
Least Squares on GPUs
in Multiple Double Precision

Jan Verschelde*

University of Illinois at Chicago
Department of Mathematics, Statistics, and Computer Science

851 S. Morgan St. (m/c 249), Chicago, IL 60607-7045

Email: janv@uic.edu, URL: http://www.math.uic.edu/∼jan.

Abstract—This paper describes the application of the code
generated by the CAMPARY software to accelerate the solving of
linear systems in the least squares sense on Graphics Processing
Units (GPUs), in double double, quad double, and octo double
precision. The goal is to use accelerators to offset the cost
overhead caused by multiple double precision arithmetic. For the
blocked Householder QR and the back substitution, of interest
are those dimensions at which teraflop performance is attained.
The other interesting question is the cost overhead factor that
appears each time the precision is doubled.

Experimental results are reported on five different NVIDIA
GPUs, with a particular focus on the P100 and the V100, both
capable of teraflop performance. Thanks to the high Compute
to Global Memory Access (CGMA) ratios of multiple double
arithmetic, teraflop performance is already attained running the
double double QR on 1,024-by-1,024 matrices, both on the P100
and the V100. For the back substitution, the dimension of the
upper triangular system must be as high as 17,920 to reach
one teraflops on the V100, in quad double precision, and then
taking only the times spent by the kernels into account. The
lower performance of the back substitution in small dimensions
does not prevent teraflop performance of the solver at dimension
1,024, as the time for the QR decomposition dominates.

In doubling the precision from double double to quad dou-
ble and from quad double to octo double, the observed cost
overhead factors are lower than the factors predicted by the
arithmetical operation counts. This observation correlates with
the increased performance for increased precision, which can
again be explained by the high CGMA ratios.
Keywords and phrases. acceleration, back substitution,

blocked Householder QR, Graphics Processing Unit (GPU),

least squares, multiple double, multiprecision.

I. INTRODUCTION

Many applications in scientific computing may benefit from

extended precision, e.g., [8] applies double doubles. However,

the cost overhead caused by multiprecision arithmetic is a valid

concern. This paper experimentally demonstrates that this cost

overhead can be mitigated by the acceleration on a Graphics

Processing Unit (GPU) capable of teraflop performance.

The least squares solution x of a linear system Ax = b
minimizes the sum of the squares of b−Ax, or ‖b−Ax‖22. The

decomposition of the matrix A into an orthogonal matrix Q
and an upper triangular matrix R, A = QR reduces Ax = b
to Rx = QTb, solved by back substitution. The Householder

QR factorization is numerically stable [6, Theorem 3.5].

*Supported by the National Science Foundation under grant DMS 1854513.

TABLE I
OPERATIONAL COUNTS FOR DOUBLE DOUBLE, QUAD DOUBLE, AND OCTO

DOUBLE ARITHMETIC. FOR EXAMPLE: ONE DIVISION (DIV) OF TWO QUAD

DOUBLES REQUIRES 266 ADDITIONS (+), 510 SUBTRACTIONS (−), 112
MULTIPLICATIONS (∗), AND 5 DIVISIONS (/) IN DOUBLE PRECISION

ARITHMETIC, WHICH SUMS (Σ) UP TO 893 DOUBLE PRECISION

FLOATING-POINT OPERATIONS AND AVERAGES TO 439.3.

double double: 37.7x
+ − ∗ / Σ

add 8 12 20
mul 5 9 9 23
div 33 18 16 3 70

quad double: 439.3x
+ − ∗ / Σ

add 35 54 89
mul 99 164 73 336
div 266 510 112 5 893

octo double: 2379.0x
+ − ∗ / Σ

add 95 174 269
mul 529 954 259 1742
div 1599 3070 448 9 5126

The blocked Householder QR factorization [4] is rich in

matrix-matrix products [7], well suited for GPU acceleration,

as demonstrated in [3] and [34], with further developments

in [1], [2], [15], [25], and [26]. The development of the code

for this paper benefited greatly from the exposition in [13]. To

develop a GPU accelerated back substitution algorithm, ideas

were taken from [21], based on formulas proposed in [9].

The suitability of double double and triple precision Basic

Linear Algebra Subroutines (BLAS) was shown in [17], [18].

A. Multiple Double Arithmetic

A multiple double number is an unevaluated sum of multiple

doubles. The arithmetical operations on multiple double num-

bers are defined by algorithms in double precision arithmetic.

To extend the double precision m times, compute with m
doubles. Table I tallies the cost overhead to multiply the pre-

cision with 2, 4, and 8, corresponding respectively to double

double, quad double, and octo double precision, to about 32,

64, and 128 decimal places of precision. The averages (37.7,

439.3, 2379.0) predict the arithmetical cost overhead factors.

Parallel algorithms are applied to offset the cost overhead

caused by multiple precision arithmetic. A specific question

asks for the smallest dimension of the linear system for

828

2022 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW)

978-1-6654-9747-3/22/$31.00 ©2022 IEEE
DOI 10.1109/IPDPSW55747.2022.00139

which teraflop performance is obtained. Experiencing teraflop

performance in quad double arithmetic on a GPU is similar

to about 2.2 gigaflops performance in double arithmetic on a

single threaded execution, as the average cost of quad double

operations is 439. The 439 is obtained as the average of the

Σ column under the quad double header in Table I.

Double double and quad double arithmetic are provided

by QDlib [10], with its GPU version in [16]. The software

CAMPARY [12] defines code generators for general multiple

float and double arithmetical operations. The handbook [19,

Chapter 14] describes multiple double arithmetic.

The Compute to Global Memory Access (CGMA) ratio [14]

is the number of floating-point calculations performed by a

kernel for each access to the global memory. Looking back

at the counts in Table I, the division of two quad double

numbers requires 893 double precision operations on a total

of 8 doubles, naturally leading to a very high CGMA ratio.

An alternative to the CGMA ratio is the roofline model [35].

This model is applied in Figure 5 to the tiled accelerated back

substitution in quad double precision on the V100.

The specific motivation for this paper is the development

of a scalable implementation of a new path tracker [23] to

solve systems of polynomial equations in several variables.

One component of the path tracker is the solution of a

lower triangular block Toeplitz system [5], where the diagonal

matrix is the evaluated Jacobian matrix at the current point

on the path. An error analysis in [24] motivates the need for

multiprecision arithmetic if a guaranteed accuracy is desired.

