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Dataset Task Category Num. Eval Examples Metric Origin

HellaSwag Commonsense Reasoning 1000 / 10042 Accuracy Zellers et al. (2019)
wikiHow Goal-Step Commonsense Reasoning 1000 / 1073 Accuracy Zhang et al. (2020)
wikiHow Temporal Commonsense Reasoning 1000 / 3100 Accuracy Zhang et al. (2020)
WinoGrande Commonsense Reasoning 1000 / 1767 Accuracy Sakaguchi et al. (2021)
OpenPI Commonsense Reasoning 111 / 111 ROUGE-F1 Tandon et al. (2020)
ANLI Natural Language Inference 1000 / 3000 Accuracy Nie et al. (2020)
Yelp Sentiment Analysis 1000 / 10000 Pearson’s r Zhang et al. (2015)
IMDb Sentiment Analysis 1000 / 25000 Accuracy Maas et al. (2011)
HotpotQA Question Answering 1000 / 7405 Macro-F1 Yang et al. (2018)
SQuAD Question Answering 1000 / 11873 Macro-F1 Rajpurkar et al. (2018)
CNN/Daily Mail Summarization 1000 / 13368 ROUGE-2 Nallapati et al. (2016)
XSUM Summarization 1000 / 11332 ROUGE-2 Narayan et al. (2018)

Table 1: The 12 evaluation tasks. Macro F1 is based on Rajpurkar et al. (2016). For each task, we randomly sample a
fixed set of 1000 examples from its validation or test set for evaluation. For OpenPI we are limited to 111 examples.

ant of code-davinci-002 trained explicitly on hu-
man demonstrations using supervised fine-tuning2.
We include this model to help us determine whether
or not fine-tuning PLMs on text instructions affects
their ability to interpret code prompts. All three
models were queried through the OpenAI API3 and
our experiments cost approximately $2700 in total
(see Appendix F for the full cost breakdown).

Task Selection Following the methodology of
Sanh et al. (2022) we select tasks in a top-down
fashion by first choosing the categories of interest
(e.g. Question Answering, Sentiment Analysis,
Summarization) and then selecting datasets from
within those categories. We pay special attention to
common sense and causal reasoning tasks as PLMs
prompted with code have been shown to perform
well on such tasks. The resulting 12 tasks are listed
in Table 1 and include Commonsense Reasoning,
Natural Language Inference, Sentiment Analysis,
Question Answering, and Summarization. More
details on each task can be found in Appendix A.

Prompt Formulation We collect text prompts
for each task using the PromptSource dataset (Bach
et al., 2022), a publicly available collection of
crowd-sourced prompt templates. For tasks with
many prompts, we randomly select one from those
provided in the dataset. For a few tasks absent on
PromptSource, we write the prompts ourselves.

For our code prompts, we manually write four
custom code prompts per task. The code prompt
types are as follows, from least to most Pythonic.
(i). Vanilla (Vanilla): instructions and inputs

are given as variables with generic names;
2https://platform.openai.com/docs/

model-index-for-researchers
3https://openai.com/blog/openai-api

(ii). Var Identifier (VI): instructions and inputs
are given as variables with meaningful names;

(iii). Var Identifier + Comments (VIC): instruc-
tions and inputs are given as variables with
meaningful names along with comments ex-
plaining their purpose;

(iv). Class + Var Identifier + Comments (CVIC):
instructions and inputs are given as a task-
specific class. Functionality is “imple-
mented” as member functions.

Figure 2 shows an example of the different styles
of code prompts for the wikiHow temporal order-
ing task. Note that we attempt to write our code
prompts such that we match the wording of the text-
based PromptSource prompt as closely as possible.

At inference time, for each test example, we ran-
domly sample in-context examples from the train-
ing set and add them to the context window until the
maximum context length is reached. This process
circumvents the bias caused by static in-context
examples. We conduct an ablation study where we
vary the random seed and show that this process
produces consistent results (see Appendix D).

