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Abstract

Concept Bottleneck Models (CBM) are inherently inter-
pretable models that factor model decisions into human-
readable concepts. They allow people to easily understand
why a model is failing, a critical feature for high-stakes ap-
plications. CBMs require manually specified concepts and
often under-perform their black box counterparts, preventing
their broad adoption. We address these shortcomings and
are first to show how to construct high-performance CBMs
without manual specification of similar accuracy to black
box models. Our approach, Language Guided Bottlenecks
(LaBo), leverages a language model, GPT-3, to define a
large space of possible bottlenecks. Given a problem domain,
LaBo uses GPT-3 to produce factual sentences about cate-
gories to form candidate concepts. LaBo efficiently searches
possible bottlenecks through a novel submodular utility that
promotes the selection of discriminative and diverse informa-
tion. Ultimately, GPT-3’s sentential concepts can be aligned
to images using CLIP, to form a bottleneck layer. Experi-
ments demonstrate that LaBo is a highly effective prior for
concepts important to visual recognition. In the evaluation
with 11 diverse datasets, LaBo bottlenecks excel at few-shot
classification: they are 11.7% more accurate than black
box linear probes at 1 shot and comparable with more data.
Overall, LaBo demonstrates that inherently interpretable
models can be widely applied at similar, or better, perfor-
mance than black box approaches."

1. Introduction

As deep learning systems improve, their applicability
to critical domains is hampered because of a lack of trans-
parency. Efforts to address this have largely focused on
post-hoc explanations [45, 51, 68]. Such explanations can
be problematic because they may be incomplete or unfaith-
ful with respect to the model’s computations [46]. Models

!Code and data are available at https:/github.com/Yue YANG1996/LaBo
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Figure 1. Our proposed high-performance Concept Bottleneck
Model alleviates the need for human-designed concepts by prompt-
ing large language models (LLMs) such as GPT-3 [4].

can also be designed to be inherently interpretable, but it is
believed that such models will perform more poorly than
their black box alternatives [15]. In this work, we provide
evidence to the contrary. We show how to construct high-
performance interpretable-by-design classifiers by combin-
ing a language model, GPT-3 [4], and a language-vision
model, CLIP [42].

Our method builds on Concept Bottleneck Models
(CBM) [24], which construct predictors through a linear
combination of human-designed concepts. For example, as
seen in Figure 1, a qualified person can design concepts,
such as “nape color,” as intermediate targets for a black box
model before classifying a bird. CBMs provide abstractions
that people can use to understand errors or intervene on,
contributing to increased trust.

Application of CBMs is limited because they require
costly attribute annotations by domain experts and often
under-perform their black box counterparts. In contexts
where CBM performance is competitive with black box al-
ternatives, interpretability properties are sacrificed [33, 66].
To address both of these challenges, we propose to build
systems that automatically construct CBMs.

Our Language Model Guided Concept Bottleneck Model
(LaBo), Figure 2, allows for the automatic construction of
high-performance CBMs for arbitrary classification prob-
lems without concept annotations. Large language models
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Figure 2. We present an overview of our Language-Model-Guided Concept Bottleneck Model (LaBo), which is interpretable by design
image classification system. First, we prompt the large language model (GPT-3) to generate candidate concepts (Sec 3.4). Second, we
employ a submodular function to select concepts from all candidates to construct the bottleneck (Sec 3.2). Third, we apply a pretrained
alignment model (CLIP) to obtain the embeddings of concepts and images, which is used to compute concept scores. Finally, we train a
linear function in which the weight W denotes the concept-class association user to predict targets based on concept scores (Sec 3.3).

(LLMs) contain significant world knowledge [20, 40, 57],
that can be elicited by inputting a string prefix and allowing
LLMs to complete the string (prompting). For example, in
Figure 1, GPT-3 is prompted about sparrows and completes
with information such as “brown head with white stripes.”
LaBo leverages this by constructing bottlenecks where the
concepts are such GPT-3 generated sentences. Since our
concepts are textual, we use CLIP to score their presence in
an image and form a bottleneck layer out of these scores.

A key advantage of LaBo is the ability to control the
selection of concepts in the bottleneck by generating can-
didates from the language model. We develop selection
principles targeting both interpretability and classification
accuracy. For example, we prefer smaller bottlenecks that
include shorter sentences that do not include class names.
Furthermore, to maximize performance, we prefer attributes
that CLIP can easily recognize and are highly discriminative.
To account for appearance variation, we select attributes that
cover a variety of information and are not repetitive. We
formulate these factors into a novel sub-modular criterion
that allows us to select good bottlenecks efficiently [36].

We have evaluated LaBo-created bottlenecks on 11 di-
verse image classification tasks, spanning recognition of
common objects [10,25] to skin tumors [60]. fine-grained
types [3, 31, 37, 63], textures [9], actions [55], skin tu-
mors [60], and satellite photographed objects [7].> Our

2The only dataset specialization we perform is prompt tuning for GPT-

main finding is that LaBo is a highly effective prior for what
concepts to look for, especially in low data regimes. In eval-
uations comparing with linear probes, LaBo outperforms by
as much as 11.7% at 1-shot and marginally underperforms
given larger data settings. Averaged over many dataset sizes,
LaBo bottlenecks are 1.5% more accurate than linear probes.
In comparison to modifications of CBMs that improve per-
formance by circumventing the bottleneck [66], we achieve
similar or better results without breaking the CBM abstrac-
tion. In extensive ablations, we study key trade-offs in bot-
tleneck design and show our selection criteria are crucial and
highlight several other critical design choices.

Human evaluations indicate that our bottlenecks are
largely understandable, visual, and factual. Finally, anno-
tators find our GPT-3 sourced bottlenecks are more factual
and groundable than those constructed from WordNet or
Wikipedia sentences. Overall, our experiments demonstrate
that automatically designed CBMs can be as effective as
black box models while maintaining critical factors con-
tributing to their interpretability.

2. Related Work

Broadly, interpretability methods fall into two categories:

3 when creating candidate attributes. This is largely done to overcome
problems of word sense. For example, when naively prompted to produce
knowledge about the flower “bird of paradise” GPT-3 yields information
about birds instead of flowers. In general, specialization here was also
minimal. See appendix for prompts.



post-hoc and by design. While ours is an instance of the latter,
post-hoc methods have the advantage of not imposing any
model constraints. For example, Gradient-weighted Class
Activation Mapping approaches [2, 18,34,51] trace network
gradients to identify the input areas that guide predictions.
Similarly, Explanation Generation methods [16,22,38,53]
require models to produce explanations for visual tasks by
conditioning their predictions on captioning models and [17,
] incorporate visual evidence to ground explanations.