Because of the propagation of roundoff errors, the leading

coefficients in the power series must be computed most

accurately, at a precision higher than the hardware double

precision. Recently, PHCpack [29] was extended [30] with

the code for the multiprecision arithmetic generated by the

CAMPARY software, and applied to accelerate the polynomial

evaluation and differentiation at power series [31].

The power series computation provides input to Padé ap-

proximations, applied in the holomorphic embedding load

flow method [27], [28], to solve steady state equations of

power systems, using complex analysis. As indicated in [22],

multiprecision arithmetic adds significant value.

B. On Alternatives to CAMPARY

Compared to genuine multiprecision arithmetic, multiple

double numbers have a limited number of precision levels,

one cannot specify the precise number of bits in the precision.

Another limitation is that the size of the exponents are the

same as the exponent size of any double.

The authors of [11] compare CAMPARY and CUMP [20] to

their GPU implementation of multiprecision arithmetic based

on the multiple residue number system. The double double

arithmetic of CAMPARY performs best for the problem of

matrix-vector multiplication. Concerning quad double preci-

sion, the authors of [11] write “the CAMPARY library is faster

than our implementation; however as the precision increases

the execution time of CAMPARY also increases significantly.”

C. Contributions and Organization

The main result is the teraflop performance obtained for the

multiple double precision least squares solver, obtained already

for relatively modest dimensions. The code generated by the

CAMPARY software is applied to solving linear systems in the

least squares sense in double double, quad double, and octo

double precision, for real and complex matrices. The resulting

programs are self contained, available in a github repository,

under the GPL-v3.0 License, thus promoting reproducibility.

The next two sections on accelerating the back substitution

and the blocked Householder QR are meant to provide self-

contained introductions to the parallel implementations and to

explain the legends in the tables in the computational exper-

iments section. Multiple double arithmetic allows for a finer

granularity level as more blocks of threads can collaborate

in one matrix-vector product. The computational experiments

start in the fourth section.

II. ACCELERATED BACK SUBSTITUTION

Data parallel algorithms execute the same instructions on

different data. On graphics processing units, this execution is

performed by blocks of threads, scheduled in multiples of 32.

These blocks reside on a number of streaming multiprocessors,

for a total of several thousands of cores. In order to fully

occupy the device, the parallelism must be sufficiently fine

involving tens of thousands of threads.

In accelerating the back substitution to solve an upper

triangular linear system, the coefficient matrix is divided up

into tiles. The ideas will be illustrated on a 3-by-3 tiled system:

Ux = b, U =

⎡
⎣

U1 A1,2 A1,3

U2 A2,3

U3

⎤
⎦ , (1)

x =

⎡
⎣

x1

x2

x3

⎤
⎦ , b =

⎡
⎣

b1

b2

b3

⎤
⎦ , (2)

where U1, U2, U3 are upper triangular matrices, with nonzero

elements on their diagonal, and A1,2, A1,3, and A2,3 are

general matrices. All matrices have the same dimensions. The

length of b1, b2, and b3 equals the number of rows in each

matrix.

In the traditional version of the back substitution algorithm,

the last instruction to compute xi is the division by the element

on the diagonal. To introduce more parallelism, the tiles on

the diagonal are first inverted. The parallel back substitution

happens in two stages:

1) Invert all tiles on the diagonal:

V =

⎡
⎣

U−1
1 A1,2 A1,3

U−1
2 A2,3

U−1
3

⎤
⎦ . (3)

The inverse of an upper triangular matrix is again upper

triangular. Each column of the inverse is the solution of

an upper triangular system. The columns of the inverse

can be computed independently from each other.

829

2) The back substitution alternates between multiplying

with the inverses and updating the right hand side

vectors. The statements on the same line below are

executed in parallel.

x3 := U−1
3 b3, (4)

b2 := b2 −A2,3x3, b1 := b1 −A1,3x3, (5)

x2 := U−1
2 b2, (6)

b1 := b1 −A1,2x2, (7)

x1 := U−1
1 b1. (8)

In each step, at least one matrix-vector multiplication is

executed. Each back substitution step requires less work. With

multiple double arithmetic, the back substitution steps are

executed at a finer level: multiple blocks of threads cooperate

to compute one matrix-vector product.

One could be concerned that the matrix inverse would lead

to numerical instabilities. However, the tiles are of a much

smaller size than the entire matrix, typically by a factor of at

least the number of multiprocessors. Smaller upper triangular

matrices have smaller condition numbers than larger ones.

The example suffices to introduce the main ideas in the

algorithm. To describe the parallelism better, the accelerated

algorithm is presented next in a more formal manner.

Algorithm 1: TILED ACCELERATED BACK SUBSTITUTION.
Input : N is the number of tiles,

n is the size of each tile,

U is an upper triangular Nn-by-Nn matrix,

b is a vector of size Nn.

Output : x is a vector of size Nn: Ux = b.

1) Let U1, U2, . . ., UN be the n-by-n tiles on the diagonal

of U . Replace each Ui with its inverse U−1
i , with N

blocks of n threads. Labeling threads starting the count

at 1, the k-th thread in each block solves the upper

triangular system Uv = ek, where k is the k-th n-

dimensional unit vector.

2) For i = N,N − 1, . . . , 1 do

a) Compute xi := U−1
i bi by one block of n threads.

b) Simultaneously update bj := bj −Aj,ixi, for j ∈
{1, 2, . . . , i− 1}, with i− 1 blocks of n threads.

Algorithm 1 executes 1 +N(N + 1)/2 kernel launches.

If N streaming multiprocessors are available and n is a good

fit to keep the device fully occupied, then the computation of

all inverses in the first stage can happen in time proportional

to n2, which is the cost of solving one upper triangular linear

system of dimension n.

Each step in the second stage of Algorithm 1 involves a

matrix-vector multiplication executed in time proportional to

n, done by one block of threads. There are N steps and if

sufficiently many multiprocessors are available, then the total

cost of the second stage is proportional to Nn. If n ≈ N , the

cost of the first stage can be viewed as proportional to Nn,

so a good parallel execution of Algorithm 1 can be done in

time proportional to Nn, which corresponds to the dimension

of the upper triangular linear system Ux = b.