3 Results

What is the best type of code prompt? We
compare performance across the four code prompt
types from Section 2 on all 12 tasks using
code-davinci-002 and report our results in Fig-
ure 3. We find that no single type of code prompt
performs significantly better than the others across
all tasks and that the relative difference in perfor-
mance between code prompts also varies signifi-
cantly across tasks. For example, on IMDb and
SQuAD all code prompts have roughly even perfor-
mance while for tasks such as wikiHow-Temporal
and WinoGrande we see a near 14% accuracy dif-
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Dataset Metric davinci code-002 text-002
+Text +Code � +Text +Code � +Text +Code �

Hellaswag Accuracy 0.321 0.307 -0.014 0.652 0.606 -0.046 0.717 0.773 +0.046
wikiHow goal-step Accuracy 0.347 0.302 -0.045 0.924 0.898 -0.026 0.919 0.915 -0.004
wikiHow temporal Accuracy 0.495 0.532 +0.037 0.622 0.727 +0.105 0.688 0.761 +0.073
Yelp Pearson ⇢ 0.913 0.896 -0.017 0.924 0.907 -0.017 0.919 0.904 -0.015
IMDb Accuracy 0.872 0.935 +0.063 0.945 0.951 +0.006 0.940 0.952 +0.012
WinoGrande Accuracy 0.513 0.500 -0.013 0.607 0.716 +0.109 0.628 0.726 +0.098
ANLI Accuracy 0.333 0.360 +0.027 0.562 0.551 -0.011 0.504 0.557 +0.053
HotpotQA Macro-F1 - - - 0.470 0.449 -0.021 0.490 0.350 -0.140
SQuAD Macro-F1 0.482 0.466 -0.016 0.604 0.579 -0.025 0.670 0.656 -0.014
OpenPI ROUGE-F1 - - - 37.33 36.36 -0.970 35.60 31.30 -4.300
CNN/Daily Mail ROUGE-2 9.28 9.13 -0.150 11.74 11.67 -0.070 13.63 13.55 -0.080
XSUM ROUGE-2 9.38 6.83 -2.550 14.51 11.03 -3.580 14.48 13.26 -1.220

Table 2: Performance of the three LMs when using code prompts (+Code) vs. using text prompts (+Text). Blank
cells indicate tasks for which single test examples could not fit in the context window. Color indicates whether or
not code prompts are better, slightly better, slightly worse, or worse than text prompts. We see that while code
prompts outperform text prompts for certain tasks (such as wikiHow temporal and WinoGrande) text prompts are
better on average. We also find that instruction fine-tuning (text-002) allows for better code prompt utilization.

Which is better: code or text prompts? In our
main experiment we compare the performance of
the three GPT models on code prompts (VIC style)
and text prompts across the 12 datasets. Given the
results from Figure 4, we fill the context window
of all models with in-context examples up to 4000
tokens to serve as a middle ground for comparing
code and text prompts. We report the results of
our main experiment in Table 2 and see several
surprising trends.

First, we find that prompting PLMs with code
leads to substantial increases in performance for
certain few reasoning tasks but that this trend does
not hold across all tasks—or even all reasoning
tasks. For example, when using code prompts with
code-davinci-002, we see a 10.5% accuracy in-
crease on wikiHow temporal ordering but a 2.6%
accuracy decrease on wikiHow goal-step inference
despite both being commonsense reasoning tasks
and having identical source material.

Second, we find that supervised instruction fine-
tuning on natural language demonstrations does
not hurt model performance on code. Rather, we
observe that code prompts outperform text prompts
on more tasks when using text-davinci-002 than
when using code-davinci-002 despite the fact
that text-davinci-002 received no additional
fine-tuning on code instructions.

Finally, we find that LMs not explicitly trained
on code can also benefit from code prompting
on certain reasoning tasks. In particular, code
prompts outperform text prompts on davinci for
3 out of our 12 tasks—the same proportion as
code-davinci-002. The tasks that benefit from

code prompts also seem to be largely consistent
across the three types of models tested, suggesting
some underlying trend as to which tasks systemati-
cally benefit from structured input.

4 Conclusion

In this work we investigate whether or not there
exists a systematic performance difference between
prompting PLMs with code or with text. We con-
firm that there are indeed tasks for which code
prompting is significantly more effective than text
prompting and that this finding holds across differ-
ent types of models. However, for most tasks, we
find that text prompting is still the best method for
eliciting few-shot generalization from PLMs.

Given this result it seems reasonable to attempt
to predict which tasks will benefit from code
prompts and which tasks will not. However, we
show that making such predictions based on sim-
ple heuristics such as domain and task category is
difficult and that the larger trends remain unclear.
Future work should seek to investigate the core
mechanism behind what makes code prompting
effective for certain tasks.