Despite their advantages, there is no guarantee that post-
hoc methods faithfully represent model reasoning [46]. In
contrast, our work falls under interpretable by design meth-
ods, which constrain explanations to align with the model’s
reasoning. For example, Prototype methods [5,35,48,54,62]
optimize a metric space that guides classification by com-
puting distances to prototype representations of each class.
While such methods identify important regions in the input
for classification, they still require featurized region repre-
sentations that obfuscate the semantic content of the region.

This work extends another family of interpretable by de-
sign methods known as Concept Bottleneck Models [24,49].
Following early attempts in few shot learning [26] and at-
tribute learning [47, 64], CBMs predict targets by linearly
combining an intermediate layer of human-understandable
attributes. Recently, Computational Derivation Learning
(CompDL) [67] proposed a CBM architecture that applies
a linear layer over CLIP scores between human expert de-
signed concepts and images to predict targets in the con-
text of an evaluation framework to measure how well CLIP
grounds concepts. CBMs generally suffer from the need for
costly class description annotations and lower performance
compared to end-to-end counterparts. Post-hoc Concept Bot-
tleneck (PCBM) [66] was proposed to fill these two gaps
by leveraging information from a static knowledge base,
such as ConceptNet [56], and adding a residual connec-
tion from image features to the final prediction to improve
accuracy [66]. However, PCBMs cannot be expanded to
larger-scale (e.g., ImageNet [10]) or domain-specific tasks
(e.g., fine-grained [31]) because knowledge bases have lim-
ited coverage. In addition, they include a residual predictor,
which effectively ensembles CBM with an end-to-end model,
undermining interpretability.

We circumvent the need for external knowledge bases,
which are often incomplete, and instead query LLMs to au-
tomate concept collection. We remove the need for direct
mapping from image features to targets by fully automating
the extraction and filtering of LLM knowledge, surpassing
end-to-end models in few shot settings and achieving com-
parable performance in large data settings.

Our work capitalizes on improvements in vision-
language pretraining from earlier BERT-based models
[6, 29, 30, 58] to more scalable contrastive architectures
[19,27,42,65], which are very effective for few shot im-

age classification [8,59].

Our work can be viewed as interpretability-focused
prompt tuning of CLIP [42]. Significant efforts have been
devoted to prompting vision language models [1 1, 13,28,

,44,69,70]. These focus on searching over text prompts
to improve classification performance, and resemble earlier
techniques in LLM prompt tuning [14,50,52].

3. Method

Figure 2 presents an overview of our method. Our model
prompts a large language model, GPT-3 [4] to generate a set
of candidate concepts for each class (Section 3.4). We em-
ploy submodular optimization to greedily select a subset of
concepts for each class such that we maximize discriminabil-
ity and diversity (Section 3.2). We then align the selected
concepts to images using CLIP [42]. We apply a linear layer
over the similarity scores of concepts and images to learn a
weight matrix representing the importance of each concept
in the final classification. This weight matrix is initialized
using a language model prior from GPT-3 (Section 3.3).

3.1. Problem Formulation

Consider a training set of image-label pairs D = {(i,y)}
where ¢ is the image and y € ), is a label from a set of N
classes. Suppose we have a pretrained multimodal alignment
model (e.g., CLIP [42]), which has an image encoder Z
and a text encoder 7. Z and 7 can map images and text
into the shared feature space, respectively. The dot product
of the image and text features reflects the alignment score
between the two modalities. We extract the features of all
images in D as « = Z(i) € RY, and the dataset can be
represented as D = {(x,y)}. Let S be the superset of
candidate textual concepts generated from language models.
We use a submodular function F to select a bottleneck, C,
where C' C S, made of N¢ concepts, C' = {¢1, ca, ..., CNg |-
We can construct a bottleneck embedding, Eo € RNo >4,
and each row of E is the text feature 7(c) € R of a
concept ¢ extracted by the text encoder 7.

Concept bottleneck models produce a prediction by com-
posing two functions, § = f (g (z, Ec)), in which g :
R? — RN maps the image feature to a score for every
element of the bottleneck and f : RN¢ — ) makes the final
prediction on the label space given the concept scores. In our
setting, we find a bottleneck C' and appropriate f by solving
the following minimization problem:

min [E
£,C (x,y)~D

£(f @B 0)| - FED)

in which £(§,y) is the cross-entropy loss on the label pre-
diction and F(C, D) is the quality of the bottleneck as mea-
sured by the submodular function. In practice, we optimize
sequentially: we first find a high scoring C' under F. Then,
we use the dot product of image and concept embeddings as



g. Finally, we find an f that minimizes L. In the following
sections, we will illustrate how we: construct the submod-
ular function F to select a subset of concepts C' from the
candidates S (Section 3.2) and learn f (Section 3.3).

3.2. Submodular Concept Selection

We create a superset of candidate concepts, S, out of
class-specific subsets. For every label y € ), we construct
S, by prompting a language model to produce textual knowl-
edge about y (Section 3.4). Instead of directly choosing N¢
concepts from .S, we select k concepts for each class, such
that N x k = N¢, to ensure each class has an equal number
of relevant concepts in the bottleneck.

We employ submodular optimization [ 1] to select a subset
Cy C Sy, |Cy| = k. Specifically, we need to design a
score function F : 219 — R to evaluate the utility of the
subset. Submodular functions should satisfy the diminishing
returns property.® If a submodular function is monotone,* a
greedy algorithm [36] can be used to find a solution within a
constant factor of the optimal one. We propose the following
monotone submodular function’ to select the subset C, from
the candidate set .Sy

F(Cy)=a-> D+B- Y max g(er,c2), @)

ceCy c1E€Sy

discriminability coverage
where D(c) denotes the discriminability score of the concept
¢ and ¢(+) is the intra-concept similarity. Generally, the
first term tends to select more informative concepts, and
the second term ensures the subset has good coverage of
the candidate set. The hyperparameters «v and 5 control the
weights of the two sub-functions. Here we present how to
compute these two scores:

Discriminability Score. We introduce a discriminabil-
ity score to encourage the selection of concepts that are
aligned with many images in class y, but few images in
other classes.We first define the similarity score Sim (y, ¢)
between a class and concept by taking the mean of the dot
product between the images and text features:

1
Sim (y,c) = 12, Z z-T()", 3)

v TEX,

where X, is the set of training images labeled with y° and
T is the text encoder. We define the normalized class associ-
ation, which measures the conditional likelihood of aligning

3diminishing returns property means YA C B C V \ v, we have
F(A+ {v}) - F(A) > F(B + {v}) — F(B).

