
Human-in-the-Loop Schema Induction

Tianyi Zhang
⇤1

, Isaac Tham
⇤1

, Zhaoyi Hou
⇤1

, Jiaxuan Ren
1
, Liyang Zhou

1

Hainiu Xu
1
, Li Zhang

1
, Lara J. Martin

1
, Rotem Dror

1
, Sha Li

2
, Heng Ji

2

Martha Palmer
3
, Susan Brown

3
, Reece Suchocki

3
, and Chris Callison-Burch

1

1 University of Pennsylvania, 2 University of Illinois Urbana-Champaign
3 University of Colorado, Boulder, ⇤ equal contribution

{zty, joeyhou, ccb}@upenn.edu

Abstract

Schema induction builds a graph representa-
tion explaining how events unfold in a scenario.
Existing approaches have been based on infor-
mation retrieval (IR) and information extraction
(IE), often with limited human curation. We
demonstrate a human-in-the-loop schema in-
duction system powered by GPT-3.1 We first
describe the different modules of our system,
including prompting to generate schematic el-
ements, manual edit of those elements, and
conversion of those into a schema graph. By
qualitatively comparing our system to previous
ones, we show that our system not only trans-
fers to new domains more easily than previous
approaches but also reduces efforts of human
curation thanks to our interactive interface.

1 Introduction

Event-centric natural language understanding
(NLU) has been increasingly popular in recent
years. Systems built from an event-centric per-
spective have resulted in impressive improvements
in numerous tasks, including open-domain ques-
tion answering (Yang et al., 2003), intent predic-
tion (Rashkin et al., 2018), timeline construction
(Do et al., 2012), text summarization, (Daumé and
Marcu, 2006) and misinformation detection (Fung
et al., 2021). At the heart of event-centric NLU
lie event schemas, an abstract representation of
how complex events typically unfold. The study
for such a representation dates back to the 70s,
where scripts were proposed as a series of sequen-
tial actions (Roger C. Schank, 1977). Back then,
the schemas were limited to linear and temporal
ones. A more recent formulation of event schemas
is a graph where the vertices are event flows and
the edges are temporal or hierarchical relations be-
tween those events (Du et al., 2022).

1Webpage: https://www.kairos.jiaxuan.me;
Video:https://www.youtube.com/watch?v=myru-fozVWI

Figure 1: An example of Cyber Attack schema. The
tree structure represents the temporal and hierarchical
relations between the nodes.

For example, as shown in Figure 1, the event
schema for a "cyber attack" could include sub-
events such as "gain access", "control system",
"exfiltrate files", "modify system logs", etc. The
schema would also include the relationships be-
tween these sub-events. For instance, the event
"gain access" would take place before the event
"modify system logs" since a person needs access
to a system before modifying it. For the same rea-
son, "exfiltrate data" would only take place after
"gain access". Event schemas like this encode high-
level knowledge about the world and allow artificial
intelligence systems to reason about unseen events
(Du et al., 2022).

The DARPA Knowledge-directed Artificial Intel-
ligence Reasoning Over Schemas (KAIROS) pro-
gram2 aims at developing schema-based AI sys-

2
https://www.darpa.mil/program/knowledge-dir

ected-artificial-intelligence-reasoning-over-sch

https://www.kairos.jiaxuan.me
https://www.youtube.com/watch?v=myru-fozVWI
https://www.darpa.mil/program/knowledge-directed-artificial-intelligence-reasoning-over-schemas
https://www.darpa.mil/program/knowledge-directed-artificial-intelligence-reasoning-over-schemas


Figure 2: Our schema curation system includes four main stages: Step Generation, Node Extraction, Graph
Construction and Node Grounding; Model ouput is highlighted in purple background ; Human curated output is

highlighted in yellow background ; human curation is shown in red.

tems that can identify, comprehend, and forecast
complex events in a diverse set of domains. To
enable such a system, scalable generation of high-
quality event schemas is very crucial. On one hand,
fully-manual schema creation at a large scale can be
inefficient, since people have diverse views about
a certain concept, leading to inconsistent schema
results. On the other hand, fully automated sys-
tems are scalable, but not with high-quality. In
fact, the majority of existing approaches under the
KAIROS program are fully-automated IR and IE
systems over large collections of news articles (Li
et al., 2020, 2021). Only some of limited human
post-processing on schemas (Ciosici et al., 2021)
have been explored. Further discussion of the ad-
vantages and limitations of existing systems can be
found in Related Work.

Instead of focusing on fully-automated schema
induction systems, we propose a human-in-the-
loop schema induction pipeline system. Rather
than using IR and IE over a large document col-
lection, our system relies on pre-trained large lan-
guage models (LLMs) and human intervention to
jointly produce schemas. Our main motivation is
that human-verified schemas are of higher quality.
That is because human curation can filter out fail-
ure cases such as incompletness, instability, or poor
domain transfer results in previous systems (Dror
et al., 2022; Peng et al., 2019). With human cura-
tion, schemas are more reliable and accountable
when applied to downstream tasks such as event
prediction. This is significant if the downstream
tasks involve safety-critical applications like epi-
demic prevention, where the quality of the schema
matters beyond task performance numbers.

emas

Figure 2 is a flowchart of our four-stage schema
induction system: step generation, node extrac-

tion, graph construction, and node grounding.
Each stage has two main components: the LLM
(e.g. GPT-3) at the back-end to output predictions
(the purple boxes in the figure) and an interactive
interface at the front-end for human curation of
the model output (the yellow boxes). The GPT-3
prompts that are used in each stage of the process
are given in the Appendix A, along with example
inputs and outputs.

