L)

Check for
updates

Learning Based Spatial Power Characterization and Full-Chip
Power Estimation for Commercial TPUs

Jincong Lu!, Jinwei Zhang', Wentian Jin!, Sachin Sachdeva!, Sheldon X.-D. Tan'
!Department of Electrical and Computer Engineering
University of California, Riverside
Riverside, California, United States
jincong.lu@email.ucr.edu,jzhan319@ucr.edu,wjin018 @ucr.edu,ssach008 @ucr.edu,stan@ece.ucr.edu

ABSTRACT

In this paper, we propose a novel approach for the real-time estima-
tion of chip-level spatial power maps for commercial Google Coral
M.2 TPU chips based on a machine-learning technique for the first
time. The new method can enable the development of more robust
runtime power and thermal control schemes to take advantage of
spatial power information such as hot spots that are otherwise not
available. Different from the existing commercial multi-core proces-
sors in which real-time performance-related utilization information
is available, the TPU from Google does not have such information.
To mitigate this problem, we propose to use features that are related
to the workloads of running different deep neural networks (DNN)
such as the hyperparameters of DNN and TPU resource informa-
tion generated by the TPU compiler. The new approach involves
the offline acquisition of accurate spatial and temporal temperature
maps captured from an external infrared thermal imaging camera
under nominal working conditions of a chip. To build the dynamic
power density map model, we apply generative adversarial net-
works (GAN) based on the workload-related features. Our study
shows that the estimated total powers match the manufacturer’s
total power measurements extremely well. Experimental results
further show that the predictions of power maps are quite accu-
rate, with the RMSE of only 4.98mW/ mm?, or 2.6% of the full-scale
error. The speed of deploying the proposed approach on an Intel
Core i7-10710U is as fast as 6.9ms, which is suitable for real-time
estimation.
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1 INTRODUCTION

With the continuing trend of rapid integration and technology
scaling, today’s high-performance processors have become more
thermally constrained than ever before. An increase in temperature
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has been shown to exponentially degrade the reliability of the
semiconductor chips [1], and hence has become one of the leading
concerns in the industry today. To address this trend, runtime
power and thermal control schemes are being implemented in most,
if not all new generations of processors and are crucial in any
modern processor [2, 3]. However, these control schemes require
accurate real-time thermal information, and essentially the power
information, ideally the spatial power density map of the entire chip
area, in order to be effective [4, 5]. On-chip temperature sensors
alone cannot provide the full-chip temperature information since
the number of sensors that are typically available is very limited
due to their high area and power overheads [6]. Furthermore, power
characterization for commercial tensor processors (TPUs) is rarely
studied and reported.

To obtain precise thermal and power control, we need to look at
two important aspects of this problem: the accurate estimation of
the on-chip power and the accurate calculation of temperature from
the thermal model and the on-chip power inputs. Traditional power
estimation methods focus on the functional unit (component-wise
or core-wise) power estimation based on the measured temperature
and total power [7-10]. But those methods require an understand-
ing of the architectural details and functional units of each chip and
many approaches are still ad-hoc, involving manual turning. At
the same time, post-silicon (no prior layout information is needed)
spatial power map estimation from thermal information has been
widely studied. This problem was also coined as the inverse ther-
mal map to power map problem as the temperature can be more
easily measured either directly or indirectly. Many approaches
have been investigated in the past [11-16]. Most of the proposed
methods tried to frame the problem as a nonlinear optimization
problem (deterministically or statistically) once the thermal models
are known. However, those methods do not work for general off-
the-shelf commercial processors where only core-level power can
be obtained [16]. Many of those methods only work for specialized
silicon such as FPGAs [12-14, 16]. Recently, new spatial power map
estimation methods based on the measured spatial temperature,
2D spatial Laplace transformation, and processor’s performance
monitors were proposed for general commercial multicore proces-
sors [17]. Specifically, the machine-learning based power source hot
spot estimation [6] and full chip thermal map estimation [18] have
been proposed. Those methods estimate the hot spot or the full chip
thermal maps based on the real-time on-chip performance infor-
mation such as Intel’s Performance Counting Monitor (IPCM) [19].
But these methods can hardly be applied to TPUs (like the Google
Coral M.2 TPU used in this paper) as there is no real-time utiliza-
tion information such as IPCM from the TPU chips. As a result, the
existing full-chip power map estimation methods cannot be applied
to commercial TPUs.