4A submodular function is monotone if VA C B, F(A) < F(B).

5Any linear combination of submodular functions is still submodular.

In N-way-K -shot setting, | Xy| = K.

featurized images of a class given a concept’s textual em-
bedding, Sim(y|c) = Sim(y,c)/ >, ey Sim(y’, c), and
compute its negative entropy:

D(c) =Y _ Sim (y'|c) - log (ﬁ (yl|c)) @

y' ey

Maximizing D(c) will result in the selection of concepts that
have peaked Sim(y|c), indicating that a concept is strongly
associated with only a few classes.

Coverage Score. The second term of equation 2 is a min-
imax facility location function that tries to minimize the
maximum distance between each element in the subset and
the candidate set. For distance, we use the cosine between
the features of the two concepts extracted by the text en-
coder: ¢(c1,c2) = cos (T(c1), T(c2)). A high coverage
score yields a diverse bottleneck that covers different possi-
ble appearances for a target class.

3.3. Optimize Class-concept Association

In this section, we explain how we compute g (the concept
predictor) and learn f (the label predictor) of the bottleneck.

Predict the Concept Scores. The concept predictor g is not
learned in our method because the alignment model we use
can measure the correlation between image and text through
dot product. We treat the dot product of input image feature
x and the concept space E ¢ defined in Section 3.2 as g:
g(z,Ec) = x - B/, where g (x, Ec) € RNC, and each
element is the score of image « on a concept.

Concept Weight Matrix. We learn a linear function for
the label predictor f that maps from concept scores to the
final prediction. Intuitively, these weights encode the affinity
of the concept to the class, allowing the model to repre-
sent that classes depend differently on the same concept.
To normalize the class-concept association distributed over
the weight matrix, we regularize the matrix with the soft-
max activation function. Concretely, we learn a concept
weight matrix W € RN*Ne | that is used for prediction:
§ = argmax (g (z,Ec) -0 (W)T) , in which o(-) is the
softmax activation which is applied along the concepts axis:
Wy.e= eWy’C/ Zy’ey eWo'e,

Initializing the Weight Matrix with Language Priors. Pre-
vious work trains the concept weight matrix freely from
scratch, which is not feasible in low-resource scenarios
where we don’t have enough data to learn the weight ef-
fectively. To extend the application of CBM to few-shot
image classification, we consider biasing the weights toward
the initial association from the language model used to pro-
pose concepts. If a concept ¢ was present in Cy, we initialize
the elements of W corresponding to the weight between
class y and concept c to a higher value before optimization:
W,.=1,if c e Cy, otherwise 0.
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Figure 3. Test accuracy (%) comparison between LaBo and Linear Probe on 11 datasets. The x-axis represents the number of labeled images.

3.4. Prepare the Candidates

To collect the candidates S to feed into our model, we
prompt GPT-3 to generate relevant sentences by incorporat-
ing the class name in 5 templates shown in supplementary
materials.” For example, as shown in the top-left of Figure
2, we prompt GPT-3 by asking “describe what the axolotl
looks like”, and the GPT-3 returns a sentence about the target
class. We obtain 500 sentences for each class and automati-
cally split these sentences into shorter concepts using a T5
model [43] fine-tuned on a small set of annotated sentence-
concept pairs. We use string match to identify and remove
class name tokens in each concept. (see supplementary)

4. Experimental Setup

We evaluate our method on a diverse set of 11 datasets
(Section 4.1) and compare it to its end-to-end counterpart
and other interpretable CBM methods (Section 4.2).

4.1. Dataset

We select a comprehensive benchmark of 11 image clas-
sification datasets spanning a diverse set of domains, includ-
ing (1) Common objects: ImageNet [10], CIFAR-10 and
CIFAR-100 [25]; (2) Fine-grained objects: Food-101 [3],
FGVC-Aircraft [31], Flower-102 [37], CUB-200-2011 [63];
(3) Actions: UCF-101 [55]; (4) Textures: DTD [9]; (5)
Skin tumors: HAM10000 [60] and (6) Satellite images: RE-
SISC45 [7]. We use train/dev/test splits for all the datasets.

"We use the same set of prompts for all datasets except UCF-101 since
it is very different to describe an action.

Detailed statistics are presented in the supplementary mate-
rial. We follow the few-shot evaluation protocol proposed by
CLIP [42] with 1, 2, 4, 8, and 16 images randomly sampled
from the training set for each class. We also evaluate in
the fully-supervised setting where we train on all available
images. For all experiments, we report the test accuracy.

4.2. Baselines

We compare our model, LaBo, with black-box linear
probing and two interpretable methods.

Linear Probe Following previous evaluations on CBM [24,
], linear probing serves as our primary baseline for com-
parison. We follow the implementation of CLIP [42] by
training the scikit-learn’s L-BFGS logistic regression with a
hyperparameter sweep on the L2 regularization weight.

PCBM Post-hoc Concept Bottleneck Model [66] designs a
residual modeling step that directly maps the original image
embedding into the label space. PCBM treats the attributes
of each class in ConceptNet [56] as concepts.

CompDL Compositional Derivation Learning [67] learns
a linear layer over CLIP similarity scores between human-
designed class descriptions and images to predict targets.

4.3. Implementation Details

We prompt GPT-3-text-davinci-002 to generate concepts.
The CLIP model is adapted from OpenAl’s public repo with
ViT-L/14 as the default vision backbone. We only use CLIP-
RNS50 as the backbone when comparing with PCBM, and
ViT-B/32 with CompDL for a fair comparison. We imple-
ment the submodular function using the apricot package and



Method 1 2 4 8 16 Full  Avg
Linear Probe 51.69 65.13 7233 77.38 81.53 87.38 72.57
LaBo (Ours) 63.35 68.10 72.08 76.19 79.11 8572 74.09

Table 1. Mean accuracy across all datasets, at different shots .

Method w/ end-to-end CIFAR-10 CIFAR-100
PCBM [66] X 84.5 56.0
LaBo (Ours) X 87.9 69.1

PCBM-h [66] v 87.6 69.9
Linear Probe v 88.8 70.1

Table 2. Test accuracy comparison between LaBo and Post-hoc
Concept Bottleneck Model (PCBM) on CIFAR-10 and CIFAR-100.
“w/ end-to-end” denotes whether the model employs an end-to-end
residual predictor from image features to targets.

