.050-0.0250.000 0.025 0.050 0.075 0.100 0.125

ol
-0.08 -0.06 —0.04 —0.02 0.00 002 0.04 0.06
Nonconformity score

0.0 0.2 0.3

0. .
Nonconformity score

Figure 7: Histograms of the nonconformal scores R on D,,1 and prediction region C. Left: IL controller and ¢;, left-mid: CBF
controller and ¢1, right-mid: IL controller and ¢, right: CBF controller and ¢,.

. P 015 .
0.8 =~ | 105
3 > ‘_‘,-f‘/ ¢ ad £ 0.10 g
1.00 - s
. o . .
06 . ""_/"' o + e X oos parr —
. . o -
0.4 / . 2~ -
. / . 0.90 000{ =
D2 Vil & » 0.85 L]
K ‘ -0.05
0.0 0.80
. . Robustness ground truth p%:(x, 0) 075 + Robustness ground truth p?%(x,0) Robustness ground truth p%(x,0) | —0-10 Robustness ground truth p%(x, 0)
-024 * 3, . @ " N
« Predicted robustness p%(x, 0) Predicted robustness p%(x, 0) Predicted robustness p%(x, 0) ~0.15 Predicted robustness p%(x, 0)
- 0.70
[20 40 60 80 100 0 20 40 60 80 20 40 60 80 100 0 20 40 60 80 100

Trajectories Trajectories

Trajectories Trajectories

Figure 8: Predicted robustness p‘zS (f(i), 70) and ground truth robustness p¢ (x(i), 79) on Diest. Left: IL controller and ¢1, left-mid:
CBF controller and ¢1, right-mid: IL controller and ¢;, right: CBF controller and ¢,.

(9]

[10]

[11]

[12]

[13]

=
it

[15]

[16

[17

[18]

[19]

[20]

[21]

[22]

Stanley Bak and Hoang-Dung Tran. 2022. Neural Network Compression of ACAS
Xu Early Prototype Is Unsafe: Closed-Loop Verification Through Quantized State
Backreachability. In NASA Formal Methods Symposium. Springer, 280-298.

Ezio Bartocci, Luca Bortolussi, Laura Nenzi, and Guido Sanguinetti. 2013. On the
robustness of temporal properties for stochastic models. In Proc. Int. Workshop
Hybrid Syst. Biology. Taormina, Italy, 3-19.

Ezio Bartocci, Luca Bortolussi, Laura Nenzi, and Guido Sanguinetti. 2015. System
design of stochastic models using robustness of temporal properties. Theoret.
Comp. Science 587 (2015), 3-25.

Andreas Bauer, Martin Leucker, and Christian Schallhart. 2011. Runtime ver-
ification for LTL and TLTL. ACM Transactions on Software Engineering and
Methodology (TOSEM) 20, 4 (2011), 1-64.

Andrea Bianco and Luca de Alfaro. 1995. Model checking of probabilistic and
nondeterministic systems. In International Conference on Foundations of Software
Technology and Theoretical Computer Science. Springer, 499-513.

Luca Bortolussi, Francesca Cairoli, Nicola Paoletti, Scott A Smolka, and Scott D
Stoller. 2019. Neural predictive monitoring. In International Conference on Runtime
Verification. Springer, 129-147.

Luca Bortolussi, Francesca Cairoli, Nicola Paoletti, Scott A Smolka, and Scott D
Stoller. 2021. Neural predictive monitoring and a comparison of frequentist
and Bayesian approaches. International Journal on Software Tools for Technology
Transfer 23, 4 (2021), 615-640.

Dimitrios Boursinos and Xenofon Koutsoukos. 2021. Assurance monitoring of
learning-enabled cyber-physical systems using inductive conformal prediction
based on distance learning. AI EDAM 35, 2 (2021), 251-264.

Francesca Cairoli, Luca Bortolussi, and Nicola Paoletti. 2021. Neural predictive
monitoring under partial observability. In International Conference on Runtime
Verification. Springer, 121-141.

Francesca Cairoli, Nicola Paoletti, and Luca Bortolussi. 2022. Conformal Quanti-
tative Predictive Monitoring of STL Requirements for Stochastic Processes. arXiv
preprint arXiv:2211.02375 (2022).

Ian Cassar, Adrian Francalanza, Luca Aceto, and Anna Ingo6lfsdottir. 2017. A
survey of runtime monitoring instrumentation techniques. arXiv preprint
arXiv:1708.07229 (2017).