Finally, concurrent to our work, a new line of
research has emerged wherein models generate
code and execute that code to produce valid out-
put (Chen et al., 2022; Mishra et al., 2022; Gao
et al., 2022; Lyu et al., 2023). Future work should
consider whether or not the tasks that benefit from
executable code prompts and non-executable code
prompts have any overlap.
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Limitations

One significant limitation to our study is that, as of
March 23rd 2023, OpenAI has deprecated access
to code-davinci-0024, thus rendering our results
non-replicable for any team not granted special
access to these models by OpenAI. We did not
anticipate this deprecation while conducting this
work and we believe this raises serious questions
about the usage of API-based language models in
scholarly work.

Another limitation is that the 12 tasks we se-
lected may not be representative of the broader
population of natural language tasks. Had we con-
ducted our experiments on a larger selection of
tasks there may have been larger-scale trends that
we would have been able to uncover.

The largest and most pressing limitation with
our work is that the models we are testing on
have closed-source pre-training datasets. Thus, we
are unable to verify the extent to which our task
datasets have been included in the training or in-
struction fine-tuning data. Given that the training
data for most of the models tested in this work cuts
off in late 2021, this is a very strong possibility.
Our results should be viewed with this limitation
strongly in mind.

Finally, while we experimented with different
code prompts, the search space of possible prompts
is very large. Thus, it is very likely that there
exists some prompt that outperforms our chosen
prompts for each task. Drawing conclusions based
on a limited sampling of prompts is tenuous and
while methods exist for searching the space of all
prompts, such techniques lack interpretability and
erase any distinction between code and text prompt
(Li and Liang, 2021).
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A Detailed Task Description

Summarization is the task of composing a con-
cise description of a lengthy text. Given a long
narrative, the model is tasked with composing a
short summary that contains the salient events in
the original text.

For our study, we select the CNN/Daily Mail
(Hermann et al., 2015; Nallapati et al., 2016) and
XSUM (Narayan et al., 2018) datasets as both are
variants on the challenging abstractive summariza-
tion task. XSUM tasks models with generating
extremely concise 1 to 2 sentence summaries of
news articles and CNN/Daily Mail tasks models
with generating reasonably concise but longer ab-
stractive summaries. For both CNN/Daily Mail
and XSUM datasets, we use ROUGE-2 score for
evaluation.

Question Answering (QA) is the task of com-
posing answers given a question and an optional
context passage. When this context passage is pro-
vided the task is referred to as “open-book” QA and
when it is not it is referred to as “closed-book” QA.
Open-book QA tasks examine language models’
ability to understand and extract information from
their context while Closed-book QA tasks evaluate

the amount of knowledge encapsulated in language
models during pre-training.

For our study we pick two open-book QA
datasets, SQuADv2 (Rajpurkar et al., 2018) and
HotpotQA (Yang et al., 2018), which allow us to
focus our evaluation on how structured prompts af-
fect models’ ability to comprehend long text input.

For both SQuADv2 and HotpotQA, we evaluate
model performance based on the macro-averaged
F1 score as proposed in Rajpurkar et al. (2016).
This metric measures the average overlap between
the prediction and ground truth answer. It is cal-
culated by treating the prediction and ground truth
as bags of tokens, and first computing their F1.
Then, the maximum F1 score is taken over all of
the ground truth answers for a given question, and
that score is averaged over all of the questions to
get the final result.

Commonsense Reasoning is a machine reason-
ing task that demands the use of commonsense
knowledge which is oftentimes implicitly present
in the text (Sap et al., 2020). The customary formu-
lation of commonsense reasoning tasks are Clas-
sification, where the input is a context, optionally
with candidate answers as choices, and the output
is a label from a pre-defined label space, and Ques-
tion Answering (QA), where the input is a context
followed by a reasoning question and the output is
in free-form language.

In this study, we selected four Classification style
commonsense reasoning tasks: wikiHow Temporal
and wikiHow Goal-Step (Zhang et al., 2020), ANLI
(Nie et al., 2020), and HellaSwag (Zellers et al.,
2019). We also included one Question Answering
style task with OpenPI (Tandon et al., 2020). In
addition, we evaluate our models on WinoGrande a
comprehensive reasoning benchmark dataset (Sak-
aguchi et al., 2021).

For wikiHow Goal-Step, wikiHow Temporal,
HellaSwag, WinoGrande, and ANLI, we use clas-
sification accuracy as the evaluation metric. To
evaluate OpenPI, we use F1 score based on the
ROUGE metric as described in the original paper
(Tandon et al., 2020).