A more comprehensive description of the imple-
mentation and functionalities of our interface can
be found in Section 4. A case study is given in Sec-
tion 5. It walks through each step in our pipeline
system under an example scenario, cyber attack.
Also, in Section 5, we provide a qualitative evalua-
tion of five example scenarios. The summary and
discussion of our system are included in Section 6.

2 Related Work

2.1 Schema Induction

Early work from Chambers and Jurafsky (2008,
2009) automatically learned a schema from
newswire text based on coreference and statistical
probability models. Later, Peng and Roth (2016);
Peng et al. (2019) generated an event schema based
on their proposed semantic language model (like
an RNN structure). Their work represented the
whole schema as a linear sequence of abstract
verb senses like arrest.01 from VerbNet (Schuler,
2005). Those works had two main shortcomings:
first, the schema was created for a single actor (pro-
tagonist), e.g. suspect. It caused limited coverage
in a more complex scenario, e.g. business change-
acquisition; second, the generated schema, a simple

https://www.darpa.mil/program/knowledge-directed-artificial-intelligence-reasoning-over-schemas
https://www.darpa.mil/program/knowledge-directed-artificial-intelligence-reasoning-over-schemas
https://www.darpa.mil/program/knowledge-directed-artificial-intelligence-reasoning-over-schemas
https://www.darpa.mil/program/knowledge-directed-artificial-intelligence-reasoning-over-schemas
https://www.darpa.mil/program/knowledge-directed-artificial-intelligence-reasoning-over-schemas
https://www.darpa.mil/program/knowledge-directed-artificial-intelligence-reasoning-over-schemas
https://www.darpa.mil/program/knowledge-directed-artificial-intelligence-reasoning-over-schemas
https://www.darpa.mil/program/knowledge-directed-artificial-intelligence-reasoning-over-schemas
https://www.darpa.mil/program/knowledge-directed-artificial-intelligence-reasoning-over-schemas
https://www.darpa.mil/program/knowledge-directed-artificial-intelligence-reasoning-over-schemas
https://www.darpa.mil/program/knowledge-directed-artificial-intelligence-reasoning-over-schemas
https://www.darpa.mil/program/knowledge-directed-artificial-intelligence-reasoning-over-schemas
https://www.darpa.mil/program/knowledge-directed-artificial-intelligence-reasoning-over-schemas
https://www.darpa.mil/program/knowledge-directed-artificial-intelligence-reasoning-over-schemas
https://www.darpa.mil/program/knowledge-directed-artificial-intelligence-reasoning-over-schemas
https://www.darpa.mil/program/knowledge-directed-artificial-intelligence-reasoning-over-schemas
https://www.darpa.mil/program/knowledge-directed-artificial-intelligence-reasoning-over-schemas
https://www.darpa.mil/program/knowledge-directed-artificial-intelligence-reasoning-over-schemas
https://www.darpa.mil/program/knowledge-directed-artificial-intelligence-reasoning-over-schemas
https://www.darpa.mil/program/knowledge-directed-artificial-intelligence-reasoning-over-schemas
https://www.darpa.mil/program/knowledge-directed-artificial-intelligence-reasoning-over-schemas
https://www.darpa.mil/program/knowledge-directed-artificial-intelligence-reasoning-over-schemas
https://www.darpa.mil/program/knowledge-directed-artificial-intelligence-reasoning-over-schemas
https://www.darpa.mil/program/knowledge-directed-artificial-intelligence-reasoning-over-schemas
https://www.darpa.mil/program/knowledge-directed-artificial-intelligence-reasoning-over-schemas
https://www.darpa.mil/program/knowledge-directed-artificial-intelligence-reasoning-over-schemas
https://www.darpa.mil/program/knowledge-directed-artificial-intelligence-reasoning-over-schemas
https://www.darpa.mil/program/knowledge-directed-artificial-intelligence-reasoning-over-schemas
https://www.darpa.mil/program/knowledge-directed-artificial-intelligence-reasoning-over-schemas
https://www.darpa.mil/program/knowledge-directed-artificial-intelligence-reasoning-over-schemas
https://www.darpa.mil/program/knowledge-directed-artificial-intelligence-reasoning-over-schemas
https://www.darpa.mil/program/knowledge-directed-artificial-intelligence-reasoning-over-schemas
https://www.darpa.mil/program/knowledge-directed-artificial-intelligence-reasoning-over-schemas
https://www.darpa.mil/program/knowledge-directed-artificial-intelligence-reasoning-over-schemas
https://www.darpa.mil/program/knowledge-directed-artificial-intelligence-reasoning-over-schemas
https://www.darpa.mil/program/knowledge-directed-artificial-intelligence-reasoning-over-schemas
https://www.darpa.mil/program/knowledge-directed-artificial-intelligence-reasoning-over-schemas


linear sequence, failed to consider different alterna-
tives such as XOR.