Maxime Cauchois, Suyash Gupta, Alnur Ali, and John C Duchi. 2020. Robust
validation: Confident predictions even when distributions shift. arXiv preprint
arXiv:2008.04267 (2020).

Margaret P Chapman, Riccardo Bonalli, Kevin M Smith, Insoon Yang, Marco
Pavone, and Claire] Tomlin. 2021. Risk-sensitive safety analysis using Conditional
Value-at-Risk. IEEE Trans. Automat. Control (2021).

Yi Chou, Hansol Yoon, and Sriram Sankaranarayanan. 2020. Predictive runtime
monitoring of vehicle models using Bayesian estimation and reachability analysis.

In 2020 IEEE/RSF International Conference on Intelligent Robots and Systems (IROS).
IEEE, 2111-2118.

Edmund M Clarke. 1997. Model checking. In International Conference on Founda-
tions of Software Technology and Theoretical Computer Science. Springer, 54-56.
Jyotirmoy V Deshmukh, Alexandre Donzé, Shromona Ghosh, Xiaoqing Jin, Garvit
Juniwal, and Sanjit A Seshia. 2017. Robust online monitoring of signal temporal
logic. Formal Methods in System Design 51, 1 (2017), 5-30.

Alexandre Donzé and Oded Maler. 2010. Robust Satisfaction of Temporal Logic
over Real-valued Signals. In Proc. Int. Conf. FORMATS. Klosterneuburg, Austria,
92-106.

Alexey Dosovitskiy, German Ros, Felipe Codevilla, Antonio Lopez, and Vladlen
Koltun. 2017. CARLA: An open urban driving simulator. In Conference on robot
learning. PMLR, 1-16.

Georgios E Fainekos and George J Pappas. 2009. Robustness of temporal logic
specifications for continuous-time signals. Theoret. Comp. Science 410, 42 (2009),
4262-4291.

Angelo Ferrando and Giorgio Delzanno. 2021. Incrementally Predictive Runtime
Verification. In CILC. 92-106.

Bernd Finkbeiner, Christopher Hahn, Marvin Stenger, and Leander Tentrup.
2019. Monitoring hyperproperties. Formal Methods in System Design 54, 3 (2019),
336-363.

Matteo Fontana, Gianluca Zeni, and Simone Vantini. 2023. Conformal prediction:
A unified review of theory and new challenges. Bernoulli 29, 1 (2023), 1 - 23.
Luis Gressenbuch and Matthias Althoff. 2021. Predictive monitoring of traffic
rules. In 2021 IEEE International Intelligent Transportation Systems Conference
(ITSC). IEEE, 915-922.

Christopher Hahn. 2019. Algorithms for monitoring hyperproperties. In Interna-
tional Conference on Runtime Verification. Springer, 70-90.

Hans Hansson and Bengt Jonsson. 1994. A logic for reasoning about time and
reliability. Formal aspects of computing 6, 5 (1994), 512-535.

Peter Heidlauf, Alexander Collins, Michael Bolender, and Stanley Bak. 2018.
Verification Challenges in F-16 Ground Collision Avoidance and Other Automated
Maneuvers. In ARCH@ ADHS. 208-217.

Sepp Hochreiter and Jiirgen Schmidhuber. 1997. Long short-term memory. Neural
computation 9, 8 (1997), 1735-1780.

Radoslav Ivanov, Taylor] Carpenter, James Weimer, Rajeev Alur, George J Pappas,
and Insup Lee. 2020. Case study: verifying the safety of an autonomous racing
car with a neural network controller. In Proceedings of the 23rd International
Conference on Hybrid Systems: Computation and Control. 1-7.

Radoslav Ivanov, James Weimer, Rajeev Alur, George] Pappas, and Insup Lee.
2019. Verisig: verifying safety properties of hybrid systems with neural network
controllers. In Proceedings of the 22nd ACM International Conference on Hybrid

ICCPS °23, May 9-12, 2023, San Antonio, TX, USA

[38]

[39]

[40]

[41]

[42

[43

[44]

[45]

[46]

[47

[48

[49]

[50

[51]

(52

[53]

[54]

[55]

[56]

[57

[58

[59]

[62

Systems: Computation and Control. 169-178.

John Jackson, Luca Laurenti, Eric Frew, and Morteza Lahijanian. 2021. Formal
verification of unknown dynamical systems via Gaussian process regression.
arXiv preprint arXiv:2201.00655 (2021).

