L)

Check for
updates

PAALM: Power Density Aware Approximate Logarithmic
Multiplier Design

Shuyuan Yu
University of California, Riverside
Department of Electrical and Computer Engineering
Riverside, California, United States
syu070@ucr.edu

ABSTRACT

Approximate hardware designs can lead to significant power or
energy reduction. However, a recent study showed that approx-
imated designs might lead to unwanted higher temperature and
related reliability issues due to the increased power density. In
this work, we try to mitigate this important problem by propos-
ing a novel power density aware approximate logarithmic multi-
plier (called PAALM) design for the first time. The new multiplier
design is based on the approximate logarithmic multiplier (ALM)
framework due to its rigorous mathematics based foundation. The
idea is to re-design the high computing switch activities of existing
ALM designs based on equivalent mathematical formula so that the
power density can be reduced at no accuracy loss while at costs of
some area overheads. Our results show that the proposed PAALM
design can improve 11.5%/5.7% of power density and 31.6%/70.8%
of area with 8/16-bit precision when compared with the fixed-point
multiplier baseline, respectively. And also achieves extremely low
error bias: -0.17/0.08 for 8/16-bit precision, respectively. On top of
this, we further implement the PAALM design in a Convolutional
Neural Network (CNN) and test it on CIFAR10 dataset. The results
show that with error compensation, PAALM can achieve the same
inference accuracy as the fixed-point multiplier baseline. We also
evaluate the PAALM in a discrete cosine transformation (DCT) ap-
plication. The results show that with error compensation, PAALM
can improve the image quality of 8.6dB in average when compared
to the ALM design.

ACM Reference Format:

Shuyuan Yu and Sheldon X.-D. Tan. 2023. PAALM: Power Den-
sity Aware Approximate Logarithmic Multiplier Design. In 28th Asia
and South Pacific Design Automation Conference (ASPDAC °23), Janu-
ary 16-19, 2023, Tokyo, Japan. ACM, New York, NY, USA, 6 pages.
https://doi.org/10.1145/3566097.3567884

1 INTRODUCTION

One of the important paradigm changes for today’s emerging com-
puting workloads is that a large number of application domains,
e.g., machine learning, imaging process, etc., exhibit an intrinsic
error tolerance [1, 2]. It is further shown that in those applications

This work is supported in part by NSF grants under No. OISE-1854276, in part by NSF
grant under No. CCF-1816361, No. CCF-2007135 and No. CCF-2113928.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ASPDAC °23, January 16-19, 2023, Tokyo, Japan

© 2023 Association for Computing Machinery.

ACM ISBN 978-1-4503-9783-4/23/01...$15.00
https://doi.org/10.1145/3566097.3567884

128

Sheldon X.-D. Tan
University of California, Riverside
Department of Electrical and Computer Engineering
Riverside, California, United States
stan@ece.ucr.edu

70% of their energy consumption on average is dissipated in com-
putations that can be approximated for a given certain accuracy
level [3]. As a result, accuracy can be traded off to improve hard-
ware footprint, power/energy efficiencies and performance via so-
called approximate computing [4, 5]. Approximate computing con-
cept basically is to introduce error or quality loss as a new design
metric to be traded off for area/power/energy reduction and/or im-
proved performance. Recently, many research efforts have been
spent to develop more performance and energy-efficient approx-
imate computing hardware, especially for the machine learning
and neural network applications [6]. Those workloads are heav-
ily dominated by the multiplication operations and hence designs
of hardware-efficient multiplier have been intensively investigated
recently. The primary goal of the approximate multiplier design is
to reduce the power and area for the least accuracy loss.

Table 1: 8-bit multipliers power density (synthesized using
EDK 32nm standard cell library [7])

Power Densi W /pum?

Approaches Area (um’) same frequency ts};I(Se tﬂlrou)ghput
FxP (baseline) 1754.10 0.0512 0.0512
ALM [8] 820.63 0.0853 0.0693
LeAp [9] 1040.21 0.1023 0.0831
REALM [10] 1235.14 0.1010 0.0821
ILM-EA [11] 1221.92 0.0883 0.0718
ILM-AA [11] 887.47 0.0871 0.0708
HEALM-TA [12] 595.46 0.0863 0.0702
HEALM-SOA [12] 664.33 0.0896 0.0729

A number of approximate multiplier designs have been pro-
posed recently [10, 13-21]. Those approximate multipliers em-
ployed some ad-hoc truncation or reduction methods or mathe-
matically formulated approximation schemes. Most of the existing
methods, however, lack the systematic (re)configurability for ac-
curacy versus area/power/latency trade-off. On the other hand, a
class of approximate multipliers that are mathematically formu-
lated includes logarithmic multipliers, which convert multiplica-
tion into only shifting and addition operations, due to the inherent
approximate nature of logarithmic operation and the easy accuracy
manipulation of the resulting addition, the area, latency and power
can be traded off at the cost of accuracy. The logarithmic multi-
plier was originally proposed by Mitchell [8]. Since then, many
approximate logarithmic multipliers (ALMs) have been proposed
to improve Mitchell’s work [10, 11, 20, 22]. Most of those methods
focused on how to reduce and compensate the errors introduced
in the piece-wise approximation of the log function, which tends
to cause negative error behavior.

