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Abstract
In this paper we prove explicit estimates for the size of small lifts of points in homo-
geneous spaces. Our estimates are polynomially effective in the volume of the space
and the injectivity radius.

1 Introduction

Let G be a semisimple Lie group and let � ⊂ G be an arithmetic lattice, e.g. G =
SLd(R) and � = SLd(Z). Reduction theory provides a description of a (weak) fun-
damental domain for � in G. Among other things, it relates the injectivity radius at
a point x ∈ G/� to the size of a small lift for x in G. In general, however, these
estimates are only up to a compact subset of G; in particular, when � is a uniform
(cocompact) lattice in G one does not obtain explicit estimates on the diameter of
G/�.

In this paper we provide an explicit estimate for the size of a small lift in G of
a point x ∈ G/�; our estimates are polynomial in the injectivity radius at x and in
a certain measure of the arithmetic complexity of � which is closely related to the
volume of G/�, see Theorem 1.1.

It is plausible that some of the arguments involved in reduction theory can be
effectivized; this paper however takes an alternative route. The proofs here rely on
a uniform spectral gap for arithmetic quotients in the case of semisimple group; see
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e.g. [5, 14, 19] for a similar approach. We then prove and utilize an effective Levi
decomposition, in §3 and §4, to allow for groups which may not be semisimple.

It is worth mentioning that when � is a cocompact lattice, the dependence of our
estimates on the injectivity radius may be omitted, see §6.4. The reader may compare
this to the analysis in [5], where similar estimates for the isometry groups of rank one
symmetric spaces are proved. However, our multiplication constants are allowed to
depend on the number N which is defined in §1.1 — this number can be thought of
as a notion of dimension for the arithmetic datum that defines �.

The main results are first formulated and proved (in §5) in the adelic language.
Then we deduce the results for the S-arithmetic case—in particular for the case of
semisimple Lie groups—from the adelic setting. In addition to providing a uniform
treatment, the adelic language has the advantage that we may bring to bear the seminal
works of Prasad [24] and Borel and Prasad [3], Einsiedler [11], to avoid assuming any
splitting conditions in Theorem 1.1. In §6, we discuss some corollaries of this theorem
in the S-arithmetic setting; see namely Theorem 1.2 and the discussion following it.

1.1 The notion of an algebraic datum

In the following, A denotes the ring of adeles over Q. We let � = {∞} ∪ {p :
p is a prime} denote the set of places of Q, and let � f be the set of finite places. We
sometime write �∞ for the set containing the infinite place. We will denote places in
� by v,w, . . . and places in � f by p, q, . . .. In this notation, we often write Qv to
denote R or Qp.

Throughout, we assume fixed the following datum (G, ι):

1. A connected algebraicQ-groupGwhose solvable radical is unipotent, i.e. R(G) =
Ru(G).

2. We will always assume G to be simply connected.
3. An algebraic homomorphism ι : G → SLN defined over Q, with a central kernel.

Condition (1) is equivalent to Hom(G,Gm) = {1}. In particular, we get that
HomQ(G,Gm) = {1}, hence G(A)/G(Q) has a G(A)-invariant finite measure.

Set X = SLN (A)/SLN (Q); we let volX denote the SLN (A)-invariant probability
measure on X . Let G = ι(G(A)) and Y = ι(G(A)/G(F)) ⊂ X . Let μY (or simply
μ when there is no confusion) be a G-invariant probability measure on Y . Let m be a
Haar measure on G which projects to μ under the orbit map.

1.2 A height function on X

For any v ∈ �, we will abusively let ‖ ‖v denote the maximum norm (with respect to
the standard basis) both on Q

N
v and on slN (Qv). For any w ∈ A

N , we set

c(w) :=
∏

v∈�

‖wv‖v.

Thanks to the product formula, we have c(rw) = c(w) for all r ∈ Q, w ∈ A
N .

Moreover, for all w ∈ Q
N − {0}, c(w) is an integer and c(w) ≥ 1.
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We define the height function ht : SLN (A) → R
+ by

ht(g) := max{c(gw)−1 : 0 	= w ∈ Q
N }. (1.1)

This function is SLN (Q)-invariant, hence induces a function on X which we continue
to denote by ht. That is: for any x ∈ X we put ht(x) = ht(g) where g ∈ SLN (A) is so
that x = gSLN (Q).

For every p ∈ � f we let ‖ ‖op,v (or simply ‖ ‖op when there is no confusion)
denote the operator norm on SLN (Qv), induced using the norm ‖ ‖v on Q

N
v . For any

g ∈ SLN (Qv) define

|g| := max{‖g‖op, ‖g−1‖op}.

1.3 Complexity of homogeneous sets

An intrinsic notion of volume of the datum (G, ι) was defined and utilized in [11]; we
recall the definition here.

Fix an open subset� ⊂ SLN (A) that contains the identity and has compact closure
(see §2.2 for our choice for �). Set

vol(Y ) := m(G ∩ �)−1. (1.2)

Evidently this notion depends on �, but the notions arising from two different
choices of � are comparable to each other, in the sense that their ratio is bounded
above and below. Consequently, we drop the dependence on� in the notation. See [11,
§2.3] for a discussion of basic properties of the above definition.

1.4 Height of rational subspaces

LetW ⊂ slN (Q) be a d-dimensional subspace, so∧dW is a rational line in∧dslN (Q).
This line is diagonally embedded in ∧dslN (A), and we do not distinguish between
this diagonal embedding and the line.

We endow ∧dslN (Qv) with the maximum norm with respect to the basis obtained
by collecting the d-fold wedges of (distinct, ordered) elements of the canonical basis
of slN (Z). In this section, we will again use ‖ ‖v to denote this norm.

Let vW denote a primitive integral vector on∧dW—this vector is obtained by fixing
a Z-basis for W ∩ slN (Z). Define

ht(W) := ‖vW‖∞. (1.3)

This is independent of the choice of the basis; moreover, because we used the max
norm in the above definition, ht(W) is an integer. Alternatively, ht(W)may be defined
as follows. Let {e1, . . . , ed} be a Q-basis for W. Then

ht(W) =
∏

v

‖e1 ∧ · · · ∧ ed‖v
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where the product is taken over all places of Q. In view of the product formula, the
above is independent of our choice of the rational basis forW.

Given a Q-subgroup H of SLN we define

ht(H) := ht
(
Lie(H)

) = ‖vH‖∞, (1.4)

where vH is a primitive integral vector as above. If H is a Q-subgroup of G instead,
we set ht(H) = ht(ι(H)).

The volume of an adelic orbit defined in §1.3 is closely related to the height function.
This relationship is easy to describe for unipotent groups and was studied in [11,
App. B], under the assumption that G is semisimple.

We now define the height of Y to be

ht(Y ) := max{ht(G), vol(Y )}. (1.5)

The following theorem is the main result of this paper.

Theorem 1.1 There exists some κ1 > 0 depending only on N, and for any datum (G, ι)

as in §1.1 there exists some p ∈ � f with

p � (
log ht(Y )

)2
,

so that the following holds. For each g ∈ G(A), there exists some γ ∈ G(Q) such that
ι(gγ )q ∈ SLN (Zq) for all primes q 	= p,

|ι(gγ )∞| � (
log ht(Y )

)κ1 and |ι(gγ )p| � ht(ι(g))κ1 ht(Y )κ1 .

Moreover, the implicit multiplicative constants depend only on N.

The existence of such a prime p relies on Prasad’s volume formula [24], see §5.1
for more details.

1.5 The S-arithmetic setting

Let S ⊂ � be a finite subset which contains the infinite place. We will write QS for∏
v∈S Qv , and ZS will denote the ring of S-integers.
Define htS : SLN (QS) → R

+ by

htS(g) := max
{
(
∏

v∈S ‖gw‖v)
−1 : 0 	= w ∈ Z

N
S

}
.

For any S as above, define �S (or simply � if there is no confusion) by

�S := the projection ofG(Q) ∩
(
G(QS) × ∏

q /∈S ι−1(SLN (Zq)
)
toG(QS);

note that �S is a lattice in G(QS).

123



Diameter of homogeneous spaces: an effective account 1977

Let �S ⊂ SLN (QS) be an open set which contains the identity and has compact
closure. Put Ŷ = ι(G(QS)/�) and define

vol(Ŷ ) := mS
(
ι(G(QS)) ∩ �S

)−1
,

where mS is a Haar measure on ι(G(QS)) normalized so that mS(Ŷ ) = 1.

Theorem 1.2 Let (G, ι) be as in §1.1. Let S be a finite set of places ofQwhich contains
the infinite place. For every v ∈ S, letGv be a semisimple algebraicQv-group. Assume

1. Gv andG are isomorphic overQv; in particular,G is semisimple andGv is simply
connected.

2. The group G(QS) = ∏
v∈S G(Qv) = ∏

v∈S Gv(Qv) is not compact.

There exists a constant κ2 > 0 depending only on N and a constant C ≥ 1
which depends on G(QS) and N, but not on G, so that the following holds. For every
g ∈ G(QS) there exists some δ ∈ � such that

|ι(gδ)| ≤ C htS(ι(g))
κ2 vol(Ŷ )κ2 .

This theoremwill be proved in §6; see in particular Theorem6.2where Theorem1.2
is restated and proved. We will also discuss some other corollaries of Theorem 1.1
in §6.

Let us highlight two features of the above theorem. First, note that once N is fixed
the dependence on the lattice � in the estimates is only through its covolume vol(Ŷ ).
Second, the above estimates use vol(Ŷ ) instead of vol(Y ); the fact that vol(Ŷ ) and
vol(Y ) are polynomially related to each other is a consequence of deep results by
Prasad and Borel and Prasad [3, 24], see §6.1.

2 Notation and preliminaries

2.1 Notation

Throughout the paper, �, A, etc. will be as in §1.1. In particular, A = ∏′
v∈� Qv

where
∏′ denotes the restricted direct product with respect to Zp for p ∈ � f . Given

an element g in SLN (A) (or in slN (A), AN , etc.), we write gv for the v-th component
of g.

If S ⊂ � is a finite set of places containing the infinite place, ZS will denote the
ring of S-integers, that is ZS = {r ∈ Q | |r |v ≤ 1 for v /∈ S}. On the other hand, QS

will denote the product
∏

v∈S Qv . There are canonical inclusions Q ⊂ A, Q ⊂ QS ,
QS ⊂ A, etc. which will often be omitted from the notation.

For any finite place p ∈ � f , Fp = Zp/pZp is the finite field of order p. Let |x |p
denote the absolute value onQp normalized so that |p|p = 1/p. Finally, let Q̂p denote
the maximal unramified extension of Qp, Ẑp denote the ring of integers in Q̂p, and
F̂p denote the residue field of Ẑp. Note that F̂p is the algebraic closure of Fp.
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Recall that, for any place v ∈ �, ‖ ‖v denotes the maximum norm both on Q
N
v

and slN (Qv) with respect to their standard bases. When there is no ambiguity, we
may drop the subscript v. For this norm, we denote BslN (Qv)(r) the ball in slN (Qv)

of radius r centered at 0.
Let (G, ι) be an algebraic datum, as described in 1.1. For any v ∈ �, let gv =

Lie(G(Qv)). Using the embedding dι : gv → slN (Qv), we pull back the norm ‖ ‖v to
a norm on gv which we continue to denote by ‖ ‖v (or ‖ ‖∞, ‖ ‖p). For these norms,
we define Bgv (r) to be the ball in gv of radius r centered at 0.

For every v ∈ �, we let Gv = ι(G(Qv)); in particular, G∞ = ι(G(R)).
In the sequel, the notation A � B means: there exists a constant c > 0 so that

A ≤ cB; the implicit constant c is permitted to depend on N , but (unless otherwise
noted) not on anything else. We write A � B if A � B � A. If a constant (implicit
or explicit) depends on another parameter or only on N , we will make this clear by
writing e.g. �ε , �N , c(G), etc.

The exponents κ• are allowed only to depend on N . We also adopt the �-notation
from [12]. We write B = A±� if B = cA±κ , where κ > 0 and c depend only on N ,
unless it is explicitly mentioned otherwise. Similarly one defines B � A�, B � A�.
Finally, we also write A � B� if A� � B � A� (possibly with different exponents).

