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Abstract

In this paper we prove explicit estimates for the size of small lifts of points in homo-
geneous spaces. Our estimates are polynomially effective in the volume of the space
and the injectivity radius.

1 Introduction

Let G be a semisimple Lie group and let I' C G be an arithmetic lattice, e.g. G =
SL;(R) and I' = SL;(Z). Reduction theory provides a description of a (weak) fun-
damental domain for I in G. Among other things, it relates the injectivity radius at
a point x € G/T to the size of a small lift for x in G. In general, however, these
estimates are only up to a compact subset of G; in particular, when I is a uniform
(cocompact) lattice in G one does not obtain explicit estimates on the diameter of
G/T.

In this paper we provide an explicit estimate for the size of a small lift in G of
a point x € G/T'; our estimates are polynomial in the injectivity radius at x and in
a certain measure of the arithmetic complexity of I" which is closely related to the
volume of G/ T, see Theorem 1.1.

It is plausible that some of the arguments involved in reduction theory can be
effectivized; this paper however takes an alternative route. The proofs here rely on
a uniform spectral gap for arithmetic quotients in the case of semisimple group; see
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e.g. [5, 14, 19] for a similar approach. We then prove and utilize an effective Levi
decomposition, in §3 and §4, to allow for groups which may not be semisimple.

It is worth mentioning that when I' is a cocompact lattice, the dependence of our
estimates on the injectivity radius may be omitted, see §6.4. The reader may compare
this to the analysis in [5], where similar estimates for the isometry groups of rank one
symmetric spaces are proved. However, our multiplication constants are allowed to
depend on the number N which is defined in §1.1 — this number can be thought of
as a notion of dimension for the arithmetic datum that defines I'.

The main results are first formulated and proved (in §5) in the adelic language.
Then we deduce the results for the S-arithmetic case—in particular for the case of
semisimple Lie groups—from the adelic setting. In addition to providing a uniform
treatment, the adelic language has the advantage that we may bring to bear the seminal
works of Prasad [24] and Borel and Prasad [3], Einsiedler [11], to avoid assuming any
splitting conditions in Theorem 1.1. In §6, we discuss some corollaries of this theorem
in the S-arithmetic setting; see namely Theorem 1.2 and the discussion following it.

1.1 The notion of an algebraic datum

In the following, A denotes the ring of adeles over Q. We let ¥ = {oo} U {p :
p is a prime} denote the set of places of QQ, and let X ; be the set of finite places. We
sometime write ¥, for the set containing the infinite place. We will denote places in
¥ by v, w, ... and places in Xy by p, ¢, .... In this notation, we often write Q, to
denote R or Q,,.

Throughout, we assume fixed the following datum (G, ¢):

1. A connected algebraic Q-group G whose solvable radical is unipotent, i.e. R(G) =

R, (G).

2. We will always assume G to be simply connected.

3. An algebraic homomorphism ¢ : G — SLy defined over QQ, with a central kernel.
Condition (1) is equivalent to Hom(G, G,) = {1}. In particular, we get that
Homg(G, G;,) = {1}, hence G(A)/G(Q) has a G(A)-invariant finite measure.

Set X = SLy(A)/SLy(Q); we let voly denote the SLy (A)-invariant probability
measure on X. Let G = «(G(A)) and ¥ = «(G(A)/G(F)) C X. Let uy (or simply
© when there is no confusion) be a G-invariant probability measure on Y. Let m be a
Haar measure on G which projects to i under the orbit map.

1.2 A height function on X

For any v € X, we will abusively let || ||, denote the maximum norm (with respect to
the standard basis) both on (@f}’ and on sy (Q,). For any w € AV, we set

cw) =[] lhwolo-

vEX

Thanks to the product formula, we have c(rw) = c(w) forall r € Q, w € AV,
Moreover, for all w € QN — {0}, c(w) is an integer and c(w) > 1.
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We define the height function ht : SLy (A) — RT by
ht(g) := max{c(gw)™ ' : 0 # w € QV}. (1.1

This function is SL (Q)-invariant, hence induces a function on X which we continue
to denote by ht. That is: for any x € X we put ht(x) = ht(g) where g € SLy () is so
that x = gSLy (Q).

For every p € Xy we let || |lop,» (or simply || |lop When there is no confusion)
denote the operator norm on SLy (Q,), induced using the norm || ||, on Qf)\/ . For any
g € SLy(Qy) define

lg] := max{llgllop, g~ llop}-

1.3 Complexity of homogeneous sets

An intrinsic notion of volume of the datum (G, t) was defined and utilized in [11]; we
recall the definition here.

Fix an open subset 2 C SLy (A) that contains the identity and has compact closure
(see §2.2 for our choice for 2). Set

vol(Y) :=m(GN§)~". (1.2)

Evidently this notion depends on €2, but the notions arising from two different
choices of 2 are comparable to each other, in the sense that their ratio is bounded
above and below. Consequently, we drop the dependence on €2 in the notation. See [11,
§2.3] for a discussion of basic properties of the above definition.

1.4 Height of rational subspaces

Let W C sly(Q) be a d-dimensional subspace, so AYW is a rational line in A%s(y (Q).
This line is diagonally embedded in A%sly (A), and we do not distinguish between
this diagonal embedding and the line.

We endow A9sly (Qy) with the maximum norm with respect to the basis obtained
by collecting the d-fold wedges of (distinct, ordered) elements of the canonical basis
of sl (Z). In this section, we will again use || ||, to denote this norm.

Let vy denote a primitive integral vector on AY W—this vector is obtained by fixing
a Z-basis for W N sly (Z). Define

ht(W) := [[vw | co- (1.3)
This is independent of the choice of the basis; moreover, because we used the max

norm in the above definition, ht(W) is an integer. Alternatively, ht(W) may be defined
as follows. Let {eq, ..., eq} be a Q-basis for W. Then

ht (W) =[Jller A+ Aeally
v
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where the product is taken over all places of Q. In view of the product formula, the
above is independent of our choice of the rational basis for W.
Given a Q-subgroup H of SL we define

ht(H) := ht(Lie(H)) = [|vH ] 0> 1.4)
where vy is a primitive integral vector as above. If H is a Q-subgroup of G instead,
we set ht(H) = ht(¢(H)).

The volume of an adelic orbit defined in § 1.3 is closely related to the height function.
This relationship is easy to describe for unipotent groups and was studied in [11,
App. B], under the assumption that G is semisimple.

We now define the height of Y to be

ht(Y) := max{ht(G), vol(Y)}. (1.5)

The following theorem is the main result of this paper.

Theorem 1.1 There exists some k1 > 0 depending only on N, and for any datum (G, t)
as in §1.1 there exists some p € Xy with

p < (loght(Y))?,

so that the following holds. For each g € G(A), there exists some y € G(Q) such that
1(gy)q € SLN(Zy) for all primes q # p,

|1(g¥)ool < (loght(V))™! and |u(gy)pl < ht(u(g)! ht(¥)".
Moreover, the implicit multiplicative constants depend only on N.

The existence of such a prime p relies on Prasad’s volume formula [24], see §5.1
for more details.

1.5 The S-arithmetic setting

Let S C X be a finite subset which contains the infinite place. We will write Qg for
[1,es Qu, and Zg will denote the ring of S-integers.
Define htg : SLy(Qs) — R™ by

hts(g) := max {([T,es lgwllo) ™" : 0 # w € Z{'}.
For any § as above, define Ag (or simply A if there is no confusion) by
A := the projection of G(Q) N (G(QS) X ]_[ﬁs L_l(SLN(Zq)> to G(Qg);
note that Ag is a lattice in G(Qyg).
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Let Qg CASLN (Qs) be an open set which contains the identity and has compact
closure. Put Y = 1(G(Qg)/A) and define

vol(¥) := ms(1(G(Qs)) N 2s) ",

where mg is a Haar measure on ¢(G(Qg)) normalized so that mg(f’) =1.

Theorem 1.2 Let (G, t) beasin §1.1. Let S be a finite set of places of Q which contains
the infinite place. For every v € S, let G, be a semisimple algebraic Q,-group. Assume

1. Gy and G are isomorphic over Q,; in particular, G is semisimple and G, is simply
connected.

2. The group G(Qs) = [[,c5 G(Qu) = [[,c5 Gv(Qy) is not compact.

There exists a constant ky > 0 depending only on N and a constant C > 1
which depends on G(Qg) and N, but not on G, so that the following holds. For every
g € G(Qyg) there exists some § € A such that

|1(g8)] < Chts(t(g))*? vol(¥)*2.

This theorem will be proved in §6; see in particular Theorem 6.2 where Theorem 1.2
is restated and proved. We will also discuss some other corollaries of Theorem 1.1
in §6.

Let us highlight two features of the above theorem. First, note that once N is fixed
the dependence on the lattice A in the estimates is only through its covolume vol(Y).
Second, the above estimates use Vol(f’) instead of vol(Y); the fact that Vol(f/ ) and
vol(Y) are polynomially related to each other is a consequence of deep results by
Prasad and Borel and Prasad [3, 24], see §6.1.

2 Notation and preliminaries
2.1 Notation

Throughout the paper, X, A, etc. will be as in §1.1. In particular, A = ]_[:Jez Qy
where []' denotes the restricted direct product with respect to Z p for p € X . Given
an element g in SLy (A) (orin sly (A), AV, etc.), we write g, for the v-th component
of g.

If S C X is a finite set of places containing the infinite place, Zg will denote the
ring of S-integers, thatis Zg = {r € Q | |r|, < 1 for v ¢ S}. On the other hand, Qg
will denote the product [ [, ¢ Q,. There are canonical inclusions Q C A, Q C Qg,
Qs C A, etc. which will often be omitted from the notation.

For any finite place p € Xy, ¥, = Z)/ pZy, is the finite field of order p. Let |x|,
denote the absolute value on Q, normalized so that | p[, = 1/p. Finally, let Q p denote
the maximal unramified extension of Qp, Z p denote the ring of integers in Qp, and

p denote the residue field of Z Note that ]F is the algebraic closure of I),.
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Recall that, for any place v € %, || ||, denotes the maximum norm both on Qﬁ’
and sly (Q,) with respect to their standard bases. When there is no ambiguity, we
may drop the subscript v. For this norm, we denote Bgy, (@,)(r) the ball in sly(Q,)
of radius r centered at 0.

Let (G, t) be an algebraic datum, as described in 1.1. For any v € X, let g, =
Lie(G(Qy)). Using the embedding d: : g, — sly(Q,), we pull back the norm || ||, to
anorm on g, which we continue to denote by || ||, (or || [loo, || |Ip). For these norms,
we define By, () to be the ball in g, of radius r centered at 0.