In this work, we try to address the aforementioned issues and
propose a novel machine-learning based approach to estimate the
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full-chip power density distribution of commercial TPU chips. The
key contributions are as follows:

o We developed a generalized full-chip power map estimation
method that is based on the hyperparameters of the TPU’s
workloads (i.e., neural networks inferencing on the TPU),
without the knowledge of TPU’s performance monitors or
supply power.

o We treat the full-chip power density map estimation problem
as an image generation problem, where the input features
are given number of hyperparameters and TPU resource
information (generated by the TPU compiler). We propose
to use the Conditional Generative Adversarial Networks
(CGAN) to generate such power map images from the given
features.

e Experimental results show that the predictions of power
maps are quite accurate, with the RMSE of only 4.98mW /mm?,
or 2.6% of the full-scale error. The speed of deploying the
proposed approach on an Intel Core i7-8650U is as fast as
6.9ms, which is suitable for real-time estimation.

This article is organized as follows. Section 2 shows the power
modeling framework and IR thermography setup used in this study.
Section 3 models the spatial power from the workload features that
are available in real time. Section 4 describes the architecture of the
proposed CGAN-based neural net model for power map estimation.
Section 5 presents the experimental results and comparisons and
Section 6 concludes this article.

2 POWER MAP ESTIMATION FRAMEWORK

A brief overview of the proposed approach will be presented in
this section, along with a description of the thermal setup used for
collecting the necessary data from a commercial off-the-shelf TPU
chip while it is under the workload.

2.1 Estimation flow overview

The proposed approach involves three engineering phases. First,
we obtain full-chip power map measurements across the TPU with
both high accuracy and resolution by implementing a state-of-
the-art thermal-to-power technique. Second, we propose to take
advantages of the hyperparameters of the NN workloads that infer-
ences on the TPU as the model’s input features, and the outputs
are power maps across the TPU immediately. Last but not least,
the new model employs a special Generative Adversarial Network
architecture called Conditional GAN or CGAN to train the online
power characterization model.

The CGAN-based power model requires two chunks of data for
the training procedure, one is the off-line measured power maps
when TPU is under load, which are used as targets when training
the model. The other is a set of hyperparameters extracted from
the NN workloads to be executed on TPU. It should be noted that
those hyperparameters can be extracted either online or prior to
the workload execution. Once the model is trained, we can use it for
online TPU power inferencing. Fig. 1 illustrates the framework and
data acquisition flow of the proposed approach. The first and the
second phase, including every step shown in Fig. 1 will be described
in detail in the next section. The third phase will be explained in
Section 4.
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Figure 2: (a) Thermal Imaging system setup (b) TPU chip
under-test, Coral M.2 TPU module. TPU module is shown in
the blue box.

2.2 Thermal IR imaging system

The proposed machine-learning based approach relies on proper
data acquisition of the chip-level spatial power information from
the TPU under workloads for the model’s training and testing pro-
cedure. Directly measuring the power maps of TPU chips is not
achievable. To address this issue, we indirectly measure the full-
chip power map through a thermal-to-power approach proposed
in [20]. This thermal-to-power approach has both high precision
and resolution. It calculates the full-chip spatial power density maps
from the spatial temperature maps measured when the processor
is under a thermal steady state. The approach basically takes ad-
vantage of the high correlation between heat source distribution
and the 2D Laplacian transformation of the temperature of the chip
surface.