2.2 Injectivity radius in X

Given η > 0, put 
η := exp(BslN (R)(η)). Throughout, we assume η0 is small enough
so that exp : BslN (R)(η0) → 
η0 is a diffeomorphism. For any η > 0, let

�η := 
η ×
(∏

� f

SLN (Zp)
)
.

We fix � = �η0 ; this set will be the one used to measure the volume of (G, ι), as
described in §1.3.

For x ∈ X , define πx : SLN (A) → X by πx (g) = gx ; when x = e we simply
write π for πx . For every 0 < η < η0, define

Xη := {x ∈ X : πx is injective when restricted to�η}. (2.1)

If η ≥ η0, set Xη = ∅. Let Yη := Y ∩ Xη.

Lemma 2.1 There exists some constant κ3 > 0 so that the following holds.

1. For any g ∈ SLN (A) we have g ∈ Xκ3 ht(g)−κ3 .
2. If gSLN (Q) ∈ Xη, then ht(g) � η−κ3 .

Proof Let g ∈ SLN (A). First note that by strong approximation for SLN , there exists
some γ0 ∈ SLN (Q) so that

gγ0 = (g′∞, (g′
p)) ∈ SLN (R) × (∏

p SLN (Zp)
)
.
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Further, using the reduction theory of SLN (R), there exists some γ̂1 ∈ SLN (Z) so
that g∞γ̂1 = kau, where k ∈ SON (R), a = diag(ai ) is diagonal with positive
entries satisfying aia

−1
i+1 ≤ 2/

√
3, and u = (ui j ) is unipotent upper triangular with

|ui j | ≤ 1/2. Note that

‖aua−1‖op ≤ 1

2

(
(2/

√
3)N − 1

(2/
√
3) − 1

+ 1

)
� 1

for any a and u as above.
Let γ = γ0γ1, where γ1 denotes the diagonal embedding on γ̂1 in SLN (Q) ⊂

SLN (A). Then, since γ1,p ∈ SLN (Zp) for all p, we have

gγ = (kau, (ĝp)) ∈ SLN (R) × (∏
p SLN (Zp)

)
. (2.2)

For w ∈ Q
N , we have

c(gγw) = ‖(kau)w‖∞ · (∏
p ‖ĝpw‖p

)

= ‖(kaua−1)aw‖∞ · (∏
p ‖w‖p

)
since ĝp ∈ SLN (Zp)

� ‖aw‖∞ · (∏
p ‖w‖p

)
since k ∈ SON (R), ‖aua−1‖op � 1.

(2.3)

Moreover, we have ‖aw‖∞ ≤ (maxi ai )‖w‖∞ = |a| · ‖w‖∞, and thus also
|a|−1‖w‖∞ ≤ ‖aw‖∞. Therefore, (2.3) implies that

|a|−1c(w)−1 � c((gγ )w)−1 � |a|c(w)−1. (2.4)

Now for w an appropriate basis vector, we have

‖aw‖−1∞ = (min
i

ai )
−1 = max

i
a−1
i = ‖a−1‖op,

and since det a = 1, we have ‖a−1‖op ≥ ‖a‖1/(N−1)
op . For suchw, it thus follows from

(2.3) that c((gγ )w)−1 � |a|1/(N−1). Together with (2.4), this shows

|a|1/(N−1) � ht(g) = max{c(Ad(gγ )w)−1 : 0 	= w ∈ slN (Q)} � |a|. (2.5)

Now if instead w ∈ slN (Q), we have

‖Ad(a)w‖∞ ≤ (max
i, j

ai a
−1
j )‖w‖∞ ≤ |a|2‖w‖∞.

In the same way as above, since k ∈ SON (R) and ‖aua−1‖op � 1, there is some
c � 1 such that for any η > 0,

Ad(k(aua−1)a)−1BslN (R)(η) ⊂ Ad(a)−1BslN (R)(cη) ⊂ BslN (R)(c|a|2η).
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Applying the exponential map yields

(k(aua−1)a)−1
η(k(aua
−1)a) ⊂ 
c|a|2η.

Therefore, we have

γ −1g−1�ηgγ ∩ SLN (Q) ⊂ (
(kau)−1
ηkau ∩ SLN (Z)

) × (∏
p SLN (Zp)

)

⊂ (

c|a|2η ∩ SLN (Z)

) × (∏
p SLN (Zp)

)
.

In particular, if η � |a|−2, then γ −1g−1�ηgγ ∩SLN (Q) = {1}. That is: g ∈ Xc′|a|−2

for perhaps another constant c′ > 0. This implies the claim in (1) in view of (2.5).
To see (2) in the lemma, let η > 0 and suppose gSLN (Q) ∈ Xη. Let γ ∈ SLN (Q)

be so that gγ is as in (2.2). For any w ∈ slN (R) in the appropriate root space, we have

‖Ad(a)w‖−1∞ = (min
i, j

ai a
−1
j )−1‖w‖∞ = (max

i, j
ai a

−1
j )‖w‖∞

≥ N−2
( ∑

i

ai
)( ∑

j

a−1
j

)
‖w‖∞ ≥ N−2|a| · ‖w‖∞. (2.6)

Because k ∈ SON (R), ‖aua−1‖op � 1, we may scale w so that

w ∈ Ad(kaua−1)−1BslN (R)(η)

while keeping ‖w‖∞ � η. With this choice for w, we have

Ad(a)−1w ∈ Ad(kau)−1BslN (R)(η),

that is, exp(Ad(a)−1w) ∈ (kau)−1
ηkau. In consequence,

‖Ad(a)−1w‖∞ < 1. (2.7)

Indeed, otherwise, we would be able to pick Ad(a)−1w to be an elementary matrix,
for which we would have

exp(Ad(a)−1w) ∈ (
(kau)−1
ηkau × ∏

p SLN (Zp)
) ∩ SLN (Q)

= γ −1g−1�ηgγ ∩ SLN (Q).

This contradicts the fact g−1�ηg ∩ SLN (Q) = {1}. In virtue of our choice for w,
(2.6), and (2.7) , we have

|a|η � |a| · ‖w‖∞ � ‖Ad(a)−1w‖∞ < 1.

Finally, in view of (2.5), this immediately implies

ht(g) � |a| � η−1

and concludes the proof of the lemma. ��
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2.3 Remark

In the definition (1.1) of the height, instead of using the action of SLN (A) on A
N ,

one could have acted on slN (A) via the adjoint action. More precisely, one could have
defined h̃t : SLN (A) → R

+ by

h̃t(g) := max{c(Ad(g)w)−1 : 0 	= w ∈ slN (Q)},
where the function c is given by the same expression c(w) := ∏

v∈� ‖wv‖v . The proof
of lemma 2.1 can be used to show that |a| � h̃t(g) � |a|2 (with a as in (2.2)), and in
consequence that

ht(g) � h̃t(g) � ht(g)2(N−1).

The two heights are thus polynomially related, and for the purpose of Theorem 1.1,
they can be used interchangeably.

2.4 Elements from Bruhat-Tits theory

We recall a few facts from Bruhat-Tits theory, see [28] and references there for the
proofs. LetG be a connected semisimple group defined overQ. Let p be a finite place,
then

1. For any point o in the Bruhat-Tits building ofG(Qp), there exists a smooth affine

group scheme G
(o)
p over Zp, unique up to isomorphism, such that: its generic

fiber is G(Qp), and the compact open subgroup G
(o)
p (Zp) is the stabilizer of o in

G(Qp), see [28, 3.4.1].

2. If G splits over Qp and o is a special point, then the group scheme G
(o)
p is a

Chevalley group scheme with generic fiber G, see [28, 3.4.2].
3. redp : G(o)

p (Zp) → Gp
(o)(Fp), the reduction mod p map, is surjective, see [28,

3.4.4].
4. Gp

(o) is connected and semisimple if and only if o is a hyperspecial point. Sta-
bilizers of hyperspecial points in G(Qp) will be called hyperspecial subgroups,
see [28, 3.8.1] and [24, 2.5].

If G is quasi-split over Qp, and splits over Q̂p, then hyperspecial vertices exists,
and they are compact open subgroups of maximal volume. Moreover a theorem of
Steinberg implies that G is quasi-split over Q̂p for all p, see [28, 1.10.4].

It is known that for almost all p the group G is quasi-split over Qp, see [23,
Theorem 6.7]. Moreover, for almost all p the groups Kp are hyperspecial, see [28,
3.9.1].

3 Small Levi decomposition in Lie algebras

Recall from §2.1 that ‖ ‖ denotes the (archimedean) max norm both on Q
N and

on slN (Q) with respect to the standard basis. Note that if u, v ∈ slN (Q), we have
‖[u, v]‖ � ‖u‖‖v‖.
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If g is a subalgebra of slN (Q), and B = {u1, . . . , uM } is a Z-basis of g ∩ slN (Z),
we can also endow g with the max norm ‖ ‖B in the basis B. For any u ∈ g we have

(max
i

‖ui‖)−1‖u‖ � ‖u‖B � (max
i

‖ui‖)‖u‖.

In this section we prove the following.

Proposition 3.1 There exists some κ4 > 0with the following property. Let g ⊂ slN (Q)

be a Lie subalgebra and let r = R(g) be its radical. Further, let l ⊂ g be a reductive
subalgebra with l ∩ r = {0} (it may be that l = {0}). Assume that ht(g) ≤ T and
ht(l) ≤ T . There exists a Levi decomposition g = h ⊕ r with l ⊂ h, so that

ht(h) � T κ4 and ht(r) � T κ4 ,

where the implied constants depend only on N.

Roughly speaking, the proof of the proposition is based of the following phe-
nomenon: a consistent system of linear equations with integral coefficients which are
bounded by T has a solution of norm � T �.

Let us also note that if R(G) = Ru(G) and g = Lie(G), the condition l ∩ r = {0}
holds true for any reductive subalgebra.

3.1 Systems of integral linear equations

For the convenience of the reader, in this section we record some lemmas which
provide estimates on the size of solutions of systems of linear equations with integral
coefficients.

We note that the following lemmas aim for good polynomial bounds. If one is
content with a rough polynomial bound, one could easily prove

|xlj | ≤ √
(N − 1)! · (max

i j
|ai j |)N−1

in the first lemma and the bound ‖vi‖ ≤ N max j ‖u j‖ in the third lemma — these
rough bounds suffice for our applications as well.

Lemma (Siegel’s lemma) Let A = (ai j ) be a M × N-matrix (N > M) of full rank,
with integer coefficients ai j , and

{∑N
j=1 ai j x j = 0 i = 1, . . . , M

the associated linear system. There exists a basis {(xl1, . . . , xlN ) | l = 1, . . . , N − M}
of the space of solutions of the system satisfying xlj ∈ Z and |xlj | ≤ √| det AAT | for
l = 1, . . . N − M.

Proof See [2, Thm. 2]. ��
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Lemma (Siegel’s lemma for inhomogeneous equations) Let

{∑N
j=1 ai j x j = bi i = 1, . . . , M

be a consistent system of M linear equations in N > M variables, with integer
coefficients ai j . Then the system has a solution (

y1
d , . . . ,

yN
d ) with yi , d ∈ Z and

max
i

{|yi |, |d|} � (max
i j

|ai j |)�.

Proof The lemma is deduced from [22, Thm. 2 and 3]. First, by assumption, the
system has a solution (

y1
z1

, . . . ,
yN
zN

) in Q
N . Set P = {p ∈ � f : p|zi for some1 ≤ i ≤

N } ∪ {∞}. Then [22, Thm. 2 and 3] apply to our system and the set P of places, and
yield a solution of the system with bounded height.

The bound on the height is independent of P , and in our setting, it readily translates
to a polynomial bound on maxi {|yi |, |zi |}. ��

Lemma (extracting small Z-bases) Let V be a vector space over Q endowed with a
norm ‖ · ‖ and let VZ be a free Z-submodule of V which spans V over Q. Given
a basis {u1, . . . , uN } of V over Q lying in VZ, there exists a subset {v1, . . . , vN } of
VZ with the property that {v1, . . . , vi } is a Z-basis of (Qu1 + · · · + Qui ) ∩ VZ and
‖vi‖ ≤ ∑i

j=1 ‖u j‖ for i = 1, . . . , N.

