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ABSTRACT
This paper presents an approximatewireless communication scheme
for federated learning (FL) model aggregation in the uplink trans-
mission. We consider a realistic channel that reveals bit errors
during FL model exchange in wireless networks. Our study demon-
strates that random bit errors during model transmission can sig-
nificantly affect FL performance. To overcome this challenge, we
propose an approximate communication scheme based on the math-
ematical and statistical proof that machine learning (ML) model
gradients are bounded under certain constraints. This bound en-
ables us to introduce a novel encoding scheme for float-to-binary
representation of gradient values and their QAM constellation map-
ping. Besides, since FL gradients are error-resilient, the proposed
scheme simply delivers gradients with errors when the channel
quality is satisfactory, eliminating extensive error-correcting codes
and/or retransmission. The direct benefits include less overhead
and lower latency. The proposed scheme is well-suited for resource-
constrained devices in wireless networks. Through simulations, we
show that the proposed scheme is effective in reducing the impact
of bit errors on FL performance and saves at least half the time than
transmission with error correction and retransmission to achieve
the same learning performance. In addition, we investigated the
effectiveness of bit protection mechanisms in high-order modula-
tion when gray coding is employed and found that this approach
considerably enhances learning performance.
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1 INTRODUCTION
Federated learning (FL) [5] enables local devices to perform ma-
chine learning (ML) tasks while still benefiting from the learning
generalization ability provided by model parameter sharing. It does
not require sharing locally collected data among devices and the
server. Instead, only model parameters are shared, thereby effec-
tively protecting data privacy. The FL system is composed of a
central parameter server (PS) and a large number of smart local
clients (LCs). LCs gather data from onboard sensors and execute a
predefined ML task based on the global model broadcast from the
PS. After computation, each LC sends local models to the PS for ag-
gregation, and then the updated global model is redistributed back
to LCs. This process is repeated until the global model converges.

For edge devices such as UAVs serving as LCs, wireless networks
are usually employed to connect them to the PS. However, the na-
ture of wireless channels often results in erroneous information
transmission. To address this issue, modern wireless communi-
cations utilize forward error correction (FEC) methods, such as
convolutional code and low-density parity check code (LDPC), to
detect and correct received bit errors. The basic principle of FEC
is to encode the message with redundant information in the form
of an error correction code (ECC). The receiver can correct the
error bits without knowing the actual bits sent by the transmitter.
Packet retransmission can be employed when the number of er-
rors exceeds the correction capability of ECC. Although FEC and
packet retransmission are powerful, they increase computation and
communication overhead, leading to extra power consumption and
transmission delays during FL model aggregation. In [12], the au-
thors focused on transmission bit errors in FL but only in a packet
erasure channel.

Stochastic gradient descent (SGD) is a widely used optimization
method in distributed ML. In FL, each client performs SGD on ML
tasks, then a single-step gradient is calculated and sent to the cen-
tral PS in every communication round. This method, called FedSGD
[7], serves as a baseline algorithm for FL. However, for large-scale
distributed ML models with millions of parameters, transmitting
gradients can cause high delay. Advanced transmission schemes
such as non-orthogonal multiple access (NOMA) [13] are good
options, but they need to equip with complex decoding methods.
Gradient compression is a promising approach to addressing this
challenge, where extensive research has shown the effectiveness
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of gradient sparsification and quantization with little performance
loss. For instance, 1-bit SGD was applied in [10] to reduce gradient
transmission size, and in [1], it was shown that 99% of gradients
could be dropped. Therefore, we are motivated to apply approximate
wireless communication to transmit those gradients, i.e., allowing
lossy transmission (with errors) in exchange for low latency, low
overhead, and less FEC computation in this paper. The tolerance of
gradient quantization errors is based on the assumption that the gra-
dient magnitude is small enough. Empirical studies in [6, 14] have
shown that the gradients are close to Gaussian distribution, and
most gradient values fall in the range of (−1, 1) or even (−0.01, 0.01).
Approximate wireless communication for media data transmission
has been proposed in [9, 11], and similar ideas can be applied to FL
gradient transmission.