The thermal-to-power approach requires accurate measurements
of chip surface temperature maps. Hence, we have a built-in ad-
vanced infrared (IR) thermal imaging system, as shown in Fig. 2. In
order to expose the TPU chip to the IR camera, we have removed
the stainless steel cover on top of the TPU. It should be noted that
in our test case, the TPU module requires no external cooling Kits,
such as heat sinks, to ensure proper thermal conditions for the TPU
to work. However, for some other TPU modules that come with
heat sinks, after removing the heat sinks, the TPU module can be
cooled with a widely used back-side liquid cooling technique [21]
to ensure proper thermal operating conditions. The back-side liquid
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cooling approach features a thermoelectric (Peltier) device mounted
on the PCB directly beneath the processor module allowing it to be
cooled from underneath. This leaves the front side of the processor
fully exposed to the IR camera without any interference layer in
between.

Product information and specs of our IR thermal imaging system
are described as follows. The IR camera used in this setup is a
FLIR A325sc which supports a maximum imaging resolution of
320%240 pixels (px) with 16-bits of precision per px, and a maximum
capturing frequency of 60Hz. The IR sensor is factory calibrated
for accuracy across the temperature range of —20°C to 120°C, and
resolves the IR spectral range of 7.5um to 13um. A high-resolution
microscope lens is used to achieve the spatial resolution of 25um

per px.

3 DATA PREPARATION AND FEATURE
SELECTION

In this work, we model the spatial power from the workload fea-
tures that are available in real time. Like any other regression model,
the machine-learning model architecture we deploy is a supervised
learning model, for which the proper data set is ultimately impor-
tant. As previously mentioned, the data required for training the
learning-based model involves measuring the offline power maps
across the TPU full-chip and collecting the hyperparameters of NN
workloads running on the TPU module. It should be marked that
each individual workload has a unique hyperparameters-powermap
data pair, which serves as a unique training data point. Google
Coral Edge TPU has 3 different frequencies, 500MHz, 250MHz, and
125MHz. Our workload mainly runs in 500MHz. In this section, the
detailed process of acquiring the necessary data is presented.

3.1 Offline power map acquisition

There have been various post-silicon approaches transforming
thermal distribution to power distribution [11-15, 20, 22]. Among
those [6, 20] suits for our study case best, giving it calculates spa-
tially continuous and relatively precise power maps from thermal
maps with high efficiency, which is suitable for real-time inferences.

Considering the steady state 2D spatial thermal distribution
of the processor as T(x,y), where (x,y) is the coordinates of the
thermal map. Power map can be approximated as [20]:

k[-V*T(x,y)], -V*T(x,y) >0

0, —VZT(x, y) <0 @

pxy) ~ {
with
k =«kAz (2)
where p(x, y) stands for the spatial power map (density, Watt/area),
k and Az for thermal conductivity and chip thickness, which are
constants. And V2T (x, y) is the 2D Laplacian of temperature. The
coefficient k is expressed by:

P
- /SP V2T (x,y)dxdy

where Sp indicates the area where the negative-Laplacian term
of temperature [-V2T(x,y)] is positive. The negative-Laplacian
term reflects the pattern of spatial power distribution. In this work,
we call k the thermal-to-power coefficient. It can be calculated by
the thermal measurement of idle status T;4;,(x,y) combined with
standby total power consumption P;;;, provided by the official
specification. Once we have T; 45, (x, y) and P;4,, we can substitute

k=xAz~ 3)
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Figure 3: (a) Thermal image and (b) power map of TPU for
MobileNet-V2-224-1.0 network.

them for equation (3) to obtain k. After k is obtained, power maps
under any workloads can be acquired straightforwardly through
equation (1) from thermal measurements.

As we see, one special requirement of this method is that it
needs the processor to be under thermal steady-states when cal-
culating its power maps from thermal measurements. Hence, to
satisfy this requirement, we have the TPU module run each work-
load for sufficiently long (e.g. 2 minutes per workload) to stabilize
its temperature. Multiple thermal images are captured after the TPU
reaches a steady state corresponding to that workload. Once the
steady-state thermal images are obtained, they will be processed to
calculate an averaged power map for that workload as the estima-
tion target of that data point. It should be noted that the proposed
learning-based power model does not require any waiting during
deployment since the proposed model needs no thermal measure-
ments for power estimations. As an example, Fig. 3(a) shows an
averaged steady-state thermal image for MobileNet-V2-224-1.0 net-
work, which is a widely used image-classification model available
on TensorFlow [23]. Fig. 3(b) further illustrates the resulting TPU
power map. In order to automate the measuring procedure, we
arranged a sequence of workloads for the TPU module, and in the
meantime, the IR camera is synchronized with the TPU for each
workload’s running period.