The formulation of Algorithm 1 does not specify the staging

of the data. In particular, the matrix U of multiple doubles is

not stored as U = [ui,j], where ui,j is a multiple double,

but as an array U = [U1, U2, . . . , Um] of m matrices, where

U1 holds the most significant doubles and Um holds the least

significant doubles. Similarly, the b in the input of Algorithm 1

is an array of m arrays [b1, b2, . . . , bm], ordered in the order

of significance. This facilitates the staggered application of

multiprecision arithmetic and benefits the efficient memory

coalescing: adjacent threads in one block of threads read

adjacent data in memory, avoiding bank conflicts. This repre-

sentation naturally extends to complex arrays, where the real

and imaginary parts are kept separately.
The two questions which will be answered experimentally

are the following. What is the smallest dimension for which

teraflop performance is obtained? Obviously, the lower thresh-

old for N should be the number of streaming multiprocessors,

and n should be a multiple of 32. The second question asks

for the cost overhead factor in the three times the precision is

doubled, from double to double double, from double double

to quad double, and from quad double to octo double.

III. BLOCKED ACCELERATED HOUSEHOLDER QR

The blocked Householder QR is introduced on a 3m-by-3n
tiled matrix, m ≥ n:

A =

⎡
⎣

A1,2

A1,1 A2,2 A2,3

A3,3

⎤
⎦ ,

A1,1 is 3m-by-n,
A1,2 is m-by-2n,
A2,2 is 2m-by-n,

(9)

A2,3 and A3,3 are m-by-n. The Householder transformations

are accumulated in an orthogonal 3m-by-3m matrix Q. The

upper triangular reduction R of A is written in the matrix A.

The m-by-m identity matrix is represented by I in the

sequence of the evolution of A,Q below:⎡
⎣

A1,2

A1,1 A2,2 A2,3

A3,3

⎤
⎦ ,

⎡
⎣

I
I

I

⎤
⎦ (10)

→
⎡
⎣

R1,2

R1,1 A2,2 A2,3

A3,3

⎤
⎦ ,

⎡
⎣ Q1 I

I

⎤
⎦ (11)

→
⎡
⎣

R1,2

R1,1 R2,2 R2,3

A3,3

⎤
⎦ ,

⎡
⎣ Q1 Q2

I

⎤
⎦ (12)

→
⎡
⎣

R1,2

R1,1 R2,2 R2,3

R3,3

⎤
⎦ ,

⎡
⎣ Q1 Q2 Q3

⎤
⎦ . (13)

One tile Rk,k is computed column by column. For each col-

umn, a Householder vector v and corresponding β = 2/vTv
value is computed. The Householder reflector P = I − βvvT

with the v determined so Px = ‖x‖2e1 (with a sign

computation as in [7, Algorithm 5.1.1]), where x contains

the numbers in the current column starting at the diagonal,

and where e1 = (1, 0, . . . , 0)T . The Householder matrices are

aggregated in an orthogonal matrix of the form

PWY = I +WY T , (14)

830

where Y stores the Householder vectors and has a trapezoidal

shape. The matrix W is computed from the Householder

vectors and their corresponding β values. With this WY

representation of the Householder matrices, the updates to Q
and R can then written as

Q = Q+Q �W � Y T , (15)

R = R+ Y �WT � C, (16)

where C is the current matrix to be updated. The above

formulas are rich in matrix-matrix products which are very

suitable for GPU acceleration. The columns z of the matrix

W follow the formulas

z = −β(v +WY Tv), (17)

which require matrix-vector products. On complex data, the

transpose T is replaced by the Hermitian transpose H .

As stated in [13], the computation of W is expected to be

the bottleneck.

The structured description of the accelerated version of

the blocked Householder QR algorithm below serves as an

explanation of the legend of the tables in the next section.

Algorithm 2: BLOCKED ACCELERATED HOUSEHOLDER QR.
Input : N is the number of tiles,

n is the size of each tile,

M is the number of rows, M ≥ Nn,

A is an M -by-Nn matrix.

Output : Q is an orthogonal M -by-M matrix,

R is an M -by-Nn matrix, A = QR.
For k = 1, 2, . . . , N do

1) For � = 1, 2, . . . n do

a) compute v and β,

b) update Rk,k.

If the size of the current column is less than n, then

only one block of threads computes. Otherwise, several

blocks compute v, collaborate to update of Rk,k, and

there is one separate kernel to compute βRT �v, which

also involves a sum reduction with multiple blocks.

2) Given n pairs (v, β) computed in the previous stage, the

matrices W , Y , and their product Y �WT are computed.

3) Update Q in two stages:

a) QWY := Q �WY T , where WY T = (YWT)T ,

b) Q := Q+QWY .

Separating the matrix-matrix multiplication from the

addition clearly shows the cost differences. In multiple

precision arithmetic, the cost of the addition is however

not negligible.

4) If k < N , then update R, in two stages:

a) YWTC := YWT � C,

b) R := R+ YWTC.

As the code is geared towards multiple double arithmetic,

the implementation of the matrix-matrix products differs from

the double precision implementations recommended in the

literature. When defining kernels for the matrix-matrix multi-

plication in double precision, tiles of matrices are loaded into

shared memory to obtain better CGMA ratios, as explained

in [14, Chapter 5]. Thanks to the high CGMA ratios of

multiple double precision, the entries of the matrix can be

loaded directly into the registers of the kernel that computes

one number of the product.

The staging of the data applies the same representation of

multiple double vectors and matrices via multiple arrays of

doubles, as explained at the end of Algorithm 1.

The computational cost of Algorithm 2 is proportional to

M3, if M = Nn, for notational simplicity. If the device

is fully occupied, then the hope is to reduce the cost by a

factor of M and to observe a time proportional to M2. In

the experiments, as the dimension then doubles, the hope is

to observe the total time multiplied by a factor closer to four

than to eight.

As before, with the back substitution, the first question is to

ask for which dimensions teraflop performance is attained. The

second is to experimentally compute the actual cost overhead

factors of doubling the precision.

IV. COMPUTATIONAL EXPERIMENTS

In designing the experiments, the first concern is to find

sufficiently large dimensions at which teraflop performance

is attained, mainly in quad double precision. In the runs at

different precisions, timings on the double precision version

are listed, but are not used in the comparisons as the imple-

mentation was made for multiple double precision arithmetic.