For every v € X, we let G, = ((G(Q,)); in particular, G5 = ((G(R)).

In the sequel, the notation A < B means: there exists a constant ¢ > 0 so that
A < c¢B; the implicit constant ¢ is permitted to depend on N, but (unless otherwise
noted) not on anything else. We write A < B if A < B < A. If a constant (implicit
or explicit) depends on another parameter or only on N, we will make this clear by
writing e.g. <, <n, c(G), etc.

The exponents «, are allowed only to depend on N. We also adopt the x-notation
from [12]. We write B = A if B = cA**, where ¥ > 0 and ¢ depend only on N,
unless it is explicitly mentioned otherwise. Similarly one defines B < A*, B > A*.
Finally, we also write A < B* if A* < B <« A* (possibly with different exponents).

2.2 Injectivity radius in X

Given n > 0, put &, := exp(Bsi, ) (7). Throughout, we assume 7 is small enough
so that exp : Bsiy®)(10) = &y, is a diffeomorphism. For any 1 > 0, let

Q, = &, x (]_[ SLN(ZP)).

We fix = Q,,; this set will be the one used to measure the volume of (G, ¢), as
described in §1.3.

For x € X, define m, : SLy(A) — X by 7,(g) = gx; when x = e we simply
write r for . For every 0 < n < ng, define

Xy = {x € X : m, is injective when restricted to £2,}. 2.1

Ifn >mno,set X, =0. LetY, ==Y NX,.

Lemma 2.1 There exists some constant k3 > 0 so that the following holds.

1. Forany g € SLy(A) we have g € X, ()
2. If gSLn(Q) € X, then ht(g) < n™*3.

Proof Let g € SLy (A). First note that by strong approximation for SL, there exists
some yg € SLy (Q) so that

810 = (850 (8))) € SLN(R) x ([], SLn(Z))).

@ Springer



Diameter of homogeneous spaces: an effective account 1979

Further, using the reduction theory of SLy (R), there exists some y; € SLy(Z) so

that gooy1 = kau, where k € SOyN(R), a = diag(a;) is diagonal with positive
entries satisfying aiaij_]l <2/3/3, and u = (u; 7) is unipotent upper triangular with

luij| < 1/2. Note that

- 1(@2/V3)N -1
p<z|———+1 1
llaua ||p<2<(2/\/§)_1+)<<

for any a and u as above.
Let y = yy1, where y; denotes the diagonal embedding on y; in SLy(Q) C
SLy(A). Then, since yy , € SLy(Z),) for all p, we have

gy = (kau, (§p)) € SLN(R) x ([T, SLn(Z))). (2.2)
For w € QV, we have

c(gyw) = |[((kaw)w|loo - (l_[,, ||§pw||p)
= |[(kaua™Haw| s - (]_[p ||w||p) since g, € SLn(Zp)

= llawlleo - (TT, lwlp) since k € SOy (R), [laua™" lop < 1.
2.3)
Moreover, we have |aw|c =< (max;a;)||w|eoc = la| - ||w]eo, and thus also

la| " |wllso < llaw|lso. Therefore, (2.3) implies that
la|"'e(w) ™! < cl(gr)w) ! < lalc(w) ™. (2.4)

Now for w an appropriate basis vector, we have

-1 . —1 -1 -1
law]z! = (mina) ™" = maxa; " = " op.

and since deta = 1, we have |la~! llop > ||a||(1){,(N71). For such w, it thus follows from
(2.3) that c((gy)w) ' > |a|'/ V=D Together with (2.4), this shows

la'/ N =D « ht(g) = max{c(Ad(gy)w) ' : 0 #£ w e sly(Q)} K lal.  (2.5)
Now if instead w € sl (Q), we have

—1 2
[Ad(@wlloo = (Maxaja; " )[wlleo < lal”[wlloo.
i

In the same way as above, since k € SOy (R) and laua=! llop < 1, there is some
¢ < 1 such that for any n > 0,

Ad(k(aua™"a) ™' Bsiy ) (n) € Ad(a) ™' Bsiy®)(cn) C Bsiy®)(clal®n).
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Applying the exponential map yields
(k(aua™"Ya)~ By (k(aua™"Ya) C By
Therefore, we have

y 71,8y NSLy(Q) C ((kaw) ™ Eykau N SLy(2)) x ([T, SLx(Zy))
C (Egjapy NSLN(2)) x ([T, SLn(Z))).

In particular, if n < |a| =2, then y ~'g~'Q, gy NSLy (Q) = {1}. Thatis: g € X1\,

for perhaps another constant ¢’ > 0. This implies the claim in (1) in view of (2.5).
To see (2) in the lemma, let n > 0 and suppose gSLy(Q) € X,,. Let y € SLy(Q)

be so that gy is as in (2.2). For any w € sy (R) in the appropriate root space, we have

-1 . 1—1 —1
[Ad(@)wllo = (minaia; )" [|wlleo = (Maxa;a; )| wlle
i, i

= NP a) (X a; ) Iwloo = N2al - wlloe. (26)
7

i
Because k € SOy (R), ||aua™! lop < 1, we may scale w so that
w € Ad(kaua™") "' Bery ) (1)
while keeping ||w||oc > 1. With this choice for w, we have
Ad(a)"'w € Ad(kau) ™ Bsy ) (1),

that is, exp(Ad(a) " 'w) € (kau)™! Eykau. In consequence,
IAd(@) ' wlleo < 1. 2.7)

Indeed, otherwise, we would be able to pick Ad(a)~'w to be an elementary matrix,
for which we would have

exp(Ad(a)'w) € ((kau)~' E,kau x [T, SLn(Zp)) N SLy(Q)

=y 'g7 gy NSLy (Q).
This contradicts the fact g_IQ,I g N SLy(Q) = {1}. In virtue of our choice for w,
(2.6), and (2.7) , we have

laln < lal - [wleo < |Ad(@) " w]loo < 1.
Finally, in view of (2.5), this immediately implies
1

ht(g) < la| < n~

and concludes the proof of the lemma. O
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2.3 Remark

In the definition (1.1) of the height, instead of using the action of SLy (A) on AV,
one could have acted on sly (A) via the adjoint action. More precisely, one could have
defined ht : SLy(A) — R™ by

ht(g) := max{c(Ad(g)w) ™! : 0 # w € sly (Q)},

where the function cis given by the same expression c(w) := [Tyes lwylly. The proof
of lemma 2.1 can be used to show that |a| < ht(g) < |a|? (with a as in (2.2)), and in
consequence that

ht(g) < ht(g) < ht(g)*™ =D,

The two heights are thus polynomially related, and for the purpose of Theorem 1.1,
they can be used interchangeably.

2.4 Elements from Bruhat-Tits theory

We recall a few facts from Bruhat-Tits theory, see [28] and references there for the
proofs. Let G be a connected semisimple group defined over Q. Let p be a finite place,
then

1. For any point o in the Bruhat-Tits building of G(Q)), there exists a smooth affine
group scheme Q’)E,o) over Z,, unique up to isomorphism, such that: its generic
fiber is G(Q)), and the compact open subgroup 61(;) (Zp) is the stabilizer of o in
G(Q)), see [28,3.4.1].

2. If G splits over Q, and o is a special point, then the group scheme Qﬁg,o) is a
Chevalley group scheme with generic fiber G, see [28, 3.4.2].

3. red, : (’55,”) (Zp) — Qﬁp(o) (F}), the reduction mod p map, is surjective, see [28,
3.4.4].

4. & p(") is connected and semisimple if and only if o is a hyperspecial point. Sta-

bilizers of hyperspecial points in G(Q p) will be called hyperspecial subgroups,
see [28, 3.8.1] and [24, 2.5].

If G is quasi-split over Q,, and splits over @;, then hyperspecial vertices exists,
and they are compact open subgroups of maximal volume. Moreover a theorem of
Steinberg implies that G is quasi-split over @ for all p, see [28, 1.10.4].

It is known that for almost all p the group G is quasi-split over Q,, see [23,
Theorem 6.7]. Moreover, for almost all p the groups K, are hyperspecial, see [28,
3.9.1].

3 Small Levi decomposition in Lie algebras
Recall from §2.1 that || || denotes the (archimedean) max norm both on QV and

on sly(Q) with respect to the standard basis. Note that if u, v € sly(Q), we have
[I{ze, ]l << Nl V]l
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If g is a subalgebra of sly (Q), and B = {uy, ..., uy} is a Z-basis of g N sly (Z),
we can also endow g with the max norm || ||g in the basis B. For any u € g we have

(max i DMl < llulls < (max {lu; |[) |l

In this section we prove the following.

Proposition 3.1 There exists some k4 > 0 with the following property. Let g C sl (Q)
be a Lie subalgebra and let vt = R(g) be its radical. Further, let | C g be a reductive
subalgebra with | Nt = {0} (it may be that | = {0}). Assume that ht(g) < T and
ht() < T. There exists a Levi decomposition g = h @ t with [ C b, so that

ht(h) €« T* and ht(x) € T,

where the implied constants depend only on N.

Roughly speaking, the proof of the proposition is based of the following phe-
nomenon: a consistent system of linear equations with integral coefficients which are
bounded by T has a solution of norm < T*.

Let us also note that if R(G) = R, (G) and g = Lie(G), the condition [ Nt = {0}
holds true for any reductive subalgebra.

3.1 Systems of integral linear equations

For the convenience of the reader, in this section we record some lemmas which
provide estimates on the size of solutions of systems of linear equations with integral
coefficients.

We note that the following lemmas aim for good polynomial bounds. If one is
content with a rough polynomial bound, one could easily prove

< V(N =1 (max laij DN
in the first lemma and the bound [|v;|| < N max; |u;|| in the third lemma — these
rough bounds suffice for our applications as well.
Lemma (Siegel’s lemma) Let A = (a;;) be a M x N-matrix (N > M) of full rank,
with integer coefficients a;j, and

{Z?’:lai‘/szo i=1,....,.M

the associated linear system. There exists a basis {(x{, ey xﬁv) [l=1,...,N—M}

of the space of solutions of the system satisfying x§- € Z and |x§-| < /|det AAT| for
I=1,...N - M.

Proof See [2, Thm. 2]. O
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Lemma (Siegel’s lemma for inhomogeneous equations) Let

{Z;\Izlaijszbi i=1,....,.M

be a consistent system of M linear equations in N > M variables, with integer
coefficients a;j. Then the system has a solution (%, e Y with yi,d € 7 and

miax{|yi|, Id|} <« (H}?X laij)*.