Method w/ manual concepts 1 5 Full
CompDL [67] v 13.6 332 526
LaBo (Ours) X 351 557 718

Linear Probe - 284 554 755

Table 3. LaBo and CompDL evaluated on CUB for 1/5/full shots.

set the default number of concepts selected for each class to
50. To train the linear function, we use the Pytorch-lightning
library with Adam [23] optimizer. We tune the batch size,
learning rate, and submodular weights on the development
set. Model checkpoints with the highest validation accuracy
are evaluated on the test set. We list the hyperparameters for
all datasets and shots in the supplementary material.

5. Evaluation
5.1. Main Results

We compare LaBo’s performance with a linear probe and
other interpretable baselines to evaluate if we can maintain
black box accuracy without sacrificing interpretability.

Comparison with End-to-End Model. One of our goals
is to close the performance gap between interpretable and
black box models. Table 1 reports the mean test accuracy of
LaBo and the linear probe on 11 datasets. LaBo significantly
outperforms the end-to-end model when little data is avail-
able and continues to be competitive as the number of data
increases. On average, LaBo surpasses the linear probe by
1.5%. Figure 3 provides analytic performance comparisons
between LaBo and Linear Probe on each dataset.

In general, LaBo’s performance depends on the quality of
knowledge extracted from GPT-3. For common categories,
GPT-3 contains high-quality knowledge allowing substantial
improvement over linear probes. For some fine-grained
datasets, such as Flower-102, GPT-3’s knowledge is largely
non-visual, as seen in Figure 7. In such cases, specialized
language models could be used to improve LaBo.

Comparison with other Interpretable Methods. Table 2
compares LaBo’s performance with PCBM and Linear Probe.

n. of concepts n. of shots
per class (k) 1 2 4 8 16 Full
1 41.89 5245 6176 6599 69.61 78.95
5 52.54 61.13 6722 7290 75.62 83.83
10 58.00 64.59 69.90 74.50 77.43 84.66
25 61.72 6633 7139 7528 79.04 85.26
50 63.03 67.79 7188 76.08 79.10 85.71

Table 4. Ablation results on bottleneck sizes. We vary the sizes of
the bottlenecks and report the average performance on 11 datasets.

Selection n. of shots
Method 1 2 4 8 16 Full
RANDOM 59.24 64.71 7042 74.07 7829 85.06
SIMILARITY 5459 6142 67.17 72.66 7732 84.88
COVERAGE 59.73 6593 70.82 7471 7890 85.60
DISCRIM 60.99 6649 7093 7481 7790 8531
SUBMODULAR | 63.03 67.79 71.88 76.08 79.10 85.71

Table 5. Ablation results on concept selection methods. We report
mean test accuracy on 11 datasets.

LaBo outperforms PCBM by 3.4% on CIFAR-10 and 13.1%
on CIFAR-100. LaBo maintains comparable performance to
PCBM with a residual predictor (PCBM-h), without circum-
venting the bottleneck. In Table 3, LaBo is more accurate
than CompDL [67] without manually constructed concepts.

5.2. Ablation Study

We evaluate the importance of each of our model’s com-
ponents on final performance. Specifically, we compare
results with different concept selection methods, language
and random weight initialization, and bottleneck sizes.

Concept Selection Methods. We compare our submodular
function with four concept selection methods: (1) RANDOM:
we randomly sample a subset of concepts from the candi-
dates for each class; (2) SIMILARITY: we select the top
concepts ranked by their similarity scores with the class cal-
culated by equation 3; (3) COVERAGE: we only consider the
coverage score for concept selection; (4) DISCRIM: we only
consider the discriminability score for concept selection. As
shown in Table 5, our submodular function, which jointly op-
timizes coverage and discriminability, achieves the best per-
formance across different numbers of shots. We notice that
using coverage or discriminability alone still outperforms
using similarity between the class and random selection. The
selection method plays an important role in all data settings,
but its impact decreases with more supervision.

Initialization with Language Priors. We deactivate the LM
initialization and use random initialization instead. Figure 4
shows that the LM prior is more important for low shot set-
tings since there is less signal to guide concept importance.

Bottleneck Size. In Table 4, we compare performance for
different bottleneck sizes ranging from 1 to 50 concepts
selected by the submodular function. Larger bottlenecks are
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usually better, but with more data, similar performance is
achievable with smaller bottlenecks.

5.3. Human Evaluation

It is important for interpretability that the vision-language
alignment model correctly grounds concepts to images. For
example, if a concept “usually round” ranks both circles and
stripes highly, the name of the attribute does not faithfully
represent the computation. In addition, it is important that
the automatically generated concept bottlenecks factually
correspond to the class they describe. To this end, we in-
troduce two metrics to evaluate the quality of our concept
bottleneck items: (1) Factuality measures how accurate the
concepts are in describing their designated class by requir-
ing annotators to judge whether they describe ground truth
images, and (2) Groundability measures how consistent the
vision-language model grounding of the concepts to images
with human interpretations by requiring annotators to judge
their applicability on the top-10 images ranked by CLIP
alignment scores.

Setup. Both metrics are computed by asking annotators to
select images that describe a highly ranked concept in our
bottlenecks. Formally, the two metrics are represented by:

. number of images selected
Factuality(c)

& ground truth images of the class

z Unknown Vocab

X Non Sensical

% 204 Non Visual 11.0

@] 10.0

= 6.0 14.0

<
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s 14 w 20 7.0
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LaBo LaBo LaBo WordNet Wikfpedia

(w/o Submod) (w/o LM)

Figure 6. Percentage of invalid concepts identified by humans for
different bottlenecks on ImageNet. Lower percentage is better.

Metrics LaBo w/oSubmod w/o LM
Factuality (%) 1 24.0 22.8 14.1
Groundability (%) 1 14.1 22.5 20.2
Non Visual (%) | 4.8 5.6 5.8
Non Sensical (%) | 8.0 9.6 8.7
Unknown Vocab (%) | 10.2 10.5 10.7

Table 6. Average human evaluation results of LaBo on 11 datasets.
We also evaluate LaBo by removing the submodular function (w/o
Submod) and language model priors (w/o LM).

number of images selected

Groundability(c) = top-k aligned images of the concept
where we set k = 10.® In addition to the two main metrics,
we ask the annotator to select whether the concept is non-
visual, nonsensical, or contains unknown vocabulary. We
randomly sample 20 classes for each dataset and evaluate the
top 5 concepts (ranked by the weights of the linear function)
for each class, 100 concepts per dataset. We release our
human evaluation task on Amazon Mechanical Turk and
collect three annotations for each concept. More details on
the task and the results can be found in the supplement.