Another reason for not comparing the timings of runs in double

precision is that the dimensions are not yet large enough to

fully occupy the device.

In a first comparison of runs at different precisions, the tile

size and the corresponding number of threads per block are

fixed to the same number for all precisions. However, in double

double precision, the number of threads per block should be

higher than in octo double precision.

In all tables, all time units are milliseconds. The units of

flops (floating-point operations per second) are gigaflops.

A. Notes on the Implementation

The code for the multiple double arithmetical operations

generated by the CAMPARY software [12] was customized for

each precision in the following manner. Instead of representing

a quad double number by an array of four doubles, all

arithmetical operations work on four separate variables, one

for each double. By this customization an array of quad

doubles is stored as four separate arrays of doubles and a

matrix of quad doubles is represented by four matrices of

doubles. If one would be only interested in double double

and quad double, then the double2 and double4 types of

the CUDA SDK will work just as well (as we did in [32]), but

then performance drops are to be expected with complex quad

doubles already and then also for the more general multiple

double arithmetic.

QDlib [10] provides definitions for the square roots and

various other useful functions for double double and quad

double arithmetic. Those definitions are extended to octo

831

TABLE II
THE COLUMNS LIST THE CUDA CAPABILITY, THE NUMBER OF

MULTIPROCESSORS, THE NUMBER OF CORES PER MULTIPROCESSOR, THE

TOTAL NUMBER OF CORES, AND THE GPU CLOCK RATE. FOR EVERY

GPU, ITS HOST CPU IS LISTED WITH ITS CLOCK RATE.

NVIDIA GPU CUDA #MP #cores/MP #cores GHz
Tesla C2050 2.0 14 32 448 1.15

Kepler K20C 3.5 13 192 2496 0.71
Pascal P100 6.0 56 64 3584 1.33
Volta V100 7.0 80 64 5120 1.91

GeForce RTX 2080 7.5 46 64 2944 1.10

NVIDIA GPU host CPU GHz
Tesla C2050 Intel X5690 3.47

Kepler K20C Intel E5-2670 2.60
Pascal P100 Intel E5-2699 2.20
Volta V100 Intel W2123 3.60

GeForce RTX 2080 Intel i9-9880H 2.30

double precision, also with the customization of representing

an octo double number as eight different variables.

The __forceinline__ directive was added to all the

device functions that define the multiple double arithmetic.

All .cu files are compiled with nvcc -O3.

For every kernel in the implementation of Algorithms 1

and 2, a small function accumulates the number of arithmetical

operations. Then the total number of floating-point operations

is computed at the end of the run, using the numbers in Table I

as multipliers. In the application of the roofline model, the

number of bytes in each computation is obtained from the

dimensions of the problem, multiplied by the size of each

multiple double number.

Random numbers were generated for the input matrices.

In the standalone tests on the back substitution solver, the

random upper triangular matrices were computed on the host

as the output of an LU factorization, as the condition numbers

of random triangular matrices almost surely grow exponen-

tially [33]. All tests were run on well conditioned problems,

so the residuals ‖b − Ax‖22 of the computed solution x
to the linear system Ax = b is of the expected accuracy,

corresponding to the level of the multiple double precision.

The same code runs on five different NVIDIA GPUs. The

C2050, K20C, P100, V100 are housed in CentOS workstations

and the gcc compiler is used to compile the code on the

host. The RTX 2080 resides in a Windows laptop, and the

community edition of Microsoft Visual Studio is used.

The code is free and open source, released under the

GPU GPL license, in the PHCpack source available on

https://github.com/janverschelde/PHCpack.

B. Equipment

Using the same setup as in [31], Table II lists the main

characteristics of five GPUs used to develop the code.

While running the same software on different GPUs is

convenient, the obvious disadvantage is that the more advanced

features of the newer devices are not utilized. Important in the

investigation of the scalability is the attention to teraflop per-

formance and the ratios of the theoretical peak performances

of the V100 over the P100.

TABLE III
BLOCKED HOUSEHOLDER QR IN DOUBLE DOUBLE PRECISION, ON A

1,024-BY-1,024 MATRIX, WITH 8 TILES OF SIZE 128.

stage in Linux on the host Windows
Algorithm 2 C2050 K20C P100 V100 RTX 2080

β, v 35.5 43.8 21.4 16.2 26.2

βRT � v 418.8 897.8 89.6 76.6 389.7
update R 107.0 107.6 23.0 15.2 47.5

compute W 1357.8 1631.8 349.2 222.4 1298.4

Y �WT 100.0 50.3 9.7 6.6 153.5

Q �WY T 790.9 423.9 77.2 52.1 1228.8
YWT � C 6068.5 2345.2 141.2 61.6 822.6
Q+QWY 2.4 1.6 0.4 0.4 0.7

R+ YWTC 7.4 4.2 0.7 0.5 0.8
all kernels 8888.3 5506.1 712.4 451.5 3968.2
wall clock 9083.0 5682.0 826.0 568.0 4700.0

kernel flops 115.8 187.0 1445.3 2280.4 259.5
wall flops 113.4 181.2 1247.2 1812.7 219.1

In each run, the elapsed times of the kernel launches are

measured by cudaEventElapsedTime and are expressed

in milliseconds. The wall clock times include the sum of times

spent by the kernels, with the added memory transfers. The

kernel flops in the tables below are the totals of the counts

of the double precision operations over the sum of the times

spent by the kernels. The total wall clock time is used in the

wall flops.

C. Blocked Householder QR on Five Different GPUs

The theoretical double peak performance of the P100 and

the V100 are 4.7 TFLOPS and 7.9 TFLOPS respectively.

Therefore, if the code scales well, one may expect the V100

to be about 1.68 times faster than the P100.

For the total kernel time in Table III, compare the scaled

observed time on the V100: 451.5 × 1.68 ≈ 758.5, with the

observed 712.4 of the P100. Comparing wall clock times is

harder, because of different clock speeds of the host processor

and the workstation that hosts the P100 has 256GB of RAM,

whereas the RAM of the host of the V100 holds 32GB.