Proof Let {v1, . . . , vN } be a Z-basis of VZ and A = (ai j ) be the integer matrix such
that (u1, . . . , uN ) = (v1, . . . , vN )A. Up to a change of the basis {v1, . . . , vN }, we
may assume that A is in Hermite normal form, i.e., A is upper triangular, all its entries
are non-negative, and in a given column, the entry on the diagonal is strictly bigger
than the other ones. We then have

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

u1 = a11v1
u2 = a12v1 + a22v2

...

um = a1mv1 + · · · + aNNvN .

If w ∈ (Qu1 + · · · + Qui ) ∩ VZ, we may write w = ∑N
j=1 λ jv j with λ j ∈ Z. Now

w −
i∑

j=1

λ jv j =
N∑

j=i+1

λ jv j ∈ (Qv1 + · · · + Qvi ) ∩ (Qvi+1 + · · · + QvN ) = {0},

and it follows that w = ∑i
j=1 λ jv j , i.e. {v1, . . . , vi } is a Z-basis of (Qu1 + · · · +

Qui ) ∩ VZ.
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Lastly, regrouping terms and taking norms in the system above yields

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

‖v1‖ = ‖u1‖
a11

≤ ‖u1‖
‖v2‖ = ‖u2−a12v1‖

a22
< ‖u2‖ + ‖v1‖

...

‖vm‖ = ‖um−a1N v1−···−a(N−1)N vN−1‖
aNN

< ‖u2‖ + ‖v1‖ + . . . ‖vN−1‖.

The lemma follows by combining all the inequalities. ��

3.2 Proof of Proposition 3.1

We need to find a Levi decomposition g = h ⊕ r, where r is the radical of g, and
Z-bases {w1, . . . , wn} of h ∩ slN (Z), and {v1, . . . , vm} of r ∩ slN (Z) which satisfy
that

‖vi‖ ≤ T � and ‖w j‖ ≤ T � for all i, j .

If l 	= 0, let {ũ1, . . . , ũl} be a Z-basis for l ∩ slN (Z) with ‖ũi‖ � T �. Extend this
to a Q-basis B̃ = {ũ1, . . . , ũM } ⊂ g ∩ slN (Z) for g with ‖ũi‖ � T � for all i . By the
extracting small Z-bases lemma in §3.1, there exists a Z-basis B̂ = {û1 . . . , ûM } for
g∩ slN (Z) so that ‖ûi‖ ≤ T � for all i and {û1, . . . , ûi } is a Z-basis for (Qũ1 + · · · +
Qũi ) ∩ slN (Z). In particular, {û1, . . . , ûl} is a Z-basis for l ∩ slN (Z) if l 	= 0.

Note that the structure constants {αk
i j } of g in the basis {ui } are bounded:

max
k

|αk
i j | = ‖[ûi , û j ]‖B̂ � (max

j
‖û j‖) · ‖[ûi , û j ]‖ � T �. (3.1)

As B̂ is a Z-basis for g ∩ slN (Z), the {αk
i j } are integers.

Step 1. Bounding ht(r).
Let k denote the killing form of g. Recall that the radical r = R(g) is the orthogonal

complement of the derived algebra [g, g] for k. Thus r is given in the basis B̂ by the
solutions (yi ) of the system

k
( M∑

i=1

yi ûi , [û j , ûk]
)

= 0, j, k = 1, . . . , M .

The coefficients of this system are � T �. Thus, after removing redundant equations
from the system, we may apply Siegel’s lemma combined with extracting small Z-
bases lemma from §3.1 and obtain the following. There exists a Z-basis {v1, . . . , vm}
of r ∩ slN (Z), so that ‖vi‖B̂ � T �. In consequence, we get that

‖vi‖ � (max
j

‖û j‖) · ‖vi‖B̂ � T �. (3.2)
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Step 2. A basis for g adapted to l, r, and [r, r].
Let {v1, . . . , vm} be a Z-basis of r ∩ slN (Z) as constructed above. We first gather

a basis of [r, r] among {[vi , v j ] | i, j = 1, . . . ,m}, then extend this to a Q-basis, C,
of r by adding an appropriate subset of {v1, . . . , vm} to it. Finally, we extend C to a
Q-basis, B′, of g by adding an appropriate subset of {û1, . . . , ûM } to C. Note that if
l 	= 0, we may obtain {û1, . . . , ûl} ⊂ B′ because l ∩ r = {0}.

Applying the extracting small Z-bases lemma from §3.1 yields a Z-basis B =
{u1, . . . , uM }, of g ∩ slN (Z) so that

1. ‖ui‖ � T �.
2. {u1, . . . , um′ } is a Z-basis for [r, r] ∩ slN (Z).
3. {u1, . . . , um} is a Z-basis for r ∩ slN (Z).
4. {u1, . . . , um+l} is a Z-basis for (l ⊕ r) ∩ slN (Z).

In particular, {um′+1, . . . , um} projects to a basis of r/[r, r]. Let uswriteD := {um′+1+
[r, r], . . . , um + [r, r]}.

Also note that for 1 ≤ i ≤ l and 1 ≤ j ≤ m + l, there are ci j ∈ Z with |ci j | � T �

so that for each 1 ≤ i ≤ k we have

ûi =
m+l∑

j=1

ci, j u j . (3.3)

Step 3. Finding a Levi subalgebra h with small height.
We argue by induction on �d(r), the derived length of the radical r.When �d(r) = 0,

g is semisimple, and it suffices to set h = g.
Therefore, let us assume that �d(r) ≥ 1. Define

E = { f ∈ End(g, r/[r, r]) : f satisfies (a), (b), and (c)},

where End(g, r/[r, r]) denotes the set of Q-linear maps from g to r/[r, r], and
(a) l ⊂ ker f ,
(b) f restricts to the canonical projection r → r/[r, r],
(c) f ([u, v]) = [u + [r, r], f (v)] + [ f (u), v + [r, r]] for all u, v ∈ g.

If h is a Levi subalgebra of g which contains l, then the canonical projection g =
r ⊕ h → r/[r, r] (whose kernel is precisely [r, r] ⊕ h) belongs to E . Now, since l is
reductive, there exists a Levi subalgebra h so that l ⊂ h, see [20]. Therefore, E 	= ∅.

Claim If f ∈ E, then ker f is a Lie subalgebra of g whose radical is [r, r].

Proof of the claim First note that in view of (c) above, ker f is a subalgebra. Also, it
is clear from (b) that [r, r] ⊂ R(ker f ).

To see the converse, note that r + ker f = g, hence r + R(ker f ) is an ideal of g.
Moreover, r + R(ker f ) is solvable. Therefore, R(ker f ) ⊂ r ∩ ker f = [r, r], where
the last equality follows from (b). ��
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In view of the claim, if h is a Levi subalgebra of ker f with l ⊂ h, then

g = r + ker f = r + ([r, r] ⊕ h) = r ⊕ h. (3.4)

That is: h is a Levi subalgebra of g and l ⊂ h.
The strategy now is to find some f ∈ E with ht(ker( f )) � T �. Then the above

observation and inductive hypothesis will yield the desired Levi subalgebra.
We now turn to the details. First note that in view of (a), (b) and (c), we have that

E is the set of solutions f ∈ End(g, r/[r, r]) of the inhomogeneous system
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

f (ui ) = 0 i = 1, . . . ,m′

f (ui ) = ui + [r, r] i = m′ + 1, . . . ,m

f (ûi ) = 0 i = 1, . . . , l

f ([ui , u j ]) = [ui + [r, r], f (u j )] + [ f (ui ), u j + [r, r]] i, j = 1, . . . , M .

In view of (3.1) and (3.3) we have the following. When f is written in the basis
of End(g, r/[r, r]) associated to B and D, the above system becomes a linear system
whose coefficients are integers bounded in absolute value by � T �.

Since E is not empty, after perhaps removing redundant equations, we may apply
Siegel’s lemma for inhomogeneous equations in §3.1 and get the following. There is
a solution f whose matrix in the bases B and D has rational entries, with numerator
and common denominator c � T �. Put f ′ = c f , so that the matrix of f ′ in the bases
B and D has integer coefficients of size � T �.

At last, another application of Siegel’s lemma and extracting small Z-bases lemma
in §3.1 to f ′ yields that ker f ∩ slN (Z) has a Z-basis {w1, . . . , wn′ } satisfying

‖wi‖ � T � 1 ≤ i ≤ n′

Recall from the claim that l ⊂ ker f , R(ker( f )) = [r, r], and �d([r, r]) < �d(r).
Hence by the inductive hypothesis, ker f has a Levi subalgebra, h, with ht(h) � T �.

In view of (3.4), this finishes the proof of Step 3 and the proposition. ��

4 Consequences of effective Levi decomposition

Recall from §1.1 that we fixed the following.

1. A connected, simply connected, algebraic Q-group G whose solvable radical is
unipotent, i.e., R(G) = Ru(G) =: R.

2. An algebraic homomorphism ι : G → SLN defined over Q with a finite central
kernel.

Also recall that μY (or simply μ) denotes the G = ι(G(A))-invariant probability
measure on Y = ι(G(A)/G(F)). Let mG (or simply m) be a Haar measure on G
which projects to μ under the orbit map.
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In this section, we will use the results from §3 to find a good Levi decomposition
for ι(G). Then we will relate the notion of height of Y (see §1.3, §1.4) to the heights
of orbits similarly defined using the radical and our fixed Levi subgroup.

4.1 Finding a good Levi subgroup

Let g′ ⊂ slN (Q) (resp. r′) denote the Lie algebra of ι(G) (resp. of ι(R)). Set T :=
ht(g′).

Let h′ be a Levi subalgebra of g′ given by Proposition 3.1 applied to g′, so that
ht(h′) � T �.

Let H′ be the subgroup of ι(G) with Lie(H′) = h′. Then H′ is a Levi subgroup of
ι(G), and we have ι(G) = H′ι(R).

We now discuss similar decompositions over Q and also A. First note that, since
R = Ru(G),H′ is semisimple (not just reductive), andwehaveH′(A)∩ι(R)(A) = {1}.

SetH = ι−1(H′). Since ι has finite central kernel,H is a semisimpleQ-subgroup of
G isogenous toH′; thusH is a LeviQ-subgroup ofG. Moreover,G(Q) = H(Q)R(Q).
Indeed, in the exact sequence

1 → R(Q) → G(Q) → H(Q) → H1(Q,R)

associated to the quotientG/R ∼= H, the term H1(Q,R) vanishes becauseR is unipo-
tent. Hence G(Q) → H(Q) is onto.

The same argument applied to the group ι(G) shows that ι(G)(Q) = ι(H)(Q)

ι(R)(Q).
The above also implies that

G(A) = H(A)R(A).

Indeed, since G(Q) = H(Q)R(Q), the embedding H → G is a section defined over
Q of the quotient map G → H. Hence G(A) → H(A) is surjective, see [29, §1.2],
and we get G(A) = H(A)R(A) as was claimed.

Applying ι, this yields ι(G(A)) = ι(H(A))ι(R(A)).

4.2 Product structure of Y,�Y, andmG

Let p̂rH : G → H be themapwhich is induced from the natural projectionG → G/R.
More explicitly, given g ∈ G, we have the unique decomposition

g = gHgR where gH ∈ H and gR ∈ R;

then p̂rH(g) = gH.
Let prH : G → H := ι(H(A)) be the induced map, given by prH (g) = gH , where

g = gHgR ∈ ι(H(A))ι(R(A)).
Put YH := ι(H(A)/H(Q)). The map prH induces a map Y → YH given by

ι(g)SLN (Q) �→ ι(gH)SLN (Q) for g ∈ G(A).To see this, suppose ι(g−1
1 g2) ∈
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SLN (Q) for some g1, g2 ∈ G(A). Then ι(g−1
1 g2) ∈ ι(G)(Q) = ι(H)(Q)ι(R)(Q),

hence

ι((g1)H
−1(g2)H) = ι((g−1

1 g2)H) ∈ ι(H)(Q) ⊂ SLN (Q).

We continue to denote the map so induced from Y to YH by prH .
Put R := ι(R(A)) and YR := ι(R(A)/R(Q)); we have a fibration

YR Y

YH

prH

The fiber over ι(h)SLN (Q) ∈ YH is pr−1
H (ι(h)) = ι(h)ι(R(A))SLN (Q), the translate

of YR by ι(h).
Let μR (resp. μH ) be a R-invariant (resp. H -invariant) probability measure on YR

(resp. YH ). Let μ̂ be the measure on Y defined by

∫

Y
f dμ̂ =

∫

YH

(∫

YR

f (hrSLN (Q)) dμR(r)

)
dμH (h).