Recently Ansari et al. [11] developed an approximate scheme
to make the error distribution more balanced (double sided errors)
for the ALM method. Saadat et al. [10] introduced a general error

http://crossmark.crossref.org/dialog/?doi=10.1145%2F3566097.3567884&domain=pdf&date_stamp=2023-01-31

ASPDAC ’23, January 16-19, 2023, Tokyo, Japan

compensation technique based on Ansari’s work, called REALM,
using an analytically generated error reduction factor lookup ta-
ble for different regions of input operands. The benefits of this
method are that it can generate more balanced errors by design-
ing and providing configurable design trade-off between area and
precision. However, this method uses one lookup table for all the
truncation configuration in the approximate addition, which may
lead to large errors especially for low precision cases. Based on Saa-
dat’s work, Yu et al. [12] further proposed different lookup tables
for different truncation configuration in the approximate summa-
tion, achieving improvements in both hardware footprint and error
metrics for the low precision cases.

However, recent study showed that approximate multiplier de-
signs may lead to unwanted higher power density, thus higher tem-
perature and related reliability issues in the final chip design [23].
The reason is that though approximation schemes reduce both
power and area at the same time, the power density, which is
power per unit area, can increase as reduction ratios for power
and area can be different. It turns out that as shown in Table 1, the
power densities of recently proposed approximate multipliers are
all larger than the fixed point exact multiplier (the baseline) no mat-
ter with the same working frequency or with the same throughput.
As a result, those approximate multiplier designs can’t run on the
same frequency and voltage ranges of the original exact multiplier
designs under the same temperature constraint [23].

In this work, we would like to address this new issue by ex-
plicitly considering the power density impacts in the approximate
multiplier design. The new multiplier design is still based on the
approximate logarithmic multiplier (ALM) framework due to its
rigorous mathematics based foundation. The key contributions of
this work are summarized as below:

e We show for the first time that most of recently proposed ap-
proximate logarithmic multipliers (ALMs) can actually lead
to higher power density than the baseline design with po-
tential thermal issues. To mitigate this issue, we profile the
switching activities of the existing ALM design and try to
reduce the high computing switch activities based on equiv-
alent mathematical formula at some costs of area so that the
power density can be reduced with no accuracy loss. Our
method can be viewed as a way to trade-off some area over-
head for power density reduction, which is however neces-
sary for reducing local hot spots and maintain the long-term
reliability of chips.

Experimental results show that the proposed 8/16-bit
PAALM design can improve 11.5%/5.7% of power density
and 31.6%/70.8% of area when compared to the fixed-point
multiplier baseline, respectively. By introducing inexact
summation and error compensation, PAALM can achieve
extremely low error bias of -0.17/0.08 with 8/16-bit preci-
sion, respectively.

Furthermore, we implement the PAALM design in a Con-
volutional Neural Network (CNN) and test it on CIFAR10
dataset, showing that with error compensation, PAALM can
achieve the same inference accuracy as the fixed-point mul-
tiplier. Besides, we evaluate the PAALM in a discrete cosine
transformation (DCT) application. The results further show
that with error compensation, PAALM can improve the im-
age quality of 8.6dB in average when compared to the ALM
design.

129

Shuyuan Yu and Sheldon X.-D. Tan

2 REVIEW OF RELATED WORK

Various approximate multiplication designs, especially for the un-
signed integer inputs, have been proposed in recent years. Some
earlier works often involved ad-hoc based approximations, such as
recursive multipliers [13] which consisted of 2 X 2 multiplication
blocks, simplification of Wallace tree [14], simplifying partial prod-
uct generation/summation [15-17]. Others used a smaller multi-
plier by extracting m-bit fragment from the N-bit precision inputs
such as [18, 19].

Recently, the approximate logarithmic multiplier (ALM) [8],
and its derivatives, which are more mathematically formulated
have been proposed. Those ALMs can convert multiplication into
only shifting and addition operations, which are more hardware
friendly and efficient. The ALM design shows good overall per-
formance and has flexibility for trade-offs among area, power and
accuracy. Specifically, in the ALM method, the two inputs A and
B are first represented by the following format: 2ka . (1 + x) and

2kv . (1 + y), respectively. Then the multiplication result can be
approximated as (1).

