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Abstract. A polynomial homotopy is a family of polynomial systems,
where the systems in the family depend on one parameter. If for one
value of the parameter we know a regular solution, then what is the
nearest value of the parameter for which the solution in the polynomial
homotopy is singular? For this problem we apply the ratio theorem of
Fabry. Richardson extrapolation is effective to accelerate the convergence
of the ratios of the coefficients of the series expansions of the solution
paths defined by the homotopy. For numerical stability, we recondition
the homotopy. To compute the coefficients of the series we propose the
quaternion Fourier transform. We locate the closest singularity comput-
ing at a regular solution, avoiding numerical difficulties near a singularity.
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1 Introduction

Polynomial homotopies define the deformation of polynomial systems, from sys-
tems with known solutions into systems that must be solved. We call a solution
reqular if the matrix of all partial derivatives evaluated at the solution has full
rank, otherwise the solution is singular. We aim to locate the nearest singularity
starting at a regular solution. Applying the ratio theorem of Fabry, we can detect
singular points based on the coefficients of the Taylor series.

Theorem 1 (the ratio theorem of Fabry [11]). If for the series x(t) =
co 4 et + cot? + - e t™ + ant"‘H + -+, we have lim ¢, /cpy1 = 2, then

— z s a singular point of the series, and
— it lies on the boundary of the circle of convergence of the series.

Then the radius of this circle is less than |z|.
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While the proof of the theorem would take us deep into complex analysis [9,
Chapter XIJ, one can immediately verify that the ratio ¢,/c¢n4+1 is the pole of
Padé approximants ([1,38]) of degrees [n/1], where n is the degree of the numer-
ator, with linear denominator.

The ratio theorem of Fabry provides a radar to detect singularities in an
adaptive step size control for continuation methods, as introduced in [39] (with
a parallel implementation in [40]) and reproduced by [41]. Earlier applications
of Padé approximants in deformation methods appeared in [20], in a symbolic
context, and in [35] in a numerical setting. Empirically, in the plain application
of this ratio theorem, already relatively few terms in the series appear to be
sufficient to take nearby singularities into account.

The problem considered in this paper can be stated as follows. How many
terms in the Taylor series do we need to locate the closest singularity with
eight decimal places of accuracy? Answering this question exactly is not possible
because of constants which differ for each series, but we can provide information
about the order of the number of terms, e.g.: tens or hundreds.

We show that Richardson extrapolation (see [3] for a general formalism)
effectively solves our problem. On monomial homotopies (defined in the next
section), we can separate our problem from the required accuracy of the coef-
ficients of the Taylor series. On examples, at 64 terms of the series, we obtain
eight decimal places of accuracy in the location of the radius of convergence. In
the third section, the justification for this successful application of Richardson
extrapolation is proven. This is the first contribution of this paper.

The second contribution of this paper is the introduction of the quaternion
Fourier transform [10,34] to compute the coefficients of the series. If we want to
locate a singularity to full double precision, then, on examples, it appears that
512 terms in the series are needed. The Fast Fourier Transform scales well.

In the fifth section, we consider the application of Richardson extrapolation
in an end game, when the path tracker approaches an isolated singular solution at
the end of the path. Power series methods for singular solutions in [28] introduced
the concept of the end game operation range. In this range, the continuation
parameter has values for which the Puiseux series expansions are valid and where
the numerical condition numbers still allow to compute sufficiently accurate
approximations of the points on the path. In fixed precision, this range may be
empty. Using multiple double precision for ill-conditioned problems is wasteful
due to the slow convergence of Newton’s method. For homotopies with a random
complex gamma constant, we introduce the notion of the last pole. With this
last pole, we recondition the homotopy with a shift and stretch transformation.

The new methods are illustrated in section six. Deflation restores the quadra-
tic convergence of Newton’s method for an isolated singular solution, of multi-
plicity p. While [25] proves that p is the upper bound on the number of defla-
tion steps, the numerical decision to apply deflation is left to a singular value
decomposition of the Jacobian matrix, which may not always be reliable enough.
Although deflation has been addressed by many (e.g. [4,5,7,8,15-17,26,27,30]),
the question on when to deflate is an open problem.
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2 Monomial Homotopies

The examples of the homotopies in this section have only one singularity.
A monomial homotopy is defined by an exponent matrix A € Z™*™ and an
n-dimensional coefficient vector c(t) of invertible power series:

h(x,t) =x* —c(t) =0, (1)
with x = (21,29, ...,x,), and the multi-index notation
a; = (al,j, A2 5y amj), x% = l'llll’jl'gz’j s JC%"‘j, (2)

where a; is the jth column of the matrix A.