Since H is semisimple, the modulus of the action of H on μR is trivial. Thus μ̂ is
a G-invariant probability measure on YG ; that is: μ̂ = μY .

Let mH and mR be Haar measures on ι(H(A)) and ι(R(A)) which project to μH

and μR , respectively. The measure m̂ on G given by the product of mH and mR is a
Haar measure. Moreover, m̂ projects to the invariant probability measure μ̂ = μY on
Y via the orbit map. Therefore, mG = m̂ is the product of mH and mR .

Lemma 4.1 There exists some κ5 so that

vol(YR)κ5 � ht(R) � vol(YR).

Proof Recall that ι is an isomorphism on R. For every prime p, put

Cp = ι−1(R′(Qp) ∩ SLN (Zp));

Cp is a compact open subgroup of R(Qp). By the strong approximation theorem for
unipotent groups, we have

R(A) = (
R(R) × ∏

p Cp
)
R(Q).

In other words, for every g ∈ R(A) there exists some γ0 ∈ R(Q) so that

gγ0 = (ĝ∞, (ĝp)) ∈ R(R) × ∏
p Cp.

123



Diameter of homogeneous spaces: an effective account 1989

Recall now that log(ι(R(R)) ∩ SLN (Z)) ⊂ (r′ ∩ 1
D slN (Z)) for some integer D

depending only on N . Let {v1, . . . , vn} be a Z-basis for r′ ∩ 1
D slN (Z). For every

δ > 0, put

Fδ :=
{
h∞ ∈ ι(R(R)) : h∞ = exp

(∑
civi

)
, |ci | < δ

}
×

∏

p

ι(Cp).

Note that,

Fδ ∩ SLN (Q) ⊂ SLN (Z);

therefore, in view of the choice of D, for small enough δ � 1we have Fδ ∩SLN (Q) =
{e}.

Also, note that Fδ = F−1
δ ; and if δ � 1 is small enough, hh′ ∈ F�δ for any

h, h′ ∈ Fδ . Altogether, we get that Fδ injects into YR for all small enough δ � 1.
Recall thatmR is a Haar measure on ι(R(A)) normalized so that μR(YR) = 1; also

recall that � = exp(BslN (R)(η0)) × ∏
p SLN (Zp). Therefore,

mR(ι(R(A)) ∩ �) � ‖v1 ∧ · · · ∧ vn‖−1.

Since ‖v1 ∧ · · · ∧ vn‖ � ht(R), we get from the above that

ht(R) � vol(YR) = mR(ι(R(A)) ∩ �)−1.

To see the other inequality, let g ∈ R(A). Let γ0 ∈ R(Q) be so that

gγ0 = (ĝ∞, (ĝp)) ∈ R(R) × ∏
p Cp.

There exists some γ̂1 ∈ ι−1(exp(r′ ∩ N !slN (Z))) so that

|ι(ĝ∞γ̂1)| � ht(R)κ

for some κ independent of g. Note that ι(γ̂1) ∈ ι(R(R))∩SLN (Z), hence γ̂1 ∈ R(Q).
Let γ1 be the diagonal embedding of γ̂1 in R(A). Then since ι(γ̂1) ∈ SLN (Z), we

get that

gγ0γ1 = (ĝ∞, (ĝp))γ1 = (ĝ∞γ̂1, (g̃p)) ∈ R(R) × ∏
p Cp.

Since we can cover {g ∈ R(R) : |ι(g)| � ht(R)κ } with � ht(R)� translates of
ι(R(R)) ∩ exp(BslN (R)(η0)), we get that

mR(ι(R(A)) ∩ �) � ht(R)−�.

Therefore, vol(YR)� � ht(R); the proof is complete. ��
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Lemma 4.2 There exist κ6 so that the following holds. For any g ∈ G we have

ht(G)−κ6 ht(g)κ6 � ht(prH (g)) � ht(G)κ6 ht(g)κ6 .

Proof Recall our notation G′ = ι(G) and the Levi subgroup H′ of G′ from §4.1. Put
R′ := ι(R) = Ru(G′). If R′ = {1}, then R = {1} and there is nothing to prove.
Therefore, let us assume that R′ is a nontrivial unipotent Q-subgroup of SLN .

Let P ⊂ SLN be the parabolic subgroup associated toR′ as in [4]. That is:U0 = R′
and Ui is defined inductively by Ru(NSLN (Ui−1)). Then Ui ⊂ NSLN (Ui−1) and
Ui−1 ⊂ Ui . This process terminates after d ≤ N 2 steps and gives rise to a parabolic
subgroup, P, with the following properties.

1. ht(P) � ht(R)�.
2. R′ ⊂ Ru(P) =: W.
3. NSLN (R′) ⊂ P.

In view of (1) and Proposition 3.1, we have ht(W) � ht(P)� � ht(R)�. Moreover,
by (3) we have G′ ⊂ P.

Let FP denote the flag defined byW as follows. Let V0 = Q
N , and for any m > 0,

let

Vm = Q-span{w1 . . . wmv : v ∈ Q
N , wi ∈ Lie(W)}.

Then {Vm} forms a descending chain of subspaces of Q
N ; let M ≤ N be so that

VM 	= 0 but VM+1 = 0. Further, note that ht(Vm) � ht(R)� for each 0 ≤ m ≤ M .
There exists some δ = (

ai j
bi j

) ∈ SLN (Q)with |ai j |, |bi j | � ht(R)� so that δFP = F0

where F0 is a standard flag, i.e.,F0 is a flag corresponding to a block upper triangular
parabolic subgroup P0. One could construct one such δ as follows: for each i ≥ 0
let V ′

i be a complement of VM+1−i in VM−i (in particular, V ′
0 = VM ), chosen so that

ht(V ′
i ) � ht(R)� for all i .

Let us put Q0 = [P0,P0]Ru(P0). The group Ru(P0) is unipotent upper triangular
and since δWδ−1 ⊂ Ru(P0), we have δR′δ−1 ⊂ Ru(P0). Further, δH′δ−1 ⊂ Q0 since
H′ is perfect and normalizes R′.

Let g ∈ G ⊂ G′(A); write g = gHgR where gH ∈ ι(H(A)) and gR ∈ ι(R(A))

— recall that prH (g) = gH . We will use the reduction theory of SLd to compute an
Iwasawa decomposition for representatives of ĝH := δgH δ−1 and ĝ := δgδ−1 in a
Siegel fundamental domain.

Decompose ĝH as a product of a block-diagonal matrix in Q0 and an element in
Ru(P0). Then using the reduction theory of SLd for each block matrix and the fact
that Ru(P0) is normal subgroup of Q0, we have the following. There exists some
γ0 ∈ Q0(Q) so that

ĝHγ0 = (kau, (g′
H ,p)) ∈ SLN (R) × (∏

p SLN (Zp)
)

(4.1)

where k ∈ SON (R), a = diag(ai ) is diagonal with aia
−1
i+1 ≤ 2/

√
3, and u = (ui j ) is

unipotent upper triangular with |ui j | ≤ 1/2 (see also the proof of Lemma 2.1).
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Let us write ĝR = δgRδ−1 ∈ Ru(P0)(A). Let γ1 ∈ SLN (Q) be unipotent upper
triangular, such that

(u, (e))γ −1
0 ĝRγ0γ1 = (u′, (u′

p))

with u′ = (u′
i j ) and |u′

i j | ≤ 1/2, and u′
p ∈ SLN (Zp). This, in view of (4.1), gives

ĝγ = ĝH ĝRγ = ĝHγ0(γ
−1
0 ĝRγ0γ1) = (ka, (g′

H ,p))(u, (e))γ −1
0 ĝRγ0γ1

= (kau′, (g′
H ,pu

′
p)) ∈ SLN (R) × (∏

p SLN (Zp)
)

(4.2)

where γ = γ0γ1.
As was discussed in the proof of Lemma 2.1, the decompositions in (4.1) and (4.2)

imply that

|a|� � ht(ĝH ) � |a|� and |a|� � ht(ĝ) � |a|�.

Recall now that g = δ−1ĝδ and gH = δ−1ĝH δ where δ = (
ai j
bi j

) ∈ SLN (Q) with

|ai j |, |bi j | � ht(R)� � ht(G)�. The claim thus follows. ��
Proposition 4.1 There exist κ7 and κ8 with the following property.

1.
(
vol(YH ) vol(YR)

)κ7 � ht(Y ) � (
vol(YH ) vol(YR)

)κ8 .

2.
(
ht(YH ) ht(YR)

)κ7 � ht(Y ) � (
ht(YH ) ht(YR)

)κ8 .

Proof Recall definitions of vol(·) and ht(·) of an algebraic data from (1.2) and (1.5),
respectively.

We first show that part (2) follows from part (1). Indeed by Lemma 4.1, we have
ht(R) � vol(YR); hence, ht(YR) � vol(YR). Moreover, by [11, App. B] we have
ht(H)� � vol(YH ); hence, vol(YH )� � ht(YH ) � vol(YH )�.

We now turn to the proof of part (1) in the proposition.
The upper bound. Because multiplication is Lipschitz (alternatively, by the Baker-

Campbell-Hausdorff formula), perhaps after changing η0, we have �η · �η ⊂ 
cη ×∏
v∈� f

SLN (ov) = �cη for some c depending only on N , hence

(
ι(H(A)) ∩ �η

) · (
ι(R(A)) ∩ �η

) ⊂ ι(G(A)) ∩ �cη.

In view of our discussion in §4.2, the measure of the left hand side is

mG
((

ι(H(A)) ∩ �η

) · (
ι(R(A)) ∩ �η

)) = mH
(
ι(H(A)) ∩ �η

) · mR
(
ι(R(A)) ∩ �η

)
.

On the other hand, by [11, §2.3], we have

mG
(
ι(G(A)) ∩ �cη

) �η mG
(
ι(G(A)) ∩ �η

)
.

Altogether, it follows that

vol(Y ) � mG
(
ι(G(A)) ∩ �cη0

)−1
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� mH
(
ι(H(A)) ∩ �η0

)−1 · mR
(
ι(R(A)) ∩ �η0

)−1

= vol(YH ) vol(YR).

To conclude the upper bound estimate, it thus suffices to show that

ht(G) � (vol(YH ) vol(YR))�.

To see this first note that since g = h ⊕ r, we have ht(G) � (ht(H) ht(R))�. Now
by Lemma 4.1, we have ht(R) � vol(YR). Moreover, by [11, App. B] we have
ht(H)� � vol(YH ). The claim follows.

The lower bound. For the lower bound estimate, we will use notation from the proof
of Lemma 4.2; in particular,G′ = ι(G),H′ is a Levi subgroup ofG′ andR′ = Ru(G′).
Recall from the proof of Lemma 4.2 that there exists some δ = (

ai j
bi j

) ∈ SLN (Q) with

|ai j |, |bi j | � ht(R)� and a block upper triangular parabolic subgroup P0 ⊂ SLN so
that

δG′δ−1 ⊂ P0 and δR′δ−1 ⊂ Ru(P0).

Recall also that h′ = Lie(H′), and that Q0 = [P0,P0]Ru(P0). We define M to be the
block diagonal Levi subgroup of Q0.

Apply Proposition 3.1 with Ad(δ)h′ ⊂ Lie(Q0). Therefore, there exists some Levi
subgroup M′ ⊂ Q0 so that

δH′δ−1 ⊂ M′ and ht(M′) � ht(G)�.

Let B = {v1, . . . , vd} be a Z-basis for Lie(Ru(P0)) ∩ slN (Z) with ‖vi‖ � 1.
Similarly, let C = {w1, . . . , wm} (resp. C′ = {w′

1, . . . , w
′
m}) be Z-bases for Lie(M) ∩

slN (Z), (resp. Lie(M′) ∩ slN (Z)) with ‖wi‖ � 1 and ‖w′
i‖ � ht(G)�.