2katks (1+x+y), x+y<1,
okatkotl (x4 y), x+y>1

Where C41,p is the approximate multiplication product. The ALM
method requires four steps to do the approximate multiplication:
First it utilizes leading-one detectors (LODs) to find the leading bit
‘1’ as the integer part; second, barrel shifters are used to re-align
the rest of the bits as the fraction part; then it sums the two fraction
and integer parts up as k, + kp + x + y; and finally it shifts back
with the same bits.

Though ALM performs a good trade-off among accuracy, area
and power, it suffers from high absolute MRED (mean relative error
distance) and peak relative error of 3.76% and 11.11%, respectively.
To improve the accuracy of the ALM method, several derivative
works have been proposed by means of different error compen-
sation mechanisms. For instance, the MBM design tried to add a
fixed single error-correction term to the final result [20]. This was
further improved by the LeAp multiplier, which added different er-
ror coefficients to the fraction parts based on the value ranges of
the results [9]. The REALM multiplier design further improved the
compensation scheme by using a lookup table to store MXxM coeffi-
cients/factors for M X M partitions of input ranges with some hard-
ware resource overheads [10]. These works indeed improved the
error metrics of the approximate logarithmic multiplication with-
out incurring too much resource overheads.

Some previous works [11, 22] tried to do further area reduction
by replacing the exact adder with an inexact one. Since the exact
adder unit is the bottleneck of the ALM critical path and occupies
large area, this idea does help in area saving. But the inexact adder
also introduces extra error. A state of art work, called HEALM, did
specific error compensation for different inexact adder with differ-
ent number of truncation bits, improving the hardware footprint
and the error metrics at the same time [12].

These existing logarithmic multiplication designs though
achieved good trade-offs among accuracy and hardware metrics,
they didn’t also perform well in the thermal aspect. We list the
power density of the FxP (fixed-point multiplier), which is selected
as the baseline, the conventional ALM design and some state of
art improved versions with 8-bit precision in Table 1. From the ta-
ble, we notice that all the logarithmic multiplication designs have
higher power density than the accurate baseline design, no matter
with the same working frequency or with the same throughput (de-
lay), which means a worse thermal behavior. And when compared

CaLm = { (1

PAALM: Power Density Aware Approximate Logarithmic Multiplier Design

to the conventional ALM, the improved versions even further in-
crease the power density. The logarithmic multiplication designs
decrease the area and power at the same time. However, the area
usually decreases faster than the power, which leads to a larger
power density.

In this work, we will focus on the 8-bit and 16-bit power
density aware approximate logarithmic multiplication design and
demonstrate that the proposed work shows superior thermal per-
formance not only against the ALM [8] and other state of art
works like LeAp [9], REALM [10], ALM-SOA [22], ILM [11] and
HEALM [12]; but also better than the accurate baseline in Sec. 4.

3 PROPOSED POWER DENSITY AWARE ALM

In this section, we present the details of our proposed power den-
sity aware logarithmic approximate multiplier (PAALM) design to
mitigate the increase in the power density of most existing approx-
imate multiplications, especially the log-based multiplication de-
signs.

3.1 Power density aware logarithmic
multiplication

HWinm?

LOD.a LODb SUM FracSUM Exp Bamrel o
Shirt

(@)

Figure 1: (a) The power, area distribution and power density
of each component in the ALM design; (b) The power, area
distribution and power density of each component in the
PAALM design

The first thing we do is to profile the power consumption of the
key components of the ALM design. The goal is to find the local
power or power density hot spots so that we can re-design the
multiplier to avoid those hot spots and the overall power density
can be reduced in this way.

Specifically, we first show the power, area and the power den-
sity for each component in a conventional ALM design in Fig. 1(a).
In this figure, the LOD_a and LOD_b modules represent the blocks
detecting the leading one bit and performing the bit shifting oper-
ation to obtain the exponential part k,, kj, and the fraction part x,
y. The Sum_Exp module is used to sum the exponential parts kg,
kp up. Sum_Frac module does the fraction part summation. The
Barrel Shift module stands for the barrel shifter which delivers the
output Car pr. These ALM components are illustrated in Fig. 2.

From Fig. 1(a) we can see, the fraction summation part
(Sum_Frac module) is the most power dense unit. However, it just
takes up about 12.7% of the total power consumption and 9.5% of
the area. On the other hand, the barrel shifter unit is not the most
power dense component in the ALM structure, but dominates the
power consumption of the ALM design, taking up 58.2% of the total
power consumption and has higher power density (0.072uW /pm?)
compared to the fixed-point baseline (0.051uW /pm?). Besides, the
Sum_Frac module which has the highest power density, should be

130

ASPDAC ’23, January 16-19, 2023, Tokyo, Japan

Input: A Input:B
v ¥
LOD_a Leading Leading LOD_b
One Detect One Detect
k, Ky | | x y
| Sum_Exp Sum_Frac |

l

| Barrel Shifter |

l

cALM

Figure 2: The conventional ALM design

re-designed and be replaced with modules which have less power
density.