Proof The lemma is deduced from [22, Thm. 2 and 3]. First, by assumption, the
system has a solution (?—:, e z—x) inQV.Set P ={p € X/ : plz; forsomel <i <
N} U {oo}. Then [22, Thm. 2 and 3] apply to our system and the set P of places, and
yield a solution of the system with bounded height.

The bound on the height is independent of P, and in our setting, it readily translates
to a polynomial bound on max;{|y;/|, |zil}. O

Lemma (extracting small Z-bases) Let V be a vector space over Q endowed with a
norm || - || and let Vg, be a free Z-submodule of V which spans V over Q. Given
a basis {uy,...,un} of V over Q lying in Vg, there exists a subset {vy, ..., vy} of
Vg, with the property that {vy, ..., v;} is a Z-basis of (Qui + --- + Qu;) N Vz and
loill < Xy llujll fori = 1,..., N.

Proof Let {vy, ..., vy} be a Z-basis of Vz and A = (a;;) be the integer matrix such
that (u1,...,un) = (v1,...,vy)A. Up to a change of the basis {vy, ..., vy}, we
may assume that A is in Hermite normal form, i.e., A is upper triangular, all its entries

are non-negative, and in a given column, the entry on the diagonal is strictly bigger
than the other ones. We then have

uyp =dapnv

uz = apvy + axnv;

Uy = dimV1 + -+ ANNUN.

Ifwe (Qui+ -+ Qu;) N Vz, we may write w = Zj-v:l Ajvj with Aj € Z. Now

i N
w— Z)»jvj = Z Ajvj € Qui + -+ Qui) N (Quits + -+ + Quy) = {0},
i=1

j=it1

and it follows that w = Zj’:] Ajvj,ie. {vi,...,v;} is a Z-basis of (Qu; +--- +
Qui) N V.
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Lastly, regrouping terms and taking norms in the system above yields

lloey

orll = Ll <y
— v
log |l = L2=e2vl iy |+ oy |
lum—ainvi—-—aw—pnNoN-1ll
vmll = = aNN( : < lluzll + lvrll + ... loy—1ll-
The lemma follows by combining all the inequalities. O

3.2 Proof of Proposition 3.1

We need to find a Levi decomposition g = h & ¢, where t is the radical of g, and
Z-bases {wy, ..., w,} of h N sly(Z), and {vy, ..., vy} of v N sly(Z) which satisfy
that

[vill < T*and ||w;|| < T*foralli, j.

Ifl#£0,let {uy,...,u} beaZ-basis for [ N sly(Z) with ||iz;|| <« T*. Extend this
to a Q-basis B = {ii1, ..., 4y} C g Nsly(Z) for g with ||ii;|| <« T* for all i. By the
extracting small Z-bases lemma in §3.1, there exists a Z-basis B= {1 ..., upy) for
gNsly(Z) sothat ||a;|| < T* foralli and {#i1, ..., 4;} is a Z-basis for (Qit| + - - - +
Qit;) N sly(Z). In particular, {iy, ..., u;} is a Z-basis for [N sy (Z) if [ £ 0.

Note that the structure constants {al{‘j} of g in the basis {u;} are bounded:

max les | = Illii, 11 g < (mj%lX Nl - g, a1 < T (3.1

As B is a Z-basis for g Nsly(Z), the {(xfj} are integers.

Step 1. Bounding ht(t).

Let k denote the killing form of g. Recall that the radical t = R(g) is the orthogonal
complement of the derived algebra [g, g] for k. Thus t is given in the basis B by the
solutions (y;) of the system

M
k(zy,ﬁ,-, [4;, ﬁk]> =0, jk=1,...,M.

i=1
The coefficients of this system are < T*. Thus, after removing redundant equations
from the system, we may apply Siegel’s lemma combined with extracting small 7.-

bases lemma from §3.1 and obtain the following. There exists a Z-basis {vy, ..., Uy}
of t N sly (Z), so that ||v; Iz < T*. In consequence, we get that

v ll < (m;ﬂlx ;I - llvill g < T (3.2
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Step 2. A basis for g adapted to I, ¢, and [, t].

Let {vy, ..., vy} be a Z-basis of t N sly(Z) as constructed above. We first gather
a basis of [v, t] among {[v;, v;] | i, j = 1,..., m}, then extend this to a Q-basis, C,
of v by adding an appropriate subset of {vy, ..., vy} to it. Finally, we extend C to a
Q-basis, B/, of g by adding an appropriate subset of {#, ..., iy} to C. Note that if
[ # 0, we may obtain {ii1, ..., #;} C B because [Nt = {0}.

Applying the extracting small Z-bases lemma from §3.1 yields a Z-basis B =
{ur,...,upm}, of gNsly(Z) so that

1. lui|| € T*.

2. {uy,...,u,}is a Z-basis for [v, t] N sly(Z).

3. {u1,...,un}is a Z-basis for t N sly (Z).

4. {uy, ..., umy}is a Z-basis for (I v) Nsly(Z).

Inparticular, {#,,/ 41, - . ., ;) projects toabasis of v/[v, t]. Letus write D := {1, 1+
[v,c], ..., um + [, t]).

Also note thatfor 1 <i </and 1 < j <m +1, there are ¢;; € Z with |c;;| K T*
so that foreach 1 <i < k we have

m+l1
12,' = Ci,juj. (3.3)
1

+

~.
I

Step 3. Finding a Levi subalgebra b with small height.

We argue by induction on £4(t), the derived length of the radical r. When £4(t) = 0,
g is semisimple, and it suffices to set h = g.

Therefore, let us assume that £4(x) > 1. Define

E ={f € End(g, v/[x, t]) : f satisfies (a), (b), and (c)},

where End(g, t/[t, t]) denotes the set of Q-linear maps from g to v/[t, t], and

(a) I Ckerf,
(b) f restricts to the canonical projection vt — t/[t, t],
© f(u,v]) =u+I[t,c], fFWI+[f@),v+[r,c]] forallu,v € g.

If b is a Levi subalgebra of g which contains [, then the canonical projection g =
t® bh — t/[r, t] (whose kernel is precisely [t, t] @ b) belongs to E. Now, since [ is
reductive, there exists a Levi subalgebra b so that [ C b, see [20]. Therefore, E # @.

Claim If f € E, thenker f is a Lie subalgebra of g whose radical is [, t].

Proof of the claim First note that in view of (c) above, ker f is a subalgebra. Also, it
is clear from (b) that [t, t] C R(ker f).

To see the converse, note that v + ker f = g, hence v + R(ker f) is an ideal of g.
Moreover, t + R(ker f) is solvable. Therefore, R(ker f) C tNker f = [t, t], where
the last equality follows from (b). O
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In view of the claim, if b is a Levi subalgebra of ker f with [ C b, then
g=t+kerf=r+(r,t]®hH =tDh. 3.4

That is: b is a Levi subalgebra of g and [ C b.

The strategy now is to find some f € E with ht(ker(f)) <« T*. Then the above
observation and inductive hypothesis will yield the desired Levi subalgebra.

We now turn to the details. First note that in view of (a), (b) and (c), we have that
E is the set of solutions f € End(g, t/[t, t]) of the inhomogeneous system

fw)=0 i=1,...,m
Si) =u; +[v,7] i=m+1,...,m
f@) =0 i=1,...,1

fui,uil) =[u; + e, fp]+1f@),u; +ee]]l i,j=1,...,M.

In view of (3.1) and (3.3) we have the following. When f is written in the basis
of End(g, t/[, t]) associated to BB and D, the above system becomes a linear system
whose coefficients are integers bounded in absolute value by <« T*.

Since E is not empty, after perhaps removing redundant equations, we may apply
Siegel’s lemma for inhomogeneous equations in §3.1 and get the following. There is
a solution f whose matrix in the bases 53 and D has rational entries, with numerator
and common denominator ¢ <« T*. Put f’ = c¢f, so that the matrix of f’ in the bases
B and D has integer coefficients of size < T*.

At last, another application of Siegel’s lemma and extracting small Z-bases lemma
in §3.1 to f’ yields that ker f N sly(Z) has a Z-basis {wy, ..., w,} satisfying

lwill KT* 1<i<n

Recall from the claim that [ C ker f, R(ker(f)) = [r, t], and £4([t, t]) < £q(v).
Hence by the inductive hypothesis, ker f has a Levi subalgebra, h), with ht(h) < T*.
In view of (3.4), this finishes the proof of Step 3 and the proposition. O

4 Consequences of effective Levi decomposition

Recall from §1.1 that we fixed the following.

1. A connected, simply connected, algebraic Q-group G whose solvable radical is
unipotent, i.e., R(G) = R, (G) =: R.

2. An algebraic homomorphism ¢ : G — SLy defined over QQ with a finite central
kernel.

Also recall that py (or simply @) denotes the G = ¢(G(A))-invariant probability
measure on ¥ = ((G(A)/G(F)). Let mg (or simply m) be a Haar measure on G
which projects to © under the orbit map.
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In this section, we will use the results from §3 to find a good Levi decomposition
for ((G). Then we will relate the notion of height of ¥ (see §1.3, §1.4) to the heights
of orbits similarly defined using the radical and our fixed Levi subgroup.

4.1 Finding a good Levi subgroup

Let g C sly(Q) (resp. t') denote the Lie algebra of t(G) (resp. of ((R)). Set T :=
ht(g).

Let b’ be a Levi subalgebra of g’ given by Proposition 3.1 applied to g’, so that
ht(h') < T*.

Let H' be the subgroup of ¢(G) with Lie(H') = §’. Then H' is a Levi subgroup of
1(G), and we have ((G) = H'«(R).

We now discuss similar decompositions over QQ and also A. First note that, since
R = R, (G), H is semisimple (not just reductive), and we have H' (A)Nt (R)(A) = {1}.

SetH = (~'(H). Since ¢ has finite central kernel, H is a semisimple Q-subgroup of
G isogenous to H'; thus H is a Levi Q-subgroup of G. Moreover, G(Q) = H{Q)R(Q).
Indeed, in the exact sequence

1 - R(Q) — G(Q) — H(Q) — H'(Q,R)

associated to the quotient G/R = H, the term H! (Q, R) vanishes because R is unipo-
tent. Hence G(Q) — H(Q) is onto.

The same argument applied to the group ¢(G) shows that ((G)(Q) = ((H)(Q)
LR)(Q).

The above also implies that
G(A) = HA)RA).

Indeed, since G(Q) = H(Q)R(Q), the embedding H — G is a section defined over
Q of the quotient map G — H. Hence G(A) — H(A) is surjective, see [29, §1.2],
and we get G(A) = H(A)R(A) as was claimed.