Recall that any two Levi subgroups ofQ0 are conjugate to each other by an element
in Ru(P0). Writing these equations (in the Lie algebra) in the bases C and C′ in terms
of B we get the following. There exists some u = (ui j ) ∈ Ru(P0)(Q)with ui j = (

ci j
di j

)

and |ci j |, |di j | � ht(G)� so that uM′u−1 = M.
Altogether, there exist some δ̂ = (âi j/b̂i j ) ∈ SLN (Q) with |âi j |, |b̂i j | � ht(G)�

so that
δ̂H′δ̂−1 ⊂ M and δ̂R′δ̂−1 ⊂ Ru(P0). (4.3)

Put Ĝ = δ̂ι(G(A))δ̂−1, and define Ĥ , R̂ similarly. Having in mind our notations
Gp = ι(G(Qp)), etc., we write similarly Ĝ p = δ̂ι(G(Qp))δ̂

−1, etc.
Let h ∈ SLN (Zp) ∩ Q0. We can write h = h0h1 where h0 ∈ SLN (Zp) ∩ M and

h1 ∈ SLN (Zp) ∩ Ru(P0). In consequence, we have
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Ĝ p ∩ SLn(Zp) = (Ĥp ∩ SLN (Zp))(R̂p ∩ SLN (Zp)) (4.4)

for all primes p. Conjugating (4.4) by δ̂−1, we get

Gp ∩ δ̂−1
p SLN (Zp)δ̂p = (Hp ∩ δ̂−1

p SLN (Zp)δ̂p)(Rp ∩ δ̂−1
p SLN (Zp)δ̂p).

In particular, the image, Ip, of the product map from (Hp ∩ SLN (Zp)) × (Rp ∩
SLN (Zp)) intoGp containsGp ∩SLN (Zp)∩ δ̂−1

p SLN (Zp)δ̂p for all primes p. There-
fore,

mGp (Ip) ≥ mGp (Gp ∩ SLn(Zp))/Jp (4.5)

where Jp = [SLN (Z p) : SLN (Zp) ∩ δ̂−1
p SLN (Zp)δ̂p] for all primes p.

Since δ̂ = (âi j/b̂i j ) ∈ SLN (Q) with |âi j |, |b̂i j | � ht(G)�, we have

∏
p Jp � ht(G)� (4.6)

We also need an estimate for the real place. Let 0 < η ≤ η0 be a constant which will
be determined in the following. Suppose g ∈ ι(G(A))∩�η and write g = (g∞, (gp)).
By definition, g∞ = expw for some w ∈ g′ ⊗ R with ‖w‖ ≤ η. By Proposition 3.1
and our choice of h′, we can write w = wh′ + wr′ with wh′ ∈ h′ ⊗ R, wr′ ∈ r′ ⊗ R

and ‖wh′ ‖, ‖wr′ ‖ � ht(G)�η�. We pick η in such a way η � ht(G)−�, so that the
above implies

‖wh′ ‖, ‖wr′ ‖ ≤ εη0

for some ε which will be specified momentarily.
Using the Baker-Campbell-Hausdorff formula and the fact that r′ is an ideal of

g′, we see that the Levi component (g∞)ι(H(R)) of g∞ is just exp(wh′). Therefore, if
ε � 1 is chosen small enough, we get that (g∞)ι(H(R)) ∈ 
η0 and (g∞)ι(R(R)) ∈ 
η0 .
In consequence, we we have

mG∞(G∞ ∩ 
η0) � ht(G)�mH∞(H∞ ∩ 
η0)mR∞(R∞ ∩ 
η0). (4.7)

Altogether, we have

vol(YH ) vol(YR) = mH (ι(H(A)) ∩ �)−1mH (ι(R(A)) ∩ �)−1

(4.7)� � ht(G)�mG∞(G∞ ∩ 
η0)
−1 ∏

p

(
mGp (Ip)

)−1

(4.5)� � ht(G)� vol(Y )
∏

p Jp
(4.6)� � ht(G)� vol(Y )

(1.5)� � ht(Y )�.

This implies the lower bound estimate and finishes the proof. ��
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5 Proof of Theorem 1.1

We now combine the results from previous sections to complete the proof of The-
orem 1.1—the idea is to use the effective Levi decomposition of §4 to reduce the
problem to the case of semisimple and unipotent groups.

5.1 Semisimple case

In the next paragraphs, we prove (a slightly finer version of) Theorem 1.1 under the
assumption that G is semisimple. Therefore, until the end of §5.2, G is assumed to
be a connected, simply connected, semisimple group. Under these assumptions the
following was proved in [11].

Proposition 5.1 There exists a prime p and a parahoric subgroup K p of G(Qp) so
that the following hold.

1. p � (
log(vol(Y ))

)2
.

2. G is quasi-split over Qp and split over Q̂p, the maximal unramified extension of
Qp; further, K p is a hyperspecial subgroup of G(Qp).

3. Let Gp be the smooth Zp-group scheme associated to K p by Bruhat-Tits theory
(see 2.4). The map ι extends to a closed immersion from Gp to SLN .

4. There exists a homomorphism θp : SL2 → Gp so that the projection of
θp(SL2(Qp)) into each Qp-almost simple factor of G(Qp) is nontrivial.

Proof Parts (1) and (2) are proved in [11, §5.11]; part (3) is proved in [11, §6.1];
part (4) is proved in [11, §6.7]. ��

Let p be as in Proposition 5.1 and let θp be as in Proposition 5.1(4). We define the
one-parameter unipotent subgroup

u : Qp → θp(SL2(Qp)) by u(t) = θp

((
1 t
0 1

))
.

Note that in view of Proposition 5.1(2) and (3) we have

|ι(u(t))| � (1 + |t |p)�. (5.1)

5.2 Property �

Recall thatG is quasi-split over Qp; in particular, all of the almost simple factors ofG
are Qp-isotropic. Our proof relies on the uniform spectral gap; this deep input has
been obtained in a series of papers [6, 7, 13, 15, 16, 21, 26]. In particular,

• using [21, Thm. 1.1–1.2] when G(Fw) has property (T ), and
• applying property (τ ) in the strong form, see [7, 13], and also [11, §4], in the
general case,

we have the following.
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Theorem 5.1 (Property (τ )) Let σ be the probability G(A)-invariant measure on
G(A)/G(Q). The representation of SL2(Qp) via θp on

L2
0(σ ) := {

f ∈ L2(G(A)/G(Q), σ ) : ∫
f dσ = 0

}

is 1/M-tempered. In other words, the matrix coefficients of the M-fold tensor product
are in L2+ε(SL2(Qp)) for all ε > 0.

It follows from the above theorem that for any f1, f2 ∈ C∞
c (G(A)/G(Q))we have

∣∣∣〈u(t) f1, f2〉σ −
∫

f1 dσ
∫

f̄2 dσ
∣∣∣ � (1 + |t |p)−1/2MS( f1)S( f2), (5.2)

where S is a certain Sobolev norm. We refer to [11, App. A] for the definition and the
discussion of the Sobolev norm S.

Let η > 0 and put 
G,η := exp(Bg∞(η)) ⊂ G(R). For every prime q, we set
Kq := ι−1(SLN (Zq)) ⊂ G(Qq). Put �G,η := 
G,η × ∏

� f
Kq ⊂ G(A). We set

�G = �G,η0 , see §2.2.

Theorem 5.2 (Semisimple version of Theorem 1.1) There exists some κ9 depending
only on N, and for any datum (G, ι) with G semisimple, there exists some p ∈ � f

with

p � (
log(vol(Y ))

)2
,

so that the following holds. For any g ∈ G(A), there exists some γ ∈ G(Q) such that
gγ = h1hh2, where h1, h2 ∈ �G,η and h ∈ G(Qp) with

|ι(h)| � ht(ι(g))−κ9 vol(Y )κ9 .

Moreover, the implicit multiplicative constants depend only on N.

Proof Recall thatm is the Haar measure on G which projects to μY . Let λ be the Haar
measure on G(A) so that ι∗λ = m. By [11, §5.9] there exists some M ≥ 1 depending
only on dimG so that

1/M ≤ λ(G(A)/G(Q)) ≤ M . (5.3)

In view of the definition of vol(Y ), this implies that vol(Y ) � λ(�G)−1.
Let η be a positive constant. For any g ∈ G(A) put [g] = gG(Q); assume ι([g]) ∈

Xη. We claim that if h, h′ ∈ �G,η are so that h[g] = h′[g], then h−1h′ ∈ Z(Q), where
Z := Z(G) denotes the center of G. To see this, apply ι to the equation h[g] = h′[g].
Using the definition of Xη and the fact ι(�G,η) ⊂ �η, we get that ι(h) = ι(h′).
Hence, h−1h′ ∈ Z(A); moreover h−1h′ = g−1h−1h′g ∈ G(Q). Thus h−1h′ ∈ Z(Q)

as claimed. This claim in particular implies that π[g] : �G,η → G(A)/G(Q) defined
by π[g](h) := h[g] is at most #Z(Q)-to-one on �G,η.

By [11, App. A], there exists a function f ∈ C∞
c (G(A)) with the following prop-

erties:
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• 0 ≤ f ≤ 1,
• for all h /∈ �G,η we have f (h) = 0 and for all h ∈ �G,η/2 we have f (h) = 1,
• S( f ) � η−�.

For every g ∈ G(A) with ι([g]) ∈ Xη, define f[g] ∈ C∞
c (G(A)/G(Q)) as follows.

If [g′] ∈ π[g](�G,η), put f[g]([g′]) = ∑
π[g](h)=[g′] f (h); if [g′] /∈ π[g](Gη), define

f ([g′]) = 0. Then

1. 0 ≤ f[g] ≤ #Z(Q) � 1,
2. f ([g′]) = 0 for all [g′] /∈ π[g](�G,η) and f[g]([g′]) ≥ 1 for all [g′] ∈

π[g](�G,η/2),
3. S( f[g]) � η−�.

Recall the measure σ from Theorem 5.1. By (5.3), we have that
∫

f[g] dσ �∫
f[g] dλ. The set �G can be covered by � η−� translates among {h�G,η/2 : h ∈

G(A)}. Since λ is G(A)-invariant, this implies that λ(�G) � η−�λ(�G,η/2). Thus,

∫
f[g] dσ �

∫
f[g] dλ ≥ λ(�G,η/2) � η� vol(Y )−1; (5.4)

here, we used properties (1) and (2) of f[g], and the fact vol(Y ) � λ(�G)−1.
Apply (5.2) with f1 = f[e] and f2 = f[g]. Using property (3) of f1 and f2, we get

that ∣∣∣〈u(t) f1, f2〉σ −
∫

f1 dσ
∫

f2 dσ
∣∣∣ � (1 + |t |p)−1/2Mη−�. (5.5)

We get from (5.5) and (5.4) (which also holds for f1) that if |t |p � vol(Y )�η−�,
then

〈u(t) f1, f2〉σ 	= 0. (5.6)

This implies in particular that if |t |p � vol(Y )�η−�, then the following holds. There
exist h1, h2 ∈ G(A) so that f1([h1]) 	= 0, f2([h−1

2 g]) 	= 0, and

u(t)h1G(Q) = h−1
2 gG(Q). (5.7)

In view of the fact that �G,η = �−1
G,η, it follows from the above and property (2) that

hi ∈ �G,η.
Finally, we choose t so that (5.6) holds while |t |p � vol(Y )�η−�. In this way,

by (5.1) we have |ι(u(t))| � (1 + |t |p)� � vol(Y )�η−�. In view of (5.7), by taking
h1 and h2 as above and h = u(t), the proof of Theorem 5.2 is complete. ��

Before proceeding to the proof of general case, we need the following

Lemma 5.1 There exists some κ10 so that the following holds. Let R be a unipotent
Q-group, given with an embedding ι : R → SLN . Let S ⊂ � be a finite set of places
containing the infinite place; put pS := max{p ∈ S ∩ � f }. Let v ∈ S. For any
g ∈ R(A), there exists some γ ∈ R(Q) so that
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ι(gγ ) = (hS, (hq)q /∈S) ∈ SLN (QS) ×
∏

q /∈S
SLN (Zq),

|hv| � pκ10
S ht(R)κ10 , and for every w ∈ S − {v}, we have |hw| � pκ10

S .

Proof The proof is, mutatis mutandis, part of the proof of Lemma 4.1.We briefly recall
the argument for the convenience of the reader. For every prime q, put

Cq = ι−1(ι(R(Qq)) ∩ SLN (Zq)).