More recently, Li et al. (2020, 2021) used trans-
formers to handle schema generation in a complex
scenario. It viewed a schema as a graph instead
of a linear sequence. However, this approach was
unable to transfer to new domains where the super-
vised event retrieval and extraction model failed.
Dror et al. (2022) took GPT-3 generated documents
to build a schema. Although it bypassed the event
retrieval and extraction process and solved the do-
main transfer problem, it suffered from the incom-
pleteness and instability of GPT-3 outputs.

Currently, neither do they offer a perfect solu-
tion for schema induction without manual post-
processing, nor build a timely human correction
system (Du et al., 2022). Our demonstration sys-
tem develops a curation interface that can generate
a comprehensive schema easily with a human cura-
tor in the loop. The curated data collected through
our tool could be useful for fine-tuning and improv-
ing the models.

2.2 Human-in-the-loop Schema Curation

Interface

Another area related to our work is human-in-the-
loop schema generation, where annotators collab-
orate with computational models to create high-
quality event schema. In this field, one of the clos-
est approachs is the Machine-Assisted Script Cura-
tion (Ciosici et al., 2021) created for script induc-
tion. With a fully interactive interface, they have
shown the feasibility of realtime interaction be-
tween humans and pre-trained LLMs (e.g. GPT-2
or GPT-3). The main differences are the level of au-
tomation and adaptability to other generative mod-
els. In terms of automation, our interface makes
use of pre-trained LLMs to automatically gener-
ate schema content, compared to their interface
which largely counts on human input. For adapt-
ability, our interface supports the curation of the
schema generated by different language models
(e.g. GPT-3 models with different sizes), which
makes it possible for users to evaluate the genera-
tions of different models. In contrast, there is no
such possibility in their interface.

Another interface built for schema curation fo-
cuses on visualization of the schema structure, such
as the temporal relations between event nodes and
internal relations among entities (Mishra et al.,
2021). While this interface provides a user-friendly

experience when it comes to schema graph cura-
tion, it requires the user to come up with the content
of event schemas in json format, which requires
much more human effort compared to our interface.
In addition, our interface also provides an optional
grounding function after the event graph curation
step, which is not presented in this interface.

3 Terminology and Problem Definition

Our work focuses on efficiently building a schema
graph of a scenario using both LLMs and human
input. Following the workflow of our system (see
the workflow in Figure 2), a scenario is a general
event type that an interested party will build the
schema for, e.g. a ‘disease outbreak’. Steps are a
list of sub-events generated by GPT-3 according to
a prompt in the step generation stage. Each step
can be a phrase or a short sentence, such as ‘spread
to other areas’, etc. Nodes or tuples are subject-
verb-object pairs extracted from steps at the node
extraction stage, such as ‘(disease, spread, to other
area)’. Graphs are a visualization of the schema,
whose edges joining the nodes represente temporal
and hierarchical relations.

4 Implementation

Our pipeline system contains four sequential stages:
step generation, node extraction, graph con-

struction, and node grounding. A flowchart of
the interface system is shown in Figure 2. The
step generation stage generates steps for a sce-
nario and the user can specify how many steps they
would like to generate. The node extraction stage
extracts nodes (subject-verb-object tuples) from
the previous verbose steps. The graph construc-

tion stage orders the extracted nodes temporally
and hierarchically. Meanwhile, modifications of
the nodes are still possible. The node grounding

stage maps node text to a node in the XPO ontology
(Elizabeth Spaulding et al., In preparation) (derived
from WikiData3). The flexible interface system al-
lows users to either go through the entire process to
create a schema from scratch or directly start at any
stage to edit the model’s prediction. In addition, the
back-end GPT-3 models can be replaced by other
user pre-trained models if deployed locally.

3
https://www.wikidata.org/wiki/Wikidata:Main_P

age

https://www.wikidata.org/wiki/Wikidata:Main_Page
https://www.wikidata.org/wiki/Wikidata:Main_Page


4.1 Step Generation

The step generation stage aims at generating steps
given a scenario. At the backend, zero-shot GPT-
3 incorporates a user’s input into a prompt and
generates ordered steps. The interface allows users
to generate steps quickly with prompt templates4

or finetune the generated steps with user-designed
prompts. A typical use case of the user-designed
prompts is to expand a certain step to more detailed
steps. For instance, a template prompt "List the
steps involved in {disease outbreak}:" may create
steps such as "1. Identify the symptoms of the
disease; 2. Collect data from affected individuals;
...". Then, the user can re-prompt for, e.g., the
second step, “List the steps involved {step2} in
detail:”. Additionally, users can modify and select
GPT-3 generated steps easily by clicking on them.
When the ’save’ button is clicked, all user selected
steps will be saved in the database for the use of
the node extraction stage or further fine-tuning of
the step generation model. A screenshot of the step
generation interface with user’s operations can be
seen in Figure 3.

4.2 Node Extraction

Nodes are structured representations of events in
the form of a {subject, verb, object} tuple. Node
extraction is to extract these nodes from the GPT-
3 generated steps saved in step generation stage,
which are unstructured sentences.

