
Exporting Ada Software to Python and Julia

Jan Verschelde
University of Illinois at Chicago, Department of Mathematics, Statistics, and Computer Science, 851 S. Morgan St. (m/c
249), Chicago, IL 60607-7045; email: janv@uic.edu, http://www.math.uic.edu/∼jan

Abstract

The objective is to demonstrate the making of Ada soft-
ware available to Python and Julia programmers us-
ing GPRbuild. GPRbuild is the project manager of
the GNAT toolchain. With GPRbuild the making of
shared object files is fully automated and the software
can be readily used in Python and Julia. The applica-
tion is the build process of PHCpack, a free and open
source software package to solve polynomial systems
by homotopy continuation methods, written mainly in
Ada, with components in C++, available at github at
https://github.com/janverschelde/PHCpack.

1 Language Agnostic Computing
This paper describes interface development from the perspective
of an Ada programmer, aimed to export the functionality of a
software package to Python [1] and Julia [2] computational
environments, available through Jupyter notebooks [3]. The
Jupyter notebook is the interface to SageMath [4], a free open
source system for mathematical computing.

In order to export all functionality the interface passes through
C, which may be regarded as a least common multiple of pro-
gramming languages, as Ada, Python, and Julia share enough
common ground to enable language agnostic computing, as
Jupyter stands for Julia, Python, R, and many others.

Python
@R

Julia
�	

C interface
?

Ada Code

Figure 1: C as the least common multiple language.

The main point is to automate building with GPRbuild.

2 GPRbuild and Interface Development
The mixed language development is supported by GPRbuild,
the project manager of the gnu-ada compiler GNAT. The build
process, defined via library projects, results in shared object
files (with the extension .so on Linux, .dll on Windows, and
.dylib on Mac OS X). These shared object files can be called
directly from a Python script or a Julia program.

In the C interface layer, the control is passed to a C program.
The C program passes input data to some Ada procedure, calls
an exported procedure, and extracts the output data via another
call to an Ada procedure. The most basic and versatile manner
to pass data is via a plain sequence of characters of 32-bit
integers. As the hello world for this interface, consider the
swapping of characters in a string.

"hello" - swap - "olleh"

Figure 2: Swapping characters via an interface package.

The interface package as shown in Figure 3 exports a procedure
to pass the input data, the DoIt procedure to compute the
output data, and then a third function to return the output.

swap

i Initialize(s)i DoIti s := Retrieve

Figure 3: An interface package to swap characters in a string.

Then the C program calls the function call_swap, declared
in Ada as below.

with C_Integer_Arrays;
use C_Integer_Arrays;

function call_swap
(jobnbr : integer;
sizedata : integer;
swapdata : C_intarrs.Pointer;
verbose : integer) return integer;

where the package C_Integer_Arrays defines
C_Integer_Array as an array of C integers, of type
Interfaces.C.int. The package contains

package C_intarrs is
new Interfaces.C.Pointers
(Interfaces.C.size_T,
Interfaces.C.int,
C_Integer_Array,0);

Reprinted from Ada User Journal, Vol. 43(1), March 2022, with permission. Copyright is held by the author/owner(s).

Ada Letters, June 2022 76 Volume XLII, Number 1

http://crossmark.crossref.org/dialog/?doi=10.1145%2F3577949.3577961&domain=pdf&date_stamp=2022-12-19

Observe that the void idiom of C is avoided. The
details of this introductory project are posted at
github.com/janverschelde/ExportAdaGPRbuild.

The C code to test takes a string word, converts the string into
an array of 32-bit integers, and then calls the Ada code:

sizeword = strlen(word);

for(int idx = 0; idx < sizeword; idx++)
dataword[idx] = (int) word[idx];

adainit();
fail = _ada_call_swap(0,sizeword,dataword,1);
fail = _ada_call_swap(1,sizeword,dataword,1);
fail = _ada_call_swap(2,sizeword,dataword,1);
adafinal();

for(int idx = 0; idx < sizeword; idx++)
word[idx] = (char) dataword[idx];

The contents of the file demo.gpr defines the build of the C
test program.

project Demo is

for Languages use ("Ada", "C");

for Source_Dirs use ("src");

for Main use
(

"hello_world.adb",
"main.adb",
"test_call_swap.c"

);

for Object_Dir use "obj";

for Exec_Dir use "bin";

end Demo;

To make a shared object file, a library project is de-
fined. Below are the essentials of the instructions to make the
libdemo as a shared object.

for Library_Dir use "lib";
for Library_Name use "demo";
for Library_Kind use "dynamic";
for Library_Auto_Init use "true";
for Library_Interface use
(

"hello_world", "main", "swap",
"call_swap", "c_integer_arrays"

);
for Library_Standalone use "encapsulated";

package Compiler is

for Switches ("call_swap.adb") use ("-c");

end Compiler;

package Binder is

-- use "-Lada" for adainit and adafinal
for Default_Switches ("Ada")

use ("-n", "-Lada");

end Binder;

Julia has the function ccall() to execute compiled C code.
The Julia code below calls the call_swap procedure.