For any specific value for ¢, the system h(x,¢) = 0 reduces to a system with
exactly two monomials in every equation. The solving of such a system happens
via a unimodular coordinate transformation defined by the Hermite normal form
of A. Singular solutions can occur only when c(¢) = 0, only for specific values
of t. While monomial homotopies have thus no direct practical use, they provide
good test cases to experiment with algorithms and to introduce new ideas.

2.1 A Square Root Homotopy

The simplest example of a monomial homotopy is
2 —14+t=0, withsolution xz(t)==+v1—t. (3)

The two paths defined by this homotopy are shown in Fig. 1.

o a

0.5 f
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-1.0 | -7

-0.5 0.0 0.5 1.0

Fig. 1. Starting at x = 41, the two paths converge to x = 0, as t moves from 0 to 1.

At t = 1, the two paths coincide at a double point. Our problem is to predict
for which value of ¢ this singularity happens without computing x(t) fort =~ 1.
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In the development of the solution z(¢) = v/1 —t in a Taylor series about
t = 0, let ¢, be the coefficient of t”. Then the application of the ratio theorem
of Fabry gives

20t ) lim f(n) = 1 (4)

Cn+1 2n—1 n—o00

As the limit of the ratios equals one, we can predict the location of the singu-
larity, already at the series development at ¢ = 0. The main problem is the slow
convergence of the series. Table1 illustrates that in order to gain one extra bit
of accuracy, we must double the value of n.

Table 1. f(n) = % converges slowly to one. The error column lists | f(n) — 1|. The
last column is the ratio of two consecutive errors. As n doubles, the error is cut in half.

n H f(n) ‘ error error ratio

2.00000000000000 | 1.00E+-00
1.42857142857143 | 4.29E—-01 | 2.3333E+00
8 [ 1.20000000000000 | 2.00E—01 | 2.1429E+00
16 | 1.09677419354839 | 9.68E—02 | 2.0667E+00
32 | 1.04761904761905 | 4.76E—02 | 2.0323E4-00
64 || 1.02362204724409 | 2.36E—02 | 2.0159E4-00
128 || 1.01176470588235 | 1.18E—02 | 2.0079E4-00
256 || 1.00587084148728 | 5.87TE—03 | 2.0039E+-00
512 | 1.00293255131965 | 2.93E—03 | 2.0020E+00

Observe we can rewrite f(n) of (4) as

2(n+1) 2n—1+3 3 3/ 1
f) =50 o —1 T +2n< )

1+2?;L<1+21n (21n)2+(21n)3+> (6)

As shown in Sect. 3, f(n) has an asymptotic expansion of the form

1 1\? 1\*
f)=1+y (=) +n(=) +u(-) + (7)
n n n
for some coefficients ~1,7v2,73, . ... If we double the value for n, we have
f@n)=1+ L + L 2+ L 3+ (8)
= m 2n V2 2n s 2n
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and then we eliminate 7; via a linear combination:

21(20) — f(n) = 1+ 2%, (;ﬂ)z—w <;>2+273 (2111)3—% (;)+ )

which results in an approximation with error O(1/n?).

This regular ratio of two consecutive errors allows for an effective applica-
tion of Richardson extrapolation. The input to Richardson extrapolation are
the values f(2), f(4), f(8),..., f(2V). The output is R; ;, the triangular table of
extrapolated values. Then the extrapolation proceeds as follows:

1. The first column: R; ; = f(2°), for i =1,2,3,...,N.
2. The next columns in the table are computed via

i—j+1
27 R~ Rj1i
9i—it1 _ ] ’

R;; = (10)

fori=4,i+1,...,N and for j =2,3,..., N.

Table 2 shows the errors |R; ; — 1| of the extrapolated values. Looking at the
diagonal of Table 2, we see that we gain about two decimal places of accuracy
at each doubling of n.

Table 2. Errors of Richardson extrapolation. The column Fy is the error column of
Table 1. The column Ej; is the error obtained from extrapolating j times, applying
formula (10). At n = 64 we have 8 correct decimal places and at n = 512, the full
machine precision is attained.