Applying ¢, this yields ¢ (G(A)) = ((H(A))(R(A)).

4.2 Product structure of Y, Ly, and mg

Letpry : G — H be the map which is induced from the natural projection G — G/R.
More explicitly, given g € G, we have the unique decomposition

g = gugr Wwhere gg € Hand ggr € R;

then pry(g) = gH.

Letpry : G — H := ((H(A)) be the induced map, given by pry(g) = gu., where
g = gngr € t(H(A)(R(A)).

Put Yy := ((H(A)/H(Q)). The map pry induces a map ¥ — Yp given by
1(g)SLy(Q) — (gp)SLy(Q) for g € G(A).To see this, suppose t(gflgz) €
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SLy (Q) for some g1, g2 € G(A). Then t(g; 'g2) € ((G)(Q) = (H)(Q1R)(Q),
hence

W(g0r Ngm) = gy 'gm) € L(H)(Q) C SLy(Q).

We continue to denote the map so induced from Y to Yy by pry.
Put R := «(R(A)) and Yg := «(R(A)/R(Q)); we have a fibration

The fiber over ¢(h)SLy (Q) € Yy is plrgl (t(h)) = t(h)t(R(A))SLy (Q), the translate
of Yg by t(h).

Let g (resp. ;) be a R-invariant (resp. H-invariant) probability measure on Yg
(resp. Yy ). Let [1 be the measure on Y defined by

/defL:/Y ( ) f(hrSLN(Q))d,uR(r)) dpp (h).

Since H is semisimple, the modulus of the action of H on g is trivial. Thus [ is
a G-invariant probability measure on Yg; thatis: ft = uy.

Let my and mp be Haar measures on ((H(A)) and ¢(R(A)) which project to g
and pg, respectively. The measure 71 on G given by the product of my and mpg is a
Haar measure. Moreover, i projects to the invariant probability measure & = puy on
Y via the orbit map. Therefore, mg = m is the product of my and mg.

Lemma 4.1 There exists some ks so that
vol(Yg)* « ht(R) < vol(YR).
Proof Recall that ¢ is an isomorphism on R. For every prime p, put

Cp=1""R'(Qp) NSLN(Zp));

C, is a compact open subgroup of R(Q,). By the strong approximation theorem for
unipotent groups, we have

R(A) = (R(R) x ]_[P C,)R(Q).
In other words, for every g € R(A) there exists some yy € R(Q) so that
80 = (&oc, (§p)) € RM) x [], Cp.
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Recall now that log(¢(R(R)) N SLy(Z)) C (N %5[1\/ (Z)) for some integer D
depending only on N. Let {vy, ..., v,} be a Z-basis for v/ N %5[1\/ (Z). For every
6 > 0, put

Fs := {hoo € LR(R)) : hoo = exp (Zc,-v,-) eil < 5} x [TeCp.
14

Note that,

Fs NSLy(Q) C SLy (Z);
therefore, in view of the choice of D, for small enough § < 1 we have FsNSLy(Q) =
{e}Also, note that Fy = F{l; and if § « 1 is small enough, 7k’ € F,;s for any
h,h' € Fs. Altogether, we get that Fs injects into Y for all small enough § < 1.

Recall that m g is a Haar measure on ¢ (R(A)) normalized so that ug (Yg) = 1; also
recall that Q = exp(Bs(,(®)(10)) X ]_[p SLy(Zp). Therefore,

me(URA) NQ) K v A== Avy| 7
Since [|lv; A -+ - A vyl < ht(R), we get from the above that

ht(R) < vol(Yg) = mr((R(A) N )~

To see the other inequality, let g € R(A). Let yp € R(Q) be so that
870 = (80, (§p)) € R(R) <[], Cp.
There exists some p; € (! (exp(t’ N Nlsly (Z))) so that
lt(§oo¥1)] < ht(R)*

for some « independent of g. Note that ¢(p1) € t(R(R)) NSLy (Z), hence y; € R(Q).

Let y; be the diagonal embedding of y; in R(A). Then since ¢(y;) € SLy (Z), we
get that

gyYov1 = (8oc, (8p))71 = (&oo?1. (8p)) € R(R) x [], Cp.

Since we can cover {g € R(R) : |t(g)] < ht(R)*} with < ht(R)* translates of
LR(R)) N exp(Bsy (k) (1)), we get that

mgr(R(A) NQ) > ht(R)™™.

Therefore, vol(Yg)* < ht(R); the proof is complete. m]
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Lemma 4.2 There exist kg so that the following holds. For any g € G we have
ht(G)™** ht(g)*® < ht(pry (g)) < ht(G)** ht(g)*.

Proof Recall our notation G’ = ((G) and the Levi subgroup H' of G’ from §4.1. Put
R’ := «(R) = Ry (G). If R" = {1}, then R = {1} and there is nothing to prove.
Therefore, let us assume that R’ is a nontrivial unipotent Q-subgroup of SL .

Let P C SLy be the parabolic subgroup associated to R’ as in [4]. That is: Uy = R’
and U; is defined inductively by R, (Nsr, (U;—1)). Then U; C Ngr, (U;—-1) and
U;_; C U;. This process terminates after d < N2 steps and gives rise to a parabolic
subgroup, P, with the following properties.

1. ht(P) < ht(R)*.
2. R’ C R, (P) =: W.
3. Ns, (R) C P.

In view of (1) and Proposition 3.1, we have ht(W) < ht(P)* < ht(R)*. Moreover,
by (3) we have G’ C P.

Let Fp denote the flag defined by W as follows. Let Vy = QV, and for any m > 0,
let

Vi = Q-span{w; ... wyv:v € QN,w; € Lie(W)}.

Then {V,,} forms a descending chain of subspaces of QV; let M < N be so that
Vu # 0 but Va1 = 0. Further, note that ht(V,,) < ht(R)* foreach0 <m < M.

There exists some § = (%) € SLn (Q) with |a;;1, |b;j] < ht(R)*sothat§Fp = Fo
where Fy is a standard flag, i.e., Fo is a flag corresponding to a block upper triangular
parabolic subgroup Py. One could construct one such § as follows: for each i > 0
let Vl.’ be a complement of Vy41—; in Vy/—; (in particular, Vé = Vu), chosen so that
ht(V!) < ht(R)* for all i.

Let us put Qo = [Py, Po]R, (Py). The group R, (Pp) is unipotent upper triangular
and since SW8~! c R, (Py), we have R’8~! c R, (Py). Further, SH'§ ™' c Q since
H’ is perfect and normalizes R’.

Letg € G C G/(A); write g = gygr where gg € ((H(A)) and gg € ((R(A))
— recall that pry (g) = gn. We will use the reduction theory of SL; to compute an
Iwasawa decomposition for representatives of gy := dgyd~ ' and § := g6~ ina
Siegel fundamental domain.

Decompose gy as a product of a block-diagonal matrix in Qg and an element in
R, (Pp). Then using the reduction theory of SL; for each block matrix and the fact
that R, (Pp) is normal subgroup of Qp, we have the following. There exists some

70 € Qo(Q) so that
gryo = (kau, (g ,)) € SLN(R) x ([T, SLn(Z)p)) 4.1)

where k € SOy (R), a = diag(a;) is diagonal with aiaijrll < 2/«/5, and u = (u;;) is
unipotent upper triangular with |u;;| < 1/2 (see also the proof of Lemma 2.1).
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Let us write g = 8grd~" € R,(Py)(A). Let y; € SLy(Q) be unipotent upper
triangular, such that

(., )y, ' gryoyr = (', (u},))

with ' = (ugj) and |u;j| <1/2,and u;, € SLy(Zp). This, in view of (4.1), gives

8y = &néry = &nv(yy "&rvon) = (ka. (g ). ()yy '&ryvon
= (kau', (g} ,},)) € SLy(R) x ([T, SLn(Zy)) (4.2)
where y = ypy1.

As was discussed in the proof of Lemma 2.1, the decompositions in (4.1) and (4.2)
imply that

lal* < ht(gy) < lal* and |a|* < ht(g) < al*.
Recall now that g = 87148 and gy = 81y 8 where § = (%) € SLy(Q) with
laijl, 1bij] < ht(R)* < ht(G)*. The claim thus follows. m]

Proposition 4.1 There exist k7 and kg with the following property.

1. (vol(Yy) vol(Yg))"" < ht(Y) < (vol(Yn) vol(Yg))™.

2. (ht(Yp) ht(YR))* < ht(Y) < (ht(Ye) ht(Yg))*.

Proof Recall definitions of vol(-) and ht(-) of an algebraic data from (1.2) and (1.5),
respectively.

We first show that part (2) follows from part (1). Indeed by Lemma 4.1, we have
ht(R) <« vol(Yg); hence, ht(Yr) =< vol(Yg). Moreover, by [11, App. B] we have
ht(H)* < vol(Yg); hence, vol(Yy)* < ht(Yy) < vol(Yy)™*.

We now turn to the proof of part (1) in the proposition.

The upper bound. Because multiplication is Lipschitz (alternatively, by the Baker-
Campbell-Hausdorff formula), perhaps after changing 79, we have 2, - Q, C E.; x
]_[vezf SLy (0y) = Q2 for some ¢ depending only on NV, hence

(((HA) N Qy) - (tR(A) N Q) C UGA)) N Q.
In view of our discussion in §4.2, the measure of the left hand side is
me ((((H(A) N Q) - (R(A) N Qy)) = mp (L(HA) N Q) - mg(LRA)) N Q).
On the other hand, by [11, §2.3], we have
mg (LG(A) N Qey) <5y ma (LGA) N Q).

Altogether, it follows that

vol(Y) < mg(1(G(A)) N ano)_l
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< mp(CCHEA) N Q) - me(LREA)) N Q)"
= VOl(YH) VOl(YR).

To conclude the upper bound estimate, it thus suffices to show that
ht(G) < (vol(Yg) vol(Yg))*.

To see this first note that since g = h @ v, we have ht(G) < (ht(H) ht(R))*. Now
by Lemma 4.1, we have ht(R) « vol(Yg). Moreover, by [11, App. B] we have
ht(H)* < vol(Yg). The claim follows.

The lower bound. For the lower bound estimate, we will use notation from the proof
of Lemma 4.2; in particular, G’ = «(G), H' is a Levi subgroup of G’ and R’ = R, (G’).
Recall from the proof of Lemma 4.2 that there exists some § = (%) € SLy (Q) with
la;jl, 1bij| < ht(R)* and a block upper triangular parabolic subgroup Py C SLy so
that

8G'8~' c Py and SR'S™! C R,(Py).