The size of the TPU module is about 5.06 X 4.94mm. And it
only occupies partial camera’s 320 X 240px field of view. We crop
the chip area out of the photo and then calculate the power map.
Thermal noise is a big problem when we need to calculate the Lapla-
cian. Although the noise is small relative to the temperature, its
Laplacian can be locally larger than the Laplacian of temperature,
overshadowing useful information. An effective method to extract
information is the discrete cosine transform (DCT) [24]. The ma-
jority of the information is contained in low-frequency coefficients
of DCT. Therefore, we transform the heatmaps into the spatial fre-
quency domain by 2D DCT, keeping the low-frequency coefficients,
and then transform them back. This reduces some resolution but
allows us to analyze the spatial distribution of power.

3.2 Feature selection considering TPU
workloads

For neural networks such as TPU’s workloads, power distribution is
an immediate reflection of hardware resource utility invoked by the
neural networks executing on the TPU. TPU hardware resources
that the network demands are tightly related to the network model
architecture, size, operations, etc. Hence, we are able to charac-
terize TPU’s power from the workloads” hyperparameters such as
operation type, count and workload size, etc.
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Table 1: Selected Workload Features (Coral M.2 TPU, Google

Edge)

Overall

image_shape

pooling_mode

onchip_mem_rem

num_op_tpu

width_multiplier model_size offchip_mem_used | num_op_cpu
depth_multiplier | onchip_mem_used total_op_cnt infer_time
Operational Statistics

add full_connect pad reduce_max
avg_pool_2d 12_norm quant relu
concat max_pool_2d reshape strsle

conv2d mean sft_max hard_swish

depconv2d mul sub

In this work, we divide the network’s hyperparameters as fea-
tures into two groups, called the overall features and operational
statistics. Neural network models that are coded to run on CPU need
to be compiled to a TPU readable version. In our study, EdgeTPU
Compiler [25] is employed to transform a CPU version network
model to a TPU version. On the one hand, the overall features such
as model size and memory usage are recorded through the process.
On the other hand, we collect statistical information for the type
and count of operations indicated by the network in the meantime.
We mark that for different TPUs different tools may be involved,
however, those network information should always be reachable.
Today’s world has a vast number of neural networks and hundreds
of kinds of operations. To find the most popular operational features
of network models, we explored a number of the most popular and
widely used open-source deep neural network models from Tensor-
Flow. The selection of models will be explained in more detail in
Section 5. Table 1 shows the 31 features selected for the network
workloads.

4 CGAN-BASED ESTIMATION MODEL
4.1 Review of CGAN

As a machine-learning problem, our purpose is to generate the
on-chip power image from the workload features. Generative Ad-
versarial Network (GAN) can be a competitive choice [26].

GAN has two contrary networks, generator G and discriminator
D. G is trying to map an input vector to an output image, while D
attempts to tell if an image comes from the real data or G. They
will be trained simultaneously and keep trying to optimize them-
selves to fool/expose others. At last, when the generated image
is close enough to the ground truth, the generator should have
become a mastered projector, and the discriminator can never tell
the difference between a fake and a real image.

Original GAN is used to produce new images within the range
of existing image distribution and the generator is fed by noise.
As a variant, Conditional GAN (CGAN) also give some labels to
the generator, so it can map features to corresponding images [27].
Based on CGAN, we no longer use random noise because we expect
to give a unique power distribution with one certain feature vector.