In this study, we present a theoretical analysis of bounded ML
gradients in commonly used ML settings. Specifically, we prove
that gradients in fully connected neural network models and con-
volutional neural network models are bounded under commonly
used conditions. Based on this analysis, we set a limit on the er-
roneous gradient, together with the approximate transmission in
practical wireless networks. Simulation results demonstrate that
our proposed method is effective in reducing the impact of bit er-
rors on FL performance, and saves half the time than transmission
with Error Correction and ReTransmission (ECRT). The rest of this
paper is organized as follows. Section 2 introduces the FL model
in wireless networks, Section 3 presents the theoretical analysis
of bounded gradients, Section 4 describes the proposed method,
Section 5 presents simulation results, and Section 6 concludes the
paper.

2 SYSTEM MODEL
The FL model is considered as follows. The FL system consists of
𝑀 LCs, which are connected to the PS through wireless channels.
The overall data amount 𝐷 is distributed among 𝑀 devices, with
each device𝑚 containing 𝐷𝑚 data.

2.1 FL System Model
FL is an iterative ML algorithm that performs local computation and
global aggregation in each round. Local computation is followed by
the LC model uploading, and after global aggregation, the global
model is downloaded to each LC. This process is repeated until the
model converges. The objective function of FL can be defined as:

min
𝒘∈𝑅𝑑

𝑓 (𝒘) where 𝑓 (𝒘) def
=

1
|𝐷 |

|𝐷 |∑︁
𝑖=1

𝑓𝑖 (𝒘), (1)

where |𝐷 | is the size of dataset 𝐷 . 𝑓𝑖 (𝒘) = 𝐶 (𝒙 𝒊,𝒚𝒊 ;𝒘) is the cost
or loss function used to measure the inference error between the
data sample (𝒙 𝒊,𝒚𝒊) and the inference made by model parameters
𝒘 . For classification problems in ML, the cross-entropy function
is commonly used as the loss function 𝐶 , particularly in neural
network models. In multiclass classification, the label𝒚𝒊 is typically
one-hot encoded to ensure each label carries equal weight.

As the data is distributed among 𝑀 LCs and not on the same
device, the objective function (1) needs to be rewritten as follows:

𝑓 (𝒘) =
𝑀∑︁

𝑚=1

|𝐷𝑚 |
|𝐷 | 𝐹𝑚 (𝒘), (2)

where 𝐹𝑚 (𝒘) = 1
|𝐷𝑚 |

∑
𝑖∈𝐷𝑚

𝑓𝑖 (𝒘). By distributing the data and
computation across multiple devices, a conventional centralized
ML problem can be transformed into a distributed FL problem.

Since the cost function for neural networks is typically non-
convex, it is challenging to solve directly and find the global mini-
mum. Therefore, the gradient descent method is an iterative opti-
mization algorithm commonly used in ML to find a local minimum
point. Stochastic gradient descent (SGD) is a variant of the gradient
descent method that can be helpful in escaping local minimums
by selecting data samples randomly. As a result, gradients play a
central role in the learning process. The gradient is defined as:

𝑔 = ∇𝒘𝐶 (𝒙 𝒊,𝒚𝒊 ;𝒘) . (3)

The local gradient at each LC in each round can be written as

𝑔𝑚𝑡 = ∇𝐹𝑚 (𝑤𝑡 ) . (4)

And the global gradient after aggregation is

𝑔𝑡 =

𝑀∑︁
𝑚=1

|𝐷𝑚 |
|𝐷 | 𝑔

𝑚
𝑡 . (5)

The PS stores the model weights from the last round𝑤𝑡 , and then
updates the global model as follows

𝑤𝑡+1 = 𝑤𝑡 − 𝜂𝑔𝑡 . (6)

Here, 𝜂 is the learning rate, which typically falls within the range
of (0, 1).

2.2 Wireless Channel Model
Federated Learning is an upper-layer algorithm that does not have
knowledge of the lower-layer gradient transmission details. Typ-
ically, transmission takes place over wireless channels when LCs
are smart sensors or UAVs. For the uplink channel from LCs to
PS, we consider the fading channel, which can lead to random bit
errors. For the downlink channel, we assume the PS can deliver
global gradients to LCs with negligible errors, this can be justified
by higher PS transmit power (hence higher SNR) [12].