LIBRARY = "../Ada/lib/libdemo"

word = [Cint(’h’), Cint(’e’), Cint(’l’),
Cint(’l’), Cint(’o’)]

println(word)
ptr2word = pointer(word, 1)
p = ccall((:_ada_call_swap, LIBRARY), Cint,

(Cint, Cint, Ref{Cint}, Cint),
0, 5, ptr2word, 1)

p = ccall((:_ada_call_swap, LIBRARY), Cint,
(Cint, Cint, Ref{Cint}, Cint),
1, 5, ptr2word, 1)

p = ccall((:_ada_call_swap, LIBRARY), Cint,
(Cint, Cint, Ref{Cint}, Cint),
2, 5, ptr2word, 1)

println(word)

The string "hello" is represented by Int32[104, 101,
108, 108, 111]. The last println(word) shows
Int32[111, 108, 108, 101, 104].

To extend Python code, an extension module must be de-
fined in C or C++. The setup.py script has the list
extra_objects to define the location of the compiled Ada
code and the location of the Ada runtime libraries. The shared
object made running python setup.py build_ext can
then be directly imported in a Python session. The making of
this extension can be done without makefiles.

3 Building PHCpack
As a demonstration to a large scale project, GPRbuild is applied
to make share objects for PHCpack, a free and open source
software package to solve polynomial systems with homotopy
continuation. The python interface to PHCpack is phcpy [5].
Written mainly in Ada, PHCpack contains MixedVol [6] and
DEMiCs [7] to count bounds on the number of isolated solu-
tions fast. For MixedVol, a translation into Ada was made. The
package DEMiCs is written in C++ and incorporated into PHC-
pack as such. As described in [8], the code for multiple double
precision is provided by QDlib [9] and CAMPARY [10].

A Julia interface is under development. From the Julia folder
of the PHCpack source distribution, running the Julia program
version.jl at the command prompt:

$ julia version.jl
-> in use_c2phc4c.Handle_Jobs ...
PHCv2.4.85 released 2021-06-30
$

Ada Letters, June 2022 77 Volume XLII, Number 1

The ccall() uses the libPHCpack shared object, made
with GPRbuild.

Acknowledgements
Supported by the National Science Foundation under grant
DMS 1854513.

The author thanks Dirk Craeynest and Fernando Oleo Blanco
for the organization of the Ada Devroom at FOSDEM 2022.

References
[1] F. Pérez, B. Granger, and J. Hunter, “Python: An ecosys-

tem for scientific computing,” Computing in Science &
Engineering, vol. 13, no. 2, pp. 12–21, 2011.

[2] J. Bezanson, A. Edelman, S. Karpinski, and V. B. Shah,
“Julia: A fresh approach to numerical computing,” SIAM
Review, vol. 59, no. 1, pp. 65–98, 2017.

[3] T. Kluyver, B. Ragan-Kelley, F. Pérez, B. Granger, M. Bus-
sonnier, J. Frederic, K. Kelley, J. Hamrick, J. Grout, S. Cor-
lay, P. Ivanov, D. Avila, S. Abdalla, C. Willing, and J. D.
Team, “Jupyter Notebooks—a publishing format for re-
producible computational workflows,” in Positioning and
Power in Academic Publishing: Players, Agents, and
Agendas (F. Loizides and B. Schmidt, eds.), pp. 87–90,
IOS Press, 2016.

[4] W. Stein, “Sage: Creating a viable free open source alter-
native to Magma, Maple, Mathematica, and MATLAB,”
in Foundations of Computational Mathematics, Budapest
2011 (F. Cucker, T. Krick, A. Pinkus, and A. Szanto, eds.),
vol. 403 of London Mathematical Society Lecture Note
Series, pp. 230–238, Cambridge University Press, 2012.

[5] J. Otto, A. Forbes, and J. Verschelde, “Solving polynomial
systems with phcpy,” in Proceedings of the 18th Python
in Science Conference, pp. 563–582, 2019.

[6] T. Gao, T. Y. Li, and M. Wu, “Algorithm 846: MixedVol:
a software package for mixed-volume computation,” ACM
Trans. Math. Softw., vol. 31, no. 4, pp. 555–560, 2005.

[7] T. Mizutani and A. Takeda, “DEMiCs: A software pack-
age for computing the mixed volume via dynamic enu-
meration of all mixed cells,” in Software for Algebraic
Geometry (M. Stillman, N. Takayama, and J. Verschelde,
eds.), vol. 148 of The IMA Volumes in Mathematics and
its Applications, pp. 59–79, Springer-Verlag, 2008.

[8] J. Verschelde, “Parallel software to offset the cost of
higher precision,” ACM SIGAda Ada Letters, vol. 40, no. 2,
pp. 59–64, 2020.

[9] Y. Hida, X. S. Li, and D. H. Bailey, “Algorithms for quad-
double precision floating point arithmetic,” in 15th IEEE
Symposium on Computer Arithmetic (Arith-15 2001),
pp. 155–162, IEEE Computer Society, 2001.

[10] M. Joldes, J.-M. Muller, V. Popescu, and T. W., “CAM-
PARY: Cuda Multiple precision arithmetic library and
applications,” in Mathematical Software – ICMS 2016, the
5th International Conference on Mathematical Software,
pp. 232–240, Springer-Verlag, 2016.

Ada Letters, June 2022 78 Volume XLII, Number 1