Recall also that i’ = Lie(H"), and that Qg = [Py, PyIR, (Py). We define M to be the
block diagonal Levi subgroup of Q.

Apply Proposition 3.1 with Ad(8)h’ C Lie(Qp). Therefore, there exists some Levi
subgroup M’ C Qo so that

SH'™' ¢ M and ht(M) < ht(G)*.

Let B = {vy,...,vg} be a Z-basis for Lie(R, (Pg)) N sly(Z) with |lv;|| < 1.
Similarly, let C = {wy, ..., wy} (resp. C’ = {w], ..., w,,}) be Z-bases for Lie(M) N
sy (Z), (resp. Lie(M') N sly (Z)) with [lw; || < 1 and [|w]| < ht(G)*.

Recall that any two Levi subgroups of Qg are conjugate to each other by an element
in R, (Pg). Writing these equations (in the Lie algebra) in the bases C and C’ in terms

Cij

of B we get the following. There exists some u = (u;;) € R, (Po)(Q) withu;; = ()
and |c;j], |d;j| < ht(G)* so that uM'u=! = M.
Altogether, there exist some § = (Zzij/l;,j) € SLy(Q) with |a;;|, |l;,~j| < ht(G)*
so that o o
SH'S ' cM and SR'S™' c R, (Py). (4.3)

Put G = SL(G(A))S_l, and define H, R similarly. Having in mind our notations
G, = 1(G(Qp)), etc., we write similarly ép = SL(G(Q,,))S", etc.

Let h € SLy(Zp) N Qp. We can write h = hohy where hg € SLy(Z,) N M and
h1 € SLy(Zp) NR, (Pp). In consequence, we have
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GpNSLy(Z,) = (H, NSLy(Zp))(R, N SLy(Z))) (4.4)
for all primes p. Conjugating (4.4) by 571, we get
Gp N8, 'SLy(Zy)8, = (Hy N8, SLy(Z,)5p) (R, N8, SLy(Z,)5)).

In particular, the image, I, of the product map from (H, N SLy(Zp)) x (R, N
SLN(Zp)) into G , contains G , NSLy (Z,) N, 'SLy (Z)§, for all primes p. There-
fore,
ma,(Ip) = mG,(Gp N SLu(Z))/J, 4.5)
where J, = [SLy(Z,) : SLy(Zp) N85 1SLy (Z,)3)] for all primes p.
Since § = (&ij/lgij) € SLy (Q) with |a;], |l;jj| < ht(G)*, we have

[1, 7, < ht(G)* (4.6)

We also need an estimate for the real place. Let 0 < 1 < ng be a constant which will
be determined in the following. Suppose g € 1(G(A)) N2, and write g = (goo, (8p))-
By definition, goo = exp w for some w € g’ ® R with ||w| < n. By Proposition 3.1
and our choice of b, we can write w = wy + wy Withwy e b @R, wy e Y @ R
and |wy ||, lwy |l < ht(G)*n*. We pick n in such a way n < ht(G)™*, so that the
above implies

lwe Il lwe [l < €m0

for some € which will be specified momentarily.

Using the Baker-Campbell-Hausdorff formula and the fact that v/ is an ideal of
g/, we see that the Levi component (goo),(H(R)) Of goo 18 just exp(wy). Therefore, if
€ K 1is chosen small enough, we get that (g00) (HR)) € Ey and (go0):RR)) € Eng-
In consequence, we we have

MG, (Goo N Bpy) K ht(G)* mp,, (Hoo N Eyy)m Ry, (Roo N Eypy)- “.7
Altogether, we have

vol(Yp) vol(Yg) = mp L(H(A) N Q) mp ((R(A) N Q)™
D> € h(G) MG, (Goo N Egg) ™ [T, (ma, (1))
@) < ht(G)* vol (V) [T, Jp
@O~ <« ht(G)* vol(Y)
19 < ht(¥)*.

This implies the lower bound estimate and finishes the proof. O
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5 Proof of Theorem 1.1

We now combine the results from previous sections to complete the proof of The-
orem 1|.1—the idea is to use the effective Levi decomposition of §4 to reduce the
problem to the case of semisimple and unipotent groups.

5.1 Semisimple case

In the next paragraphs, we prove (a slightly finer version of) Theorem 1.1 under the
assumption that G is semisimple. Therefore, until the end of §5.2, G is assumed to
be a connected, simply connected, semisimple group. Under these assumptions the
following was proved in [11].

Proposition 5.1 There exists a prime p and a parahoric subgroup K, of G(Q,) so
that the following hold.

1. p < (log(vol(¥)))*.

2. G is quasi-split over Q, and split over @,, the maximal unramified extension of
Qp; further, K, is a hyperspecial subgroup of G(Q)).

3. Let &), be the smooth Z,-group scheme associated to K, by Bruhat-Tits theory
(see 2.4). The map  extends to a closed immersion from &, to SLy.

4. There exists a homomorphism 0, : SL, — &, so that the projection of
0, (SL2(Q))) into each Q,-almost simple factor of G(Q),) is nontrivial.

Proof Parts (1) and (2) are proved in [11, §5.11]; part (3) is proved in [11, §6.1];
part (4) is proved in [11, §6.7]. O

Let p be as in Proposition 5.1 and let &, be as in Proposition 5.1(4). We define the
one-parameter unipotent subgroup

1
i Qp — 0,(SLa(Q,)) by u(t) =6, ((0 i)) .
Note that in view of Proposition 5.1(2) and (3) we have
le(@)] < (1 + [t]p)". (5.1

5.2 Property 7

Recall that G is quasi-split over Q,; in particular, all of the almost simple factors of G
are Q-isotropic. Our proof relies on the uniform spectral gap; this deep input has
been obtained in a series of papers [6, 7, 13, 15, 16, 21, 26]. In particular,

e using [21, Thm. 1.1-1.2] when G(F,,) has property (7), and
e applying property () in the strong form, see [7, 13], and also [11, §4], in the
general case,

we have the following.
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Theorem 5.1 (Property (t)) Let o be the probability G(A)-invariant measure on
G(A)/G(Q). The representation of SL2(Q),) via 6, on

Li(o) :={f € LA (G(A)/G(Q),0) : [ fdo =0}

is 1/ M-tempered. In other words, the matrix coefficients of the M -fold tensor product
are in L>*€(SL2(Q))) for all € > 0.

It follows from the above theorem that for any fi, f> € C°(G(A)/G(Q)) we have

wirfis o~ [ rdo [ fao| < i Mscnsg. 62)

where S is a certain Sobolev norm. We refer to [11, App. A] for the definition and the
discussion of the Sobolev norm S.

Let n > 0 and put Eg,; = exp(Bg,, (1) C G(R). For every prime g, we set
K, = 'SLy(Zy)) € G(Qy). Put Qg = Eg,y X [ls, Kg C G(A). We set
QG = Qg see §2.2.

Theorem 5.2 (Semisimple version of Theorem 1.1) There exists some k9 depending
only on N, and for any datum (G, 1) with G semisimple, there exists some p € Ly
with

p < (log(vol(Y)))?,

so that the following holds. For any g € G(A), there exists some y € G(Q) such that
gy = hihhy, where hy, hy € Qg ,; and h € G(Q)) with

|e(h)] < ht(e()™ vol(¥Y)*.

Moreover, the implicit multiplicative constants depend only on N.

Proof Recall that m is the Haar measure on G which projects to py. Let A be the Haar
measure on G(A) so that t, A = m. By [11, §5.9] there exists some M > 1 depending
only on dim G so that

/M < MG(A)/GQ) < M. (5.3)

In view of the definition of vol(Y), this implies that vol(Y) = A(Qg) L.

Let n be a positive constant. For any g € G(A) put [g] = gG(Q); assume ¢([g]) €
X,. We claim thatif h, i’ € Qg,, are so that h[g] = h'[g], then h='h' e Z(Q), where
Z .= Z(G) denotes the center of G. To see this, apply ¢ to the equation h[g] = I'[g].
Using the definition of X, and the fact (Q,,) C 2, we get that ((h) = ().
Hence, h~'h' € Z(A); moreover h~'h' = g7 'h~'h'g € G(Q). Thus h~'1' € Z(Q)
as claimed. This claim in particular implies that 7[g] : Qg,; = G(A)/G(Q) defined
by 7(e1(h) := h[g] is at most #Z(Q)-to-one on Qg ;.

By [11, App. A], there exists a function f € C2°(G(A)) with the following prop-
erties:
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c0<f<l,
o forall h ¢ Qg,, we have f(h) =0and forall 1 € Qg /2 we have f(h) =1,
o S(fHHkKn™™

For every g € G(A) with (([g]) € X, define fig) € CZ°(G(A)/G(Q)) as follows.
If [g'] € mi)(Re.0): Put fig1 (8D = S, i) S ()3 iF ('] ¢ 7151 (G, define
f([g']) = 0. Then

1. 0 < flg S#Z(Q) K 1,

2. f([g') = 0 for all [¢] ¢ mg(Rg,y) and fig)([¢']) = 1 for all [¢'] €
(g1 (2G,n/2)s

3. S(fig) < 17"

Recall the measure o from Theorem 5.1. By (5.3), we have that [ fi;jdo =<
[ fig1dA. The set Q¢ can be covered by < n~* translates among {h2G ;2 : h €
G(A)}. Since A is G(A)-invariant, this implies that A(Q¢) < 77 *A(¢,5/2). Thus,

ff[g] do = / fig1dA = A(QG./2) > n* vol(¥) 7 (5.4

here, we used properties (1) and (2) of fi,], and the fact vol(Y) =< AQg) L
Apply (5.2) with f1 = fi¢) and f2 = fig. Using property (3) of fi and f>, we get
that

() fi. fo)o = / fido / frdo| < A+l My~ (55)

We get from (5.5) and (5.4) (which also holds for fi) that if [¢][, > vol(Y)*n™*,
then

(u(®) f1, f2)s #0. (5.6)

This implies in particular that if [¢[, >> vol(Y)*n™*, then the following holds. There
exist iy, hy € G(A) so that f1([A1]) # 0, fz([hz_lg]) # 0, and

u(®)h1G(Q) = h;y ' ¢G(Q). (5.7)

In view of the fact that Qg , = Qa}n, it follows from the above and property (2) that
hi (S QG,77~

Finally, we choose ¢ so that (5.6) holds while [t[, < vol(Y)*n™*. In this way,
by (5.1) we have [t(u(2))] < (1 + |t[p)* < vol(Y)*n™™. In view of (5.7), by taking
hy and h; as above and i = u(t), the proof of Theorem 5.2 is complete. O

Before proceeding to the proof of general case, we need the following
Lemma 5.1 There exists some k1 so that the following holds. Let R be a unipotent
Q-group, given with an embedding 1 : R — SLy. Let S C X be a finite set of places

containing the infinite place; put ps = max{p € SN Xr}. Letv € S. For any
g € R(A), there exists some y € R(Q) so that

@ Springer



Diameter of homogeneous spaces: an effective account 1997

1(gy) = (hs, (hg)ggs) € SLy(Qs) x [ [ SL (Zy),
q¢S

lhy| < P ht(R)¥10, and for every w € S — {v}, we have |hy,| < p".