In the uplink, a time division scheme can be used where each user
is assigned to a specific time slot while sharing the same channel.
The received signal at the PS can be expressed as follows

𝑟𝑚𝑡 =

√︃
𝑝𝑚𝑡 (𝑑𝑚)−𝛼ℎ𝑚𝑡 𝑔𝑚𝑡 + 𝑛𝑚𝑡 , (7)

where 𝑟𝑚𝑡 represents the signal received at the PS from client𝑚. The
transmission power is denoted as 𝑝𝑚𝑡 , and the small scale fading is
denoted as ℎ𝑚𝑡 , which is assumed to be complex normal Gaussian
distributed, i.e., ℎ𝑚𝑡 ∼ CN(0, 1). The distance between the PS and
client𝑚 is represented by𝑑𝑚 , and the path-loss exponent is denoted
as 𝛼 . The additive noise is given as 𝑛𝑡 ∼ CN(0, 𝜎2). PS has the
knowledge of the channel gain, i.e., 𝑐𝑚𝑡 =

√︁
𝑝𝑚𝑡 (𝑑𝑚)−𝛼ℎ𝑚𝑡 , and only

the noise serves as an error source.
The entire transmission process can be described as follows. First,

the gradients are converted from decimal format to binary format.
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The bits are then mapped to symbols using a QAM modulation
scheme. The symbols are then transmitted through the wireless
fading channel. At the receiver end, the signal is decoded with max-
imum likelihood estimation and then demodulated to the closest
point in the constellation,

𝑔𝑚𝑡 = arg𝑔𝑚𝑡 ∈G min | |𝑟𝑚𝑡 −
√︃
𝑝𝑚𝑡 (𝑑𝑚)−𝛼ℎ𝑚𝑡 𝑔𝑚𝑡 | |2, (8)

where G is the symbol points set of the constellation diagram.

3 BOUNDED GRADIENTS UNDER
CONSTRAINTS - A SKETCH OF PROOF

3.1 Gradient Backpropagation
In machine learning, particularly in deep neural networks, back-
propagation is widely used for calculating gradients in each layer.
In a fully connected neural network, the feed-forward equation at
each neuron can be expressed as

𝑧𝑙𝑗 = 𝑏𝑙𝑗 +
∑︁
𝑘

𝑤𝑙
𝑗𝑘
𝑎𝑙−1
𝑘

,

𝑎𝑙𝑗 = 𝜎 (𝑧𝑙𝑗 ) .
(9)

Here,𝑏 is the bias,𝑤 is the weights, 𝑧 is the intermediate output, and
𝑎 is the final output after the activation function 𝜎 (·). 𝑙 represents
𝑙-th layer and 𝑗, 𝑘 are indices. The corresponding four fundamental
equations in back-propagation for a fully connected network is

𝛿𝐿𝑗 =
𝜕𝐶

𝜕𝑧𝐿
𝑗

=
𝜕𝐶

𝜕𝑎𝐿
𝑗

𝜕𝑎𝐿
𝑗

𝜕𝑧𝐿
𝑗

=
𝜕𝐶

𝜕𝑎𝐿
𝑗

𝜎′ (𝑧𝐿𝑗 ), (10a)

𝛿𝑙𝑗 =
𝜕𝐶

𝜕𝑧𝑙
𝑗

=
∑︁
𝑘

𝜕𝐶

𝜕𝑧𝑙+1
𝑘

𝜕𝑧𝑙+1
𝑘

𝜕𝑎𝑙
𝑗

𝜕𝑎𝑙
𝑗

𝜕𝑧𝑙
𝑗

=
∑︁
𝑘

𝛿𝑙+1
𝑘

𝑤𝑙+1
𝑘 𝑗

𝜎′ (𝑧𝑙𝑗 ), (10b)

𝜕𝐶

𝜕𝑏𝑙
𝑗

=
𝜕𝐶

𝜕𝑧𝑙
𝑗

𝜕𝑧𝑙
𝑗

𝜕𝑏𝑙
𝑗

= 𝛿𝑙𝑗 , (10c)

𝜕𝐶

𝜕𝑤𝑙
𝑗𝑘

=
𝜕𝐶

𝜕𝑧𝑙
𝑗

𝜕𝑧𝑙
𝑗

𝜕𝑤𝑙
𝑗𝑘

= 𝛿𝑙𝑗𝑎
𝑙−1
𝑘

. (10d)