For historical perspective, the oldest C2050 was purchased

in 2011 and the V100 in 2019. The ratio of the sum of

the times spent on all kernels of the C2050 over V100:

8888.3/451.5 ≈ 19.6, indicating about a double speedup every

two years. The tile size of 128 (and the number of threads per

block) is most likely not the best choice for the K20C, which

has 192 cores per streaming multiprocessor. We used the K20C

in [32]. In the single experiment comparison in Table III, the

GeForce RTX 2080 Max-Q outperforms the K20C.

D. Blocked Householder QR in Four Different Precisions

Based on the operational counts in Table I, one could predict

the overhead factors from the averages in the Σ column, which

are 37.7 for double double, 439.3 for quad double, and 2379.0

for octo double. Based on those averages, going from double

double to quad double would cause all times to be multiplied

by 11.7. Similarly, the predicted overhead factor is 5.4 when

going from quad double to octo double.

832

Fig. 1. 2-logarithms of the times spent by all kernels of QR on the RTX 2080,
the P100, and the V100 in double double (2d), quad double (4d), and octo
double (8d) precision, with data in Table IV.

Table IV illustrates the cost overhead of doubling the

precision three times and is summarized by Figure 1. From

double double to quad double, taking ratios of kernels times

5187.0/712.7 ≈ 7.3 on the P100, and the similar ratio on

the V100 is 3167.0/446.8 ≈ 7.1. Both ratios are consistent

and less than the predicted factor of 11.7. On the RTX 2080,

the ratio is 35826.7/3999.5 ≈ 9.0 < 11.7. From quad

double to octo double, the kernels time ratio on the P100 is

20547.5/5187.0 ≈ 4.0 and 11754.6/3167.0 ≈ 3.7. In both

cases, the observed factors are less than the predicted 5.4, as is

also the case on the RTX 2080: 160802.8/35826.7 ≈ 4.5. That

the observed cost overhead factors are more favorable than the

predicted ones correlates with the increased performance for

increased precisions.

E. Real and Complex Double Double QR

Working with complex arithmetic requires about four times

as many arithmetical operations than on real data. Table V lists

times on 512-by-512 matrices, of real and complex double

double numbers. Keeping the dimension 512 constant, fewer

tiles but larger tiles are selected with each execution.

Looking at the flops in Table V, teraflop performance is

reached for both real and complex matrices, for 128 as the tile

size. At 4× 128, the device is best occupied. But if interested

in total wall clock times, then 16× 32 is best.

In a dimension as small as 512, the computation of W
dominates. Would this still be the case if the dimensions

increase?

F. Quad Double QR for Increasing Dimensions

How do the execution times of the QR decomposition

evolve for increasing dimensions? Table VI lists the times for

dimensions 512, 1024, 1536, and 2048. Figure 2 shows the

evolution of all kernel times.

At dimension 512, the computation of W dominates in all

precisions. The accumulated times of all kernels devoted to

computing W drops to the thirdmost largest time in dimen-

sion 2048. The two most time consuming kernels are those

that do the matrix-matrix multiplications.

Doubling the dimension, from 512 to 1024, the ratios of

the wall clock times in double double, quad double, and

octo double precision are respectively 321.0/155.0 ≈ 2.1,

TABLE IV
BLOCKED HOUSEHOLDER QR IN DOUBLE (1D), DOUBLE DOUBLE (2D),

QUAD DOUBLE (4D), AND OCTO DOUBLE (8D) PRECISION, ON A

1,024-BY-1,024 MATRIX, WITH 8 TILES OF SIZE 128, ON THE RTX 2080,
THE P100, AND THE V100.

stage in times on the RTX 2080
Algorithm 2 1d 2d 4d 8d

β, v 13.0 26.3 108.1 451.8

βRT � v 46.3 338.0 1740.9 4994.3
update R 11.3 47.7 376.9 1669.6

compute W 111.7 1309.4 12346.8 56484.2

Y �WT 5.1 154.7 1476.3 6746.7

Q �WY T 40.2 1238.7 11815.5 54008.9
YWT � C 110.1 833.3 7957.3 36430.5
Q+QWY 0.3 0.7 3.1 9.4

R+ YWTC 0.5 0.8 1.9 7.3
all kernels 338.6 3999.5 35826.7 160802.8
wall clock 562.0 4708.0 37087.0 163219.0

kernel flops 141.5 257.4 284.1 299.7
wall flops 85.2 218.7 274.5 295.3

stage in times on the P100
Algorithm 2 1d 2d 4d 8d

β, v 12.6 21.6 58.3 412.4

βRT � v 44.4 89.7 760.7 2998.5
update R 14.2 23.0 96.3 359.9

compute W 98.3 349.3 2752.3 9857.5

Y �WT 3.0 9.7 96.8 484.7

Q �WY T 25.0 77.0 747.0 3745.4
YWT � C 67.1 141.3 672.8 2681.7
Q+QWY 0.2 0.4 0.9 2.0

R+ YWTC 0.4 0.7 1.8 5.5
all kernels 256.2 712.7 5187.0 20547.5
wall clock 311.0 827.0 5381.0 20870.0

kernel flops 180.6 1444.6 1962.4 2345.4
wall flops 154.0 1244.8 1891.5 2309.2

stage in times on the V100
Algorithm 2 1d 2d 4d 8d

β, v 7.3 15.8 37.4 180.2

βRT � v 28.8 77.2 470.4 1304.0
update R 9.4 15.1 58.9 197.9

compute W 79.5 223.2 1551.0 5700.9

Y �WT 0.8 6.5 66.3 281.3

Q �WY T 8.2 56.7 516.8 2249.2
YWT � C 24.0 51.4 464.4 1834.5
Q+QWY 0.2 0.4 0.8 1.6

R+ YWTC 0.2 0.4 1.0 4.8
all kernels 158.4 446.8 3167.0 11754.6
wall clock 206.0 560.0 3356.0 12059.0

kernel flops 302.5 2304.3 3214.0 4099.9
wall flops 232.8 1837.3 3033.0 3996.3

3366.0/777.0 ≈ 4.3, and 12735.0/2681.0 ≈ 4.8, correspond-

ing to significant increases in performance.

While teraflop performance is maintained, notice in Ta-

ble VI the drop in performance at dimension 2048 in double

double arithmetic. This drop is most likely due to the kernels

for the matrix-matrix multiplication that do not take advantage

of the shared memory, as the double double arithmetic has

not yet a high enough CGMA ratio, compared to the higher

multiple double arithmetic. Although not as much as in double

double precision, there is also a drop in performance in the

other precisions for the two largest dimensions.