Sentiment Analysis is a task that is concerned
with judging emotion and its degree in text. Given
a passage, a language model is tasked with clas-
sifying the sentiment (positive, negative, neutral)
and/or its degree (strongly, weakly, moderately).

The selected datasets, namely IMDb (Maas et al.,
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Vanilla VI VIC CVIC

HellaSwag 3 2 1 4
wikiHow Goal-Step 4 2 1 3
wikiHow Temporal 4 3 2 1

Yelp 4 2 1 4
IMDb 1 3 1 4

WinoGrande 4 1 2 3
HotpotQA 4 3 2 1

ANLI 1 2 4 3
OpenPI 1 2 3 4
SQuAD 1 3 4 2

CNN/Daily Mail 4 2 3 1
XSUM 2 4 3 1

Mean 2.75 2.42 2.25 2.58
Standard Deviation 1.36 0.76 1.09 1.26

Table 3: Relative performance rank of the four code
prompt types from Section 2 across the 12 tasks. Ranks
are calculated based on the results reported in Figure 3.
We see that the “Variable Identifier + Comments” (VIC)
style prompt performs the best out of all code prompt
types on average.

2011) and Yelp (Zhang et al., 2015), are both con-
structed using customer reviews. The IMDb dataset
proposes a binary classification problem where
the input is a movie review and the label space
is {negative, positive}. Yelp proposes a five-way
classification problem where the input is a restau-
rant review and the label space is the number of
stars (out of 5) the customers assigned to the restau-
rant.

For IMDb, we use accuracy as the evaluation
metric and for Yelp, we use Pearson Correlation
between the predicted rating and the ground truth
rating as the evaluation metric.

B Hyperparameters

For all our experiments regarding GPT-based mod-
els, we use a max token of the maximum of possible
output tokens in the ground-truth development set.
We use a top p of 1, and no frequency and presence
penalty. We use a temperature of 0 for classifica-
tion and multiple-choice tasks and a temperature
of 0.7 for generation tasks.

C Ranking of Code Prompt Styles

In Table 3 we report the rank-based statistics of the
four code prompt types from Section 2 on our 12
tasks. Ranks are calculated based on the results re-
ported in Figure 3 of the main paper. The numbers
in a row reflect the relative standing of each code
prompt on the corresponding task. While we note
that all code prompts perform within ±0.5 ranks of

Dataset Performance �

Hellaswag 0.65, 0.67, 0.69, 0.67, 0.67 ±0.01
wikiHow-GS 0.51, 0.51, 0.51, 0.50, 0.51 ±0.00
wikiHow-T 0.62, 0.65, 0.63, 0.63, 0.62 ±0.01
Yelp 0.92, 0.92, 0.92, 0.92, 0.92 ±0.00
IMDb 0.94, 0.94, 0.94, 0.94, 0.94 ±0.00
WinoGrande 0.62, 0.64, 0.61, 0.62, 0.62 ±0.01
HotpotQA 0.35, 0.33, 0.35, 0.35, 0.35 ±0.01
ANLI 0.59, 0.58, 0.57, 0.60, 0.61 ±0.01
OpenPI 36.3, 38.1, 38.3, 37.7, 39.9 ±1.16
SQuAD 0.60, 0.62, 0.61, 0.60, 0.63 ±0.01
CNN/DM 11.7, 12.0, 12.4, 12.3, 12.0 ±0.25
XSUM 14.5, 14.9, 15.5, 15.2, 15.4 ±0.36

Table 4: Comparison across 5 repeated runs of the
code-davinci-002 model with text prompts using dif-
ferent random seeds for sampling in-context examples.
We see minimal standard deviation (�) between the runs.

each other on average, we see that on average the
VIC prompt performs the best across all tasks and
the Vanilla prompt performs the worst. Looking
to the standard deviation section, we see that the
VI prompt performs the most consistently across
all tasks and that once again the Vanilla prompt
performs the least consistently.

D Ablation Study

To see whether the findings in our Results sec-
tion could be attributed to variance in the ran-
dom sampling of in-context training examples per
test example, we conduct five repeated runs using
code-davinci-002 with different random seeds
each time and calculated the standard deviation
across the five runs. We report our results in Ta-
ble 4 and find that the choice of in-context exam-
ples accounts for very little of the observed vari-
ance across prompt type and context length. This
finding is surprising as previous work has shown
that the selection and ordering of in-context exam-
ples has a very large effect on the performance of
models (Liu et al., 2021). However, it seems that
our approach of random sampling in-context ex-
amples per test item helps to lessen this inherent
variance.