By the strong approximation theorem for unipotent groups, we have

R(A) = (
R(QS) × ∏

q /∈S Cq
)
R(Q).

Hence, there exists some γ0 ∈ R(Q) so that

gγ0 = (ĝS, (ĝq)q /∈S) ∈ R(QS) × ∏
q /∈S Cq .

Fixing a ZS-basis for r(QS) ∩ slN (ZS), we have the following. There exists some
γ̂1 ∈ ι−1(exp(r(QS) ∩ N !slN (ZS))) so that hS = ι(ĝS γ̂1) satisfies

|hv| � p�
S ht(R)� and |hw| � p�

S for w ∈ S − {v}.

Note that ι(γ̂1) ∈ ι(R(QS)) ∩ SLN (ZS), hence γ̂1 ∈ R(Q).
Let γ1 be the diagonal embedding of γ̂1 in R(A). Then since ι(γ̂1) ∈ SLN (ZS), we

get that

gγ0γ1 = (ĝS, (ĝq)q /∈S)γ1 = (ĝS γ̂1, (g̃q)q /∈S) ∈ R(QS) × ∏
q /∈S Cq .

The claim thus follows with γ = γ0γ1. ��

5.3 Proof of Theorem 1.1

Let g ∈ G(A) and write g = gHgR where gH ∈ H(A) and gR ∈ R(A); recall that
prH (g) = gH .

First, we apply Theorem 5.2, i.e. the semisimple case, to the pair (H, ι|H ). In view
of Lemma 2.1, we have ι(gHG(Q)) ∈ Xη for η := κ3 ht(ι(gH ))−κ3 . Thus, there exist

some γ0 ∈ H(Q) and some p � (
log vol(YH )

)2 so that the following holds. There
are h ∈ H(Qp) and h1, h2 ∈ �H ⊂ �G such that gHγ0 = h1hh2 and

|ι(h)| � η−κ9 vol(YH )κ9 .

This estimate implies that

|ι(h)| � ht(ι(gH ))� vol(YH )� since η = κ3 ht(ι(gH ))−κ3
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� ht(G)� ht(ι(g))� vol(YH )� by Lemma 4.4

� ht(G)� ht(ι(g))� ht(Y )� by Prop. 4.5

� ht(ι(g))� ht(Y )� by 1.5. (5.8)

Also note that by Proposition 4.1 we have

p � (
log vol(YH )

)2 � (
log ht(Y )

)�
. (5.9)

Apply Lemma 5.1 with S = {∞, p} and v = p to the element γ −1
0 gRγ0 ∈ R(A);

we get the following. There exists some γ1 ∈ R(Q) for which

(a) ι(γ −1
0 gRγ0γ1) ∈ SLN (Zq) for all primes q 	= p,

(b) |ι(γ −1
0 gRγ0γ1)∞| � p�, and

(c) |ι(γ −1
0 gRγ0γ1)p| � p� ht(R)� � p� ht(G)�.

Set γ = γ0γ1 ∈ G(Q). Let us write

(ĝ∞, ĝp, (ĝq)q /∈S) := ι(gγ ) = ι(gHγ0)ι(γ
−1
0 gRγ0γ1). (5.10)

The above estimates then imply that

1. By (a) and hi ∈ �G, i = 1, 2, we have ĝq ∈ SLN (Zq) for all primes q 	= p.
2. By (b) and hi ∈ �G, i = 1, 2, we have

|ĝ∞| � |ι(h1hh2)∞| · |ι(γ −1
0 gRγ0γ1)∞| � p�

� (log ht(Y ))� by (5.9)

3. For the prime p, we have

|ĝp| � |ι(h1hh2)p||ι(γ −1
0 gRγ0γ1)p|

� ht(ι(g))� ht(Y )� p� ht(G)� by (5.8) and (c)

� ht(ι(g))� ht(Y )� ht(G)� by (5.9)

� ht(ι(g))� ht(Y )� by (1.5).

The proof is complete. ��

6 S-Arithmetic quotients

In this section, we discuss some implications of the statement and the proof of Theo-
rem 1.1 in the local setting. The main results are stated in Theorem 6.2 which deals
with the case of semisimple groups and Theorems 6.1 and 6.3 which can be thought
of as effective versions of the strong approximation theorem.
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6.1 The setup

Let L ⊂ SLd be a Q-group so that R(L) = Ru(L). Let S ⊂ � be a finite set of places
containing the infinite place. Define

L :=
∏

v∈S
L(Qv) and l := ⊕v∈Slv,

where lv := Lie(L)(Qv).
Let R = Ru(L). Fix a Levi subgroup H of L so that ht(H) � ht(L)�, see Proposi-

tion 3.1. We let H̃ denote the simply connected covering ofH. Put L̃ = H̃�R, where
the action of H̃ on R factors through the action of H via the natural covering map
π ′ : H̃ → H. By the construction of L̃, π ′ extends to an epimorphism π : L̃ → L
with finite central kernel, given by π(g) = π(gH̃gR) = π ′(gH̃)gR, where gH̃ ∈ H̃
and gR ∈ R.

Let L̃ := π(L̃(QS)); then L̃ is a normal subgroup of L and L/L̃ is a finite abelian
group— it is worth mentioning that this finite group can be identified with a subgroup
of

∏
S H

1(Qv, Z(H̃)).

6.2 Two notions of complexity

For every q ∈ � f put Kq = π−1(SLd(Zq)). Define the subgroups � and � of L̃(QS)

as follows:

� := the projection of L̃(Q) ∩ (L̃(QS) × ∏
q /∈S Kq) to L̃(QS), (6.1)

and � := π−1(SLd(ZS)). Note that � is a normal subgroup of �; moreover, both �

and � are lattices in L̃(QS).
Put Z := π

(
L̃(A)/L̃(Q)

)
. Similarly define

Ẑ := π(L̃(QS)/�) = L̃/L̃ ∩ SLd(ZS) = L̃/π(�).

As was done in §1.5, we define vol(Ẑ) = mS(L̃ ∩ �S)
−1 where �S = 
η0 ×∏

q∈S−{∞} SLd(Zq) andmS is a Haar measure on L̃(QS) normalized so thatmS(Ẑ) =
1. Here and in what follows, we abuse the notation and denote π∗ν simply by ν, for
any measure ν.

We also put ht(Ẑ) = max{ht(L), vol(Ẑ)}.
Proposition 6.1 There exist κ11, κ12, and κ13 so that for allLas in6.1withvol(Z) � 1,
we have the following.

1. κ−1
13 ht(Z)κ11 ≤ ht(Ẑ) ≤ κ13 ht(Z)κ12 ;

2. If L̃ is semisimple or unipotent, then

κ−1
13 vol(Z)κ11 ≤ vol(Ẑ) ≤ κ13 vol(Z)κ12
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Proof We first prove part (2) above.
First note that if L̃ is unipotent, then L̃ = L and the same argument as in Lemma 4.1

implies that ht(L̃)� � vol(Ẑ) � ht(L̃). The claim in this case follows from this and
Lemma 4.1.

We now assume that L̃ is semisimple. In this case we will actually prove

κ−1
13 vol(Z)κ11 ≤ vol(Ẑ) ≤ κ13 vol(Z) (6.2)

when vol(Z) is large enough.
Let λ denote the Haar measure on L̃(A) normalized so that λ(Z) = 1. By [11, §5.9]

there exists1 some M ≥ 1 depending only on dim L̃ so that

1/M ≤ λ(L̃(A)/L̃(Q)) ≤ M . (6.3)

Since L̃ is simply connected and L̃(QS) is not compact, we have

L̃(A) =
(
L̃(QS) × ∏

q /∈S Kq

)
L̃(Q).

Write λ = ∏
� λv and set λS := ∏

S λv . In view of the above and the definition of �,
see (6.1), we get the following.

λ(L̃(A)/L̃(Q)) = λS(L̃(QS)/�) · ∏
q /∈S λq(Kq) (6.4)

Recall furthermore that

vol(Z) = λ(π(L̃(A)) ∩ �)−1 = λS(L̃ ∩ �S)
−1 · ∏

q /∈S λq(π(Kq))
−1. (6.5)

From (6.3)–(6.5) we get that

λS(L̃(QS)/�) = M ′λS(L̃ ∩ �S) · vol(Z) (6.6)

where M ′ ∈ [1/M, M].
We can now make the following computation.

λS(L̃(QS)/�) = λS(L̃(QS)/�) · [� : �]−1

= M ′λS(L̃ ∩ �S) · vol(Z) · [� : �]−1 by (6.6) (6.7)

Perhaps by enlarging M to account for the effect of the central kernel of π , we have
λS(L̃/π(�)) = M ′′λS(L̃(QS)/�) for some M ′′ ∈ [1/M, M]. Therefore, writing the
definition of vol(Ẑ) in terms of the measure λS , we have

1 The discussion in [11, §5.9] assumes that L̃ isQ-almost simple; since L̃ is simply connected and semisim-
ple, we can decompose L̃ = L̃1 · · · L̃r as a direct product ofQ-almost simple factors and apply the argument
to each factor separately.
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vol(Ẑ) = λS(L̃/π(�)) · λS(L̃ ∩ �S)
−1

= M ′′λS(L̃(QS)/�) · λS(L̃ ∩ �S)
−1

= M̂ vol(Z) · [� : �]−1 by (6.7) (6.8)

where M̂ ∈ [1/M2, M2].
We now apply the discussion in [11, §5.12], see also [3] and [1, Cor. 6.1], with

� = � and �̃ = � —note that the only role S plays in the argument in [11, §5.12] is
for the use of the strong approximation theorem. It is proved in the proposition in [11,
§5.12], see also the intermediate steps (5.10) and (5.13) in loc. cit., that there exists
some 0 < κ14 < 1 such that

[� : �] ≤ vol(Z)κ14 , (6.9)

provided that vol(Z) � 1.
In consequence, (6.8) and (6.9) imply (6.2) with κ11 = 1− κ14 and κ13 = M2; this

finishes the proof of (2).
We now use the estimate in (2) to prove (1). First recall our Levi decomposition

L̃ = H̃R; recall also that L̃(Q) = H̃(Q)R(Q) and L̃(Qv) = H̃(Qv)R(Qv) for all
v ∈ �.

Define �H = (π|H̃)−1(SLd(ZS)), and define �R similarly. Following the above

notation, put ẐH = π(H̃(QS)/�H ) and Ẑ R = π(R(QS)/�R); also put � =
�H�R ⊂ �.

Let ν be the Haar measure on L̃(QS) normalized so that ν(L̃(QS)/�) = 1; sim-
ilarly, let νH and νR be Haar measures on H̃(QS) and R(QS) normalized so that
νH (H̃(QS)/�H ) = 1 and νR(R(QS)/�R) = 1, respectively. In view of the product
structure of � and L̃(QS), we may argue as in §4.2 and get that ν is given as the
product of νH and νR .

The above normalizations of νH and νR and the definitions of ẐH and Ẑ R imply
that vol(ẐH ) = νH

(
π(H̃(QS)) ∩ �S

)−1 and vol(Ẑ R) = νR
(
π(R̃(QS)) ∩ �S

)−1. Let
us put

volν(Ẑ) := ν
(
π(L̃(QS)) ∩ �S

)−1
.

Using the product structure of ν again, we may now argue as in the proof of Propo-
sition 4.1 and get that

(
vol(ẐH ) vol(Ẑ R)

)� � htν(Ẑ) � (
vol(ẐH ) vol(Ẑ R)

)�
, (6.10)

where htν(Ẑ) = max{ht(L), volν(Ẑ)}.
We now compare volν(Ẑ) and vol(Ẑ). Using the notation in the proof of Proposi-

tion 4.1, see in particular (4.5), we have the following.

[� : �] ≤
∏

q /∈S
Jq ≤

∏

�

Jq � ht(L)�; (6.11)
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the first inequality follows from the definition of �, �, and Jp, the second inequality
follows since Jq ≥ 1 for all q, and the third inequality is (4.6).

Recall that mS denotes the Haar measure on L̃(QS) normalized so that
mS(L̃(QS)/�) = 1. We have

vol(Ẑ) = mS
(
π(L̃(QS)) ∩ �S

)−1 = ν
(
π(L̃(QS)) ∩ �S

)−1[� : �]−1.