Manfred Jaeger, Kim G Larsen, and Alessandro Tibo. 2020. From statistical
model checking to run-time monitoring using a bayesian network approach. In
International Conference on Runtime Verification. Springer, 517-535.

Markus Koschi, Christian Pek, Mona Beikirch, and Matthias Althoff. 2018. Set-
based prediction of pedestrians in urban environments considering formalized
traffic rules. In 2018 21st international conference on intelligent transportation
systems (ITSC). IEEE, 2704-2711.

Marta Kwiatkowska, Gethin Norman, and David Parker. 2011. PRISM 4.0: Verifi-
cation of probabilistic real-time systems. In International conference on computer
aided verification. Springer, 585-591.

Axel Legay, Benoit Delahaye, and Saddek Bensalem. 2010. Statistical model check-
ing: An overview. In International conference on runtime verification. Springer,
122-135.

Axel Legay, Anna Lukina, Louis Marie Traonouez, Junxing Yang, Scott A Smolka,
and Radu Grosu. 2019. Statistical model checking. In Computing and Software
Science. Springer, 478-504.

Jing Lei, Max G’Sell, Alessandro Rinaldo, Ryan J Tibshirani, and Larry Wasserman.
2018. Distribution-free predictive inference for regression. J. Amer. Statist. Assoc.
113, 523 (2018), 1094-1111.

Martin Leucker and Christian Schallhart. 2009. A brief account of runtime
verification. The journal of logic and algebraic programming 78, 5 (2009), 293-303.
Lars Lindemann, Matthew Cleaveland, Gihyun Shim, and George] Pappas. 2022.
Safe Planning in Dynamic Environments using Conformal Prediction. arXiv
preprint arXiv:2210.10254 (2022).

Lars Lindemann, Lejun Jiang, Nikolai Matni, and George] Pappas. 2022.
Risk of Stochastic Systems for Temporal Logic Specifications. arXiv preprint
arXiv:2205.14523 (2022).

Lars Lindemann, Alexander Robey, Lejun Jiang, Stephen Tu, and Nikolai Matni.
2021. Learning Robust Output Control Barrier Functions from Safe Expert
Demonstrations. arXiv preprint arXiv:2111.09971 (2021).

Lars Lindemann, Alena Rodionova, and George Pappas. 2022. Temporal Ro-
bustness of Stochastic Signals. In 25th ACM International Conference on Hybrid
Systems: Computation and Control. 1-11.

Zachary C Lipton, John Berkowitz, and Charles Elkan. 2015. A critical review of
recurrent neural networks for sequence learning. arXiv preprint arXiv:1506.00019
(2015).

Anna Lukina, Christian Schilling, and Thomas A Henzinger. 2021. Into the
unknown: Active monitoring of neural networks. In International Conference on
Runtime Verification. Springer, 42-61.

Rachel Luo, Shengjia Zhao, Jonathan Kuck, Boris Ivanovic, Silvio Savarese, Ed-
ward Schmerling, and Marco Pavone. 2021. Sample-efficient safety assurances
using conformal prediction. arXiv preprint arXiv:2109.14082 (2021).

O. Maler and D. Nickovic. 2004. Monitoring temporal properties of continuous
signals. In Proc. Int. Conf. FORMATS FTRTFT. Grenoble, France, 152-166.
Srinivas Pinisetty, Thierry Jéron, Stavros Tripakis, Yliés Falcone, Hervé Marchand,
and Viorel Preoteasa. 2017. Predictive runtime verification of timed properties.
Journal of Systems and Software 132 (2017), 353-365.

Amir Pnueli. 1977. The temporal logic of programs. In Proc. Annual Symp. Found.
Comp. Sci. Washington, DC, 46-57.

Xin Qin and Jyotirmoy V Deshmukh. 2020. Clairvoyant Monitoring for Signal
Temporal Logic. In International Conference on Formal Modeling and Analysis of
Timed Systems. Springer, 178-195.

Xin Qin, Yuan Xian, Aditya Zutshi, Chuchu Fan, and Jyotirmoy V Deshmukh.
2022. Statistical Verification of Cyber-Physical Systems using Surrogate Models
and Conformal Inference. In Proceedings of the International Conference on Cyber-
Physical Systems. Milan, Italy, 116-126.

Aléna Rodionova, Lars Lindemann, Manfred Morari, and George J. Pappas. 2022.
Temporal Robustness of Temporal Logic Specifications: Analysis and Control
Design. ACM Trans. Embed. Comput. Syst. (July 2022).