4.3E—1|14E—-1
2.0E—-1|6.7TE—2 | 9.5E—-3
16 9.7TE—-2 | 3.2E—-2 | 4.6E-3 | 3.1E—4
32 48E—-2|1.6E—2|2.3E—-3| 1.5E—4 | 4.9E—-6
64 24E—-2|79E-3 | 1.1E-3 | 7.5E—5 | 2.4E—6 | 3.8E—8
128 || 1.2E—2 | 3.9E-3 | 5.6E—4 | 3.7TE—5 | 1.2E—-6 | 1.9E—8 | 1.5E—-10
256 || 5,.9E—3 | 2.0E—3 | 2.8E—4 | 1.9E—-5 | 6.0E—-7 | 9.5E—-9 | 7.5E—11 | 2.9E—13
512 || 2.9E—3 | 9.8E—4 | 1.4E—4 | 9.3E—6 | 3.0E—7 | 4.8E—9 | 3.8E—11 | 1.5E—13 | 4.4E—-16

2.2 Two Paths Ending in a Cusp

Figure2 is an example of a situation not covered by Theorem 1. Consider the
homotopy

h(z,t) =22 — (t—1)* = (x — (t — 1)) (z + (¢ — 1)?) = 0, (11)

which has the obvious two solutions x(t) = +(t — 1)%.
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In this case, the power series for both paths are polynomials of degree two,
and there is no limit, as all coefficients ¢, = 0, for n > 2. In [32], an algo-
rithm to sweep an algebraic curve for singularities monitors the determinant
of the Jacobian matrix along the curve. If the path of the determinant of the
Jacobian matrix on the curve is concave up, then that is an indicator for unde-
tected singularities.

10+ e \
05
-0.5
-10 t
-0.5 00 0.5 1.0

t

Fig. 2. Starting at * = 1, the two paths converge to z = 0, as ¢ moves from 0 to 1.

2.3 A Random 4-Dimensional Monomial Homotopy

In this section, we illustrate the need for multiple precision, even already in
relatively low dimensions and degrees. Consider

Tl
T1TaxsTy = 1 — 1,

h(x, ?) rizszd=1-1, (12)
X =
’ xgxgm =1-—t,

ririal=1-1t

Storing the exponents of the monomials in the columns of A = [a;,aq, a3, a4,
x4 = (x®1,x22, x* x3), the monomial homotopy h(x,t) can be written as

xA=(1-te, e= , det(A) = —42.  (13)

— ==
b
Il
N N
O W
== Ot O
NN O

At t =0, (1,1,1,1) is one of the 42 solutions, as 42 = | det(A)|, computed via the
Smith normal form of A.
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In double precision, extrapolating on x1 (t), the extrapolation does not get any
more accurate than six decimal places. Working with coefficients computed with
32 decimal places running the algorithms of [2] (implemented in PHCpack [42]),
the extrapolation gives eight decimal places of accuracy, similarly as in the square
root homotopy.

For the examples in this section, Richardson extrapolation results in an accu-
racy of 8 decimal places when n = 64 and for n = 512, we can locate to singularity
to the full double precision.

3 Asymptotic Expansions
Consider the coefficient ¢,, of t" in the Taylor series. What happens if n grows:

|z| < 1: coefficients increase,
— ¢ |z] = 1: coeflicients are constant, (14)
|z] > 1 : coefficients decrease.

n

Cn+1

Let x(t) satisfy h(xz(t),t) = 0, then in the series for z(¢), we may assume that
for sufficiently large n, the magnitude of the nth coefficient is |z|™. If we then
set

t=|z|s (15)
then the coefficient of s™ in the series z(s) will have a magnitude close to one.
By Lemma 1, the radius of convergence of the series z(s) equals one.

Lemma 1. Let x(t) be a power series with ¢, as the nth coefficient of t™ and

lim " =z e C\ {0}. (16)

n—0o0 Cp41
Then the series x(t = |z|s) has convergence radius equal to one.