Proof The proof is, mutatis mutandis, part of the proof of Lemma 4.1. We briefly recall
the argument for the convenience of the reader. For every prime ¢, put

Cq =17 ((R(Qy)) N SLy (Zy)).
By the strong approximation theorem for unipotent groups, we have
R(A) = (R@s) x [],5 Co)R().
Hence, there exists some yg € R(Q) so that
g0 = (s, (8g)g¢s) € R(@Qs) x [[ 45 Cy-

Fixing a Zg-basis for t(Qg) N sly (Zs), we have the following. There exists some
71 € Nexp(x(Qs) N Nlsly(Zs))) so that hs = 1(gs71) satisfies

|hy] < pght(R)* and |hy,| K p§ forw € § — {v}.
Note that t(y1) € t(R(Qg)) N SLy (Zs), hence p; € R(Q).

Let y; be the diagonal embedding of y; in R(A). Then since ¢(y1) € SLy(Zs), we
get that

gyovt = (s, (8g)q¢s)v1 = (851, (8g)g¢s) € R(Qs) x [[45 Cq-

The claim thus follows with y = ypy. O

5.3 Proof of Theorem 1.1
Let g € G(A) and write g = gy gr where gy € H(A) and gg € R(A); recall that
pry(g) = gu-

First, we apply Theorem 5.2, i.e. the semisimple case, to the pair (H, ¢|,,). In view
of Lemma 2.1, we have 1(ggG(Q)) € X,, for n := k3 ht(t(gx)) ~**. Thus, there exist

some yy € H(Q) and some p K (log vol(Y, H))2 so that the following holds. There
are h € H(Qp) and hy, hy € Qu C Qg such that ggyo = h1hhs and

[e(h)] < ™" vol(Yr)*.
This estimate implies that

|e(h)] < ht(e(gm))* vol(Yp)* since n = k3 ht(L(gn)) ™
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< ht(G)* ht(t(g))* vol(Yg)* by Lemma 4.4
< ht(G)* ht(e(g))* ht(Y)* by Prop. 4.5
< ht((g)* ht(¥)* by 1.5. (5.8)

Also note that by Proposition 4.1 we have
p < (logvol(Y))* < (loght(Y))*. (5.9)
Apply Lemma 5.1 with § = {oo, p} and v = p to the element yo_lgRyo € R(A);

we get the following. There exists some y; € R(Q) for which

(@) (v, 'gry0y1) € SLN(Z,) for all primes g # p,
() le(yy ' grV0Y)00l < p*, and
© le(yy ' gry0v1)pl < p*ht(R)* < p* ht(G)*.

Set y = yoy1 € G(Q). Let us write
(8oos 8ps (8q)qes) 1= L(gy) = gy (Vy ' grRYOVD). (5.10)

The above estimates then imply that

,2, we have g, € SLy(Z,) for all primes g # p.
, 2, we have

1. By (a)and h; € Qg, i =
2. By (b)and h; € Qg,i =

ool < lt(h1hh2) ool - 1t(vy &R VOV ool < P*
< (loght(Y))* by (5.9)

3. For the prime p, we have

18] < |Lhihh2) pl1(vy  gr VOV pl

< ht(1())"ht(¥)* p* ht(G)* by (5.8) and (c)
< ht(1(g)* ht(¥Y)* ht(G)* by (5.9)
< ht(e(g)* ht(¥)* by (1.5).
The proof is complete. O

6 S-Arithmetic quotients

In this section, we discuss some implications of the statement and the proof of Theo-
rem 1.1 in the local setting. The main results are stated in Theorem 6.2 which deals
with the case of semisimple groups and Theorems 6.1 and 6.3 which can be thought
of as effective versions of the strong approximation theorem.
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6.1 The setup

Let L. C SL, be a Q-group so that R(L) = R, (L)). Let S C X be a finite set of places
containing the infinite place. Define

L= HL(QU) and [:= @yesly,

veS

where [, := Lie(L)(Qy,).

Let R = R, (L). Fix a Levi subgroup H of L so that ht(H) « ht(L.)*, see Proposi-
tion 3.1. We let H denote the simply connected covering of H. Put L = H x R, where
the action of H on R factors through the action of H via the natural covering map

:H —> H. By the construction of L, 7/ extends to an epimorphism 7 :L—>L
w1th finite central kernel, given by w(g) = w(gggr) = 7 (gH) &R, Where gz € H
and gr € R.

Let L := 7n(L(Qs)); then L is a normal subgroup of L and L/ L is a finite abelian

group — it is worth mentioning that this finite group can be identified with a subgroup

of [Ts H'(Qu, Z(H)).
6.2 Two notions of complexity

Foreveryg € Ly put K, = 71 (SLy (Zg4)). Define the subgroups A and I" of L(Qy)
as follows:

= the projection of L(Q) N (L(Qs) x [,¢5 Kq) o L(Qs). 6.1)

and ' := 7w~ (SLy @S)). Note that A is a normal subgroup of I'; moreover, both A
and I are lattices in L(Qs).
PutZ:=mxm (L(A) / L(Q)). Similarly define

7 = n(L(Qs)/A) = L/L N SLy(Zs) = L/ ().

As was done in §1.5, we define vol(Z) = ms(L N Qs)~" where Q5 = &, x
quS—{oo} SL4(Z4) and m is a Haar measure on L(Qy) normalized so that mS(Z) =
1. Here and in what follows, we abuse the notation and denote m,.v simply by v, for

any measure v. .
We also put ht(Z) = max{ht(L), vol(Z)}.

Proposition 6.1 There exist k11, k12, and k13 so that for all L asin 6.1 withvol(Z) > 1,
we have the following.

L k3 h(Z)1 < ht(Z) < wey3 he(Z)“2;

2. If L is semisimple or unipotent, then

Kp3 Vol(Z)“1! < vol(Z) < k13 vol(Z)*12
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Proof We first prove part (2) above.

First note that if L is unipotent, then L = L and the same argument as in Lemma 4. 1
implies that ht(L)* <« vol(Z) « ht(L). The claim in this case follows from this and
Lemma 4.1.

We now assume that L is semisimple. In this case we will actually prove

K3 vol(Z)“11 < vol(Z) < k13 vol(Z) 6.2)
when vol(Z) is large enough.
Let A denote the Haar measure on L(A) normalized so that A(Z) = 1. By [11, §5.9]
there exists! some M > 1 depending only on dim L so that

1/M < AM(L(A)/L@Q) < M. (6.3)

Since L is simply connected and L(Qs) is not compact, we have
L) = (L@s) x [,gs K¢ ) L@

Write & = [ [ Ay and set Ag := [ [ A,. In view of the above and the definition of A,
see (6.1), we get the following.

ML) /LQ) = hs(L@Qs)/A) - T g5 +q(Kg) (6.4)
Recall furthermore that
vol(Z) = Mr@A) N~ =As(L N Q)" [[yes @K' (6.5)
From (6.3)~(6.5) we get that
As(L(Qg)/A) = M'as(L N Q) - vol(Z) (6.6)

where M’ € [1/M, M].
We can now make the following computation.

As(L(Qs)/T) = As(L(Qg)/A) - [I": A]™!
= Mrg(LNQyg)-vol(Z) - [T : A by (6.6) 6.7)

Perhaps by enlarging M to account for the effect of the central kernel of 77, we have
As(L/m(T)) = M"As(L(Qs)/T) for some M” € [1/M, M]. Therefore, writing the
definition of vol(Z) in terms of the measure A g, we have

! The discussion in [11 , §5.9] assumes that L is Q-almost simple; since Lis simply connected and semisim-
ple, we can decompose L = Lj - - - L, as a direct product of Q-almost simple factors and apply the argument
to each factor separately.
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vol(Z) = as(L/m(T)) - as(L N S2) "
= M"3s(L(Qs)/T) - As(L N Q)"
— Mvol(Z)-[T": A]™! by 67)  (6.8)

where M € [1/M?, M?].

We now apply the discussion in [11, §5.12], see also [3] and [1, Cor. 6.1], with
A = A and A = T — note that the only role S plays in the argument in [11, §5.12] is
for the use of the strong approximation theorem. It is proved in the proposition in [11,
§5.12], see also the intermediate steps (5.10) and (5.13) in loc. cit., that there exists
some 0 < «14 < 1 such that

[T : A] < vol(Z)<14, (6.9)

provided that vol(Z) > 1.

In consequence, (6.8) and (6.9) imply (6.2) with k1] = 1 —k4 and k13 = M?2; this
finishes the proof of (2).

We now use the estimate in (2) to prove (1). First recall our Levi decomposition
L = HR; recall also that L(Q) = H(Q)R(Q) and L(Q,) = H(Q,)R(Q,) for all
vEX.

Define 'y = (mﬁ)_l(SLd (Zs)), and define I'g similarly. Following the above
notation, put Zy = m(H(Qs)/Ty) and Zg = 7(R(Qs)/Tg); also put A =
'glgr CT.

Let v be the Haar measure on I:(QS) normalized so that v(I:((@S) /A) = 1; sim-
ilarly, let vy and vk be Haar measures on ﬁ((@s) and R(Qg) normalized so that
VH (ﬁ(@g)/ ') = 1 and vr(R(Qs)/ ') = 1, respectively. In view of the product
structure of A and L(Qs), we may argue as in §4.2 and get that v is given as the
product of vy and vg.

The above normalizations of vy and v and the definitions of Zy and Zg imply
that vol(Z ) = vy ((A(Qs)) N Qs) ™" and vol(Zg) = vg (7 (R(Qs)) N Rs) . Let
us put

vol,(Z) := v(r (L(Qs)) N Qs) "

Using the product structure of v again, we may now argue as in the proof of Propo-
sition 4.1 and get that

(vol(Z ) vol(Z))" < hty(Z) < (vol(Zy) vol(Zg))*, (6.10)
where ht, (2) = max{ht(L), vol,(Z)}.