This, together with (6.11), implies that

volν(Ẑ) ht(L)−� � vol(Ẑ) ≤ volν(Ẑ),

which in turn gives
htν(Ẑ)� � ht(Ẑ) � htν(Ẑ). (6.12)

Now in view of part (2), the upper and lower bound in (6.10) are
� (

vol(ZH ) vol(ZR)
)�. Moreover, Proposition 4.1(1) gives

(
vol(ZH ) vol(ZR)

)� � ht(Z) � (
vol(ZH ) vol(ZR)

)�
. (6.13)

The claim in part (1) follows from (6.10), (6.12), and (6.13). ��
We now turn to the consequences of Theorem 1.1 in the S-arithmetic setting when

applied to the datum (L̃, π). Recall that we defined

htS(g) := max
{
(
∏

S ‖gw‖)−1 : 0 	= w ∈ Z
d
S

}

for any g ∈ SLd(QS).
For any set S of places and any g ∈ SLd(QS) (resp. g ∈ L̃(QS)), we write g̃ :=

(g, (e)q /∈S) ∈ SLd(A) (resp. ∈ L̃(A)).

Lemma 6.1 For any g ∈ SLd(QS) we have

ht(g̃) = htS(g).

Proof This is a consequence of the product formula as we now explicate. For every
w ∈ Q

d , let w̄ be a primitive integral vector on Q · w. First observe that

c(g̃w) =
∏

�

‖g̃vw‖v =
∏

�

‖g̃vw̄‖v by the product formula

=
∏

S

‖gvw̄‖v

∏

q /∈S
‖w̄‖q g̃q = e, q /∈ S

=
∏

S

‖gvw̄‖v w̄ is primitive integral.

This shows that ht(g̃) ≤ htS(g).
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To see the reverse inequality, notice that if w ∈ Z
d
S , then ‖w‖q ≤ 1 for any q /∈ S.

This implies that

∏

S

‖gvw‖v ≥
∏

S

‖gvw‖v

∏

q /∈S
‖w‖ =

∏

�

‖g̃vw‖v = c(g̃w)

and in turn that htS(g) ≤ ht(g̃).

In the following, we use the same notation for the diagonal embedding of elements
of SLd(Q) in SLd(A) and in SLd(QS); which embedding is relevant will be indicated
by the context.

Theorem 6.1 There exists κ15 so that the following holds. Let the notation be as in
§6.2. There exists some

p � (
log vol(Ẑ)

)2

with the following property. For any g ∈ L̃(QS), there exists some γ ∈ L̃(Q) so that
π(γ )q ∈ SLd(Zq) for all q /∈ S ∪ {p} and

|π(gγ )v| � htS(π(g))κ15 ht(Ẑ)κ15

for all v ∈ S. Moreover, if p /∈ S, then

|π(γ )p| � htS(π(g))κ15 ht(Ẑ)κ15 .

Proof In view of part (1) of Proposition 6.1, it suffices to prove the above estimates
with ht(Ẑ) replaced by ht(Z).

In view of Lemma 6.1 and of Theorem 1.1 applied to (L̃, π) and g̃ ∈ L̃(A), there
exists some γ ∈ L̃(Q) so that π(g̃γ )v satisfies the estimate stated in the theorem for
all v ∈ S, and π(g̃γ )q ∈ SLd(Zq) for all q /∈ {∞, p}. Therefore, π(γ )q ∈ SLd(Zq).

Now if p /∈ S, then π(g̃γ )p = π(γ )p, and the desired estimate follows from
Theorem 1.1. ��

We now state and prove a reformulation of Theorem 1.2 using the above notation.

Theorem 6.2 Let the notation be as in §6.2; further, assume that

1. L is semisimple, and
2. L = L(QS) is not compact.

There exist κ16 and some C = C(L) so that the following holds. For any g ∈ L̃(QS)

there exists some δ ∈ �, see (6.1), so that

|π(gδ)v| ≤ C htS(π(g))κ16 vol(Ẑ)κ16

for all v ∈ S.
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Proof In view of part (2) of Proposition 6.1, it suffices to prove the above estimates
with ht(Ẑ) replaced by ht(Z).

As in the proof of Theorem 6.1, we will deduce this theorem from an adelic state-
ment. Letw ∈ S be a place so thatL(Qw) is not compact. The required adelic statement
here is an analogue of Theorem 5.2 where G in the notation is replaced by L̃ and the
place p is replaced by w.

Fix a Qw-representation (with finite kernel) θw : SL2(Qw) → L̃(Qw). We define
the one-parameter unipotent subgroup

u : Qw → θw(SL2(Qw)) by u(t) = θw

((
1 t
0 1

))
.

Note that
|u(t)| � C1(1 + |t |w)� (6.14)

for some C1 depending on θw and hence on L .
Moreover, it follows from [13, Thm. 1.11] that for all f1, f2 ∈ C∞

c (L̃(A)/L̃(Q))

we have

∣∣∣〈u(t) f1, f2〉σ −
∫

f1 dσ
∫

f̄2 dσ
∣∣∣ � (1 + |t |p)−1/2MS( f1)S( f2), (6.15)

where S is a certain Sobolev norm and σ is the probability L̃(A)-invariant measure
on L̃(A)/L̃(Q).

One now repeats the proof of Theorem 5.2 replacing (5.1) with (6.14) and (5.2)
with (6.15) to get the following. For any g ∈ L̃(A), there exist h1, h2 ∈ �L̃,η

and

h ∈ L̃(Qw) with

|π(h)| ≤ C ht(π(g))−κ9 vol(Z)κ9

such that gL̃(Q) = h1h̃h2L̃(Q); the constant C depends on L and d.
Let g ∈ L̃(QS) and apply the above discussion to g̃. Then using the above and

Lemma 6.1, there exists some h ∈ L̃(Qw) with

|π(h)| ≤ C htS(π(g))−κ9 vol(Z)κ9 ,

two elements h1, h2 ∈ �L̃,η
, and some γ ∈ L̃(Q) so that g̃γ = h1h̃h2. If q /∈ S, then

(π(g̃γ ))q = π(γ )q ∈ SLd(Zq). The claim thus follows with δ = γ (thought of as an
element in �). ��

6.3 The adjoint action

We now turn to a version of Theorem 6.1 where htS(g) is replaced by a height function
defined using the adjoint representation of L on l.
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First, we need some more notation. For all v ∈ �, let ‖ ‖v denote the maximum
norm on sld(Qv) with respect to the standard basis. Using this family of norms, we
define ht(L) analogously to what was done in §1.4.

Fix a Z-basis B = {v1, . . . , vN } for Lie(L) ∩ sld(Z) with ‖vi‖∞ � ht(L)�. Using
this basis, we identify Lie(L) ∩ sld(Z) with Z

N and Lie(L) with Q
N ; in this way,

SL(Lie(L)) is identified with SLN . We also let ‖ ‖B,v denote the maximum norm
with respect to B on Lie(L)(Qv). To avoid confusion, we will keep the index B for
functions defined using these norms, e.g. we write cB and htB (although after the
above identifications, they correspond precisely to the notions introduced in §1.2).

Let AdL : L → SLN denote the adjoint representation. We sometimes write AdL
or simply Ad for AdL if there is no confusion. Put cS(w) := ∏

S ‖wv‖v for all
w = (wv) ∈ l.

Let l(ZS) := l ∩ sld(ZS); note that l(ZS) is invariant under the adjoint action of
L ∩ SLd(ZS). For every g ∈ L , we define

htL(g) := max{cS(Ad(g)w)−1 : 0 	= w ∈ l(ZS)}.

The function htL is L ∩SLd(ZS)-invariant, so it defines a function on L/L ∩SLd(ZS)

which we continue to denote by htL .
As before, we put |g| = max{‖g‖, ‖g−1‖} for all g ∈ SLN (Qv), where ‖ ‖ is the

operator norm on SLN (Qv)with respect to some fixed norm onQ
N
v , say the max norm

with respect to the standard basis.
Let R′ = AdL(R). Put G = H̃ � R′, where the action of H̃ on R′ factors through

the action of AdL(H) via AdL ◦ π ′, where π ′ : H̃ → H is the natural covering map.
The adjoint action on L induces a homomorphism ι : G → SLN with finite central

kernel, given by

ι(gH̃g
′
R) = AdL(π ′(gH̃))g′

R.

In accordance to §1.1, we set Y := ι(G(A)/G(Q)) ⊂ SLN (A)/SLN (Q). Define Ŷ as
in §6.2 by replacing the pair (L̃, π) with (G, ι) and SLd by SLN ; similarly fix an open
subset �S ⊂ SLN (QS), and define vol(Ŷ ) using �S ⊂ SLN (QS). We put

htB(Y ) = max{ht(L), vol(Y )} and htB(Ŷ ) = max{ht(L), vol(Ŷ )}.

Additionally, there is an epimorphism ϕ : L̃ → G given by gH̃gR �→ gH̃AdL(gR),
whose kernel is contained in Z(R), hence is unipotent. As was argued in §4.1, this
implies that L̃(Q) surjects ontoG(Q), and L̃(Qv) surjects ontoG(Qv) for all v ∈ �.

L̃ L

G SLN

π

ϕ AdL
ι
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As before, for every g ∈ L̃(QS) we write g̃ = (g, (e)q /∈S) ∈ L̃(A) and we write

ĝ = ι(ϕ(g̃)) = (AdL(π(g)), (e)p/∈S) ∈ ι(G(A)). (6.16)

In what follows, the notation will confound the implicit diagonal embeddings of L̃(Q)

in L̃(QS) and in L̃(A). Which embedding is relevant will be indicated by the context.

Lemma 6.2 There exists some κ17 so that the following holds. For any g ∈ L we have

ht(L)−κ17 htL(g) � htB((AdL(g), (e)p/∈S)) � ht(L)κ17 htL(g).

Proof For g ∈ L , set ĝ := (AdL(g), (e)p/∈S) ∈ SLN (A). For any w ∈ Q
N , let w̄ be a

primitive integral vector on Q · w. First, observe that

cB(ĝw) =
∏

�

‖ĝvw‖B,v =
∏

�

‖ĝvw̄‖B,v by the product formula

=
∏

S

‖Ad(g)vw̄‖B,v ·
∏

p/∈S
‖w̄‖B,p

=
∏

S

‖Ad(g)vw̄‖B,v since w̄ is primitive integral

�
∏

S

‖Ad(g)vw̄‖v ·
∏

S

(max
i

‖vi‖v)
−1 ‖ ‖v � (max

i
‖vi‖v) · ‖ ‖B,v

≥
∏

S

‖Ad(g)vw̄‖v · (max
i

‖vi‖∞)−1 since vi ∈ sld(Z)

� ht(L)−�cS(Ad(g)w̄) because ‖vi‖∞ � ht(L)�.

(6.17)

From this, it follows that

htB(ĝ) = max{cB(ĝw)−1 : 0 	= w ∈ Q
N } see (1.1)

� ht(L)� max{cS(Ad(g)w̄)−1 : 0 	= w ∈ Q
N } by (6.17)

≤ ht(L)� max{cS(Ad(g)w)−1 : 0 	= w ∈ Z
N
S }

= ht(L)� htL(g).

Similarly, since for every w ∈ Z
N
S and all q /∈ S we have ‖w‖B,q ≤ 1, we get

cS(Ad(g)w) =
∏

S

‖Ad(g)vw‖v

� ht(L)−�
∏

S

‖Ad(g)vw‖B,v

≥ ht(L)−�
∏

S

‖Ad(g)vw‖B,v

∏

q /∈S
‖w‖q

123



Diameter of homogeneous spaces: an effective account 2007

= ht(L)−�cB(ĝw).

This implies the lower bound htL(g) � ht(L)� htB(ĝ). ��
Theorem 6.3 There exists some κ18 so that the following holds. Let L be any Q-
subgroup of SLd with R(L) = Ru(L) and let L̃, (G, ι), etc. be as in §6.3. There exists
some prime p � (

log htB(Ŷ )
)2

with the following property. For any g ∈ L̃(QS), there

exists some γ ∈ L̃(Q) so that ι(ϕ(γ ))q ∈ SLN (Zq) for all q /∈ S ∪ {p} and

|ι(ϕ(gγ ))v| � htL(π(g))κ18 htB(Ŷ )κ18

for all v ∈ S. Moreover, if p /∈ S, then

|ι(ϕ(γ ))p| � htL(π(g))κ18 htB(Ŷ )κ18 .