Here, 𝐿 is the final layer index in the neural network, and 𝛿𝑙
𝑗
is the

defined “error” in 𝑙-th layer at node 𝑗 .
To ensure that the gradient∇𝐶 = 𝜕𝐶

𝜕𝑤𝑙
𝑗𝑘

is bounded, it is necessary

to limit 𝛿𝑙
𝑗
and 𝑎𝑙−1

𝑘
based on equation (10d). These two terms

are discussed separately. 𝑎𝑙−1
𝑘

is the activation function output
of neuron 𝑘 at the (𝑙 − 1)-th layer. It depends on the activation
function being used. For example, the Sigmoid function ensures
that 𝑎𝑙−1

𝑘
is in the range (0, 1) regardless of the input 𝑧𝑙−1

𝑘
, while the

ReLU activation function requires the input to be bounded. Further
discussion and mathematical expressions on activation functions
can be found in [8].

The calculation of 𝛿𝑙
𝑗
is described in equation (10b), which in-

volves a summation of products of next layer errors 𝛿𝑙+1
𝑘

, weights
from node 𝑗 in the 𝑙-th layer to next layer𝑤𝑙+1

𝑘 𝑗
, and the derivative

of activation function 𝜎′ (𝑧𝑙
𝑗
). There are three terms in this equation,

and the summation requires the number of neurons in each layer
to be finite. The derivative of the activation function 𝜎′ (𝑧𝑙

𝑗
) also

depends on the activation function used, with the derivative being
in the range (0, 0.25) for the Sigmoid function and {0, 1} for ReLU.
The weight𝑤𝑙+1

𝑘 𝑗
depends on model initialization, learning rate 𝜂,

and last round gradient based on equation (6). Weight initialization
methods typically generate random weight values in the range
(−1, 1) or even smaller, and there are newer initialization methods
such as [3] and [4]. Without loss of generality, we assume that the
weight value𝑤𝑙+1

𝑘 𝑗
is bounded. The error 𝛿𝑙+1

𝑘
can be written in the

same way as in equation (10b) with elements in the (𝑙 + 2)-th layer,
and this process continues all the way back to the final layer. In
classification problems, the softmax function is commonly used as
the activation function in the final layer to normalize the output
class probabilities. When the cross-entropy loss function is used, it
can be combined with the softmax function. For cross-entropy loss
function,

𝐶 = −
∑︁
𝑖

𝑦𝑖𝑙𝑜𝑔(𝑝𝑖 ), (11)

where 𝑦𝑖 is the input truth label, 𝑝𝑖 is the softmax probability for
the 𝑖-th class

𝑝𝑖 = 𝜎 (𝑧𝑖 ) =
𝑒𝑧𝑖∑
𝑘 𝑒

𝑧𝑘
, (12)

and the derivative is

𝜕𝑝𝑖

𝜕𝑧 𝑗
=

{
𝑝𝑖 (1 − 𝑝 𝑗 ), if 𝑖 = 𝑗 ;
− 𝑝 𝑗 · 𝑝𝑖 , if 𝑖 ≠ 𝑗 .

(13)

Equation (10a) can be written as

𝛿𝐿𝑗 =
𝜕𝐶

𝜕𝑝𝐿
𝑖

𝜕𝑝𝐿
𝑖

𝜕𝑧𝐿
𝑗

= −
∑︁
𝑖

𝑦𝑖
𝜕𝑙𝑜𝑔(𝑝𝑖 )

𝜕𝑝𝑖

𝜕𝑝𝑖

𝜕𝑧 𝑗
,

= −
∑︁
𝑖

𝑦𝑖
1
𝑝𝑖

𝜕𝑝𝑖

𝜕𝑧 𝑗
,

= −𝑦 𝑗 (1 − 𝑝 𝑗 ) −
∑︁
𝑖≠𝑗

𝑦𝑖
1
𝑝𝑖

(−𝑝 𝑗 · 𝑝𝑖 ),

= 𝑝 𝑗 ·
∑︁
𝑖

𝑦𝑖 − 𝑦 𝑗 .

(14)

Since 𝑦 is a one-hot encoded label vector, so
∑
𝑖 𝑦𝑖 = 1, that is

𝛿𝐿𝑗 = 𝑝 𝑗 − 𝑦 𝑗 . (15)

As 𝑝 𝑗 takes values between 0 and 1 and 𝑦 𝑗 is either 0 or 1, 𝛿𝐿𝑗 lies
in the interval (−1, 1).