There are two methods, based on AllenNLP (Shi
and Lin, 2019) or GPT-3, that users can choose
from to extract nodes. The former uses AllenNLP’s
Semantic Role Labelling (SRL) model to extract
nodes from the steps. The SRL model implements
a BERT (Devlin et al., 2018) sequence prediction
model to identify the predicates and the arguments
(e.g. A0, A1) in a text. We simply choose the iden-
tified A0 as subject, A1 as object, and predicate
as the verb to form a node. An optional corefer-
ence resolution model can be used to resolve ref-
erenced entities between the different steps with
an AllenNLP’s SpanBERT-based model (Lee et al.,
2018). Here, we concatenate all the steps and re-
place a pronoun with its referenced entity (noun)
in the original steps.

The GPT-3 node extraction method uses instruc-
tional few-shot prompting to extract {subject, verb,
object} tuples from the steps. Several example sen-

4an {event type} appended to a predefined prompt: Before,
After or Sub-steps

tences are given to show GPT-3 the expected syn-
tactic and semantic output. We follow (Liu et al.,
2022)’s recommendation for few-shot design by
including context examples that are semantically
similar to the KAIROS application environment
(daily life and news). See appendix A for our few-
shot prompts.

The extracted nodes are shown to the user in a
table with 3 columns (subject, verb, object). For
example, for “The CDC collects and analyzes data
on disease outbreaks”, one of the extracted nodes is
“The CDC (subject) collects (verb) data (object)”.
Users are able to choose and edit nodes (tuples).
User edits are saved and will be used for graph
construction and fine-tuning of the GPT-3 node
extraction model.

4.3 Graph Construction

In the graph construction stage, our system auto-
matically adds temporal and hierarchical edges to
the previously extracted nodes. The edges are cre-
ated using zero-shot GPT-3 with multiple choice
questions. For each pair of nodes, GPT-3 is in-
structed to choose between ‘Before’, ‘After’, ‘Same
time’ or ‘no relation’ for temporal eges; and ‘Par-
ent’, ‘Child’ or ‘no relation’ for hierarchical edges.
For example, for the node pair “collect data” and
“identify the signs and symptoms”, GPT-3 predicts
‘After’ for temporal order and ‘no relation’ for hier-
archical order, in which case we will add a temporal
edge from “identify the signs and symptoms” to
“collect data”, and no hierarchical edge will be cre-
ated. If a conflict occurs between (node1, node 2)
pair and (node2, node1) pair, e.g. ‘After’ and ‘Af-
ter’ for a temporal order or ‘Parent’ and ‘Parent’ for
a hierarchical order, we will treat it as no relation
to resolve the conflict, thus adding no new edges to
the graph.

The graph construction interface allows users
to modify the GPT-3 generated schema with ease.
After predicting both temporal and hierarchical re-
lations between all pairs of nodes, the interface will
display the graph via the Vis-network framework5.
It supports adding, editing, deleting graph nodes
and edges. When the user clicks on a node, the de-
tailed information including the ID and description
of a node will be shown as well as the button to
delete or edit the node. By clicking the edge, users
can modify the edge type or delete it. Users will be

5
https://www.npmjs.com/package/react-vis-net

work-graph

https://www.npmjs.com/package/react-vis-network-graph
https://www.npmjs.com/package/react-vis-network-graph


able to create a new node by double clicking and a
new edge by dragging and dropping an arrow from
two nodes. A screenshot of our graph construction
interface can be seen in figure 4.

4.4 Node Grounding

Although a schema (graph) is completely created
after the previous stages, some nodes may express
the same semantic information, e.g., “refugees flee”
and “refugees ran away”. To ensure the reliability
and comparability of created schemas, our system
grounds the nodes to an ontology, namely the XPO
ontology, in the last stage. Each node in the XPO
ontology contains a unique node ID, a node name,
and a concise description (definition), and a list
of similar nodes. Our system offers two ways of
grounding, “name inference grounding" or “name
similarity grounding". Name inference grounding
maps the schema nodes to XPO nodes by predicting
the XPO node’s name; name similarity grounding
finds the XPO nodes by comparing the similarities
between the embeddings of a schema node and a
XPO node’s name.

In name inference grounding, given a graph
node, our system first uses few-shot GPT-3 to de-
duce a list of possible XPO names (see few-shot
prompt example in appendix A). Then, the candi-
date XPO names are postprocessed by dropping
off the wrong prediction and adding similar XPO
names to the true prediction. After that, each possi-
ble XPO name will be checked for entailment with
the original graph node. The entailment model is a
BART-large model fine-tuned on the MNLI dataset
(Lewis et al., 2020; Williams et al., 2018). The
input is the original graph node as the premise and
the possible XPO name as the hypothesis, and the
output is the entailment score. We sort the possi-
ble XPO node names by their entailment scores.
Users can view and choose from the top-k sug-
gested XPO nodes for the grounding of the original
graph node. In name similarity grounding, the top-
k related XPO nodes are retrieved by computing
the cosine-similarity of the GloVe embedding be-
tween the graph node and the name of XPO nodes
(Pennington et al., 2014). The above two methods
are complementary to each other especially when
users cannot find expected XPO nodes with one
method. Human-curated data is saved in the back-
end database. A screenshot of node grounding can
be seen in Figure 5.