Based on the above observation, we propose to split the large
barrel shifter into two small barrel shifters. In this way, we can re-
solve both of these aforementioned issues. Specifically, we rewrite
the math expression of the ALM: (1) as follows:

2katkp (14 x + y)
=2ka . (14+x)-2% +2Kb .y . 2ka

=A -2 4+ (B-2kp) . 2ka, x+y <1,

CALM =) pka+ky+1 (x+y) @
= oka S(1+x) Lokptl 4 okp ~y-2ka+1
= (A—2kay.2kp*l 4 (B—2Kb).2katl x4y >1

As we can see, compared to (1), one time k, +kj, bit shifting opera-
tion is separated to a k, bit shifting and a k;, bit shifting operation.

[sum_rrac

k
L

Barrel Shifter 1

CALM

Barrel Shifter 2

Figure 3: The power density aware ALM design

We show the PAALM design in Fig. 3. Unlike the conventional
ALM, the LOD blocks in the PAALM structure not only detect the
leading one bit and output the exponential and fractional parts,
but also deliver the A — 2K and B — 2k» according to (2). In this
way, the barrel shifting operations are split into two shifting oper-
ations. But the real benefits is that the area increase from two bar-
rel shifters will exceed their power increase, which leads to lower
power density. After barrel shifting, the PAALM obtains A - 2k or
(A — 2ka) . 2k depending on whether x + y is smaller or larger
than one, using a smaller barrel shifter to obtain two partial prod-
ucts. Then we add these two partial products up to achieve the
final output Cxy s which is just the same as the output from the
conventional ALM. For the most power dense unit Sum_Frac, we
introduce the inexact summation to replace the exact adder to re-
duce power density. We will give more details in Sec. 3.2.

ASPDAC ’23, January 16-19, 2023, Tokyo, Japan

Fig. 1(b) shows the power, area and power density of the compo-
nents in the new PAALM design. As we can see, the highest power
density has been reduced from 0.088uW /pm? to 0.058pW /um?.
Second, the new Sum_INT unit and the improved SUM_Frac unit
have much lower power density (0.042uW /pm?) compared to
the initial Sum_Frac (0.088uW /pm?) and Sum_Exp (0.047uW /pm?)
units. Third, the two small barrel shifters have lower power den-
sity than the previous large barrel shifter, which is beneficial to
the overall power density. Fourth, the power density differences
between different components are much smaller than the previous
design, which is good for reducing some local hot spots (although
this is less relevant as we assume that the typical thermal analysis
granularity will be at the gate level). But the most important factor
is that, we end up with reducing the power density of the conven-
tional ALM from 0.069uW /pm? to 0.051pW /pum? of PAALM with-
out hurting the accuracy.

3.2 The error compensation scheme

To split one large barrel shifter and replace it with two small bar-
rel shifters, the PAALM actually introduces some area overheads,
which will be demonstrated in Sec. 4. To mitigate this issue, also re-
duce the power density of the SUM_Frac unit which is mentioned
in Sec. 3.1, we replace the exact summation of x + y with simple
inexact summation. Here, we select the simplest truncation adder
(TA) to save resource. We use k to represent the number of bits
truncated in the x + y summation. As implementing the inexact
summation will introduce extra accuracy loss, we need to do error
compensation.

However, since the PAALM does the bit shifting operation sepa-
rately instead of doing just once, we cannot do error compensation,
like adding error coefficients directly to the fraction summation
part x + y, which was usually tried in previous log-based multipli-
cation works like [9, 10, 12]. To do special error compensation for
the PAALM design, we replace one LOD unit with a SO-LOD (set
one LOD) unit, which is shown in Fig. 4. Different from the con-
ventional LOD unit, SO-LOD not only generates the exponential
part and the fractional part, but also set all the bits of A — 2ka part
to bit ‘1. As A — 2Ka is equivalent to x - 2ka e rewrite this part as

x’ - 2ka and show the structure of PAALM design with error com-
pensation in Fig.5. Note that we just replace one of the two LOD
units in PAALM with the SO-LOD unit to avoid “over compensa-
tion”.

Exponential part

Eln Gt Leading \k
:ne One Detect

Example: Input: 1010 0110 (8-bit)
k=7, Input—2k=1010 0110 - 1000 0000 = 010 0110

Figure 4: The set one LOD (SO-LOD) unit structure

X (Fraction part)

setall bits to be ‘1’

4 EXPERIMENTAL RESULTS AND
DISCUSSIONS

In this section, we evaluate the performance of the proposed power
density aware approximate logarithmic multiplication approach,
named PAALM under 8-bit and 16-bit precision. We also compare
the proposed approach against the fixed-point exact multiplier

131

Shuyuan Yu and Sheldon X.-D. Tan

SUM_FRAC

|:I (Inexact)
B sumowr

xl,zka

kﬂ
ky
Barrel Shifter Ie

!

c:Jl\LM

Barrel Shifter

Figure 5: The power density aware ALM design with error
compensation

baseline and the conventional ALM design under the same preci-
sion.