833

TABLE V
BLOCKED HOUSEHOLDER QR IN DOUBLE DOUBLE PRECISION, ON REAL

AND COMPLEX MATRICES OF DIMENSION 512, FOR INCREASING TILE

SIZES, 512 = 16× 32 = 8× 64 = 4× 128 = 2× 256, ON THE V100.

stage in on real matrices
Algorithm 2 16× 32 8× 64 4× 128 2× 256

β, v 6.5 10.7 7.8 7.7

βRT � v 12.4 22.0 20.2 20.0
update R 2.3 4.9 9.9 46.6

compute W 22.9 41.9 54.1 81.7

Y �WT 0.5 0.9 1.0 1.1

Q �WY T 4.3 7.0 3.9 2.8
YWT � C 4.0 6.3 3.6 1.5
Q+QWY 0.1 0.1 0.1 0.1

R+ YWTC 0.1 0.1 0.1 0.1
all kernels 53.2 94.0 100.5 161.6
wall clock 101.0 170.0 155.0 208.0

kernel flops 428.4 785.9 1089.8 777.3
wall flops 226.6 434.5 707.4 603.3

stage in on complex matrices
Algorithm 2 16× 32 8× 64 4× 128 2× 256

β, v 8.5 8.4 8.3 8.9

βRT � v 20.6 36.8 36.7 37.3
update R 3.0 6.8 20.5 204.7

compute W 38.9 126.6 144.3 248.9

Y �WT 0.9 3.3 3.7 4.5

Q �WY T 12.7 26.4 15.1 11.3
YWT � C 12.4 18.6 9.8 5.1
Q+QWY 0.2 0.2 0.1 0.1

R+ YWTC 0.3 0.2 0.1 0.1
all kernels 97.4 227.4 238.5 420.8
wall clock 158.0 306.0 311.0 479.0

kernel flops 628.9 1299.8 1836.7 1194.8
wall flops 387.2 967.3 1407.8 1050.5

Fig. 2. 2-logarithms of the times spent by all kernels of QR on the V100
in double double (2d), quad double (4d), and octo double (8d) precision, for
increasing dimensions, for the data in Table VI.

G. Back Substitution in Four Different Precisions

The high CGMA ratios makes that the overhead cost of

doubling the precisions is less than the predicted overhead

factors. Would this also be the case for the back substitution?

Consider the doubling of both the dimension and the pre-

cision. Table VII records the times of the back substitution

on upper triangular matrices of sizes 5120 = 64 × 80,

10240 = 128 × 80, and 20480 = 256 × 80, where the

first factors in the dimensions are the size of each tile and

the second factors are the number of tiles. In octo double

precision, shared memory capacities limit the tile size to 128,

so then 20480 = 128× 160. The high wall clock time in octo

TABLE VI
BLOCKED HOUSEHOLDER QR IN DOUBLE DOUBLE, QUAD DOUBLE, AND

OCTO DOUBLE PRECISION, ON REAL MATRICES OF INCREASING

DIMENSIONS, FOR INCREASING NUMBER OF TILES, 512 = 4× 128,
1024 = 8× 128, 1536 = 12× 128, 2048 = 16× 128, ON THE V100.

double double precision
stage in 512 1024 1536 2048

Algorithm 2 4× 128 8× 128 12× 128 16× 128

β, v 7.9 8.2 16.5 34.5

βRT � v 20.3 36.7 144.6 652.0
update R 9.9 20.5 28.9 58.8

compute W 53.9 144.2 556.2 2278.7

Y �WT 1.0 3.7 24.9 194.2

Q �WY T 4.0 15.1 201.3 3048.9
YWT � C 3.4 9.7 481.6 20534.4
Q+QWY 0.1 0.1 0.7 5.6

R+ YWTC 0.1 0.1 0.9 7.8
all kernels 100.5 238.2 1455.8 26815.0
wall clock 155.0 321.0 1627.0 27230.0

kernel flops 1089.7 1839.0 2475.1 1087.8
wall flops 706.5 1364.9 2214.4 1071.2

quad double precision
stage in 512 1024 1536 2048

Algorithm 2 4× 128 8× 128 12× 128 16× 128

β, v 21.0 37.4 54.1 71.6

βRT � v 115.5 470.9 1073.8 1939.9
update R 49.0 59.0 74.6 91.2

compute W 412.6 1553.5 3438.2 6104.3

Y �WT 9.6 66.3 214.2 517.6

Q �WY T 41.5 538.3 2511.0 7643.9
YWT � C 24.9 409.3 6057.1 17991.2
Q+QWY 0.1 0.8 2.5 5.7

R+ YWTC 0.1 0.9 5.6 7.0
all kernels 674.3 3136.5 13431.2 34372.5
wall clock 777.0 3366.0 13835.0 34960.0

kernel flops 1605.7 3245.3 2366.8 2097.0
wall flops 1392.6 3024.4 2297.7 2061.7

octo double precision
stage in 512 1024 1536 2048

Algorithm 2 4× 128 8× 128 12× 128 16× 128

β, v 94.7 188.3 282.8 385.1

βRT � v 309.5 1309.1 3009.7 5416.5
update R 167.5 199.0 245.1 300.4

compute W 1568.2 5828.6 12908.6 22944.3

Y �WT 48.3 308.8 957.5 2082.8

Q �WY T 187.2 2334.8 11259.2 34508.6
YWT � C 114.9 2104.0 15982.0 42044.8
Q+QWY 0.3 1.6 5.1 11.6

R+ YWTC 0.2 5.9 29.8 75.2
all kernels 2490.8 12280.1 44679.8 107769.2
wall clock 2681.0 12735.0 45419.0 108763.0

kernel flops 2058.2 3924.4 3368.5 3166.4
wall flops 1912.0 3784.2 3313.6 3137.5

double precision for 20480 is due to the limited 32 GB of

RAM at the host. Despite this anomaly, the times spent by

all kernels appear regular enough to reliably measure the cost

overhead factors from doubling the precisions.