Proof. Consider the effect of the substitution ¢ = |z|s, respectively on the nth
and the (n + 1)th term in the series z(t):

Cnt™ = cnl2|™ 8™, Cngp1t™Th = cpyr 2|t s (17)

S~—— ——

=:d, =: dnt1
Then d, is the coefficient of s™ in the series z(s) and

dy | | ¢y |1
dn+1 Cn+1 |Z‘ '
By (16), lim “—| = 1. Thus, z(s) has a convergence radius equal to one. O
n—oo

n+1
If interested only in the magnitude of the radius, then in the natural applica-
tion of Lemma (15), |z| is used. Using complex arithmetic, the series z(t = z - s)
has radius of convergence equal to one.
In practice, the transformation as defined in as defined in (15) has numerical
benefits. In theory, it implies that without loss of generality, we may assume that
all series we consider all have convergence radius one.
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Proposition 1. Assume x(t) is a series which satisfies the conditions of Theo-
rem 1, with a radius of convergence equal to one. Let ¢, be the coefficient of t"
in the series. Then |1 — ¢, /cnt1| is O(1/n) for sufficiently large n.

Proof. Expressing the Taylor series of z(t) as

(0 n (n) 0
() = 2(0) 4+ 2Oyt + TV PO s O g
2! 3! n!
leads to a formula for the coefficient of t" as
m(n) (0) x(n+1)(0)
Cp = ol and Cpn+1 = m (19)
Then the error is
Cn (M (0)
‘1 T = ‘1 - <x("+1)(0)> (n+ 1)' ~ 0, for large n. (20)

Under the assumption that the radius of convergence is equal to one, without
loss of generality we may assume that the singularity occurs at ¢ = 1. Otherwise,
if t = z for some complex number z, with |z| = 1, we can rotate the coordinate
system so z = 1 in the rotated coordinate system. Therefore, we may assume
there is a power series p(t), so

o(t) = p(t)

= 20— w(op(t), u(t) e s (@)

1t

The p(t)/(1 —t) can be viewed as the limit of the Padé approximant of degree
[n/1], for n — oo. This Padé approximant is well defined under the assumption of
Theorem 1. In the limit reasoning for n — oo, we work with sufficiently large n,
but never take oo for n.

Applying Leibniz rule to the nth derivative of z(t) leads to

n

.’I}(n)(t) = Z <k:'(nn'k)') w(=F) (t)p(k)(t)- (22)

At t = 0, we have u("¥)(0) = (n — k)! and we obtain

0= Y () 0 (23)

k=0

We rewrite the expression for z("*1)(0) as

n+1
x(n+1)(0) — Z ((nzll)'> p(k)(O) (24)

k=0
- n!

=0+ () #00 +50000) (25)

= (n+1)z™(0) + p" 1 (0). (26)
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Then we can write (20) as

Cn

‘1 <(ﬂ-%])x0£?3;?2lﬂn+lxo)) 0141)‘ (27)

1
— ) B p(n+1)(0)
+ n+1 gg(n)(o)

Note that we may divide by (™) (0), because (™ (0) # 0 by the assumption that
Cn/Cnyt1 is well defined for all values of n, otherwise the limit would not exist.
Denote

'1

Cn+1

=1

(nt1)
C:ﬁwng (29)

Then the result follows from another series expansion:

e () )

n+1

Substituting the right hand side of (30) into (28) gives

() GL) ] e

What remains to prove is that C' does not depend on n. Dividing (26) by
(™ (0) leads to

Cn

’1_

Cn+1

) p" 1 (0)
) T )

The assumption that x(t) has a radius of convergence equal to one implies
Cn+1 = ¢n and that

(32)

x(n+1) (0)

) ="t oW (33)

and thus we have

p(n+1)(0)

(n+1)
p (0)
o(l) = 1

n+O0(1)=n+1+ 200 (0)

or equivalently W
x n

is O(1). (34)
Therefore C is a constant, independently of n. This shows that the error is
O(1/(n+1)). For large n, O(1/(n+ 1)) is O(1/n). O

Observe that the above proof does not make any assumptions on the type of
homotopy used, other than the existence of a limit as in the theorem of Fabry.
Then the main result of this section can be stated as below.

Corollary 1. Assuming the convergence radius equals one, applying Richardson
extrapolation N times on a Taylor series truncated after n terms, results in an
O(1/nN*Y) error on the radius of convergence.
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Proof. By Proposition 1, and in particular the expansion in (31), we have

L+m (711>+72(i>2+’)’3<711)3+~~ (35)

as the expansion for the error to the limit 1.

For N = 1, the first extrapolated values have error O(1/n?), because the
leading terms of the errors are O(1/n) and running Richardson extrapolation
once (for j =2 and i =2,3,..., N in (10)) eliminates this leading term.