Baselines. We evaluate the bottlenecks under full supervi-
sion and compare them with two main baselines: (1) LaBo
(w/o Submod), which randomly selects the concepts instead
of using the submodular function, and (2) LaBo (w/o LM),
which initializes the concept weight matrix randomly with-
out leveraging the priors of the language model. For Ima-
geNet, we add two additional baselines using human-written
text: (1) WordNet [12] definitions and (2) Wikipedia sen-
tences [21]. We adopt the same preprocessing pipeline as
LaBo to extract concepts from human-written resources and
utilize the submodular function to select the bottlenecks.

Results. Figure 5 shows the evaluation on ImageNet, and
we observe that LaBo has significantly higher Factuality and
Groundability than human-written text. We further observe
that removing components from our system (submodular and
LM Prior) hurt both human evaluation metrics, indicating
their collective importance in our system. In addition, Figure

8With the only exception of Factuality for Flower-102 where we set
k = 8 because there are not enough images in the dev set.
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Figure 7. Several example bottlenecks generated by LaBo. The top-3 concepts, ranked by their weights in the linear function, for randomly
selected classes, paired with a random image from the class, across 6 datasets.

6 shows that LaBo has significantly fewer invalid concepts
than other baselines. Table 6 summarizes the average hu-
man evaluation results over the 11 datasets’. On average,
we observe a trade-off between Factuality and Groundabil-
ity. Increasing coverage and discriminability leads to more
variable and specific concepts that CLIP finds more difficult
to ground. This could be due to challenges in capturing
composite concepts [32, 67]. For individual analysis of the
datasets, refer to the supplementary material. Finally, Figure
7 shows several CBMs we constructed. Across many types
of tasks, the bottlenecks are largely coherent, factual, and
groundable by CLIP.

6. Conclusion and Limitation

Overall, our approach demonstrates that the accuracy
and interpretability of vision systems may be less at odds
than previously believed. Leveraging LLMs was crucial, as
they encode important visual knowledge. In the future, our
approach can easily be enriched with new factors that capture
different priors on bottleneck construction. The limits of
knowledge in GPT-3 are not known, but likely there are

9The low resolution of CIFAR images partially affects those metrics
since annotators have greater difficulty in completing the task.

domains where prompting generates few useful facts. Even
in contexts where GPT-3 can generate useful information,
our method depends on CLIP being able to recognize those
aspects in images. The alignment between GPT-3 and CLIP
likely does not hold for all cases. Future work could focus on
dynamically prompting GPT-3 to make this coupling more
robust. Finally, our work depends on large models trained
at scales that are not currently reproducible. It is possible
unrevealed aspects of training by OpenAl will require a
reevaluation of our claims.
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A. Dataset Statistics

Table 7 depicts detailed statistics for all datasets. For each
dataset, we provide in parentheses a one-word description
of the type of classes it contains, which we refer to as super
class of a dataset. We use the same train/dev/test splits
of Food-101, Aircraft, Flower-102, UCF-101, and DTD
provided by CoOp [70]. For CUB, we randomly sample 10
training images for each category as the development set.
For CIFAR-10 and CIFAR-100, we randomly split 10% of
the training data as the dev set. For HAM 10000, we adopt
80/10/10 splits on the images of each class. For ImageNet,
we only evaluate the dev set.

Name n. of n. of Images

class Train Dev Test
Food-101 (food) 101 50,500 20,200 30,300
FGVC-Aircraft (aircraft) 102 3,334 3,333 3,333
Flower-102 (flower) 102 4,093 1,633 2,463
CUB-200-2011 (bird) 200 3,994 2,000 5,794
UCF-101 (action) 101 7,639 1,898 3,783
DTD (texture) 47 2,820 1,128 1,692
HAM10000 (lesion) 7 8,010 1,000 1,005
RESISC45 (scene) 45 3,150 3,150 25,200
CIFAR-10 (object) 10 45,000 5,000 10,000
CIFAR-100 (object) 100 45,000 5,000 10,000
ImageNet (object) 1,000 1,281,167 50,000 -

Table 7. Detailed statistics of the 11 datasets. The text in paren-
theses that follows the dataset name corresponds to the super class
name, which is used to remove class names in concepts.

B. Implementation Details
B.1. Linear Probe

Following CLIP’s implementation of Linear Probe, we
use the encoded images, before their projection to the vision-
text embedding space, as input to the classifier. We use
sklearn’s L-BFGS implementation of logistic regression
with 1,000 maximum iterations. To determine the best per-
forming values for the L2 regularization strength C, we
perform binary search on the validation set initialized with
[1e6,1e,1e2,1,1e72, 1e~4, 1e~°]. After determining the
left and right bounds of C', we iteratively halve the inter-
val with 8 steps to get the final hyperparameter value. We
compare our Linear Probe results on ImageNet with CoOp.
To perform a fair comparison, we select CLIP-RNS50 as the
vision encoder and perform 3 random runs to select the few
shot images. As shown in Table 8, we marginally outperform
CoOp in all data settings.

B.2. Prompt

Table 9 presents the prompts used to query GPT-3. We
design 5 general prompts and 5 additional prompts for UCF-
101. The general prompts are used for all datasets, with a
slight modification: we add the super-class name that de-

# of shots 1 2 4 8 16
CoOp 22.07 3195 41.29 49.55 5587
Ours 2226 32.28 41.57 4980 55.92

Table 8. Compare linear probe performance on ImageNet with
CoOp. All experiments are based on CLIP-RN50, and we report
the average score of 3 random runs.

scribes the type of data present in more fine-grained datasets.
For example, when prompting for Flower-102, we add the
super class name flower after each class name. In this way
we reduce ambiguity problems: e.g., for the class bishop of
llandaff, without the super class name, GPT-3 returns results
for bishop instead of the flower. While this approach reduces
ambiguities, it does not completely eliminate them. For ex-
ample, we found that GPT-3 generates sentences about the
mouse (device), but in fact, the class mouse on ImageNet
refers to the animal. Future work can explore better prompt-
ing methods, such as providing a detailed definition for each
class or designing customized prompts for each dataset.