Sometimes it can be tough to train the GAN model because of
the gradient vanishing. We can introduce Wasserstein Distance
instead of the conventional JS-Divergence to measure the similarity
between the distributions of real and fake images [28]. This modifi-
cation can stabilize the training process and reduce the frequency
of collapses.
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4.2 Proposed CGAN-based power estimation
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Figure 4: Architecture of CGAN model

The framework of our hyper-parameter to power map model
is shown in Fig. 4. The input condition x is a 1x31 vector, which
will be given to both the generator G and the discriminator D. The
generator learns how to map it to the correct power map image y,
and produce G(x). Then D accepts y or G(x) alternatively with the
condition x, score a degree D(x,y) or D(x,G(x)) how confident
the given power map y or G(x) is true. Our goal is to maximize
D(x, y) and minimize D(x, G(x)) over all (x, y) pairs in the training
set. We can write down the objective function to minimize as:

lossp =E(x,y)[D(x,G(x)) — D(x,y)]+

AgpBz (IIVxD(.2)l; ~ 1)°]
Here By, ) is the expectations over the (x,y) pairs in the training
set. Also, we introduce an extra gradient penalty term, so that the
discriminator has the 1-Lipschitz continuity [28]. x is the interpola-
tion between G(x) and y, and Ay is the weight.
For the generator, we want to maximize D(x, G(x)) and minimize
the L2 loss ||y — G(x)||%. The generator has nothing to do with the
real power map y, so there is no D(x, y) term. The loss function is:

105G = E(x,4)[-D(x, G(x)) + ALz - |ly = G(x)[°] ®)

The architecture and parameters of the generator and discrimi-
nator networks are shown in Table 2.

First, the generator transforms the input condition vector into
an image by a fully connected layer and a reshape operation. After
that, there are 6 transposed convolutional layers to finally produce
a 256 X 256px power map. The discriminator is a conventional
convolutional classifier that has a similar but reversed structure
with the generator, and goes from a 256 x 256px image to only one
real number as the output.

)

5 EXPERIMENTAL RESULTS AND
DISCUSSIONS

In this section, we demonstrate the experimental results of the
proposed approach in two folds. On the one hand, we convince that
the power maps obtained through the thermal-to-power way are
sufficiently reliable. On the other hand, we show that the online
inferencing of power maps by the proposed CGAN-based model is
computationally efficient and technically sound.
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Table 2: Architecture and Parameters

Generator
Layer Kernel #Output Activation

FC - 8192 Leaky ReLU

Reshape - 4x4x512 -
Conv_trans 5x5 8x8x512 Leaky ReLU
Conv_trans 5x5 16x16x512 | Leaky ReLU
Conv_trans 5x5 32x32x256 | Leaky ReLU
Conv_trans 5x5 64x64x128 | Leaky ReLU
Conv_trans 5x5 128x128x64 | Leaky ReLU

Conv_trans 5x5 256x256x1 -

Discriminator
Layer Kernel #Output Activation

Conv 5x5 128x128x64 | Leaky ReLU
Conv 5x5 64x64x128 | Leaky ReLU
Conv 5%5 32x32x256 | Leaky ReLU
Conv 5X5 16x16x512 | Leaky ReLU
Conv 5X5 8x8x512 Leaky ReLU
Conv 5%5 4x4x512 Leaky ReLU
Conv 5x5 2x2x512 Leaky ReLU
FC - 512 Leaky ReLU
(+Cond) FC - 256 Leaky ReLU

FC - 1 -

5.1 Validation of the total power consumption

As discussed in Section 3.1, directly measuring the spatial power
distribution of the TPU is not realistic, we have implemented one
of the state-of-the-art methods that compute spatial power maps
from the thermal measurements. The question is that whether those
inter-mediately obtained power maps are sufficiently reliable in our
test case. Fortunately, Coral has open-sourced a few but limited data
for total power measurements. Hence, we are able to compare our
estimated total power with the manufacturer’s provided total power
measurements, to see how well they match. The more they match,
the more convincing they are. To our knowledge, this indirect way
is the best way for validating the power maps in our case.

The estimated total power is simply an integration from the
estimated spatial power maps. Coral M.2 TPU module’s official
specification has released 7 power measurement data points, per-
taining to two different workloads under three different operation
frequencies, respectively, plus an idle power measurement. Power
under idle status is officially indicated by a range between 0.375
and 0.400W. In our work, we take the central value 0.3875W as its
golden idle power. Then combine that with the thermal maps cap-
tured under idle status to calculate the thermal-to-power coefficient
k. Then we use it to calculate the power maps for the same two
workloads at those three different frequencies, and further their
total power.