Nima Roohi, Yu Wang, Matthew West, Geir E Dullerud, and Mahesh Viswanathan.
2017. Statistical verification of the Toyota powertrain control verification bench-
mark. In Proceedings of the 20th International Conference on Hybrid Systems:
Computation and Control. Pittsburgh, Pennsylvania, 65-70.

Stéphane Ross and Drew Bagnell. 2010. Efficient reductions for imitation learning.
In Proceedings of the International Conference on Artificial Intelligence and Statistics.
Sardinia, Italy, 661-668.

Ivan Ruchkin, Matthew Cleaveland, Radoslav Ivanov, Pengyuan Lu, Taylor Car-
penter, Oleg Sokolsky, and Insup Lee. 2022. Confidence Composition for Monitors
of Verification Assumptions. In 2022 ACM/IEEE 13th International Conference on
Cyber-Physical Systems (ICCPS). IEEE, 1-12.

Andrey Rudenko, Luigi Palmieri, Michael Herman, Kris M Kitani, Dariu M Gavrila,
and Kai O Arras. 2020. Human motion trajectory prediction: A survey. The
International Journal of Robotics Research 39, 8 (2020), 895-935.

Lindemann et al.

S. Sadraddini and C. Belta. 2015. Robust temporal logic model predictive control.
In Proceedings of the 53rd Annual Allerton Conference on Communication, Control,
and Computing. Monticello, IL, 772-779. https://doi.org/10.1109/ALLERTON.
2015.7447084

Ali Salamati, Sadegh Soudjani, and Majid Zamani. 2020. Data-Driven Verification
under Signal Temporal Logic Constraints. IFAC-PapersOnLine 53, 2 (2020), 69-74.
Ali Salamati, Sadegh Soudjani, and Majid Zamani. 2021. Data-driven verification
of stochastic linear systems with signal temporal logic constraints. Automatica
131 (2021), 109781.

Daniel Selvaratnam, Michael Cantoni, JM Davoren, and Iman Shames. 2022. MITL
Verification Under Timing Uncertainty. arXiv preprint arXiv:2204.10493 (2022).
Glenn Shafer and Vladimir Vovk. 2008. A Tutorial on Conformal Prediction.
Journal of Machine Learning Research 9, 3 (2008).

Mary Sheeran, Satnam Singh, and Gunnar Stalmarck. 2000. Checking safety
properties using induction and a SAT-solver. In International conference on formal
methods in computer-aided design. Springer, 127-144.

Yasser Shoukry, Pierluigi Nuzzo, Alberto L Sangiovanni-Vincentelli, Sanjit A
Seshia, George] Pappas, and Paulo Tabuada. 2017. SMC: Satisfiability modulo
convex optimization. In Proceedings of the 20th International Conference on Hybrid
Systems: Computation and Control. 19-28.

A Prasad Sistla, Milos Zefran, and Yao Feng. 2011. Runtime monitoring of
stochastic cyber-physical systems with hybrid state. In International Conference
on Runtime Verification. Springer, 276-293.

Kamile Stankeviciute, Ahmed M Alaa, and Mihaela van der Schaar. 2021. Confor-
mal time-series forecasting. Advances in Neural Information Processing Systems
34 (2021), 6216-6228.

Xiaowu Sun, Haitham Khedr, and Yasser Shoukry. 2019. Formal verification of
neural network controlled autonomous systems. In Proceedings of the 22nd ACM
International Conference on Hybrid Systems: Computation and Control. 147-156.
Minghu Tan, Hong Shen, Kang Xi, and Bin Chai. 2022. Trajectory prediction
of flying vehicles based on deep learning methods. Applied Intelligence (2022),
1-22.

Ryan J Tibshirani, Rina Foygel Barber, Emmanuel Candes, and Aaditya Ramdas.
2019. Conformal prediction under covariate shift. Advances in neural information
processing systems 32 (2019).

Hoang-Dung Tran, Feiyang Cai, Manzanas Lopez Diego, Patrick Musau, Taylor T
Johnson, and Xenofon Koutsoukos. 2019. Safety verification of cyber-physical
systems with reinforcement learning control. ACM Transactions on Embedded
Computing Systems (TECS) 18, 5s (2019), 1-22.

Hoang-Dung Tran, Xiaodong Yang, Diego Manzanas Lopez, Patrick Musau,
Luan Viet Nguyen, Weiming Xiang, Stanley Bak, and Taylor T Johnson. 2020.
NNV: the neural network verification tool for deep neural networks and learning-
enabled cyber-physical systems. In International Conference on Computer Aided
Verification. Springer, 3-17.