General Prompt Template
. describe what the [CLASS NAME] looks like:
. describe the appearance of the [CLASS NAME]:
. describe the color of the [CLASS NAME]:
. describe the pattern of the [CLASS NAME]:
. describe the shape of the [CLASS NAME]:

UCF-101 Prompt Template
. describe what the [CLASS NAME] looks like:
. describe the appearance of the [CLASS NAME]:
. describe how to perform the [CLASS NAME]:
. describe a person performing the [CLASS NAME]:
. describe what can you see when a person is
performing the [CLASS NAME]:

L O R S

I O R R

Table 9. The prompt templates used to generate the raw sentences
from GPT-3. The UCF-101 has a different set of prompts, while
the other datasets share the same set of general templates.

B.3. TS5 concept extractor

The raw outputs of language models are long sentences
and sometimes contain class names that need to be removed
from the bottlenecks for the sake of interpretability. For
example, GPT-3 generates a sentence “The hen is brown
and has a white chest.” for the class hen, which could be
decomposed to two concepts: “brown’” and “white chest”.
We annotate a random sample of 100 sentence-concepts pairs
from each of the following datasets: Food-101, CIFAR-100,
Aircraft, Flower, and ImageNet. In total, we collect 500
sentences. An example annotation is depicted below:

The 737-400 has a long and slender fuselage with
tapered wings and a small tail. (737-400)
long and slender fuselage; tapered wings; small tail

The class name is concatenated with the raw sentence, and



Dev Test

Dataset Method i 2 3 3 16 Full | 1 2 3 3 16 Full
Fooq1or  LnearProb | 5804 7524 8416 8748 8987 9311 | 5775 7534 8421 87.90 9002 93.17
LaBo (Ours) | 80.32 84.15 8576 87.07 88.74 9253 | 80.41 84.05 85.68 8739 88.77 9245
Moo LnearProb | 2763 3486 4140 4972 5791 6289 | 2826 3507 4155 5026 5638 64.03
LaBo (Ours) | 33.12 3597 4290 49.08 5641 61.96 | 3273 3771 41.04 4881 5497 61.42
Flower 10y Linear Prob | 89.20 9406 97.00 9840 98.91 99.11 | 88.06 93.65 97.67 98.56 9932 99.45
LaBo (Ours) | 8224 88.18 9492 9620 98.16 98.65 | 82.05 90.09 9521 97.08 98.66 99.35
oUB Lincar Prob | 48.55 6040 72.50 78.25 8335 83.60 | 47.60 61.06 72.82 79.60 83.74 84.54
LaBo (Ours) | 55.20 64.80 7245 7655 7990 81.00 | 54.19 64.60 7121 7722 80.69 81.90
Ucp.1o  LincarProb | 6554 7634 8583 9025 93.63 98.63 | 60.56 7322 8062 8570 8763 90.67
LaBo (Ours) | 80.72 8377 8846 90.73 93.05 97.68 | 78.75 82.05 84.56 86.39 87.39 90.11
- Lincar Prob | 43.62  53.10 60.55 68.79 7447 8050 | 41.67 5171 6076 69.03 7470 81.68
LaBo (Ours) | 55.59 5647 6215 6844 7092 76.86 | 53.61 5526 61.17 6643 7021 77.30
AMIO00y  LnearProb | 3230 5540 4540 5090 6310 8440 | 3313 5532 4443 4826 6169 8318
LaBo (Ours) | 34.90 4640 4580 54.40 5820 8140 | 36.62 4517 4587 52.04 5572 81.39
RESIScas  LincarProb | 68.62 7910 8672 89.89 9249 9524 | 6757 7775 8650 8927 9217 9498
LaBo (Ours) | 73.02 7603 8137 8505 88.86 91.65 | 73.66 76.11 8140 8571 88.63 91.22
ClFAR1g  LinearProb | 6236 8032 9204 9536 96.06 98.16 | 6244 8027 9254 95.14 9590 98.10
LaBo (Ours) | 91.24 91.04 9298 9440 9506 97.90 | 91.06 90.79 93.03 94.11 9493 97.75
IR0y LinearProb | 39.66 5784 7006 7652 8034 §7.70 | 3926 5735 6973 7622 80.16 87.48
LaBo (Ours) | 62.84 66.56 7178 7530 78.08 86.82 | 6273 65.80 70.82 7449 77.67 86.04

ImageNer | LinearProb | 4225 5571 6480 7123 7508 8390 | - - 5 - - -

LaBo (Ours) | 51.09 5743 6294 6845 7260 83.97 | - ) ; ; ; ;
Average  LinearProb [ 5253 6568 7285 77.89 8229 87935160 6513 7233 7738 8153 8738
LaBo (Ours) | 63.66 68.25 72.86 76.838 80.00 8640 | 6335 68.10 7208 76.19 79.11 85.72

Table 10. Full results of Linear Prob and LaBo on the development and test sets of 11 datasets.

the concepts are separated by semicolons. We train a T5-
large model [43] using the Huggingface API. We add a task
prefix - “extract concepts from sentence: ” for each example.
We train the model with Adam optimizer for 5 epochs, setting

5

the batch size to 8 and learning rate to le™°.

B.4. Remove Class Name

After extracting the short concepts using TS, some still
contain class names. To ensure there are no class names in
the bottleneck, we design two heuristics: (1) If we find the
class name in the concept using string match, we replace it
with the super class name'’, e.g., the concept “leaves of the
orange dahlia are long and narrow” for the class orange
dahlia in Flower-102 is modified as “leaves of the flower are
long and narrow”. (2) For class names with multiple tokens,
the tokens are not always in the same order as the class name.
In this case, if a concept with all tokens for the class name
is present, we remove it. For instance, the concept “a cake
made of carrot” for the class carrot cake will be deleted. The
two heuristics are applied to each concept by considering all
class names in the dataset.

B.S. Hyperparameters

We apply grid search with 5 runs to find the best weights
for the submodular function for different datasets and shots.

10The super class name depends on the datasets. For example, the super
class name for the Flower-102 dataset is flower (see Table 7).

We determine the learning rate and batch size by monitoring
the validation accuracy with wandb. Table 16 lists all the
hyperparameters of our best-performing models.

B.6. Other Details

GPT-3 Generation. Generating 500 sentences for one class
takes around 5 minutes by calling the OpenAl APIs. The
price of GPT-3-Davinci is $ 0.02 / 1k tokens, and it costs
about $ 0.2 for each class.

Running Time. Because we use CLIP with frozen weights,
we only need to extract the image features once and reuse
them in the rest experiments. Since we only fit a single linear
layer, our training time is low. For example, training the full
ImageNet for one epoch on an NVIDIA RTX A6000 takes
less than 1 minute.