To summarize, in a fully connected neural network with cross-
entropy as the cost function and softmax function as the activation
function in the final layer, the final layer error 𝛿𝐿

𝑗
is in the range

(−1, 1). In addition, if the weights are assumed in the range (−1, 1)
and Sigmoid functions are used as activation functions in other
layers, the gradient 𝜕𝐶

𝜕𝑤𝑙
𝑗𝑘

is bounded by the sum of the number of

neurons after 𝑙-th layer, denoted as 𝐵𝑙 .

3.2 Gradient in Convolutional Neural Network
Modern image recognition tasks often use convolutional neural
networks (CNNs) as an advanced technique. CNNs are a special
variant of feedforward networks that consist of three types of layers:
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convolutional layers, pooling layers, and fully connected layers. The
feedforward process of a CNN can be written as:

𝑧1
𝑗,𝑘

= 𝑏1
𝑗,𝑘

+
∑︁
𝑝

∑︁
𝑞

𝑤1
𝑝,𝑞𝑥

0
𝑗+𝑝,𝑘+𝑞, (16a)

𝑎1
𝑗,𝑘

= 𝜎 (𝑧1
𝑗,𝑘
), (16b)

𝑎2
𝑗,𝑘

= max(𝑎12𝑗,2𝑘 , 𝑎
1
2𝑗+1,2𝑘 , 𝑎

1
2𝑗,2𝑘+1, 𝑎

1
2𝑗+1,2𝑘+1), (16c)

𝑧3𝑖 = 𝑏3𝑖 +
∑︁
𝑗,𝑘

𝑤3
𝑖;𝑗,𝑘𝑎

2
𝑗,𝑘
, (16d)

𝑎3𝑖 = 𝜎 (𝑧3𝑖 ) . (16e)

For the sake of simplicity, we assume that this CNN network com-
prises only three layers. Equation (16a) and (16b) represent the con-
volutional layer, equation (16c) represents the max pooling layer
with a 2×2 kernel, and equations (16d) and (16e) represent the fully
connected layer. Here, 𝑝 and 𝑞 denote the indices of convolutional
kernels.

Now the backpropagation for the CNN network becomes

𝛿3𝑖 =
𝜕𝐶

𝜕𝑧3
𝑖

=
𝜕𝐶

𝜕𝑎3
𝑖

𝜕𝑎3
𝑖

𝜕𝑧3
𝑖

=
𝜕𝐶

𝜕𝑎3
𝑖

𝜎′ (𝑧3𝑖 ), (17a)

𝛿1
𝑗,𝑘

=
𝜕𝐶

𝜕𝑧1
𝑗,𝑘

=
∑︁
𝑖

𝜕𝐶

𝜕𝑧3
𝑖

𝜕𝑧3
𝑖

𝜕𝑎2𝑠,𝑡

𝜕𝑎2𝑠,𝑡

𝜕𝑧1
𝑗,𝑘

, (17b)

=
∑︁
𝑖

𝛿3𝑖 𝑤
3
𝑖;𝑠,𝑡

𝜕𝑎2𝑠,𝑡

𝜕𝑎1
𝑗,𝑘

𝜕𝑎1
𝑗,𝑘

𝜕𝑧1
𝑗,𝑘

,

=
∑︁
𝑖

𝛿3𝑖 𝑤
3
𝑖;𝑠,𝑡

𝜕𝑎2𝑠,𝑡

𝜕𝑎1
𝑗,𝑘

𝜎′ (𝑧1
𝑗,𝑘
),

=

{∑
𝑖 𝛿

3
𝑖
𝑤3
𝑖;𝑠,𝑡𝜎

′ (𝑧1
𝑗,𝑘
), if case 1;

0, otherwise;

𝜕𝐶

𝜕𝑤3
𝑖;𝑗,𝑘

=
𝜕𝐶

𝜕𝑧3
𝑖

𝜕𝑧3
𝑖

𝜕𝑤3
𝑖;𝑗,𝑘

= 𝛿3𝑖 𝑎
2
𝑗,𝑘
, (17c)

𝜕𝐶

𝜕𝑤1
𝑝,𝑞

=
𝜕𝐶

𝜕𝑧1
𝑗,𝑘

𝜕𝑧1
𝑗,𝑘

𝜕𝑤1
𝑝,𝑞

= 𝛿1
𝑗,𝑘
𝑥0
𝑗+𝑝, 𝑘+𝑞 . (17d)