E Evaluation on text-davinci-003

While conducting our research into the differ-
ences between code and text prompts, OpenAI
released the text-davinci-003 model. This
model differs from text-davinci-002 in that it
is trained using Reinforcement Learning with Hu-
man Feedback (RLHF) instead of supervised in-
struction fine-tuning (Ouyang et al., 2022). Out
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Task code-002 text-002 text-003
(base) (+IFT) (+RLHF)

HellaSwag 0.652 0.717 0.714
wikiHow GS 0.924 0.919 0.510
wikiHow T 0.622 0.688 0.815

Yelp 0.924 0.919 0.903
IMDb 0.945 0.940 0.938
WinoGrande 0.607 0.628 0.735

ANLI 0.562 0.504 0.549
HotpotQA 0.470 0.490 0.378
SQuAD 0.604 0.670 0.663
OpenPI 37.33 35.60 39.06

CNN/DM 11.74 13.63 12.64
XSUM 14.51 14.48 13.36

Table 5: Performance of the three GPT-3.5 models
across our 12 datasets with text prompts. (+IFT) indi-
cates the addition of supervised instruction fine-tuning
and (+RLHF) indicates the addition of training using Re-
inforcement Learning from Human Feedback (Ouyang
et al., 2022). We see that RLHF does not always im-
prove performance and that for some tasks (HotpotQA
and wikiHow Goal-Step) it causes large degradations in
performance.

of curiosity, to see the effect of this new train-
ing paradigm, we conducted experiments com-
paring this new text-davinci-003 model to the
other GPT-3.5 models (text-davinci-002 and
code-davinci-002). We report the results of our
comparison across the 12 evaluation tasks in Ta-
ble 5.

We see that while text-davinci-003 out-
performs all previous models on wikiHow Tem-
poral, WinoGrande, and OpenPI, it does signif-
icantly worse than previous models on wikiHow
Goal-Step and HotpotQA. Such large reductions in
performance are to be somewhat expected when
using RLHF given the costly nature of collecting
human demonstrations. However, the magnitude of
the decreases (-50.1% for wikiHow and -11.2% for
HotpotQA) is nonetheless surprising and such re-
sults raise important questions about exactly what
is being learned when conducting instruction fine-
tuning and whether or not this learned information
can generalize to tasks not seen during fine-tuning.

F Evaluation Cost

In this section we report the approximate cost
of conducting our experiments. In our study
we use four OpenAI models, namely davinci,
code-davinci-002, text-davinci-002 and
text-davinci-003. While code-davinci-002
is free to use at the time of this study, we report
the approximate cost of running the experiments

Dataset Num. Examples Est. Cost

HellaSwag 1000 / 10042 $240.48
wikiHow Goal-Step 1000 / 1073 $240.48
wikiHow Temporal 1000 / 3100 $240.48
WinoGrande 1000 / 1767 $240.48
OpenPI 111 / 111 $28.08
ANLI 1000 / 3000 $240.48
Yelp 1000 / 10000 $240.48
IMDb 1000 / 25000 $240.48
HotpotQA 1000 / 7405 $241.20
SQuAD 1000 / 11873 $241.08
CNN/Daily Mail 1000 / 13368 $257.91
XSUM 1000 / 11332 $246.66

Total Cost $2698.29

Table 6: The total estimated cost of running davinci,
text-davinci-002 and text-davinci-003 for 1000
data samples from each dataset (except for OpenPI).

on the other three models5 in Table 6. To
estimate the cost of an experiment, we calculate
the approximate number of tokens necessary
for computing one dataset example and then
multiplied that by the number of examples in the
dataset. For classification tasks, since we fill up
the context window to roughly 4000 tokens for
every test example, we estimate the number of
tokens to be 4000 (3999 tokens for the prompt
and 1 token for the label). To estimate cost for
generative tasks (OpenPI, HotpotQA, SQuAD,
CNN/Daily Mail, and XSUM), we compute the
average generation length from our generated
samples and assume the in-context examples take
up 3500 tokens. While this calculation results in
a fairly loose upper bound, we believe this to be
a good estimate of the total cost incurred by the
project as such overestimates help offset the cost
of other miscellaneous API queries done over the
course of the project.

5The cost of querying davinci, text-davinci-002 and
text-davinci-003 is $0.02/1,000 tokens at the time of study.
See https://openai.com/pricing for more details.
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