4.1 Experimental setup

To evaluate the performance of the proposed PAALM design,
we demonstrate the hardware and error metrics of PAALM
in Table 2 and Table 3. We also compare PAALM with other
state of art improved ALMs. These improved ALMs include:
LeAp [9], REALM [10], ILM-EA [11], ILM-AA [11], HEALM-
TA [12], HEALM-SOA [12].

All the multipliers listed in Table 2 and Table 3 are implemented
in Verilog HDL and synthesized with Synopsys Design Compiler
using EDK 32nm standard cell library [7] as single-cycle designs.
As different working frequency will lead to different power con-
sumption of the circuit, and further introduce difficulties to com-
pare the power density. We constrain the throughput (delay) of all
the listed multipliers in each table to be the same. Note that differ-
ent multiplication approaches require different computing latency
(Lat) to give outputs, the working frequency (Freq) actually will
be different for these listed approaches (Freq = Lat/Delay). Here,
we select the delay/throughput of the fixed-point exact multiplier,
which is the baseline, as standard. The critical paths for the 8-bit
and 16-bit fixed-point multiplier are 2.07ns (5 cycles) and 4.51ns
(7 cycles), respectively; so the delay are 10.35ns (2.07ns X 5) and
31.57ns (4.51ns X 7), respectively. Under these time constraints, we
obtain the hardware performance for all the multipliers, includ-
ing area and power density (Power/Area) aspects. As Power and
Energy for all the multipliers can be easily calculated from the
products of Area X PowerDensity and Power X Delay, respectively.
To save space, these two metrics will no be listed in the table.

To evaluate the error metrics, we develop behavioral simulation
models for all the multipliers listed in Table 2 and Table 3 in MAT-
LAB and measure the accuracy using 1 million (for 8-bit precision)
and 10 million (for 16-bit precision) random inputs uniformly dis-
tributed over the set {0, 1, ..., (22 —1)} and the set {0, 1, ..., (210 —1)},
respectively. The errors are reported with respect to the exact re-
sults. The error metrics used to report the error behavior include:
mean error (mean of absolute relative error, also referred as MRED
in some previous works [11]); and peak error (maximum value of
the absolute relative error). All the error metrics are in percentages.

4.2 Performance evaluation and comparison

We show the hardware performance of the proposed PAALM de-
sign under 8-bit precision in Table 2. Note that as PAALM will in-
troduce area overheads when compared to the conventional ALM
design. We introduce inexact summation and error compensation
scheme to save resource and improve error metrics as mentioned

PAALM: Power Density Aware Approximate Logarithmic Multiplier Design

Table 2: Design metrics for the 8-bit logarithmic multipliers
with the same throughput

‘Approach k | Lat. | Area (um?) | Power Density (uW/pm?) | Err. Comp. | Mean Error /% | Peak Error /%
FxP (baseline) |/ | 5 1754.10 0.0512 / / /
ALM [8] o] 3 82063 0.0693 w/o 376 1111
ol 2 1391.44 0.0507 w/o 3.76 1111
3] 2 132689 0.0508 w/o 377 1177
3] 2 1339.85 0.0505 wit 2.96 11.77
4] 2 1274.79 0.0466 wio 3.83 12.59
P PAALM, 4] 2 1287.24 0.0455 wit 3.27 1259
50 2 121252 0.0453 w/o 4.09 14.05
5] 2 1245.56 0.0503 wit 3.52 14.05
6| 2 1199.81 0.0453 w/o 513 1643
6] 2 1201.08 0.0467 wit 142 1643
Other state of art improved logarithmic multipliers
LeAp [9] o[3 1040.21 0.0831 wit 1.38 471
0] 3 1235.14 0.0821 wit 0.90 3.96
REALM [10] 4] 3 709.57 0.0752 wit 6.58 2307
ILM-EA [11] 0 3 1221.92 0.0718 w/o 2.84 1111
ILM-AA [11] 4] 3 887.47 0.0708 w/o 547 2347
HEALM-TA [12] |4 3 595.46 0.0702 wit 3.66 1377
HEALM-SOA[12] [4 | 3 66433 0.0729 wit 3.12 1217

Table 3: Design metrics for the 16-bit logarithmic multipli-
ers with the same throughput