Here, case 1 is 𝑎2
𝑗,𝑘

= max(𝑎12𝑠,2𝑡 , 𝑎
1
2𝑠+1,2𝑡 , 𝑎

1
2𝑠,2𝑡+1, 𝑎

1
2𝑠+1,2𝑡+1) in

equation (17b), and 𝑠 = 𝑗
2 , 𝑛 = 𝑘

2 .
Similarly, when the cross entropy serves as the loss and the

activation function in the last layer is the softmax function, 𝛿3
𝑖

lies in the range (−1, 1). In order to bound the gradient 𝜕𝐶

𝜕𝑤3
𝑖 ;𝑗,𝑘

in the fully connected layer, it is necessary to ensure that 𝑎2
𝑗,𝑘

or
max(𝑎12𝑗,2𝑘 , 𝑎

1
2𝑗+1,2𝑘 , 𝑎

1
2𝑗,2𝑘+1, 𝑎

1
2𝑗+1,2𝑘+1) is also bounded. If the Sig-

moid function is used as the activation function in the first layer,
then 𝑎2

𝑗,𝑘
is bounded within the range of (0, 1), which results in

𝜕𝐶

𝜕𝑤3
𝑖 ;𝑗,𝑘

being bounded within the range of (−1, 1). The gradient
𝜕𝐶

𝜕𝑤1
𝑝,𝑞

in equation (17d) can be bounded by considering the two

terms involved. Firstly, 𝑥0
𝑗+𝑝,𝑘+𝑞 is the input and is bounded. Sec-

ondly, 𝛿1
𝑗,𝑘

can be expressed as either 0 or
∑
𝑖 𝛿

3
𝑖
𝑤3
𝑖;𝑠,𝑡𝜎

′ (𝑧1
𝑗,𝑘
). We

know that 𝛿3
𝑖
is in the range (−1, 1) and 𝜎′ (𝑧1

𝑗,𝑘
) is in the range

(0, 0.25) if the activation function is Sigmoid. For 𝑤3
𝑖;𝑠,𝑡 , its value

depends on the model initialization, learning rate 𝜂, and the last
round gradient based on equation (6), as we discussed above. If we
assume𝑤3

𝑖;𝑠,𝑡 is bounded in (−1, 1), then 𝜕𝐶

𝜕𝑤1
𝑝,𝑞

can be bounded by

the number of neurons in the last layer, also denoted as 𝐵𝑙 .

4 PROPOSED METHOD
In section 3, we have presented mathematical proofs that under
certain conditions, the gradients are bounded by 𝐵𝑙 . Empirically, it
has been shown in [6, 14] that the gradients are not only bounded
but also bounded within the range of (−1, 1) or even a smaller
range. This allows us to have an expected value (statistically) for
the received gradient at the PS. Correspondingly, we first design a
QAM encoding scheme for the bounded gradients,

4.1 QAM Encoding
In ML, gradients are commonly expressed using 32-bit floating-
point numbers. These numbers follow the format defined by the
IEEE-754 standard, which assigns the first bit to the sign and the
next 8 bits to the exponent, leaving the final 23 bits for the fraction.
Bits in different locations have varying importance. The sign bit
controls the sign of the gradient value, while the exponent part de-
fines the integer and decimal values. The fraction part only controls
the decimal value, and thus, the exponent bits are more important
than the fraction bits. Furthermore, the bits located on the left side
of the exponent are more important than those on the right.

During transmission, each bit is susceptible to noise, which can
cause corruption. To avoid block corruption, we employ interleav-
ing at the transmitter and de-interleaving at the receiver, reducing
the likelihood of multiple error bits taking place together. In the bit
representation, when the second bit in the 32-bit representation,
i.e., the first bit in the exponent part, is 1 and all other 31 bits are
0s, the decimal value is 2. Conversely, when the second bit in the
32-bit representation is 0, and all other 31 bits are 1s, the magnitude
is less than 2. When assuming a magnitude threshold of 1 for the
gradient value, the first bit in the exponent part is always 0. This
motivated us, on the receiver side, regardless of the value decoded
in the second-bit location of the gradient, it will be set to 0, as
shown in Figure 1.