Using the formulas in (10) to compute the next columns in the triangular
table eliminates the next terms in the error expansion in (35). After extrapolating
N — 1 more times, we then obtain an O(1/n¥*1) error term. O

The assumption that the radius of convergence equals one makes the Richard-
son extrapolation superfluous, as the outcome of the extrapolation is already
known. We can remove this assumption. Consider for example the homotopy
h(z,t) = 2% =2+t =0 and z(t) = \/2 — t as the positive solution branch. If ¢,
is the nth coefficient of the Taylor series, then

Cn_ _y (W) —2/(n), (36)

Cn+1

where f(n) is the formula from (4). Similarly, for the homotopy h(z,t) = 2% —
1/2+t =0 and x(t) = y/1/2 — t as the positive solution branch, with ¢, as the
nth coefficient of the Taylor series, we have

o () = o (37)

This implies that for those two examples, the series development of f(n) in 1/n
is multiplied respectively with 2 or 1/2, and that therefore Richardson extrapo-
lation applies.

Theorem 2. Let ¢, be the coefficient with t" in x(t) and denote f(n) =
C7z/cn,+1- If c
lim —— =z ¢€ C\ {0}, (38)

n—oo C,n+1

fn)=z+mz (i)—l—’ygz (i)Q—&-'ygz (i)s—i— (39)

Proof. By Lemma 1, we transform z(¢) into z(s) = z(t = z - s), which has
convergence radius one. Let d,, be the coefficient of s™ in x(s) and denote
g(n) = dp/dny1. For g(n), we have the expansion (35):

gn) =1+m <le)+72 (i)z—kvg (;)3—# (40)

then
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The above series development is unique. Therefore, transforming s = ¢/z, gives
the series (39). O

Theorem 2 provides the justification for the application of Richardson extrap-
olation and the statement of Corollary 1 holds in theory for any series, not only
for those with radius of convergence equal to one. However, in practice, series
with a radius of convergence smaller than one will have very large coefficients
which cause numerical instabilities and unavoidably arithmetical overflow.

If the convergence radius of a power series equals one, then it is safe to calcu-
late the coefficients of the power series from sample points at nearby locations.

4 Fourier Series

In computational complex analysis [18], the discrete Fourier transform is applied
to compute the coefficients of the Taylor series. For general references on the
application of Fourier transforms in computer algebra and numerical analysis,
we refer to [14] and [6].

As described in [29], many derivatives are computed simultaneously with
an accuracy close to machine precision, for a suitable step size, using complex
arithmetic, extending the complex-step differentiation method [37] to higher
order derivatives. Figure 3 illustrates the problem: the step size must be smaller
than the radius of convergence. This problem is addressed in Sect. 5.2.

Fig. 3. The radius of convergence r and step size h. We want h < r.

To introduce the application of the discrete Fourier transform to compute
the Taylor series, consider the development of f at z, using step size hw:

h? R3
f(ZJr hw) = f(z) +hwf/(z) + ?w2f//(z) + §w3f///(z)

W4 i) R 5w h® 6 pvi)
DA ) 4+ P ) 4 B O )
h B8

+ ﬁw?f(vii)(z) + ngf(viiiNz) +-n
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where w is the eight complex root of unity: w® = 1. Regrouping in powers of w
then gives

o ha) = F(2) + e P e 4

ho
+w (hf’(z) + gf(‘x)(z) +>

ot (e B

o (G + IO+ )

w o (s e+ )
oy (gjf(w) (2) + %jf(xin(z) L )
b (h‘;’fm(z) N %j’f(xim(z) L )
b <’é‘;f<vi> (2) + %f@iv)(z) L )
Lo <’;!7f<vu>( )+ %Tf(xw(z) L ) ,

For k from 1 to 7, the coefficients of w¥ allow the extraction of the kth derivative
of f at z, at a precision of O(h®).
The Discrete Fourier Transform

DFT,, : cn — cr
(fo, fis ooy fno1) = (FWO), F(wh),..., F(w™ 1)

takes the coefficients of the polynomial F’ with coefficients fy, f1,..., fn_1, where
w™ = 1 and returns the values of F' at the powers of w. The inverse of DFT,,
returns the coefficients of w* needed in the Taylor series of f(z + hw).

As illustrated by Table 3, the derivatives grow as fast as n! and therefore,
except for small n, we may not expect to obtain highly accurate values.