Full Results. The full numerical results are shown in Table
10. Both validation and test accuracy are provided.

C. Additional Analysis
C.1. Activation Function

We ablate the impact of the softmax activation by remov-
ing it or replacing it with other activation functions such as
ReLU and sigmoid. As shown in Table 11, not using an
activation function significantly hurts performance, while
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Figure 8. t-SNE visualization of the embeddings of concepts (blue) and class names (pink) on ImageNet. For the three bottlenecks
constructed from GPT-3, WordNet, and Wikipedia, we visualize the top-1 concept of each class ranked by the weights of the linear function.

Activation 1 2 4 8 16 Full
- 52.66 58.01 63.02 6893 7352 81.32
relu 50.40 53.53 56.61 59.82 61.75 68.01
sigmoid 52.15 57.86 62.59 69.08 73.43 81.42
softmax 63.03 67.79 71.88 76.08 79.10 85.71

Table 11. Compare different activation functions. We report the
mean accuracy across the 11 datasets.

GPT-3 type 1 2 4 3 16 Full
Davinci (175B) 5109 57.43 6294 68.45 72.60 83.97
Curie (13B) 4575 5389 6036 6696 71.65 84.00
Babbage (6.7B) 44.61 5291 6022 67.06 71.66 83.86
Ada (2.7B) 43.12 5326 60.99 67.90 7242 83.96

Table 12. The performance of LaBo on ImageNet using different
sizes of GPT-3 to generate concepts. The number in the parenthesis
is the number of parameters of the corresponding language model.

using other activation functions performs poorly compared
to softmax.

C.2. Language Model Size vs. Performace

We experiment with different sizes of GPT-3: Curie, Bab-
bage, and Ada (sorted from larger to smaller). Figure 12
compares the different GPT-3 variants on ImageNet, show-
ing that larger language models result in better performance,
especially in the few show settings. However, there is only
a marginal difference in performance when enough data is
available.

C.3. Performance of Human-Written Text

Table 13 compares the performance of LaBo between
using GPT-3 generated concepts and human-designed con-
cepts sourced from WordNet and Wikipedia. We observe
that GPT-3 generated concepts outperform human-written
ones in 1-shot experiments, while there is less than 1% drop
in performance on average in larger data settings. In addition,
our human evaluation on Imagenet (see Figure 5 and 6 in
Section 5.3) shows that humans judge the quality of GPT-3
generated concepts to be better than that of human-designed.

We visualize the embeddings of concepts and class names
using t-SNE [61] to identify the reason behind the perceived

Concept Source 1 2 4 8 16 Full
GPT-3 51.09 5743 6294 6845 72.60 83.97
Wikipedia 4876 56.73 63.00 68.96 73.07 84.07
WordNet 4937 57.84 6410 69.92 7335 83.93

Table 13. The performance of LaBo on ImageNet using different
sources of concepts to construct the bottlenecks.

Method w/cls Aircraft Food
LP - 39.42 76.99 9589 68.74 80.04
LaBo X 37.29 76.04 9237 6478 80.07

CoOp [70] 4 33.22 7845 9497 65.37 78.66
LaBof v 37.53 77.83  93.18 65.37 80.10

Flower DTD UCF

Table 14. Compare LaBo with prompt tuning methods on 5 datasets
(16 shots). w/ cls stands for using class names in the context. LaBo!
is our method without removing the class names in the concepts.
All methods use CLIP-ViT-B/32 as the vision backbone.

higher quality of GPT-3 concepts. We encode the 1,000
class names of ImageNet using the CLIP text encoder along
with the top-1 concept of each class (1,000 concepts in total)
from each bottleneck (LaBo, WordNet, and Wikipedia). Fig-
ure 8 reflects that, compared to GPT-3, the embeddings of
WordNet and Wikipedia concepts have a higher overlap with
the embeddings of class names. In other words, Wikipedia
and WordNet concepts are more likely to replicate the text
features of class names rather than describe the class. This
explains why human-written text has higher accuracy but is
less interpretable.

C.4. Comparison with the Prompt Tuning Method

Table 14 compares the performance between LaBo and
CoOp [70], which employs a soft prompt tuning method (not
interpretable) on five datasets. Even though LaBo does not
use class names, its performance is similar to that of CoOp.
Adding class names to LaBo leads to performance gains,
such that it outperforms CoOp on Aircraft and UCF-101.

D. Human Evaluation

We introduce two qualitative metrics to evaluate the auto-
matically generated concept bottlenecks to highlight areas of
possible improvement. We introduce two metrics that evalu-
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Figure 9. Additional qualitative examples for CIFAR-10, CIFAR-100, DTD, Aircraft, Food101 and RESISC45.
Food Aircraft HAMI10K RESISC Flower CUB UCF DTD CIFAR10 CIFAR100
Factuality 1 P@10 P@I10 P@10 P@10 P@8 P@10 P@10 P@I10 P@10 P@10
LaBo 33.07 11.57 15.05 14.80 1148 2797 37.78 23.90 14.70 22.48
w/o submod 27.08 8.10 9.57 16.40 18.58 23.12 3722 25.27 20.70 22.72
w/o LM 21.63 897 19.71 12.15 998  12.17 2043 14.83 6.87 14.97
Groundabilityt | P@10 P@10 P@10 P@10 P@8 P@10 P@10 P@I10 P@10 P@10
LaBo 10.98 8.48 18.83 13.87 9.53 15.63 8.08 8.90 5.70 19.83
w/o submod 21.52 13.67 17.22 17.90 21.52 23.07 2993 20.02 23.10 21.78
w/o LM 20.58 12.00 20.00 14.38 17.93 25.02 2796 20.31 7.15 27.04

Table 15. Analytic Factuality and Groundability for all datasets except Imagenet (see Figure 5)

ate the bottleneck items along two dimensions: Factuality
and Groundability (see Section 5.3).

Annotator Statistics. Both metrics rely on human annota-
tions, which we collect on Amazon Mechanical Turk. To
ensure confidence in the results, we collect 3 annotations per
concept. Annotators are paid on average $14.5 per hour, and
the total cost of the annotation was $2,100. Our rate was
computed by estimating the time it takes to complete the task

by 4 different control annotators.!! In total, our task was

completed by a diverse set of 477 annotators. The average
pairwise annotator agreement for all annotated data without
any pre-processing is 69.83%.