5 Evaluation

5.1 A Case Study

In this section, we walk through the whole process
of creating a toy schema with our interface which
is much simpler than a fully developed schema. We
assume the scenario is ‘cyber attack’.

In the step generation stage, users can form a
prompt from templates such as "list the steps in-
volved in a cyber attack" with ’cyber attack’ as the
name and sub-event as the prompt type. Then, GPT-
3 will generate 5 steps. For example, "1. A cyber
attacker gains initial access to a system" and "5.
The attacker exfiltrates data from the compromised
system." Users can modify the content and choose
steps to save. For example, one may change the
first step to "1. A cyber attacker access a system."
and save the step. See a screenshot of five steps for
reference in figure 3.

Figure 3: A sample of generated steps after human-
curation for scenario ‘cyber attack’.

Next, in the node extraction stage, GPT-3 will be
prompted to extract nodes from the selected steps.
For example, GPT-3 will output {cyber attacker, ac-
cess, system} for the first step. The user can change
the outputs to correct any mistakes. In this sam-
ple, we extract 4 nodes, they are: {cyber attacker,
access, system}, {attacker, enumerate, system in-
formation and user account}, {attacker, escalates,
privileges}, {attacker, exfiltrate, data}. And we
concatenate the {subject, verb, object} into a piece
of text as a node for the next stage.

Thereafter, in the graph construction stage, we
prompt GPT-3 to automatically build linear tempo-
ral edges on the above four nodes that users can
modify. We manually add a scenario node ‘cyber
attack’ and link with the other four existing nodes
through hierarchical edges. see a screenshot of the
graph in figure 4.

Finally, we can optionally ground our graph
node into the XPO ontology. For example, the
node “cyber attacker access system” can be mapped
to choices of ‘access’, ‘computer monitoring’,
‘remote communicating’ using name similarity
grounding. In this case, we don’t get any results



Figure 4: A sample of a constructed graph after human-
curation for scenario ’cyber attack’

from name inference grounding. See a screenshot
of grounding in Figure 5.

Figure 5: Top-4 XPO node choices of graph node "cyber
attacker access system".

5.2 User Evaluation

We followed the evaluation methodology used by
Ciosici et al. (2021) with slight modifications to as-
sess our system. Evaluation is done by researchers
in the field of NLP who have experience in hand-
writing event schemas but have not used the in-
terface before. In the step generation and node
extraction stage, we count the number of human
selected steps/nodes out of the total number of ma-
chine generated results as accuracy. For simplicity,
we ignore users’ modifications (e.g. rephrasing)
at this point. In the graph construction stage, we
compare how many nodes and edges are modified

EVC FOD JOB MED MRG
Step Acc 11/12 7/8 10/10 10/10 12/12
Node Acc 13/15 10/10 11/12 12/12 12/14

Graph Node
ED 1 0 0 0 0

Graph Edge
ED 8 0 7 3 16

Grouding
Success Rate 5/12 3/10 3/11 6/12 9/12

Self-reported
time (min) 15 10 11 10 14

Table 1: User evaluation results. Acc in line 1 and 2
represents Accuracy. ED in line 3 and 4 means Editing
Distance. Ciosici et al. (2021)’s approach, on average,
took an hour to create the schema of a scenario.

(added or deleted) using graph edit distance. In the
grounding part, the success rate is measured as suc-
cessful retrieval of at least one relevant XPO node
within top-3 grounding results for a given event
node. We also ask users to self-report their total
time of interaction. For all the evaluations, we use
GPT-3 Davinci model as the language model.6

We follow prior work and evaluate our system on
five scenarios: Evacuation (EVC), Ordering Food
in a Restaurant (FOD), Finding and Starting a New
Job (JOB), Obtaining Medical Treatment (MED),
Corporate Merger or Acquisition (MRG).7

As shown in Table 1, our interactive system
shows high accuracy in step and node generation
phases, thanks to the richness of world knowledge
from LLMs. However, the graph construction and
the node grouding require more human curation,
due to the difficulty of event reasoning, such as the
understanding of temporal and hierarchical relation-
ships; and the retrieval ability from large database.
In those cases, we showed that human curation
can step in timely and improve the quality of event
schema when LLM-based models make mistakes
7. In addition, our interface is easy to use, with
much shorter time required to complete each event
schema task compared to previous work (Ciosici
et al., 2021).