We now compare vol, (Z) and vol(i). Using the notation in the proof of Proposi-
tion 4.1, see in particular (4.5), we have the following.

0:Al<[[J <] < bty 6.11)
qé¢S D)
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the first inequality follows from the definition of A, I', and J,, the second inequality
follows since J; > 1 for all ¢, and the third inequality is (4.6).

Recall that mg denotes the Haar measure on ﬂ(@ s) normalized so that
ms(L(Qs)/T) = 1. We have

vol(Z) = ms(x (L(Qs)) N Q2s) ™" = v(xL(Qs) N Q2s) [T : AT
This, together with (6.11), implies that
vol,(Z) ht(L) ™ < vol(Z) < vol,(2),

which in turn gives . . .
ht, (Z)* < ht(Z) <« ht, (Z). (6.12)

Now in view of part (2), the upper and lower bound in (6.10) are
= (Vol(Z g)vol(Z R))*. Moreover, Proposition 4.1(1) gives

(vol(Zy) vol(Zg))" < ht(Z) < (vol(Zy) vol(Zg))™. (6.13)
The claim in part (1) follows from (6.10), (6.12), and (6.13). m]

We now turn to the consequences of Theorem 1.1 in the S-arithmetic setting when
applied to the datum (L, 7). Recall that we defined

hts(g) := max {([Ts llgwl)™" : 0 # w € Zg}

for any g € SLy(Qs). }
For any set § of places and any g € SL4(Qy) (resp. g € L(Qs)), we write g :=
(g, (e)g¢s) € SLy(A) (resp. € L(A)).

Lemma 6.1 For any g € SL;y(Qs) we have
ht(g) = htg(g).

Proof This is a consequence of the product formula as we now explicate. For every
w € Q7, let w be a primitive integral vector on Q - w. First observe that

c@w) =[] lgwl, =T 1Z3wl, by the product formula
) )
=[Tswwl [T l2l, gg=e q¢S
S qé¢S
= H lgvwlly w is primitive integral.
S

This shows that ht(g) < hts(g).
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To see the reverse inequality, notice that if w € Zg, then ||lw|l, < 1foranyq ¢ S.
This implies that

[Tlswwlv = [T lguwllo [T Ilwl = l2wlly = c3w)
S S

q¢S z

and in turn that htg(g) < ht(g).

In the following, we use the same notation for the diagonal embedding of elements
of SL4(Q) in SL;(A) and in SL;(Qg); which embedding is relevant will be indicated
by the context.

Theorem 6.1 There exists k15 so that the following holds. Let the notation be as in
§6.2. There exists some

p < (logvol(2))?

with the following property. For any g € L(Qs), there exists some y € L(Q) so that
7(y)q € SLa(Zy) forall g ¢ S U {p} and

I7(g¥)ul < hts(w()) !5 ht(Z2)*1s
forallv € S. Moreover, if p ¢ S, then
|7 (1) p| < hts((2))*!5 ht(Z)*5.

Proof In view of part (1) of Proposition 6.1, it suffices to prove the above estimates
with ht(Z) replaced by ht(Z).

In view of Lemma 6.1 and of Theorem 1.1 applied to (L, ) and g€ L(A), there
exists some y € I:(Q) so that w(gy), satisfies the estimate stated in the theorem for
allv € §,and 7(gy )y € SLa(Zy) for all g ¢ {00, p}. Therefore, 7 (y), € SLy(Zy).

Now if p ¢ S, then 7 (gy)p, = m(y))p, and the desired estimate follows from
Theorem 1.1. O

We now state and prove a reformulation of Theorem 1.2 using the above notation.

Theorem 6.2 Let the notation be as in §6.2; further, assume that

1. L is semisimple, and
2. L = L(Qyg) is not compact.

There exist k16 and some C = C (L) so that the following holds. For any g € L(Qs)
there exists some § € A, see (6.1), so that

|7(8)y] < C hts(m(2))*1¢ vol(Z)16

forallv € S.
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Proof In view of part (2) of Proposition 6.1, it suffices to prove the above estimates
with ht(Z) replaced by ht(Z).

As in the proof of Theorem 6.1, we will deduce this theorem from an adelic state-
ment. Letw € Sbeaplacesothat L(Q,,) is not compact. The required adelic statement
here is an analogue of Theorem 5.2 where G in the notation is replaced by L and the
place p is replaced by w.

Fix a Q,,-representation (with finite kernel) 6,, : SL(Q,,) — ﬂ((@w). We define
the one-parameter unipotent subgroup

u:Qy — 0y (SL2(Qy)) by u(t) =0y (((1) ;>> '

Note that
lu(t)] < C1(1 4+ |t]w)* (6.14)

for some C; depending on 6, and hence on L. _ _
Moreover, it follows from [13, Thm. 1.11] that for all fi, f> € C°(L(A)/L(Q))
we have

() f1, f)o —/ﬁ do/f'zda\ L A+t PMS(MS(fr),  (6.15)

where S is a certain Sobolev norm and o is the probability L(A)-invariant measure
on L(A)/L(Q).

One now repeats the proof of Theorem 5.2 {eplacing (5.1) with (6.14) and (5.2)
with (6.15) to get the following. For any g € L(A), there exist h1, hy € Q) 0 and

h € L(Q,) with
|7 (h)| < Cht(x(g)) ™™ vol(Z)*®

such that g]l(@) = h1hhyL(Q); the constant C depends on L and d.
Let ¢ € L(Qs) and apply the above discussion to g. Then using the above and
Lemma 6.1, there exists some & € L(Q,,) with

|7 (h)] < Chtg(w ()™ vol(2)*,
two elements k1, hy € Qi,n’ and some y € L(Q) so that gy = hihhy. If ¢ ¢ S, then

(m(gy))g = m(y)q € SL4(Zy). The claim thus follows with § = y (thought of as an
element in A). m]

6.3 The adjoint action

We now turn to a version of Theorem 6.1 where htg(g) is replaced by a height function
defined using the adjoint representation of L on [.
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First, we need some more notation. For all v € X, let || ||, denote the maximum
norm on sly(Q,) with respect to the standard basis. Using this family of norms, we
define ht(L) analogously to what was done in §1.4.

Fix a Z-basis B = {vy, ..., vy} for Lie(L) N slz(Z) with ||v; ||cc < ht(L)*. Using
this basis, we identify Lie(L) N sly(Z) with Z" and Lie(L) with Q"; in this way,
SL(Lie(L)) is identified with SLy. We also let || ||, denote the maximum norm
with respect to B on Lie(L)(Q,). To avoid confusion, we will keep the index 5 for
functions defined using these norms, e.g. we write cg and htg (although after the
above identifications, they correspond precisely to the notions introduced in §1.2).

Let Adr, : L — SLy denote the adjoint representation. We sometimes write Ady,
or simply Ad for Ady, if there is no confusion. Put cs(w) = []g [lwyll, for all
w = (wy) € L.

Let [(Zs) := [N sly(Zs); note that [(Zg) is invariant under the adjoint action of
L NSLy(Zgs). For every g € L, we define

htz (g) := max{cs(Ad(9)w) "' : 0 # w € [(Zg)}.

The function hty is L NSL;(Zg)-invariant, so it defines a function on L /L NSLy(Zs)
which we continue to denote by hty .

As before, we put |g| = max{||g], lg~ '} for all g € SLy(Q,), where || || is the
operator norm on SLy (Q,) with respect to some fixed norm on QUN , say the max norm
with respect to the standard basis.

Let R” = Adp,(R). Put G = H x R/, where the action of H on R’ factors through
the action of Ady,(H) via Ady, o 77/, where 7’ : H — H is the natural covering map.

The adjoint action on L induces a homomorphism ¢ : G — SLy with finite central
kernel, given by

1(gf8R) = AdL(7'(87))8R-

In accordance to §1.1, we set ¥ := 1«(G(A)/G(Q)) C SLy(A)/SLy(Q). Define Y as
in §6.2 by replacing the pair (L, 77) with (G, ¢) and SL4 by SLy; similarly fix an open
subset Q25 C SLy(Qy), and define vol(Y) using Q25 C SLy (Qs). We put

htg(¥Y) = max{ht(L), vol(Y)} and htz(¥) = max{ht(L), vol(¥)}.

Additionally, there is an epimorphism ¢ : L—>G given by g er > ggAdL(gR),
whose kernel is contained in Z(R), hence is unipotent. As was argued in §4.1, this
implies that L(Q) surjects onto G(Q), and L(Q,) surjects onto G(Q,) forall v € 3.

L—Z*5L
lw lAdL

G — SLy
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As before, for every g € L(Qs) we write g =1(g, (e)g¢s) € i(A) and we write
&= 1(g(8) = (AdL(7(8)), () pgs) € L(G(A)). (6.16)

In what follows, the notation will confound the implicit diagonal embeddings of L(Q)
in L(Qg) and in L(A). Which embedding is relevant will be indicated by the context.

Lemma 6.2 There exists some k17 so that the following holds. For any g € L we have
ht(L) ™7 hty, (g) < htp((AdL(g), (€) pgs)) <K ht(L)7 hty (g).

Proof For g € L, set g := (AdL(g), (¢)p¢s) € SLy(A). Forany w € QN,letwbea
primitive integral vector on QQ - w. First, observe that

cs@w) =[[l2wlse =] 12@l5. by the product formula
z x
=[[l1ad@vols., - [] @15,
S pes
=[] 1Aad()vbli5.0 since i is primitive integral
S

> ]:[ IAd(g)vill, ];[<miax loill) ™ 1l << (max o 1) - I 5.0

> [T1Ad@uvilly - (max o)™ sincev; € sl (Z)
S
> ht(L) *cs(Ad(g)w) because [|v; [ oo < ht(L)*.
(6.17)

From this, it follows that

htp(g) = max{cg(gw) ' : 0 # w € QV) see (1.1)
<« ht(L)* max{cs(Ad(g)w) ™' : 0 # w € QM) by (6.17)
< ht(L)* max{cs(Ad(g)w)™': 0 # w e Z%}
= ht(L)* ht; (g).

Similarly, since for every w € ng and all g ¢ S we have ||lw| g, <1, we get
cs(Ad(@)w) = [ ] 1Ad(g)ywll,
s

> ht(@) [ lAd@wwiis.,
S

> ht(@L) [ [IAd@wwlis. [ ] lwlly
S

q¢S
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= ht(L) *cp(gw).
This implies the lower bound ht (g) < ht(L)* htz(g). O

Theorem 6.3 There exists some ki3 so that the following holds. Let L be any Q-
subgroup of SLg with R(L) = R, (L) and let L, (G, 1), etc. be as in §6.3. There exists

some prime p K (1og ht[g(l?))2 with the following property. For any g € L(Qs), there
exists some y € L(Q) so that e(y))g € SLyn(Zy) forall g ¢ S U {p} and

|t(@(g¥))v] < htr (m(g))*1® hts(¥)“18

forallv € S. Moreover, if p ¢ S, then

(@) p] < hty (7(g))“1® ht3(¥) 15,

Proof In view of part (1) of proposition in §6.1, it suffices to prove the above estimates
with htg(Y) replaced by htz(Y).