Interface. Figure 11 displays the annotation interface. Given
a concept phrase, annotators are prompted to select from 12

1 Our focus group was graduate students. Since this is not representative
of the average population, we doubled the time estimate.
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Figure 10. Percentage of invalid concepts identified by humans for different bottlenecks for all 10 datasets except ImageNet (see Figure 6).

Lower percentage is better.

feta cheese and kalamata olives

If you think that this concept is not good for singling out relevant images, select one or more of the following
reasons (if any).

Non-sensical or ungramatical. ' | Unknown vocabulary = Non visual phrase.

Figure 11. Sample user interface for measuring Factuality. We
provide 10 ground truth images with 2 control images randomly
positioned. Annotators are required to select the images that can
be described by the phrase. The user interface for Groundability
is identical, but the images presented are the top-10 images in the
dataset sorted by CLIP [42] similarity score.

images, 10 of which correspond to the ground truth target
corresponding to the concept, and 2 control images randomly
sampled from other classes. The user interface was accom-
panied by a set of instructions presented in Figure 12.

Invalid Anneotations. In reporting Factuality and Ground-
ability, we disregard annotations that select any of the control
images unless all annotators failed the control for a partic-
ular concept. In total, we disregard 18% of annotations
for this reason. In reporting invalid concepts (non-visual,

non-sensical, or unknown vocabulary), we consider all anno-
tations but consider a bottleneck invalid if at least 2 out of 3
annotators agree.

Analytic Results. Table 15 displays analytic results of Fac-
tuality and Groundability for all datasets. Figure 10 presents
the invalid concept distribution for all datasets separately. It
is worth noting the high percentage of non-visual concepts
in CIFAR-10 and CIFAR-100 compared to other datasets.
We hypothesize that this reflects the annotators’ inability to
see the images clearly due to the low resolution (see Figure
9) rather than the lack of visual content in the concept. For
example, the concepts “small and black” and “blue nose and
tail” were annotated as non-visual for CIFAR-10, and the
concepts “color of trees and grass” and “two large pincers
on its front legs” for CIFAR-100.

E. Qualitative Examples

Figure 9 shows the additional qualitative examples for
the rest 6 datasets (CIFAR-10, CIFAR-100, DTD, Aircraft,
Food101, and RESISC45).



Instructions

In this task you will be provided with a phrase, and a set of images and you will select which
images have a part or aspect that can be described by the phrase. Below are three examples.

Example 1 Phrase: spiky, jagged pattern
v » 7 il N4 A

Phrase: deep red color with yellow
accents

You would select no images, since they flowers are mostly pink and white not red with yellow
accents.

Exaple 3 i Phrase: beautiful, soft pink

[

You would select the first image, since this is the only image that has a pink color.

In some cases, there may be problems with the phrase that make it difficult to associate with
any image. In these cases, please select an option that best describes the issue:

* Non-sensical The phrase is ungramatical or is not understandable.

e Unknown vocubulary The phrase uses words you do not know. For example, the phrase
member of the genus lilium and the family liliaceae

e Non-visual The phrase does not clearly refer to image content. For example associated
with passion, love, and excitement

Hit submit once you are done to register your hit

Select the images that you could describe a part or aspect of using the phrase:

Figure 12. Instructions provided to annotators to compute Factuality and Groundability.



n. of shots Bottleneck Size Discriminability («) Coverage (5) Learning Rate Batch Size

1 5,050 1e” 0.5 le~® 16

= 2 5,050 1e” 1 le™* 32

= 4 5,050 1€” 1 le~* 64
‘g 8 5,050 1e7 1 le™* 128
= 16 5,050 1e” 1 le™* 256
Full 5,050 1€7 5 le~® 1024

1 5,100 e’ 0.5 5¢ 7 16

B 2 5,100 1e” 1 5e5 32

E 4 5,100 1e7 0.1 5e~5 64
= 8 5,100 1e7 0 5e~5 128
< 16 5,100 17 1 5e~5 256
Full 5,100 1€7 0.5 5e~° 256

1 2,050 17 10 le=® 16

Q 2 2,050 1e” 100 le=s 32

0 4 2,050 1e” 10 le~s 64
% 8 2,050 1e7 10 le=? 128
= 16 2,050 1e” 1 le=s 256
Full 2,050 1e” 1 le~5 256

1 2,000 e’ 0 5e P 32

2 2,000 1e” 0 5¢? 64
@ 4 2,000 1e” 0.1 5e~° 128
8 8 2,000 1e7 0 5e~5 256
16 2,000 1e” 1 5e~° 512
Full 2,000 1e” 0.1 5e~° 512

1 5,050 1le” 1 le=® 8

- 2 5,050 1e” 1 le~s 16

= 4 5,050 17 100 le® 32

5 8 5,050 1e7 10 le=? 64
= 16 5,050 1e” 100 le~5 128
Full 5,050 1€7 10 le=® 256

1 2,350 1e7 10 le=® 8

2 2,350 1e7 10 le=5 16

a 4 2,350 1e” 5 les 32

a 8 2,350 1e” 1 le~® 64
16 2,350 1e7 2.5 5¢~5 256
Full 2,350 1e” 75 le* 512

1 350 17 0.1 le=3 4

8 2 350 1e” 0.1 le™3 4

S 4 350 1e7 1 le™ 8

= 8 350 17 10 le—3 8

= 16 350 1¢7 15 le3 16
Full 350 1e7 0.1 5e~4 256

1 2,250 Te” 5 5e P 8

[a 2 2,250 1e” 5 5e=° 16

3 4 2,250 1e” 10 5e° 32

7 8 2,250 1e” 15 5e~? 64
2 16 2,250 17 15 5e=5 128
Full 2,250 1e” 15 5¢~° 256

1 500 1e” 1 le~® 2

o 2 500 1e” 5 5e 4 4

o~ 4 500 1le” 5 le* 8

= 8 500 1e7 1 le~? 16

@) 16 500 1e” 10 le* 32
Full 500 1€7 5 le~* 512

1 5,000 17 7.5 le=® 16

=3 2 5,000 1e” 2.5 le™ 32

; 4 5,000 1€’ 7.5 le=5 64
< 8 5,000 1€” 7.5 le=® 128
) 16 5,000 1e” 5 le= 256
Full 5,000 1e” 0 le~s 512
1 50,000 1e8 0 le 128
= 2 50,000 1e8 0 le=5 256
Z 4 50,000 1e8 0 le® 256
2 8 50,000 1e8 0 le=® 512
£ 16 50,000 1e8 0 le~? 1024
Full 50,000 1¢8 0 le™ 2048

Table 16. All hyperparameters used for the main experiments which are tuned on the development set.