We also report a qualitative study introducing
the types of human modifications on the automated
generations. At the step generation stage, GPTs
aren’t likely to make commonsense and grammar
errors. However, if its required to generate more
steps, it may be susceptible to redundancy, such
as, "A does B" and "A finishes doing B", and hu-

6
https://platform.openai.com/docs/models/gp

t-3
7 Detailed evaluation results: https://joeyhou.notion

.site/Human-in-the-Loop-Schema-Induction-Interfa

ce-Logs-1eb52403b05542919ccea214656f4211

https://platform.openai.com/docs/models/gpt-3
https://platform.openai.com/docs/models/gpt-3
https://joeyhou.notion.site/Human-in-the-Loop-Schema-Induction-Interface-Logs-1eb52403b05542919ccea214656f4211
https://joeyhou.notion.site/Human-in-the-Loop-Schema-Induction-Interface-Logs-1eb52403b05542919ccea214656f4211
https://joeyhou.notion.site/Human-in-the-Loop-Schema-Induction-Interface-Logs-1eb52403b05542919ccea214656f4211


man removes these steps. Then, for the node ex-
traction, results can be simplistic and ambiguous
when the original sentence contains rich informa-
tion, such as location, condition, or other modifiers.
For example, given the step "waitress bring order
to the kitchen", automatic node extraction produces
"(waitress, bring, order)", while human needs to
add back some necessary components, e.g. the
location information "kitchen" or constraint "food
order". Last, for the graph construction, current
graph is often linear based on the previous nodes’
order, human efforts play an essential role to elabo-
rate on the specific relations including AND, OR.
For example, "person updates the resume" and
"person tailors the cover letter" are independent
and can be concurrent, not sequential.

6 Conclusion

With the acknowledgements that fully depending
on human annotation is expensive and inefficient,
while wholly automated generations can be unre-
liable, we propose a human-in-the-loop schema
curation interface with pre-trained large language
models (LLMs) as the backbone. We use LLMs
to generate candidate components of a schema and
involve human as the final judge for both the con-
tent and structure of the event schema. With em-
pirical evaluations, we show that our system can
efficiently produce human-validated event schemas
with minori human efforts.

Limitations

We have several limitations in our current approach.
First, our current system uses zero-shot or few-shot
to prompt GPT-3 without any fine tuning. In future
work, we plan to fine-tune our GPT-3 with human
curated data that we collect. We expect that fine-
tuning will improve our models’ performance. It
may also be possible to use human curated data
to train a policy network recommended by Ope-
nAI (Ouyang et al., 2022). Second, we can replace
GPT-3 with more robust task specific models at
some stages, e.g., the pre-trained model for predict-
ing temporal and hierarchical orders. Third, some
users suggested incorporating a graph view at the
other three stages, which will help users to generate
based on the current graph. We will include this
graph view in our next version. Forth, our current
evaluation is experimental and probably subjective,
we will develop more robust evaluation metrics
comparing manual, Ciosici et al. (2021)’s and our

schema and test on downstream tasks in the next
step.

Ethics Statement

To our knowledge, our back-end GPT-3 model was
trained mainly on English web data, it may prefer
events happen in an English environment. Fur-
thermore, our test showed that it generated events
specifically fit in American setting, for example,
Miranda Rights for arrest, Democrats and Repub-
licans in United States for election. These facts
suggest GPT-3 may ignore the knowledge of non-
American cultures or minority groups. In addition,
currently, we only create schemas for scenarios that
are reported in mainstream news media, e.g. con-
flict, communication. It excludes the schemas from
other domains, such as biology, medicine.

7 Acknowledgements

This research is based upon work supported in
part by the DARPA KAIROS Program (contract
FA8750-19-2-1004), the DARPA LwLL Program
(contract FA8750-19-2-0201), the IARPA BET-
TER Program (contract 2019-19051600004 and
2019-19051600006), the IARPA HIATUS Program
(contract 2022-22072200005), and the NSF (Award
1928631) and National Science Foundation under
Grant #2030859 to the Computing Research As-
sociation for the CIFellows Project. Approved for
Public Release, Distribution Unlimited. The views
and conclusions contained herein are those of the
authors and should not be interpreted as necessarily
representing the official policies, either expressed
or implied, of ODNI, DARPA, IARPA, NSF, or the
U.S. Government.

We thank researchers in PennNLP groups, and
from other universities who gave us suggestions on
the paper.

References

Nathanael Chambers and Dan Jurafsky. 2008. Unsuper-
vised learning of narrative event chains. In Proceed-
ings of ACL-08: HLT, pages 789–797.

Nathanael Chambers and Dan Jurafsky. 2009. Unsu-
pervised learning of narrative schemas and their par-
ticipants. In Proceedings of the Joint Conference
of the 47th Annual Meeting of the ACL and the 4th
International Joint Conference on Natural Language
Processing of the AFNLP, pages 602–610.

Manuel Ciosici, Joseph Cummings, Mitchell DeHaven,
Alex Hedges, Yash Kankanampati, Dong-Ho Lee,



Ralph Weischedel, and Marjorie Freedman. 2021.
Machine-assisted script curation. In Proceedings of
the 2021 Conference of the North American Chapter
of the Association for Computational Linguistics: Hu-
man Language Technologies: Demonstrations, pages
8–17, Online. Association for Computational Lin-
guistics.

Hal Daumé and Daniel Marcu. 2006. Bayesian query-
focused summarization. In Proceedings of the 21st
International Conference on Computational Linguis-
tics and the 44th Annual Meeting of the Associa-
tion for Computational Linguistics, ACL-44, page
305–312, USA. Association for Computational Lin-
guistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Quang Do, Wei Lu, and Dan Roth. 2012. Joint infer-
ence for event timeline construction. In Proceedings
of the 2012 Joint Conference on Empirical Methods
in Natural Language Processing and Computational
Natural Language Learning, pages 677–687, Jeju
Island, Korea. Association for Computational Lin-
guistics.