The step size of A = 0.5 used in Table 3 is a compromise value. Values of h
smaller than 0.5 give more accurate results for the lower order derivatives but
give then too inaccurate values for the higher order derivatives. The opposite
happens for values of h larger than 0.5.

Fortunately, we do not need the derivatives z(") (0), but the coefficients of
the Taylor series, ¢, = x(™(0)/n!. Table4 shows the application of the DFT
to compute the series coefficients. Compared to the derivatives in Table 3, the
computations in double precision arithmetic give six decimal places of accuracy
for n = 64. The step size h = 0.85 gave the most accurate results.

In machine double precision, the results in Table3 and Table4 are close to
optimal, with the step sizes respectively equal to 0.5 and 0.85. Using those large
step sizes in multiprecision will not give more accurate results, but multiprecision
will allow to select smaller step sizes. In particular with 33 decimal places (using

(41)
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Table 3. Derivatives of z(t) = v/1 — t at t = 0. The approximate values are computed
with step size h = 0.5. The last column is the relative error.

n ‘ ‘ exact (™) (0) ‘ approximation (") (0) ‘ error
0 1.000000000000 0.999999968596 | 3.14E—08
1 —0.500000000000 —0.500000028787 | 5.76E—08
2 —0.250000000000 —0.250000053029 | 2.12E—-07
3 —0.375000000000 —0.375000147155 | 3.92E—-07
4 —0.937500000000 —0.937500546575 | 5.83E—07
5 —3.281250000000 —3.281252546540 | 7.76E—07
6 —14.765625000000 —14.765639282757 | 9.67TE—07
7 —81.210937500000 —81.211031230822 | 1.15E—06
8 —527.871093750000 —527.871798600561 | 1.34E—06
9 —3959.033203125000 —3959.039180858922 | 1.51E—06
10 —33651.782226562500 —33651.838679975779 | 1.68E—06
11 —319691.931152343750 —319692.518875707698 | 1.84E —06
12 —3356765.277099609375 —3356771.966430745088 | 1.99E—06
13 —38602800.686645507812 —38602883.297614447773 | 2.14E—06
14 —482535008.583068847656 —482536106.155545711517 | 2.27TE—06
15 —6514222615.871429443359 | —6514238371.741491317749 | 2.42E—06
16 || —94456227930.135726928711 | —94456466497.677398681641 | 2.53E—06

mpmath 1.1.0 [21] with SymPy 1.4 [23] in Python 3.7.3), the 16th derivative is
computed with an accuracy of 15 decimal places, with step size 0.1 and the error
on the 64th coefficient coefficient on the series drops to 10~ !, with step size 0.5.

Instead of working with the same step size for all series coefficients, alterna-
tively, one could explore using different step sizes. In this context, one classical
and very common application of Richardson extrapolation is to improve the
accuracy of numerical differentiation.

When z is a complex number, the complex step derivative is generalized
in [24] and [33] with quaternion arithmetic. Using the quaternion Fourier trans-
form [10,34], the coefficients of the Taylor series can be computed.

Table 4. Coefficients c¢,, of the Taylor series of z(t) = /1 — ¢ at t = 0. The approximate
values are computed with step size h = 0.85. The last column is the relative error.

H exact cp, ‘ approximation ‘ error

1.000000000000 |  0.999999986011 | 1.40E—08
—0.500000000000 | —0.500000013671 | 2.73E—08
—0.125000000000 | —0.125000013365 | 1.07E—-07
—0.039062500000 | —0.039062512786 | 3.27TE—07
—0.013092041016 | —0.013092052762 | 8.97E—07
32 || —0.001576932599 | —0.001576940258 | 4.86E—06
64 || —0.000554221198 | —0.000554226120 | 8.88E—06

0 NN~ Of 3
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5 Polynomial Homotopies

The homotopies in this section have multiple singularities in the complex plane,
for complex values of ¢, with real part < 1, but only one singularity at ¢ = 1.
Knowing the location of the last pole leads to the reconditioning of the homotopy
and to series with convergence radius equal to one.