Approach k | Lat. | Area (um?) | Power Density (uW/um?) | Err. Comp. | Mean Error /% | Peak Error /%
FxP (baseline) | / | 7 875348 0.0369 7 / 7
ALM [8] o 3 1714.20 0.0407 w/o 3.85 1111
o 2 3296.25 0.0360 w/o 385 1111
9 2 2939.18 0.0369 w/o 385 1134
9| 2 297831 0.0365 wit 3.43 1134
0] 2 2836.50 0.0363 w/o 385 11.56
0] 2 2957.98 0.0361 wit 3.15 1156
] 2 2733.06 0.0368 w/o 388 12.00
PAALM] 2 2898.26 0.0368 wit 2.92 12.00
iz 2 2678.93 0.0365 wlo 3.96 1282
2] 2 2798.89 0.0361 wit 3.43 12.82
13 2 2642.34 0.0363 w/o 4.29 14.28
B3] 2 2743.48 0.0357 wit 3.70 14.28
] 2 2553.89 0.0348 wio 548 16.67
] 2 2619.46 0.0359 wit 162 16.67
Other state of art improved logarithmic multipliers
LeAp [9] o 3 1990.71 0.0455 wit 0.98 476
0o 3 238336 0.0488 wit 0.75 370
REALM [10] 9 3 1572.90 0.0423 wit 1.06 527
HEALMTA[12] | 9 | 2 1511.39 0.0410 wit 1.64 5.83
HEALM-SOA [12] | 9 2 1577.47 0.0412 w/t 1.38 5.15

in Sec. 3.2. The parameter k indicates the number of bits truncated
in the x + y summation. In the Err. Comp. column: the “w/t”, “w/0”
mark represent “with” or “without” error compensation, respec-
tively. By introducing inexact summation, from Table 2, we ob-
serve that when compared to the exact multiplier baseline, PAALM
can improve the power density and area up to 11.5% and 31.6%, re-
spectively. Also when compared to the conventional ALM design,
PAALM will improve the power density up to 34.6% with area over-
heads and outperforms all the listed state of art works in power
density.

For the 16-bit multipliers, the hardware performance and error
metrics are demonstrated in Table 3. PAALM reduces 5.7% power
density and 70.8% area when compared to the exact multiplier base-
line; also reduces up to 14.5% of power density when compared
with the ALM design with area overheads. Similar to the 8-bit case,
16-bit PAALM also outperforms all the listed state of art works in
respect of the power density.

The error metrics of 8-bit and 16-bit PAALM design are also
demonstrated in Table 2 and Table 3. As proved in Sec. 3.1, without
error compensation, PAALM shows completely the same error be-
havior as the conventional ALM. However, different from previous
works, the error compensation scheme (mentioned in Sec. 3.2) for
PAALM will do little improvement to the mean and peak error, but
focus on improving the error bias. We show the curves for the ab-
solute value of the error bias of PAALM with error compensation
under 8-bit and 16-bit precision with different k values in Fig. 6.
By observing Fig. 6, we can find an obvious convex property of
the curves, not monotonically decreasing when we decrease the k
value. The reason is that when k is small, the “set one” error com-
pensation scheme will introduce larger and larger positive error to

ASPDAC ’23, January 16-19, 2023, Tokyo, Japan

balance the negative error of ALM when we increase k. However,
when the error bias reaches the minimum value: -0.17 (when k = 4
with 8-bit precision) or 0.08 (when k = 12 with 16-bit precision),
and we further increase k, the absolute value of the positive error
will become larger than which of the negative error, thus leads to
a “rebound” of the error bias curve.

40
L —o- 8-bit
--16-bit
3.0
&
g
=
5 20
2
5
2
<10
0.0

0 3 @ 3 4 8 6 % B © 10 1 120193 23

Figure 6: The absolute error bias values of 8-bit and 16-bit
error compensated PAALM for different k values

4.3 Evaluation on CNN application

To further evaluate the performance of PAALM in applications
which are multiplication-intensive, we first implement the multi-
plier into a convolutional neural network (CNN) and compare with
the fixed-point multiplier baseline and the conventional ALM. The
application is developed on a Python platform.

We use CIFAR10 [24] dataset to test the CNN application with
approximate multipliers. The network consists of two convolution
(CONV) layers and three fully connected (FC) layers. The network
is trained with 3000 steps, using double-precision floating point
numbers with a batch size of 128 in one step. To test the per-
formance of the approximate multipliers, we replace the floating-
point multipliers with PAALM, ALM and fixed-point multipliers
in 8-bit precision to do the inference. Since the CONV layer is
computation-intensive and FC layer is memory-extensive, we sim-
ply replace the multipliers in CONV layers. Fig. 7 shows the clas-
sification accuracy comparison of PAALM, conventional ALM and
fixed-point multiplier on 1024 images. The accuracy is in percent-
age.