b 0 b bb b b b b b b bb b b b b b b bb b b b b b b bb b b b

sign exponent(8 bits) fraction(23 bits)

Figure 1: Received Gradient Bit Representation

Moreover, we have also observed that differentmodulation schemes
have varying effects on bits located at different positions [11]. This
is important not only in media message transmission but also in ML
model parameter transmission. In wireless transmission, the trans-
mission system is not aware of the relative importance of data bits
and treats all the bits equally. When using QPSK as the modulation
scheme, each symbol consists of 2 bits, with the bit combinations
being 00, 01, 11, 10. The error probability for the first and second
bits in QPSK is the same. In contrast, 16-QAM has 4 bits per symbol,
and the constellation map with gray code is shown below.
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Figure 2: 16-QAM with Gray Coding Constellation Map

The bits with underlines in Figure 2 correspond to the first bit
in each symbol, which are the most significant bits (MSB), while
the fourth or last bits are the least significant bits (LSB). When
the transmission probability for each symbol is the same, the error
probability for the MSB is higher than for the LSB. For example,
if the symbol 𝑠0 is decoded with an error, it is most likely to be
decoded as 𝑠1, 𝑠4, or 𝑠5. The MSB bit remains the same, while the
LSB changes twice. This is summarized in Table 1. The symbols
in the other quadrants are symmetric to the first quadrant, so the
results are identical. High-order modulation schemes with gray
coding provide built-in protection for the MSB bits of gradient
values in bit representation.

Table 1: 16-QAMMSB/LSB Error Count

Symbol Potential Error Symbol MSB Error
Count

LSB Error
Count

𝑠0 𝑠1, 𝑠4, 𝑠5 0 2
𝑠1 𝑠0, 𝑠2, 𝑠4, 𝑠5, 𝑠6 2 3
𝑠4 𝑠0, 𝑠1, 𝑠5, 𝑠8, 𝑠9 0 2
𝑠5 𝑠0, 𝑠1, 𝑠2, 𝑠4, 𝑠6, 𝑠8, 𝑠9, 𝑠10 3 3

4.2 Approximate Wireless Transmission
To further improve gradient exchange efficiency over wireless net-
works, we propose an approximate wireless transmission scheme.
Essentially, since the gradient is resilient to errors, as witnessed in
the existing gradient compression methods, the delivered messages
(gradient) do not have to be accurate. Hence we eliminate FEC and
re-transmission when channel SNR is satisfactory. While the exact
SNR value is to be determined, our empirical results have shown
that at around 10-20 dB, the BER is acceptable for FL. Notice that
our approach is different from user datagram protocol (UDP), where
retransmission is not required either. The difference is that UDP
works at a higher level, and the CRC is used only to check the UDP
payload. When the error happens at the physical or MAC layer, re-
transmission is still issued. Our approach eliminates both FEC and
re-transmission at lower layers, including physical and MAC layers.
The benefit is three-fold: 1) it reduces the communication overhead,
so more data bits can be transmitted; 2) it reduces the computation
overhead for FEC, and this is very appealing for edge devices; 3) it
improves latency performance since no re-transmission is required.

5 SIMULATION RESULTS
In this section, we first present the parameter settings for the simu-
lation. We then provide the empirical probability of bit error versus
signal-to-noise ratio (SNR) under the wireless channel mentioned
earlier. Among the modulation schemes tested, QPSK achieves a bet-
ter bit error rate (BER) than 16-QAM and 256-QAM at the same SNR
level. Next, we compare the FL performance under three scenarios:
ECRT transmission with error correction and retransmission, naive
erroneous transmission, and erroneous transmission with our pro-
posed scheme. The naive error transmission is the transmission in
wireless networks with errors without extra operation. Compared
to naive erroneous transmission, our proposed scheme achieves a
high testing accuracy. Furthermore, compared to ECRT transmis-
sion, our proposed scheme for erroneous transmission saves much
more time. Finally, we discuss different modulation schemes with
gray coding to show the built-in bit protection for MSB in the bit
representation.