5.1 The Last Pole

Let f(x) = 0 be the system we want to solve and assume we have at least one
solution of g(x) = 0. Then the homotopy

h(x,t) =~v(1 —t)g(x) +tf(x) =0, te€]0,1], veC,|y|=1, (42)

defines a path starting at ¢t = 0, at a solution of g(x) = 0 and ending at t = 1, at
a solution of f(x) = 0. The constant 7 is a random complex number. If g(x) = 0
has no singular solutions, then it follows from the main theorem of elimination
theory that all paths defined by h(x,t) = 0 are regular and bounded for ¢t € [0,1),
except for finitely many complez values for t. In [36], this constructive argument
is illustrated by examples of homotopies of small degrees and dimension.

The key point is the existence of a polynomial H(t) of finite degree, with
H(0) # 0, as g(x) = 0 has no singular solutions. Moreover, by the random
complex choice of ~y, all roots of H are in the complex plane, except for ¢t = 1,
if the system f(x) = 0 has a singular solution. By construction of h(x,t) = 0,
we can introduce the notion of the last pole, as the complex number p, for which
H(p) = 0 and of all roots of H, p has the largest real part less than one.!

Figure4 illustrates that p is the last complex singular value detected by the
radar of a path tracker which applies the theorem of Fabry to set its step size.

Fig. 4. Schematic of the last pole p marked by the hollow circle. At the center, at
t =to = t«, p and 1 are at the same distance. At top < ¢, the proximity of p determines
the step size, while for t. < to, the singularity at one will be detected.

By construction of the homotopy h(x,t) = 0, and in particular by the ran-
dom choice of the complex constant -, the solution at ¢t = ¢, is regular, and well
conditioned. This implies that Newton’s method for the series coefficients con-
verges quadratically. One could then already discover the singular solution for

L If all real parts of the roots of H are larger than one, then we are in the case similar
to a monomial homotopy, a case that is then already solved.
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t = 1, via the computation of a Padé approximant with quadratic denominator.
Via a perturbation argument, for ¢t = ¢, + 9, for suitable 6 > 0, the application of
the theorem of Fabry will detect ¢ = 1 as a singular solution, without computing
x(t) fort =~ 1.

5.2 Homotopy Reconditioning

Once the path tracker reaches a value for the continuation parameter ¢, that
is past the last pole towards an isolated singularity at ¢ = 1, at the end of a
path, the coefficients of the power series will grow very fast, which is already an
indication for the trouble to come.

For the reliable numerical computation of the power series, consider the trans-
formation in the homotopy h(x,t) = 0:

t=rs+tyg, r=1—ty, tog=1ti+09, (43)

where t, is value as in Fig. 4, at the same distance from the last pole p and the
end point ¢t = 1, and J is a suitable positive value so at ty = t,+4d, the application
of the theorem of Fabry will detect t = 1 as the location for the closest singular
solution.

After applying (43), the series development of the path x(s) defined by the
homotopy h(x(s),s) = 0 will have convergence radius equal to one. The term
reconditioning is justified as the coefficients of the Taylor series in the recondi-
tioned homotopy do not grow exponentially fast.

6 Computational Experiments

The new methods are illustrated with computational experiments on two well
known examples in the literature, with ad hoc tools, using test procedures in
version 2.4.85 PHCpack [42] (with QDIlib [19] and CAMPARY [22] for multiple
double arithmetic), version 1.1.1 of phepy [31], version 1.4 of sympy [23], and
version 1.1.0 of mpmath [21], in Python 3.7.3. The computations were done on a
CentOS 6.10 Linux computer with 23.4 GB of memory and a 12-core Intel Xeon
X5690 at 3.47 GHz.

6.1 QOjika’s First Example
One example in [30] (known in benchmarks as ojikal, used in [16,25-27]) is

> +y—-3=0,

f(z,y) = {x +0.125y% — 1.5 = 0. (44)

This system has one regular solution at (—3,6) and a triple root at (1,2). Using
v = —0.917153159675641—0.3985349190434741, I = \/—1, in the homotopy (42)
with start system

22 —1=0,

makes that the path starting at (1, 1) converges to the triple root.
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The value to after ¢, (the location of the last pole) that was used is tg =
0.955647336181678. At this value for ¢, the coordinates of the corresponding
solution are

T ~ 1.17998166418735 4 0.0181391513338172 I,
y ~ 1.60871001974391 — 0.0423866308603763 I,

with the inverse of the condition number estimated at 8.9E-03. In double preci-
sion, a condition number of about 10% is within the range of what is considered
well conditioned. Observe that the coordinates of the solution corresponding
to to are far from the location of the triple root (1,2).