Rotem Dror, Haoyu Wang, and Dan Roth. 2022. Zero-
shot on-the-fly event schema induction. arXiv
preprint arXiv:2210.06254.

Xinya Du, Zixuan Zhang, Sha Li, Pengfei Yu, Hongwei
Wang, Tuan Lai, Xudong Lin, Ziqi Wang, Iris Liu,
Ben Zhou, Haoyang Wen, Manling Li, Darryl Han-
nan, Jie Lei, Hyounghun Kim, Rotem Dror, Haoyu
Wang, Michael Regan, Qi Zeng, Qing Lyu, Charles
Yu, Carl Edwards, Xiaomeng Jin, Yizhu Jiao, Ghaza-
leh Kazeminejad, Zhenhailong Wang, Chris Callison-
Burch, Mohit Bansal, Carl Vondrick, Jiawei Han,
Dan Roth, Shih-Fu Chang, Martha Palmer, and Heng
Ji. 2022. RESIN-11: Schema-guided event predic-
tion for 11 newsworthy scenarios. In Proceedings of
the 2022 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies: System Demonstra-
tions, pages 54–63, Hybrid: Seattle, Washington +
Online. Association for Computational Linguistics.

Anatole Gershman Elizabeth Spaulding, Susan Brown
Rosario Uceda-Sosa, Peter Anick James Pustejovsky,
and Martha Palmer. In preparation. The darpa wiki-
data overlay: Wikidata as an ontology for natural
language processing.

Yi Fung, Christopher Thomas, Revanth Gangi Reddy,
Sandeep Polisetty, Heng Ji, Shih-Fu Chang, Kathleen
McKeown, Mohit Bansal, and Avi Sil. 2021. InfoSur-
geon: Cross-media fine-grained information consis-
tency checking for fake news detection. In Proceed-
ings of the 59th Annual Meeting of the Association for
Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing
(Volume 1: Long Papers), pages 1683–1698, Online.
Association for Computational Linguistics.

Kenton Lee, Luheng He, and L. Zettlemoyer. 2018.
Higher-order coreference resolution with coarse-to-
fine inference. In NAACL-HLT.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Veselin Stoyanov, and Luke Zettlemoyer. 2020. Bart:
Denoising sequence-to-sequence pre-training for nat-
ural language generation, translation, and comprehen-
sion. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics, pages
7871–7880.

Manling Li, Sha Li, Zhenhailong Wang, Lifu Huang,
Kyunghyun Cho, Heng Ji, Jiawei Han, and Clare
Voss. 2021. The future is not one-dimensional: Com-
plex event schema induction by graph modeling for
event prediction. In Proceedings of the 2021 Con-
ference on Empirical Methods in Natural Language
Processing, pages 5203–5215.

Manling Li, Qi Zeng, Ying Lin, Kyunghyun Cho, Heng
Ji, Jonathan May, Nathanael Chambers, and Clare
Voss. 2020. Connecting the dots: Event graph
schema induction with path language modeling. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 684–695.

Jiachang Liu, Dinghan Shen, Yizhe Zhang, Bill Dolan,
Lawrence Carin, and Weizhu Chen. 2022. What
makes good in-context examples for GPT-3? In
Proceedings of Deep Learning Inside Out (DeeLIO
2022): The 3rd Workshop on Knowledge Extrac-
tion and Integration for Deep Learning Architectures,
pages 100–114, Dublin, Ireland and Online. Associa-
tion for Computational Linguistics.

Piyush Mishra, Akanksha Malhotra, Susan Windisch
Brown, Martha Palmer, and Ghazaleh Kazeminejad.
2021. A graphical interface for curating schemas. In
Proceedings of the 59th Annual Meeting of the Asso-
ciation for Computational Linguistics and the 11th
International Joint Conference on Natural Language
Processing: System Demonstrations, pages 159–166.

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Car-
roll L Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, et al.
2022. Training language models to follow in-
structions with human feedback. arXiv preprint
arXiv:2203.02155.

Haoruo Peng, Qiang Ning, and Dan Roth. 2019.
Knowsemlm: A knowledge infused semantic lan-
guage model. In Proceedings of the 23rd Confer-
ence on Computational Natural Language Learning
(CoNLL), pages 550–562.

Haoruo Peng and Dan Roth. 2016. Two discourse
driven language models for semantics. arXiv preprint
arXiv:1606.05679.

Jeffrey Pennington, Richard Socher, and Christopher D
Manning. 2014. Glove: Global vectors for word rep-
resentation. In Proceedings of the 2014 conference

https://doi.org/10.18653/v1/2021.naacl-demos.2
https://doi.org/10.3115/1220175.1220214
https://doi.org/10.3115/1220175.1220214
https://aclanthology.org/D12-1062
https://aclanthology.org/D12-1062
https://doi.org/10.18653/v1/2022.naacl-demo.7
https://doi.org/10.18653/v1/2022.naacl-demo.7
https://doi.org/10.18653/v1/2021.acl-long.133
https://doi.org/10.18653/v1/2021.acl-long.133
https://doi.org/10.18653/v1/2021.acl-long.133
https://doi.org/10.18653/v1/2022.deelio-1.10
https://doi.org/10.18653/v1/2022.deelio-1.10


on empirical methods in natural language processing
(EMNLP), pages 1532–1543.