We consider a typical FL setting in our simulation, where𝑀 =

100 LCs are connected to the PS, and all LCs participate in the
learning process in each communication round. The LCs perform
image classification tasks using the MNIST dataset, which consists
of handwritten digits 0-9. The training set contains 60, 000 images,
and the test set contains 10, 000 images, with each digit having
approximately 6, 000 images in the training set and 1, 000 images in
the test set. To simulate a realistic scenario where data is collected
from the environment, we distribute the data in a non-iid way, with
each LC having 2 digits and each digit having around 300 images
for training. We use a convolutional neural network (CNN) as the
ML model, with 2 convolutional layers, each having a kernel size
of 5, 2 max-pooling layers with size 2, and 2 fully connected layers.
ReLU is used as the activation function in all layers except the last
one, which uses the log softmax function. The learning rate is set
to 𝜂 = 0.01.

We set the path loss exponent for the wireless channel as 𝛼 =

3, and consider a distance of 10m between the PS and LCs. The
transmission power at the LCs is normalized to 1. We use QPSK as
the modulation scheme, and the receiver SNR is set at 𝛾 = 10 dB
unless otherwise specified.

Under the specific fading channel, QPSK achieves a lower BER
compared to 16-QAM and 256-QAM at the same SNR level. For
QPSK, at SNR=10 dB, the BER is approximately 4 × 10−2 while the
BER is 5 × 10−3 when SNR is 20 dB.

In the ECRT scheme with error correction and retransmission,
all the bits are received correctly by the PS, which incurs a cost
for forward error correction (FEC) and possible retransmission
when the error exceeds the FEC capability. In contrast, the naive
error transmission scheme involves transmitting bits with errors
without prior knowledge of the gradients, where the test accuracy
remains flat at around 10%, similar to random guessing as shown
in Figure 3. This occurs because the model cannot learn anything
due to transmission errors. Our proposed method, however, takes
into account prior knowledge of the gradient values, which are
expected to be in the range of (-1, 1). This makes the proposed
scheme achieves much better results than naive error transmission.

To quantify the transmission time saved by our proposed method
compared to ECRT transmission, we employ a practical IEEE 802.11
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Figure 3: Test Accuracy v.s. Communication Time

protocol with LDPC error correction coding. LDPC is a promising
ECC that can approach the Shannon limit. For different coding
rates, there exists a trade-off between error correction capability
and transmission overhead. Lower coding rate results in high trans-
mission overhead but comes with high error correction capability.
Here, we use a coding rate of 1/2 to enhance error correction. Ac-
cording to [2], the minimum Hamming distance is 15 for a code
rate of 1/2 when the code length is 648, and we search using the
parity check matrix. This results in an error correction capability of
7 bits. In Figure 3, the transmission with LDPC coding with retrans-
mission takes 2× time than the proposed scheme to achieve 80%
accuracy at SNR=20 dB while it takes more than 3× for SNR=10 dB
for the LDPC coding with retransmission scheme to achieve that
performance.
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Figure 4: Test Accuracy with the Same SNR/BER

To demonstrate the effectiveness of built-in MSB bit protection
of high-order modulation with gray coding, we begin by presenting
the test accuracy of different modulations at the same SNR in Figure
4(a). At an SNR of 10 dB, the BER for QPSK, 16-QAM, and 256-QAM
is roughly 4× 10−2, 10−1, and 3× 10−1, respectively. Because QPSK
results in fewer errors, its learning performance is better than in
16-QAM and 256-QAM.

In Figure 4(b), we present a scenario where the BER is made the
same for different modulations. To accomplish this, we increase
the SNR for 16-QAM to 16 dB and the SNR for 256-QAM to 26
dB. Consequently, the BER for all three modulation schemes is
4 × 10−2. In this scenario, 256-QAM achieves significantly better
learning performance than QPSK, with smaller transmission errors
in 256-QAM than QPSK.

6 CONCLUSIONS
In this paper, we proposed a federated learning parameter trans-
mission scheme in wireless networks. Unlike existing transmis-
sion methods that rely on forward error correction and retransmis-
sion, we proposed gradient transmission with errors based on prior
knowledge of gradient values. The gradient value is mathematically
proven to be within a small range under certain constraints, so the
received gradient value is expected to be within that range. This
approach achieves learning performance with errors much better
than naive error transmission and saves at least half time to achieve
the same learning performance as ECRT transmission. Additionally,
we explored high-order modulation and demonstrated improved
learning results. In the future, our plan is to quantify the impact of
communication errors on FL performance.
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