The value for r = 1—t( is 0.044352663818322036, which implies that, without
reconditioning, the magnitude of the Taylor series coefficients will increase with
about two decimal places. At that pace, as 264 ~ 10%!?, numerical difficulties
arise without reconditioning.

After reconditioning, with n = 64, the ratio, based on the power series for
the first coordinate x(s), is estimated at

1.0265192231142901 + 2.9197227799819557E—05

and the magnitude of the imaginary part corresponds to the magnitude of the
coefficients ¢, in the series of z(s). This mild decline of the exponents corre-
sponds to the over estimation of the radius at about 1.0265. Applying Richardson
extrapolation yields

0.9999729580138075 + 8.484367218447337E—06 I,

which thus locates the singularity with an error of 1076,

The above computations were done in double precision. In double precision
(=32 decimal places), with n = 512, the ratio is first estimated at 1.00326 and
Richardson extrapolation then improves the accuracy, to obtain an error of 1076
on the value t = 1, the location of the singularity, confirming the result obtained
in double precision.

6.2 One Fourfold Root of Cyclic 9-Roots

The cyclic n-roots problem

ro+a1+-+ap1=0
n—1 j+i—1

f(x): i:2,3,...,n—1:z kamodn:O (46)
J=0  k=j
ToL1T2 " Tp—-1 —1=0

is a well known benchmark problem in polynomial system solving, which arose
in the study of biunimodular vectors [13]. The cyclic 9-roots problem was solved
in [12], and its roots of multiplicity four were used in the development of deflation
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n [25]. This system was used to illustrate the computation of the multiplicity
structure in [8].

The start system g(x) = 0 in a homotopy to solve f(x) = 0 was obtained by
running the plain blackbox solver (the extended version is described in [43]) on
12 cores tracking 11,016 is less than two minutes. For reproducibility, the seed
in the random number generators was 7131. That g(x) was then used in the
homotopy (42) with v = —0.917153159675641 — 0.398534919043474 1, I = /—1.
One path was selected that ended at one of the fourfold roots.

The value for ¢ after ¢, the location of the last pole is t; =
0.998315512784621, with coordinates of the corresponding solution

2o ~ +1.00000126517819 + 2.90396442439194E—07
1 ~ —2.61867609654276 — 2.06312686218454E —03
—0.381725080860952 + 6.25420054941098E — 05
23 ~ +1.00151501674915 + 1.11189386260303E—03
24 ~ +0.381629266681896 — 3.62839287359460E — 04
T5 ~ +2.62034316800711 + 2.49236777820171E—03
e ~ 1-0.998483898493147 — 1.11096857563447E —03
T7 ~ —2.61970187995193 — 4.30339092688366E — 04
g ~ —0.381870388949536 + 3.01610075581641E — 04

Q

€2

Q

with inverse condition number estimated at 5.3E-5. Although the homotopy
does not respect the permutation symmetry, the orbit structure of the solution
can already be observed, at the limited accuracy of about three decimal places.

The value for r = 1—1%¢ is 0.0016844872153789492 and without reconditioning
the homotopy, the coefficients in the power series expansions of the solution
increase at a very high pace. After reconditioning, with n = 32, the convergence
radius is estimated at

1.00000000099639 + 4.319265E—09 I

and confirmed in double precision. Because of the close proximity to the singu-
larity, no extrapolation is necessary in this case.

7 Conclusions

Richardson extrapolation is effective to locate the closest singularity as shown
by the asymptotic expansions on the ratio of two consecutive coefficients in the
Taylor series of the solution curves, under the condition of the theorem of Fabry.

The homotopy continuation parameter can always be adjusted so the con-
vergence radius of the power series equals one, which allows for a safe step size
selection in the application of the discrete Fourier transform to compute all
coefficients of the series efficiently and accurately.

Deflation restores the quadratic convergence of Newton’s method on an iso-
lated singular solution via reconditioning. The homotopy reconditioning using
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the location of the last pole provides an apriori justification for the application
of the deflation method via the Richardson extrapolation on the ratios of the
coefficients of power series.

The theorem of Fabry provides a radar to detect singularities. In this paper we
have shown that this radar can accurately locate the nearest singular solution of
a polynomial homotopy. We apply this radar at a safe distance from singularities,
at a regular solution where the quadratic convergence of Newton’s method holds.
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