72.3
w/oerror w/terror
compensation i
22 P compensation
°
< 721
z
£
2
72
2
71.9
718 > s =

Figure 7: CIFAR10 dataset inference accuracy based on dif-
ferent approximate multipliers

From Fig. 7, we can observe that all the listed multipliers can
achieve similar inference accuracy. Without error compensation,

ASPDAC ’23, January 16-19, 2023, Tokyo, Japan

Table 4: PSNR (dB) for images after DCT-iDCT using loga-
rithmic multipliers

Approach | k | Err. Comp. | Lena | Boat | Barbara | House | Pepper | Avg.
FxP (baseline) | / / 40.3 39.7 39.6 40.1 38.5 39.6
ALM 0 w/o 19.1 18.7 19.3 18.4 18.7 18.8

0 w/o 19.1 18.7 19.3 18.4 18.7 18.8

3 w/o 19.0 18.6 19.3 18.4 18.6 18.8

3 w/t 21.7 21.2 21.9 213 215 215

4 w/o 19.1 18.7 19.3 18.4 18.7 18.8

(piﬁs(ir:id) 4 wi/t 27.5 | 26.5 27.0 28.8 27.0 27.4
5 w/o 18.4 18.1 18.6 17.1 17.9 18.0

5 w/t 24.8 23.5 24.5 27.4 24.7 25.0

6 w/o 16.3 16.1 16.4 14.9 15.9 15.9

6 w/t 20.5 20.0 20.2 17.4 19.2 19.5

PAALM will lose some accuracy when inexact summation is in-
troduced; while when k < 5, PAALM can perform as well as the
conventional ALM. If error compensation is considered, we notice
that when k = 4, PAALM can outperform the conventional ALM,
and achieves the same inference accuracy as the fixed-point multi-
plier baseline. This is due to the extremely low error bias (almost
zero) as demonstrated in Fig. 6.

4.4 Evaluation on image processing application

Now, we show how the proposed PAALM design compare to the
conventional ALM and fixed-point multiplier baseline in a multi-
media application. Discrete cosine transformation (DCT) is a com-
monly used lossy image compression method. The quality of the
compressed images is usually evaluated using metrics such as
PSNR (peak signal noise ratio) and higher PSNR value represents
better image quality. We implement the proposed PAALM design
with 8-bit precision in the DCT-iDCT (inverse DCT) workloads,
and compare with the conventional ALM and fixed-point multi-
plier on five example images. As the error bias behavior of error
compensated PAALM with different k value shows a convex trend,
and performs the best when k equals to 4. We just list the experi-
mental results from k = 3 ~ 6.

We show results of image compression in Table 4. The results
show that without error compensation, the image quality will
worsen when the value of k increases. While if error compensation
is introduced, when k equals to 4, thanks to a more balanced error
behavior, we can achieve the best image quality of 27.4dB in av-
erage, improving 8.6dB when compared to the conventional ALM
design. Note that the error compensation for PAALM introduces
almost no area and power overheads, thus we obtain an approx-
imate multiplier which achieves a balance of resource efficiency
and low power density.

5 CONCLUSION

In this work, we have proposed a novel power density aware ap-
proximate logarithmic multiplier (PAALM) design to mitigate the
high power density issue occurred in the existing ALM designs. By
re-designing the high computing switch activities of existing ALM
designs based on equivalent mathematical formula, the power den-
sity could be reduced with no accuracy loss but with some area
overheads. Experimental results showed that the proposed PAALM
design could improve the power density and the area at the same
time when compared with the fixed-point multiplier baseline. The
PAALM design could also achieve extremely low error bias with
error compensation. Furthermore, the PAALM showed good per-
formance when implemented in CNN and image processing appli-
cations.

133

Shuyuan Yu and Sheldon X.-D. Tan

REFERENCES

[1]

[7]

8

=

[o

=
2

[13]

(14

[15]

=
&

(17

(18]

[19]

(21]

[22

(23]

[24

E. L. Denton, W. Zaremba, J. Bruna, Y. LeCun, and R. Fergus, “Exploiting linear
structure within convolutional networks for efficient evaluation,” in Advances in
Neural Information Processing Systems, pp. 1269-1277, 2014.

L. Goodfellow, Y. Bengio, and A. Courville, Deep learning. MIT press, 2016.

G. Zervakis, H. Amrouch, and J. Henkel, “Design automation of approximate
circuits with runtime reconfigurable accuracy,” IEEE Access, vol. 8, pp. 53522~
53538, 2020.

J. Han and M. Orshansky, “Approximate computing: An emerging paradigm for
energy-efficient design,” in 2013 18th IEEE European Test Symposium (ETS), pp. 1-
6, IEEE, 2013.

S. Venkataramani, S. T. Chakradhar, K. Roy, and A. Raghunathan, “Approx-
imate computing and the quest for computing efficiency,” in 2015 52nd
ACM/EDAC/IEEE Design Automation Conference (DAC), pp. 1-6, IEEE, 2015.

G. Zervakis, H. Saadat, H. Amrouch, A. Gerstlauer, S. Parameswaran, and
J. Henkel, “Approximate computing for ml: State-of-the-art, challenges and vi-
sions,” in Proceedings of the 26th Asia and South Pacific Design Automation Confer-
ence, ASPDAC "21, (New York, NY, USA), p. 189IC196, Association for Computing
Machinery, 2021.