Vladimir Vovk, Alexander Gammerman, and Glenn Shafer. 2005. Algorithmic
learning in a random world. Springer Science & Business Media.

Yu Wang, Mojtaba Zarei, Borzoo Bonakdarpoor, and Miroslav Pajic. 2021. Proba-
bilistic conformance for cyber-physical systems. In Proceedings of the Conference
on Cyber-Physical Systems. Nashville, Tennessee, 55-66.

Yu Wang, Mojtaba Zarei, Borzoo Bonakdarpour, and Miroslav Pajic. 2019. Statisti-
cal verification of hyperproperties for cyber-physical systems. ACM Transactions
on Embedded Computing Systems (TECS) 18, 5s (2019), 1-23.

Cristina M Wilcox and Brian C Williams. 2010. Runtime verification of stochastic,
faulty systems. In International Conference on Runtime Verification. Springer,
452-459.

Hansol Yoon, Yi Chou, Xin Chen, Eric Frew, and Sriram Sankaranarayanan. 2019.
Predictive runtime monitoring for linear stochastic systems and applications to
geofence enforcement for UAVs. In International Conference on Runtime Verifica-
tion. Springer, 349-367.

Hansol Yoon and Sriram Sankaranarayanan. 2021. Predictive runtime monitor-
ing for mobile robots using logic-based bayesian intent inference. In 2021 IEEE
International Conference on Robotics and Automation (ICRA). IEEE, 8565-8571.
Hékan LS Younes and Reid G Simmons. 2002. Probabilistic verification of dis-
crete event systems using acceptance sampling. In International Conference on
Computer Aided Verification. Springer, 223-235.

Hakan LS Younes and Reid G Simmons. 2006. Statistical probabilistic model
checking with a focus on time-bounded properties. Information and Computation
204, 9 (2006), 1368—-1409.

Xinyi Yu, Weijie Dong, Xiang Yin, and Shaoyuan Li. 2022. Model Predictive
Monitoring of Dynamic Systems for Signal Temporal Logic Specifications. arXiv
preprint arXiv:2209.12493 (2022).

Xinyi Yu, Weijie Dong, Xiang Yin, and Shaoyuan Li. 2022. Online Monitor-
ing of Dynamic Systems for Signal Temporal Logic Specifications with Model
Information. arXiv preprint arXiv:2203.16267 (2022).

Mojtaba Zarei, Yu Wang, and Miroslav Pajic. 2020. Statistical verification of
learning-based cyber-physical systems. In Proceedings of the Conference on Hybrid
Systems: Computation and Control. 1-7.

Conformal Prediction for STL Runtime Verification

A SEMANTICS OF SIGNAL TEMPORAL LOGIC

For a signal x := (xo, x1, . . .), the semantics of an STL formula ¢
that is enabled at time 79, denoted by (x, 79) [= ¢, can be recursively
computed based on the structure of ¢ using the following rules:

(x,7) ETrue iff True,
(x)Ep it h(xr) 20,
() E-¢ it (o) 4

(o) E¢' A" iff
(x.7) E¢'U¢" iff

(x,7) F ¢" and (x,7) F ¢”,

I e (r®I)NNst (x,7”7) E¢”
and V7' € (r,7”") NN, (x,7) E ¢,
3" e (reI)NNst (x,7”7) E¢”
and V7’ € (", 1) NN, (x,7) E ¢".

(r.o) EQ'U" iff

The robust semantics p? (x, 79) provide more information than
the semantics (x, 79) = ¢, and indicate how robustly a specification
is satisfied or violated. We can again recursively calculate p¢ (x, 70)
based on the structure of ¢ using the following rules:

pTrue (x, T) = o0,

pH(x, 7) = h(x7)
P (1) = —p? (x. 1),
p?" (1) = min(p? (x,7), p7" (x. 7)),

p¢/UI¢” (x,7) := sup (min (p‘ﬁ" (x, "), inf p"y (x, T')))
7 €(rdl)NN v’ e(r,7”)NN

p¢/gl¢// (X, T) = sup (mln (p¢” (X, TN), inf P‘}S/ (x, T,))).
” e(rol)NN v’ e(r”,7)NN

The formula length L™? of a bounded STL formula ¢ can be re-
cursively calculated based on the structure of ¢ using the following
rules:

pTrue _pp._ o
L% .=1¢
19" = max(L?,19")
L9V = max{I 0 N} + max(L?, L¢")
1#U¢" = max(1¥,19").