Hannah Rashkin, Maarten Sap, Emily Allaway, Noah A.
Smith, and Yejin Choi. 2018. Event2Mind: Com-
monsense inference on events, intents, and reactions.
In Proceedings of the 56th Annual Meeting of the
Association for Computational Linguistics (Volume 1:
Long Papers), pages 463–473, Melbourne, Australia.
Association for Computational Linguistics.

Robert P. Abelson Roger C. Schank. 1977. Scripts,
Plans, Goals, and Understanding : an Inquiry into
Human Knowledge Structures.

Karin Kipper Schuler. 2005. VerbNet: A broad-
coverage, comprehensive verb lexicon. University of
Pennsylvania.

Peng Shi and Jimmy Lin. 2019. Simple bert models for
relation extraction and semantic role labeling. arXiv
preprint arXiv:1904.05255.

Adina Williams, Nikita Nangia, and Samuel Bowman.
2018. A broad-coverage challenge corpus for sen-
tence understanding through inference. In Proceed-
ings of the 2018 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume 1
(Long Papers), pages 1112–1122.

Hui Yang, Tat-Seng Chua, Shuguang Wang, and Chun-
Keat Koh. 2003. Structured use of external knowl-
edge for event-based open domain question answer-
ing. In Proceedings of the 26th Annual International
ACM SIGIR Conference on Research and Develop-
ment in Informaion Retrieval, SIGIR ’03, page 33–40,
New York, NY, USA. Association for Computing Ma-
chinery.

A Appendix: Prompt and Completion

A.1 Appendix A: Prompt and example

completions for Step Generation

Prompt: List the events before an attack: 1.
Completion:

The attacker gathers information about the target.
2. The attacker plans the attack.
3. The attacker gains access to the target system.
4. The attacker executes the attack.
5. The attacker covers their tracks.

Prompt: List the events after an attack: 1.
Completion:

The attacker’s identity is confirmed.
2. The target is notified of the attack.
3. The attacker is placed on a watch list.
4. The attacker’s device is seized.
5. The attacker is arrested.

Prompt: List the sub-events involved in an attack:
1.
Completion:

Identify the target.
2. Plan the attack.
3. Choose the weapons.
4. Assemble the team.
5. Launch the attack.
6. Evaluate the results.

A.2 Appendix B: Prompt and example

completions for Node Extraction

Prompt:

/* instruction */
For each sentence, extract event verbs and their
arguments, categorizing the arguments as subject
or object. Write None if there is no object.
Return in [verb: _, subject: _, object: _] format.

/* few-shot examples */
For example:
Q: Isaac ate a cake today and he played football.
A: [verb: eat, subject: Isaac, object: cake], [verb:
play, subject: Isaac, object: football]

Q: The teacher arrived in class and he started
teaching.
A: [verb: arrive, subject: teacher, object: class],
[verb: start, subject: teacher, object: teaching]

Q: Nate and Isaac ate dinner.
A: [verb: eat, subject: Nate and Isaac, object:
dinner]

Q: Justin slept.
A: [verb: sleep, subject: Justin, object: None]

/* target example */
Q: The attacker gathers information about the
target.
A:
Completion:

[verb: gather, subject: attacker, object: informa-
tion]

/* target example */
Q: The attacker’s identity is confirmed.
A:
Completion:

[verb: confirm, subject: attacker’s identity, object:

https://doi.org/10.18653/v1/P18-1043
https://doi.org/10.18653/v1/P18-1043
https://doi.org/10.1145/860435.860444
https://doi.org/10.1145/860435.860444
https://doi.org/10.1145/860435.860444


None]

/* target example */
Q: The attacker is placed on a watch list.
A:
Completion:

[verb: place, subject: attacker, object: watch list]

A.3 Appendix C: Prompt and example

completions for Node Grounding

Prompt:

/* few-shot examples */
List event names related to the event "People are
infected with this disease":
1.infection
2.epidemic
3.pandemic

List event names related to the event "It was a
robbery-related incident":
1.robbery
2.burglary
3.theft

List event names related to the event "The first
case of the disease have detected and it has been
reported":
1.infection
2.epidemic
3.pandemic

List event names related to the event "The disease
is eventually brought under control":
1.control
2.improvement

List event names related to the event "People who
are ill have serious symptoms":
1.symptoms

List event names related to the event "The pathogen
begins to spread through the population":
1.transmission
2.spread

/* target example */
List event names related to the event "The attacker
gathers information about the target":
Completion:

1.reconnaissance
2.surveillance

3.investigation

/* target example */
List event names related to the event "The
attacker’s identity is confirmed":
Completion:

1.identification
2.confirmation

/* target example */
List event names related to the event "The attacker
is placed on a watch list":
Completion:

1.surveillance
2.monitoring
3.investigation