In double precision, the times spent by the kernels are not

large enough to attain a good performance. At the largest di-

mension, half a teraflop is reached in double double precision;

in quad and octo double precision, 1.1 teraflop is observed.

Figure 3 shows the 2-logarithms of the times spent by all

kernels. As the cost of the back substitution is quadratic in

the dimension, the times are expected to quadruple when the

834

TABLE VII
BACK SUBSTITUTION IN FOUR DIFFERENT PRECISIONS ON PROBLEMS OF

INCREASING SIZE, ON THE V100.

double precision
stage in Algorithm 1 64× 80 128× 80 256× 80

invert diagonal tiles 0.4 5.2 30.8
multiply with inverses 0.8 1.5 4.3

back substitution 1.8 2.2 5.9
time spent by kernels 3.0 8.9 41.0

wall clock time 47.0 147.0 526.0

kernel time flops 14.5 28.5 39.9
wall clock flops 0.9 1.7 3.1

double double precision
stage in Algorithm 1 64× 80 128× 80 256× 80

invert diagonal tiles 1.2 9.3 46.3
multiply with inverses 1.7 3.3 8.9

back substitution 7.9 4.7 12.2
time spent by kernels 5.0 17.3 67.4

wall clock time 82.0 286.0 966.0

kernel time flops 190.6 318.7 525.1
wall clock flops 11.7 19.2 36.7

quad double precision
stage in Algorithm 1 64× 80 128× 80 256× 80

invert diagonal tiles 6.2 38.3 137.4
multiply with inverses 12.2 23.8 63.1

back substitution 13.3 26.7 112.2
time spent by kernels 31.7 88.8 312.7

wall clock time 187.0 619.0 2268.0

kernel time flops 299.4 614.2 1122.3
wall clock flops 50.8 88.1 154.8

octo double precision
stage in Algorithm 1 64× 80 128× 80 128× 160

invert diagonal tiles 43.8 110.6 133.3
multiply with inverses 47.7 97.5 196.0

back substitution 49.2 108.0 283.7
time spent by kernels 140.7 316.2 613.1

wall clock time 465.0 1400.0 84448.0

kernel time flops 321.3 820.1 1166.7
wall clock flops 97.1 185.2 8.5

TABLE VIII
BACK SUBSTITUTION IN QUAD DOUBLE PRECISION IN

DIMENSION 20480 = N × n, FOR THREE DIFFERENT COMBINATIONS OF

N AND n, ON THE V100.

stage in Algorithm 1 320× 64 160× 128 80× 256

invert diagonal tiles 13.5 35.8 132.3
multiply with inverses 49.0 47.5 64.3

back substitution 84.6 91.7 112.3
time spent by kernels 147.1 175.0 308.9

wall clock time 2620.0 2265.0 2071.0

kernel time flops 683.0 861.1 1136.1
wall clock flops 38.3 66.5 169.5

dimension is doubled. This quadrupling is observed in double

double precision, but then becomes closer to doubling in octo

double precision, thanks to the higher performance in higher

precision. Observe that the heights of the quad double bar

is closer to the octo double bar than to the double double

bar. This is consistent with the predicted cost overhead ratios,

which are higher when going from double double to quad

double compared to the ratios from quad double to octo

double.

Fig. 3. 2-logarithms of the times in Table VII spent by all kernels of back
substitution on the V100, for dimension 5120, 10240, 20480, in double (1d),
double double (2d), quad double (4d), and octo double (8d) precision.

H. Tiled Back Substitution in Quad Double Precision

Table VIII lists times for different choices of N and n.

The V100 has 80 streaming multiprocessors, so in Table IX,

N = 80 and multiples of 32 are taken for n, in runs on

matrices of dimension 2,560, 5,120, 7,680, 10,240, 12,800,

15,360, 17,920, and 20,480. Teraflop performance on the V100

is attained for n = 224, at dimension 80 × n = 17, 920.

Reading the first two lines of Table IX, observe that the time

to invert the diagonal tiles increases from a tiny 1.9 to 11.4

milliseconds as the dimension doubles, and from n = 96 on,

the time spent on inverting the diagonal tiles dominates the

times of the other two stages. The difference between the wall

clock time and the time spent by all kernels is significant.

Figure 4 shows the evolution of the times spent by all

kernels listed in Table IX. In the 2-logarithm plot, an increase

of one unit in the height of a bar equals a doubling of the time.

For which dimensions is the cost of Algorithm 1 proportional

to Nm? If the dimension doubles from 2,560 to 5,120 and

from 5,120 to 10,240 (corresponding to the bars for 32, 64,

and 128 in Figure 4), the doubling of the time is observed for

the P100 and the V100, for the RTX 2080, the increase from

dimension 5,120 to 10,240 is more than three times.

Fig. 4. 2-logarithms of the times spent by all kernels for the back substitution
on the RTX 2080, the P100, and the V100 in quad double precision.

Computing the ratios of the times spent by all kernels on the

P100 over the V100 gives 732.2/237.1 ≈ 3.1 for dimension

17,920 and 813.1/314.5 ≈ 2.6 for dimension 20,480. That

those ratios are still far above the expected 1.68 ratio is most

likely because the number 80 (of blocks and tiles) coincides

835

TABLE IX
TILED ACCELERATED BACK SUBSTITUTION IN QUAD DOUBLE PRECISION ON THE V100. THE DIMENSION OF THE MATRICES ARE MULTIPLES OF 80,

THAT IS: 80× n, WHERE n = 32, 64, 96, 128, 160, 192, 224, AND 256.

stage in Algorithm 1 32 64 96 128 160 192 224 256

invert diagonal tiles 1.9 11.4 21.2 36.3 61.8 78.9 103.3 138.2
multiply with inverses 6.4 12.7 18.2 23.9 38.9 47.1 55.2 63.1

back substitution 11.3 13.8 19.8 26.2 44.2 58.6 78.6 113.2
time spent by kernels 19.6 37.8 59.2 86.4 145.0 184.6 237.1 314.5

wall clock time 90.0 251.0 482.0 776.0 1181.0 1577.0 2150.0 2886.0

kernel time flops 94.9 250.9 439.6 631.7 677.4 867.0 1025.9 1115.9
wall clock flops 20.7 37.8 54.0 70.3 83.1 101.5 113.2 121.6

with the number of streaming multiprocessors of the V100,

whereas the P100 has 64 streaming multiprocessors.