Proof In view of part (1) of proposition in §6.1, it suffices to prove the above estimates
with htB(Ŷ ) replaced by htB(Y ).

Let g ∈ L̃(QS) and write g = gHgR where gH ∈ H̃(QS) and gR ∈ R(QS).
In virtue of (3.1), we have that htB(ad (Lie(L))) � ht(L)�. Since Lie(ι(G)) =

Lie(Ad(L)) = ad (Lie(L)), this means that htB(G) � ht(L)�. Lemma 4.2 thus yields

htB(L)−� htB(ĝ)� � htB(ĝH ) � ht(L)� htB(ĝ)�. (6.18)

As before,wewriteYH = ι(H̃(A)/H̃(Q)). Let p � (
log volB(YH )

)2 be as inTheo-
rem 5.2 applied to (H̃, ι|H̃), so that (combined with Lemma 2.1) we have the following.

There exists some γ0 ∈ H̃(Q) so that if we put h′ = (h′
S, h

′
p, (h

′
q)q /∈S∪{p}) := g̃Hγ0,

then ι(ϕ(h′))q ∈ SLN (Zq) for all q /∈ {∞, p}, |ι(ϕ(h′))∞| �B 1 � ht(L)�, and

|ι(ϕ(h′))p| �B htB(ĝH )� volB(YH )�

� ht(L)� htB(ĝ)� volB(YH )� by (6.18)

� ht(L)� htL(π(g))� volB(YH )� by Lemma (6.8)

� htL(π(g))� htB(Y )� by Proposition 4.5. (6.19)

Also by Proposition 4.1, we have

p � (
log vol(YH )

)2 � (
log htB(Y )

)�
. (6.20)

Apply Lemma 5.1 with the set of places {∞} and v = ∞ to the element γ −1
0 g̃Rγ0

to obtain some γ1 ∈ R(Q) such that

(a) π(γ −1
0 g̃Rγ0γ1) ∈ SLd(Zq) for all primes q, and

(b) |π((γ −1
0 g̃Rγ0γ1)∞)| � ht(R)� � ht(L)�.

Since π(γ −1
0 g̃Rγ0)q = e for all q /∈ S, item (a) above implies that π(γ1)q ∈

SLd(Zq) for all q /∈ S.
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Put γ = γ0γ1 ∈ L̃(Q) and write

h = (hS, h p, (hq)) := g̃γ = g̃Hγ0(γ
−1
0 g̃Rγ0γ1) = h′(γ −1

0 g̃Rγ0γ1). (6.21)

The above estimates then imply that

1. By (a) and ι(ϕ(h′
q)) ∈ SLN (Zq)we have ι(ϕ(hq)) ∈ SLN (Zq) for all q /∈ {∞, p}.

2. By (b) and |ι(ϕ(h′∞))| � ht(L)� we have

|ι(ϕ(h∞))| � ht(L)�|ι(ϕ((γ −1
0 g̃Rγ0γ1)∞))| = ht(L)�|Ad(π((γ −1

0 g̃Rγ0γ1)∞))|
�B ht(L)�|π((γ −1

0 g̃Rγ0γ1)∞)| � ht(L)�.

3. For the prime p we have

|ι(ϕ(h p))| ≤ |ι(ϕ(h′
p))| · |Ad(π(γ −1

0 g̃Rγ0γ1))p)|
�B |ι(ϕ(h′

p))| · |π((γ −1
0 g̃Rγ0γ1)p)|

� ht(L)�|ι(ϕ(h′
p))| by (a)

� htL(π(g))� htB(Y )� by (6.19).

Let now q /∈ S ∪ {p}. Then ĝq = ι(ϕ(g̃q)) = e and hence we have ι(ϕ(γq)) =
ι(ϕ(hq)) ∈ SLN (Zq) by (1). This means ι(ϕ(γ )) ∈ SLN (ZS∪{p}).

Lastly, if p /∈ S, we have again ĝp = e, therefore ι(ϕ(γp)) = ι(ϕ(h p)) and (3)
above gives the desired bound on ι(ϕ(γp)). ��

The above proof actually gives the following stronger statement.

Theorem 6.4 There exists some κ18 so that the following holds. Let L be any Q-
subgroup of SLd with R(L) = Ru(L) and let L̃, (G, ι), etc. be as in §6.3. There exists
some prime p � (

log htB(Ŷ )
)2

with the following property. Let g ∈ L̃(QS) and write

g = gHgR where gH ∈ H̃(QS) and gR ∈ R(QS). There exists some γ0 ∈ H̃(Q) and
some γ1 ∈ R(Q) with

• ι(ϕ(γ0))q ∈ SLN (Zq) for all q /∈ S ∪ {p}
• π(γ1)q ∈ SLd(Zq) for all q /∈ S
• if p /∈ S, then |ι(ϕ(γ0γ1))p| � htL(g)κ18 htB(Ŷ )κ18 ,

so that if we write (g, (e)/∈S)γ0γ1 = hHhR, where hH ∈ H̃(A) and hR ∈ R(A), then
we have the following estimates.

1. π(hR)q ∈ SLd(Zq) for all primes q,
2. |π(hR)∞| � ht(L)κ18 ,
3. ι(ϕ(hH ))q ∈ SLN (Zq) for all q /∈ {∞, p},
4. |ι(ϕ(hH ))∞| � ht(L)κ18 , and
5. |ι(ϕ(hH ))p| � htL(g)κ18 htB(Ŷ )κ18 .
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For any g ∈ H̃(QS), we define

htH (π(g)) := max{cS(AdH (π(g))w)−1 : 0 	= w ∈ h(ZS)},

where h = Lie(H) ∩ sld(ZS).
It follows from the definition that htH (π(g)) ≤ htL(π(g)) for any g ∈ H̃(QS).

Moreover, in viewofLemma6.2 andLemma4.2wehave the following.Let g ∈ L̃(QS)

and write g = gHgR , then

htH (π(gH )) ≤ htL(π(gH )) � ht(L)� htL(π(g))�. (6.22)

We also record the following lemma.

Lemma 6.3 Let g ∈ L̃(QS) and write g = gHgR, then

htH (π(gH )) � htB(Ŷ )−� htL(π(gH ))� � htB(Ŷ )−� htL(π(g))�.

Proof The second estimate follows from Lemma 6.2, Lemma 4.2, and the fact that
htB(Ŷ ) ≥ ht(L). Thus we only need to show

htH (π(gH )) � htB(Ŷ )−� htL(π(gH ))�.

The proof uses arguments similar to the ones used in the proof of Theorem 6.3;
apply Theorem 6.4 with L = H to gH . There exist some p � (

log htB(Ŷ )
)2 and

γ0 ∈ H̃(Q) so that

(i) AdH (γ0)q ∈ SLN (Zq) for all q /∈ S ∪ {p},
(ii) if p /∈ S, then |AdH (γ0)p| � htH (π(gH ))κ18 htB(Ŷ )κ18 ,

and if we put hH = (gH , (e)q /∈S)γ0, we have the following estimates.

1. Ad(hH )q ∈ SLN (Zq) for all q /∈ {∞, p},
2. |Ad(hH )∞| � ht(L)κ18 , and
3. |Ad(hH )p| � htH (π(gH ))κ18 htB(Ŷ )κ18 .

Apply Lemma 5.1 with the set of places {∞} and v = ∞ to the element γ −1
0 g̃Rγ0

to obtain some γ1 ∈ R(Q) such that

(a) π(γ −1
0 g̃Rγ0γ1) ∈ SLd(Zq) for all primes q, and

(b) |π((γ −1
0 g̃Rγ0γ1)∞)| � ht(R)� � ht(L)�.

Since π(γ −1
0 g̃Rγ0)q = e for all q /∈ S, item (a) above implies that π(γ1)q ∈ SLd(Zq)

for all q /∈ S.
Let us put hR = γ −1

0 g̃Rγ0γ1, so that we have

(g, (e))γ0γ1 = (gHgR, (e))γ0γ1 = ((hH )S, (hH )q /∈S)((hR)S, (hR)q /∈S).

By abuse, we denote the projection of γ0, γ1 onto the S-coordinates again by γ0, γ1 ∈
L̃(QS).
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We have

htL(g) = max{cS(AdL(π(g))w)−1 : 0 	= w ∈ l(ZS)}
= max{cS(AdL(π((hH )S(hR)S)γ

−1
1 γ −1

0 )w)−1 : 0 	= w ∈ l(ZS)}. (6.23)

First, we note that using (1)–(3), (a) and (b) we have

cS(AdL(π((hH )S(hR)S)γ
−1
1 γ −1

0 )w)−1 � htH (π(gH ))� htB(Ŷ )�

cS(AdL(γ −1
1 γ −1

0 )w)−1. (6.24)

Furthermore, using (i), (ii), and the fact that π(γ1)q ∈ SLd(Zq) for all q /∈ S, we have

cS(AdL(γ −1
1 γ −1

0 )w)−1 � htH (π(gH ))� htB(Ŷ )�.

This, in view of (6.24) and (6.23), implies that

htL(g) � htH (π(gH ))� htB(Ŷ )�;

the proof is complete. ��

6.4 Uniform lattices

In this section, we discuss the dependence of the above estimates on htL(g) under
the assumption that the Levi component, H, of L is Q-anisotropic. We begin with the
following lemmawhich is of independent interest—one could obtain similar estimates
using known results towards the Lehmer conjecture, but we provide a homemade
argument.

Lemma There exists some 0 < β < 1 depending on dimLwith the following property.
Let w ∈ l(ZS) and assume that there exists some g ∈ L so that cS(AdL(g)w) ≤ β.
Then w is a nilpotent element.

Proof Let σ̄ (w) be the product of all the nonzero eigenvalues of w; if this product
is empty, i.e. if w is nilpotent, put σ̄ (w) = 0. Note that σ̄ (w) ∈ Q because σ̄ (w) is
invariant under the Galois group of the splitting field of w. Further, since w ∈ l(ZS),
the product formula implies that either cS(σ̄ (w)) ≥ 1 or σ̄ (w) = 0. (Here, we also
use cS to denote the function QS → R

+ : r �→ ∏
v∈S |r |v .)

Let β > 0 and assume that cS(AdL(g)w) ≤ β for some g ∈ L . There exist some
r ∈ Z

×
S so that ‖rAdL(g)w‖v � cS(AdL(g)w)� for all v ∈ S, see for example [17,

Lemma 8.6]. Therefore, all the eigenvalues of rAdL(g)w have v-norm � β� for all
v ∈ S.

Since cS(r) = 1 and AdL(g)w has the same eigenvalues as w, we deduce that
cS(σ̄ (w)) ≥ 1 cannot hold when β is small enough; thus, w is nilpotent. ��
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Proposition Let the notation be as above; in particular, recall the Levi decomposition
L̃ = H̃R fixed in §6.1. Assume that H̃ is Q-anisotropic. Let g ∈ L̃(QS), then

htL(π(g)) � htB(Ŷ )�.

Moreover, if L̃ is semisimple, i.e. L̃ = H̃, and we assume that L̃ is Q-anisotropic, then
htL(π(g)) � 1.

Proof Let us write g = gHgR where gH ∈ H̃(QS) and gR ∈ R(QS). Let β be as in
the previous lemma applied with H instead of L. We claim that htH (π(gH )) ≤ β−1.
Indeed, if htH (π(gH )) > β−1, then by definition there exists a nonzero w ∈ h(ZS),
such that cS(AdH (π(gH ))w) < β. The lemma then implies that w is a nilpotent
element. Exponentiating w, we get that H (and hence H̃) is Q-isotropic, which is a
contradiction. This implies the proposition when L̃ = H̃.

Now, for the general case, we apply Lemma 6.3 and the bound we obtained above
to obtain

htL(π(g)) � htH (π(gH ))� htB(Ŷ )� � htB(Ŷ )�,

as was claimed. ��
It is worthmentioning that the proof of the previous proposition when L̃ is semisim-

ple is independent of Lemma 6.3 and relies only on the lemma proved in this section.
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