Letg € L(Qs) and write g = gHgRr Where g € H(Qy) and gr € R(Qy).

In virtue of (3.1), we have that htg(ad (Lie(L))) < ht(L)*. Since Lie(t(G)) =
Lie(Ad(L)) = ad (Lie(L)), this means that htzg(G) < ht(L)*. Lemma 4.2 thus yields

htg(L) " htg(8)* < htg(gn) < ht(L)*htz(8)*. (6.18)

As before, we write Yy = «(H(A) /ﬁ(@)). Letp < (log volg (YH))2 be asin Theo-
rem 5.2 applied to (ﬁ, L|ﬂ), so that (combined with Lemma 2.1) we have the following.

There exists some yo € H(Q) so that if we put &’ = (k' ,h/p, (h;)q¢su{p}) = 2HY0,
then ((¢(h'))4 € SLy(Zgy) forall g ¢ {oo, p}, [t(¢(h')ee| <p 1 < ht(L)*, and

lt(p(h")p| < hta(gn)* volg(Yp)*

< ht(L)*htg(g)* volg(Yg)* by (6.18)
< ht(L)* hty (7 (g))* volg(Yy)* by Lemma (6.8)
< hty (w(g)) htg(Y)* by Proposition 4.5. (6.19)

Also by Proposition 4.1, we have

*

p < (logvol(Ye))” < (loghts(Y)) (6.20)

Apply Lemma 5.1 with the set of places {oo} and v = oo to the element yo_l gRY0
to obtain some y; € R(Q) such that

(a) Jr(yoflgRyoyl) € SLy(Zy) for all primes ¢, and
() 17 (75 ' grY0YDo0)| < ht(R)* < ht(L)*.

Since n(yoflgRyo)q = e for all ¢ ¢ S, item (a) above implies that 7(y1), €
SLy(Zy) forallg ¢ S.
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Put y = yoy1 € L(Q) and write
h = (hs, hp, (hy)) == gy = guvo(yy "grvov)) = W'(yvy 'grvov).  (6.21)

The above estimates then imply that

1. By (a) andt((p(h;])) € SLy(Zg) we have 1(¢(hy)) € SLy(Zy) forallg ¢ {oco, p}.
2. By (b) and |t(p(hL,))| < ht(L)* we have

(@ (hoo))| < htL)* 1@ ((vy R Y0V1o0o))| = ht(L)*A(T (5 ' &R YOV 00))
<8 ht(L)* |7 ((vy ' grY0V1)00)| < ht(L)*.

3. For the prime p we have

le(@hp)| < le(p(h),))] - IAd( (v ' grY0YD) )
LB g, - 17 ((vy 'R Y0Vl
< ht(L)*|e(p (7)) by (a)
< hty (m(g)*htp(Y)* by (6.19).

Let now g ¢ S U {p}. Then g, = t(¢(g4)) = e and hence we have t(¢(y,)) =

t(p(hg)) € SLy(Zy) by (1). This means t(¢(y)) € SLy (Zsuip))-
Lastly, if p ¢ S, we have again g, = e, therefore ((¢(yp)) = t(¢(h))) and (3)
above gives the desired bound on ¢(¢(y)p)). O

The above proof actually gives the following stronger statement.

Theorem 6.4 There exists some kig so that the following holds. Let L be any Q-
subgroup of SLg with R(L) = Ry, (L) and let L, (G, v), etc. be as in §6.3. There exists
some prime p <K (log htg(f/))2 with the following property. Let g € L(Qs) and write
g = gHZR Where gy € H(Qy) and gr € R(Qy). There exists some yy € H(Q) and
some y; € R(Q) with

o ((p(y0))g € SLn(Zy) forallq ¢ SU {p}
o w(y1)g € SLy(Zy) forallg ¢ S

o if p ¢S, then |L(p(yoy1))pl < htr ()< htg(Y)<1s,

so that if we write (g, (e)¢s)Yoy1 = huhg, where hy € H(A) and hg € R(A), then
we have the following estimates.

1. w(hr)g € SLy(Zy) for all primes q,

2. | (hR)oo| < ht(L)*13,

3. Wp(hn))g € SLn(Zyg) for all g ¢ {00, p},
- Nleh))oo| < ht(L)*'8, and

- Nelphm)) pl < htr ()18 htp(Y)*18.

[ I N
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For any g € H(Qs), we define
hty ((g)) := max{cs(Ady (m()w) ™" : 0 # w € h(Zs)},

where h = Lie(H) Nsly(Zs).

It follows from the definition that hty ((g)) < hty((g)) for any g € ﬁ((@s).
Moreover, in view of Lemma 6.2 and Lemma 4.2 we have the following. Let g € I:(Q s)
and write ¢ = gy gR, then

htp ((gn)) < hty (w(gn)) < ht(L)*hty (7 ()" (6.22)

We also record the following lemma.

Lemma 6.3 Let g € I:(QS) and write g = gy gR, then

hty (7w (gm)) > htg(Y) ™ hty (m(gm))* > htg(¥) ™ hty (7(g))*.

Proof The second estimate follows from Lemma 6.2, Lemma 4.2, and the fact that
htz(Y) > ht(L). Thus we only need to show

hty (7w (gn)) > htg(Y) ™ hty (7(gm))*.

The proof uses arguments similar to the ones used in the proof of Theorem 6.3;
apply Theorem 6.4 with L = H to ggy. There exist some p < (log htg(f ))2 and
vo € H(Q) so that
() Adp(v0)q € SLy(Zg) forallg ¢ SU {p}, A
(ii) if p ¢ S, then |Adp (y0) p| < htp (7 (gH)) ! htp(Y) 5,
and if we put hy = (g, (€)4¢s)yo, we have the following estimates.

1. Ad(hp)g € SLy(Zy) forall g ¢ {oco, p},

2. 1Ad(hx)so] < ht(L)<1$, and A
3. [Ad(hp) | < bty (w(gn)) ' htg(Y) 18,

Apply Lemma 5.1 with the set of places {oo} and v = oo to the element yo_l gRY0
to obtain some y; € R(Q) such that

() (Vo_lg’ rRY0Y1) € SL4(Zy) for all primes ¢, and
() 7((v5 '&rY071)o0)| < ht(R)* < ht(L)*.

Since n(yo_lgR Y0)g = eforallg ¢ S, item (a) above implies that 7 (y1),; € SL4(Zy)
forallg ¢ S.
Letus puthg = yo_lgR Y0V1, so that we have

(g, @)voy1 = (gugR, @) voy1 = ((hH)s, (ha)ges)(hR)s, (hR)g¢s).

By abuse, we denote the projection of yy, y; onto the S-coordinates again by yp, y1 €

L(Qy).
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We have

hty (g) = max{cs(Adz (m(g)w) ™ : 0 # w € I(Zs)}
= max{cs(Ady (T ((hg)s(hR)s)y; vy Dw) ™10 # w € (Zg)). (6.23)

First, we note that using (1)—(3), (a) and (b) we have

cs(AdL (T ((h)s(hr)s) vy vy Hw) ™" < ht (w(gm))* ht(¥)*
cs(AdL (v g Hw) 7 (6.24)

Furthermore, using (i), (ii), and the fact that 7 ()4 € SL4(Z,) forallg ¢ S, we have

cs(AdL(yp g Hw) ™! < hty ((gu))* htp(V)*.
This, in view of (6.24) and (6.23), implies that

hty (g) < ht (m(gn)* htg(¥)*;

the proof is complete. O

6.4 Uniform lattices

In this section, we discuss the dependence of the above estimates on hty (g) under
the assumption that the Levi component, H, of L is Q-anisotropic. We begin with the
following lemma which is of independent interest — one could obtain similar estimates
using known results towards the Lehmer conjecture, but we provide a homemade
argument.

Lemma There exists some 0 < B < 1depending on dim L with the following property.
Let w € ((Zs) and assume that there exists some g € L so that cs(Adr(g)w) < B.
Then w is a nilpotent element.

Proof Let 6 (w) be the product of all the nonzero eigenvalues of w; if this product
is empty, i.e. if w is nilpotent, put 6 (w) = 0. Note that 6 (w) € Q because o (w) is
invariant under the Galois group of the splitting field of w. Further, since w € [(Zs),
the product formula implies that either cg(a(w)) > 1 or o (w) = 0. (Here, we also
use Cs to denote the function Qs — R : r > [, g 17]v.)

Let 8 > 0 and assume that cg(Ady(g)w) < B for some g € L. There exist some
r e Z; so that ||[rAdy (g)w]l, =< cs(Adz(g)w)* for all v € S, see for example [17,
Lemma 8.6]. Therefore, all the eigenvalues of rAdy, (g)w have v-norm « B* for all
veS.

Since cg(r) = 1 and Adz(g)w has the same eigenvalues as w, we deduce that
cs(o(w)) > 1 cannot hold when 8 is small enough; thus, w is nilpotent. O
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Proposition Let the notation be as above; in particular, recall the Levi decomposition
L = HR fixed in §6.1. Assume that H is Q-anisotropic. Let g € L(Qg), then

htz (77(g)) < htg(¥)*.

Moreover, if L is semisimple, i.e. L = H, and we assume that L is Q-anisotropic, then
hty (7 (g)) < 1.

Proof Let us write g = gy gr Where gy € H(Qjs) and gr € R(Qg). Let 8 be as in
the previous lemma applied with H instead of L. We claim that hty (w(gg)) < gL
Indeed, if hty (7 (gg)) > B}, then by definition there exists a nonzero w € h(Zg),
such that cg(Ady (m(gy))w) < B. The lemma then implies that w is a nilpotent
element. Exponentiating w, we get that H (and hence ﬁ) is Q-isotropic, which is a
contradiction. This implies the proposition when L = H.

Now, for the general case, we apply Lemma 6.3 and the bound we obtained above
to obtain

hty (7(g)) < hty(7(gn))* htp(¥)* < hts(¥)*,
as was claimed. 0O

It is worth mentioning that the proof of the previous proposition when L is semisim-
ple is independent of Lemma 6.3 and relies only on the lemma proved in this section.
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