R. Goldman, K. Bartleson, T. Wood, K. Kranen, V. Melikyan, and E. Babayan,
“32/28nm educational design kit: Capabilities, deployment and future,” in 2013
IEEE Asia Pacific Conference on Postgraduate Research in Microelectronics and
Electronics (PrimeAsia), pp. 284-288, IEEE, 2013.

J. N. Mitchell, “Computer multiplication and division using binary logarithms,”
IRE Transactions on Electronic Computers, no. 4, pp. 512-517, 1962.

Z. Ebrahimi, S. Ullah, and A. Kumar, “Leap: Leading-one detection-based soft-
core approximate multipliers with tunable accuracy,” in 2020 25th Asia and South
Pacific Design Automation Conference (ASP-DAC), pp. 605-610, IEEE, 2020.

H. Saadat, H. Javaid, A. Ignjatovic, and S. Parameswaran, “Realm: reduced-error
approximate log-based integer multiplier,” in 2020 Design, Automation & Test in
Europe Conference & Exhibition (DATE), pp. 1366—-1371, IEEE, 2020.

M. S. Ansari, B. F. Cockburn, and J. Han, “A hardware-efficient logarithmic mul-
tiplier with improved accuracy,” in 2019 Design, Automation & Test in Europe
Conference & Exhibition (DATE), pp. 928-931, IEEE, 2019.

S. Yu, M. Tasnim, and S. X.-D. Tan, “HEALM: Hardware-efficient approximate
logarithmic multiplier with reduced error,” in 2022 27th Asia and South Pacific
Design Automation Conference (ASP-DAC), pp. 37-42, IEEE, 2022.

P. Kulkarni, P. Gupta, and M. Ercegovac, “Trading accuracy for power with an
underdesigned multiplier architecture,” in 2011 24th Internatioal Conference on
VLSI Design, pp. 346351, IEEE, 2011.

K. Bhardwaj, P. S. Mane, and J. Henkel, “Power-and area-efficient approximate
wallace tree multiplier for error-resilient systems,” in Fifteenth International Sym-
posium on Quality Electronic Design, pp. 263-269, IEEE, 2014.

B. S. Prabakaran, S. Rehman, M. A. Hanif, S. Ullah, G. Mazaheri, A. Kumar, and
M. Shafique, “Demas: An efficient design methodology for building approximate
adders for fpga-based systems,” in 2018 Design, Automation & Test in Europe Con-
ference & Exhibition (DATE), pp. 917-920, IEEE, 2018.

S. Ullah, S. Rehman, B. S. Prabakaran, F. Kriebel, M. A. Hanif, M. Shafique, and
A. Kumar, “Area-optimized low-latency approximate multipliers for fpga-based
hardware accelerators,” in Proceedings of the 55th Annual Design Automation Con-
ference, pp. 1-6, 2018.

S.Ullah, S. S. Murthy, and A. Kumar, “Smapproxlib: library of fpga-based approx-
imate multipliers,” in 2018 55th ACM/ESDA/IEEE Design Automation Conference
(DAC), pp. 1-6, IEEE, 2018.

S. Hashemi, R. L. Bahar, and S. Reda, “Drum: A dynamic range unbiased multi-
plier for approximate applications,” in 2015 IEEE/ACM International Conference
on Computer-Aided Design (ICCAD), pp. 418-425, IEEE, 2015.

S. Narayanamoorthy, H. A. Moghaddam, Z. Liu, T. Park, and N. S. Kim, “Energy-
efficient approximate multiplication for digital signal processing and classifica-
tion applications,” IEEE transactions on very large scale integration (VLSI) systems,
vol. 23, no. 6, pp. 1180-1184, 2014.

H. Saadat, H. Bokhari, and S. Parameswaran, “Minimally biased multipliers
for approximate integer and floating-point multiplication,” IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, vol. 37, no. 11,
Pp. 2623-2635, 2018.

S. Yu, Y. Liu, and S. X.-D. Tan, “COSAIM: Counter-based stochastic-behaving
approximate integer multiplier for deep neural networks,” in Proc. Design Au-
tomation Conf. (DAC), pp. 1-6, Dec. 2021.

W. Liu, J. Xu, D. Wang, C. Wang, P. Montuschi, and F. Lombardi, “Design and
evaluation of approximate logarithmic multipliers for low power error-tolerant
applications,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 65,
no. 9, pp. 2856-2868, 2018.

G. Zervakis, I. Anagnostopoulos, S. Alsalamin, O. Spantidi, I. Roman-Ballesteros,
J. Henkel, and H. Amrouch, “Thermal-aware design for approximate dnn accel-
erators,” IEEE Transactions on Computers, pp. 1-1, 2022.

A. Krizhevsky, G. Hinton, et al,, “Learning multiple layers of features from tiny
images,” 2009.