Lastly, we define the worst case robust semantics p¢ (%, 710),
which are again recursively defined as follows:

p-True (J?, T) ‘= oo,

s N h(x)
Pk = {infgesf h($)

5 (%,7) = —p? (%, 7),
p?M" (£,7) = min(p? (%,7), 5% (%, 7)),

ifr<t

otherwise

PP U (%0) = sup (min (ﬁ‘}y’ (%,7”), inf

7 e(t®I)NN ' e(r,7”)NN
pPUY (k0= sup (min(p? (k7). inf
7 €(rol)NN o’ e(r”,r)NN

152

(1)),

' (37)).

ICCPS 23, May 9-12, 2023, San Antonio, TX, USA

B PROOF FOR THEOREM 1

The nonconformity scores R\ are independent and identically
distributed by their definition and Assumption 1. By [74, Lemma
1], we hence know that equation (3) is valid by the specific choice
of C in equation (4). Consequently, we have that

P(p? (X, 70) > p?(%,70) = C) = 1-6.

If now p?(%,79) > C, it holds that P(p? (X, 79) > 0) > 1 -8 by
which it follows that

P(X,) Eg)=21-6
since p¢(X, 79) > 0 implies (X, 70) |= ¢ [25, 27].

C PROOF FOR THEOREM 2

Note first that X; € B, for all times 7 € {t+1,...,t + H} with a
probability of at least 1 — § by Lemma 1. For all predicates y in the
STL formula ¢ and for all times 7 € {0,..., ¢+ H}, it hence holds
that pH (X, 7) > pH(x, r) with a probability of at least 1 — § by the
definition of §*. Since the formula ¢ does not contain negations’,
it is straightforward to show (inductively on the structure of ¢)
that p? (X, 7) > p? (%, 7) with a probability of at least 1 — 8. Conse-
quently, if p¢ (%,7) > 0, it holds that P((X, 70) |= ¢) > 1 — & since

p¢(X, 79) > 0 implies (X, 7o) E ¢ [25, 27].

D F-16 AIRCRAFT CASE STUDY DESCRIPTION

The F-16 has been used as a verification benchmark, and the authors
in [34] provide a high-fidelity simulator for various maneuvers
such as ground collision avoidance, see Figure 9 (left). The F-16
aircraft is modeled with 6 degrees of freedom nonlinear equations
of motion, and the aircraft control system consists of an outer
and an inner control-loop. The outer loop encodes the logic of
the maneuver in a finite state automaton and provides reference
trajectories to the inner loop. In the inner loop, the aircraft (modeled
by 13 continuous states) is controlled by low-level integral tracking
controllers (adding 3 additional continuous states), we refer the
reader to [34] for details. In the simulator, we introduce randomness
by uniformly sampling the initial conditions of the air speed, angle
of attack, angle of sideslip, roll, pitch, yaw, roll rate, pitch rate, yaw
rate, and altitude from a compact set.

"Negations would in fact flip the inequality in an unfavorable direction, e.g., for - it
would hold that p™ (X, 7) < p7 (X,) with a probability of at least 1 — &.

ICCPS °23, May 9-12, 2023, San Antonio, TX, USA Lindemann et al.

t=9.27 sec Mode: Pull
h=837.16ft V= 748.93 fijsec
«=6.23deg #=-0.02 deg
N.=5.02g e =-0.00 deg/sec
17507
15007
21250
£10007
B7507
Z5007
2507 |
0 o 3:3“50
_125915%75929; T gadaé@
702500750, 1088

Figure 9: Left: F-16 Fighting Falcon within the high fidelity aircraft simulator from [34]. Right: Self-driving car within the

autonomous driving simulator CARLA [26].

153

	Abstract
	1 Introduction
	1.1 Related Work

	2 Problem Formulation
	2.1 Signal Temporal Logic
	2.2 Trajectory Predictors
	2.3 Predictive Runtime Verification

	3 Conformal Prediction for Predictive Runtime Verification
	3.1 Introduction to Conformal Prediction
	3.2 Direct STL Predictive Runtime Verification
	3.3 Indirect STL Predictive Runtime Verification

	4 Case Studies
	4.1 F-16 Aircraft Simulator
	4.2 Autonomous Driving in CARLA

	5 Conclusion
	Acknowledgments
	References
	A Semantics of Signal Temporal Logic
	B Proof for Theorem 1
	C Proof for Theorem 2
	D F-16 Aircraft Case Study Description