By combining two models and three operating frequencies, Ta-
ble 3 lists the six golden total power data points, which are provided
from the official specification, with our estimated total power con-
sumption. As we can see, all of the estimated total power data points
mirror the real power measurements remarkably well. Given that
one decimal point precision is available in official power data, the
root-mean-squared-error of total power estimation is only 0.0147W,
and the percentage error is within 2%.

5.2 Power map estimation accuracy

The dataset consists of a number of well-known neural network
models for image recognition, such as EfficientNet, InceptionResNet,
MobileNet, etc. By varying their architectural hyperparameters,
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Table 3: Total Power Comparison

Workloads Total Power | 500 MHz | 250 MHz | 125 MHz
) Real 1.4 W 0.9 W 0.6 W
MobileNet V2
Est. 1.42W 0.92 W 0.60 W
: Real 0.7 W 0.6 W 05W
Inception V3
Est. 0.69 W 0.58 W 0.50 W

many of their variants were generated and added to the dataset.
The final dataset has 7066 data points (networks) in total, where
6359 points are randomly selected for training and 707 points for
testing. All networks are executed with the TPU at the nominal
frequency 500MHz.

After the training process, the generator of the CGAN model is
able to estimate the power map with the input hyperparameters.
To characterize its accuracy, we calculate the root-mean-squared
error (RMSE) over each pixel between the generated power map
and the measured power map.

In our dataset, the power density ranges from 0 to 189.34mW /mm?.
The averaged RMSE of the power map estimation on the test set
is 4.98mW /mm? with a standard deviation of only 2.53mW /mm?.
The results are quite accurate considering the data range. Fig. 5
compares the estimated and the measured power maps with some
examples from the test set. It should be noted that the right-most
column shows the worst estimation on the test set, which is about
10% percentage error on the total power. It can be seen that the
CGAN-based model has learned the contour of real power remark-
ably well.

The power map can also be used to calculate the total power
by simply integrating the power density over the power map. The
mean error of the total power is 0.0968W. Considering that the
average total power is 1.375W on the test set, these estimations of
total power are sufficiently accurate as well.

5.3 Computational efficiency

Training procedure normally takes a few to a dozen hours to com-
plete. Once the generator is well-trained, it can be deployed for
real-time power prediction. The average inference time we mea-
sured in our experiments is 6.9ms, with Intel Core i7-10710U as
the host board and the Coral Edge TPU. This low latency ensures
the effectiveness of real-time power estimation. On the one hand,
most of the models on the TPU have a single inference time of well
over 6.9ms (they take dozens or even hundreds of milliseconds).
On the other hand, TPUs do not switch deployed neural networks
frequently, and those applications themselves that switch the neural
networks generally take more time. As a result, the proposed model
is sufficiently rapid to keep up with the TPU.

6 CONCLUSION

In this article, we have proposed a machine-learning-based ap-
proach for real-time estimation of full-chip power maps for com-
mercial Google Coral M.2 TPU chips for the first time. The new
method focuses on the DNN inference applications on the TPU and
apply workload-related features such as the hyperparameters of
the DNN networks and TPU resource information generated by
TPU compilers as the input of the deep neural network models.
To build the dynamic power density map model, we applied gen-
erative adversarial networks (GAN) to model the power density
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Figure 5: Measured power maps (row #1), estimated power maps (row #2), and error maps (row #3). The numbers in the first row
indicate the Power Density RMSE | Average Power Density (unit: mW/mm?). And numbers in the second row indicate the Total
Power Percentage Error | Total Power (unit: W).

map based on the selected workload-dependent features. Our study
showed that the estimated total powers match the manufacturer’s
total power measurements extremely well. Experimental results
further showed that the predictions of power maps are quite accu-
rate, with the RMSE of only 4.98mW/ mm?, or 2.6% of the full-scale
error. The speed of deploying the proposed approach on an Intel
Core 17-10710U is as fast as 6.9ms, which is suitable for real-time
estimation.
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