What is the best choice of N and n for a matrix of

dimension 20,480? For the parallelism in GPU acceleration,

fixing N at 80 gives the best performance as illustrated in

Table VIII. Doubling n from 64 to 128, and to 256 increases

the time spent by all kernels, but decreases the total wall clock

time from 2.620 seconds to 2.071 seconds, as the performance

then nearly doubles.

The roofline model [35] is applied to visualize the perfor-

mance. The arithmetic intensity of a computation is the ratio

of the number of floating point operations over the number

of bytes in the computation. For the V100, the ridge point is

computed as 7900/870 = 9.08, as the ratio of the theoretical

peak performance and the memory bandwidth. Problems with

an arithmetic intensity larger than 9 are compute bound, as

their performance is bounded by the theoretical peak perfor-

mance of 7.9 TFLOPS. A problem with an arithmetic intensity

less than 9 is memory bound, as its performance is bounded

by the memory bandwidth of 870 GB/second. Table X lists the

arithmetic intensities for the back substitution in quad double

precision, for dimensions that are multiples of 80. Figure 5

shows the roofline model for this experiment.

The leftmost dot in Figure 5 is an outlier because at n = 32,

the V100 is only half occupied, as the V100 has 64 cores per

streaming multiprocessor. For an increasing number of threads

per block, the arithmetic intensity increases.

I. Least Squares Solving in Four Different Precisions

Table XI summarizes the times and the flops of solving

a linear system in the least squares sense, in four different

precisions. The blocked accelerated Householder QR of Al-

gorithm 2 is followed by Algorithm 1, the tiled accelerated

back substitution.

TABLE X
ARITHMETIC INTENSITY (1) AND THE KERNEL TIME FLOPS (2) FOR THE

TILED ACCELERATED BACK SUBSTITUTION IN QUAD DOUBLE PRECISION

ON THE V100. THE DIMENSIONS ARE MULTIPLES OF 80, THAT IS: 80× n,
WHERE n = 32, 64, 96, 128, 160, 192, 224, AND 256.

32 64 96 128 160 192 224 256
(1) 58.71 1500 2740 4308 6203 8427 10980 13860
(2) 119.1 263.9 440.7 633.8 679.0 852.9 1036.0 1113.6

Fig. 5. Roofline plot for the data in Table X. The first coordinate of each
dot is the 10-log of the arithmetic intensity and the 10-log of the flops is the
second coordinate of each dot. As n increases, the dots move upwards to the
right, illustrating that the problem becomes more compute bound.

TABLE XI
LEAST SQUARES SOLVING IN DOUBLE (1D), DOUBLE DOUBLE (2D), QUAD

DOUBLE (4D), AND OCTO DOUBLE (8D) PRECISION, ON A 1,024-BY-1,024
LINEAR SYSTEM, WITH 8 TILES OF SIZE 128, ON THE V100. BS = BACK

SUBSTITUTION.

stage 1d 2d 4d 8d

QR kernel time 157.9 451.1 3020.6 11924.5
QR wall time 204.0 566.0 3203.0 12244.0

BS kernel time 2.0 4.0 28.0 114.5
BS wall time 4.0 7.0 35.0 127.0

QR kernel flops 303.4 2282.2 3369.8 4041.4
QR wall flops 235.1 1819.6 3177.8 3936.1

BS kernel flops 8.1 89.8 127.9 149.1
BS wall flops 4.2 49.8 102.9 134.5

total kernel flops 299.6 2262.9 3340.0 4004.4
total wall flops 230.8 1797.3 3144.7 3897.0

Comparing the kernel times in Table XI in all precisions

shows that the time for the back substitution is about 100 times

less than the time for the QR decomposition. Consequently,

the lower performance of the back substitution in small di-

mensions does not lead to a significant reduction in the overall

performance of the solver.

As the QR decomposition has a cost that is cubic in the

dimension, versus the quadratic cost of the back substitution,

836

one could have expected at dimension 1,024 to see a factor

of one thousand in the ratios between the QR and the back

substitution. Or equivalently, the times for the QR would have

been one thousand times longer than for the back substitution.

Instead, the observed factor is closer to one hundred than one

thousand, thanks to the well performing GPU accelerated QR.

As a final observation, times on the QR decomposition of

a random 1,024-by-1,024 matrix in quad double precision, on

the V100 appear in Table IV, Table VI, Table XI, with respec-

tive kernel times 3167.0, 3136.5, 3020.6, and respective wall

clock times 3356.0, 3366.0, 3203.0, illustrating the fluctuations

of the measured milliseconds.

V. CONCLUSIONS

Taking 439, the average number of double operations in the

tallies of the operational counts for quad double arithmetic,

as the scaling factor, teraflop performance on a GPU can be

viewed as 2.2 gigaflops on a single threaded computation.

Using this interpretation, the experiments show that GPU

acceleration does compensate the overhead cost of quad double

arithmetic. In any case, the observed cost overhead ratios in

going from double double to quad double are less than the

ratios predicted by the operational count tallies.

REFERENCES

[1] E. Agullo, C. Augonnet, J. Dongarra, and M. Faverge. QR factorization
on a multicore node enhanced with mulitple GPU accelerators. In 2011
IEEE International Parallel and Distributed Processing Symposium,
pages 932–943. IEEE, 2011.

[2] M. Anderson, G. Ballard, J. Demmel, and K. Kreutzer. Communication-
avoiding QR decomposition for GPUs. In 2011 IEEE International
Parallel and Distributed Processing Symposium, pages 48–58. IEEE,
2011.

[3] M. Baboulin, J. Dongarra, and S. Tomov. Some issues in dense linear
algebra for multicore and special purpose architectures. Technical Report
UT-CS-08-200, University of Tennessee, 2008.

[4] C. Bischof and C. F. Van Loan. The WY representation for products of
Householder matrices. SIAM J. Sci. Stat. Comput., 8(1):s1–s13, 1987.

[5] N. Bliss and J. Verschelde. The method of Gauss-Newton to compute
power series solutions of polynomial homotopies. Linear Algebra and
its Applications, 542:569–588, 2018.

[6] J. W. Demmel. Applied Numerical Linear Algebra. SIAM, 1997.
[7] G. H. Golub and C. F. Van Loan. Matrix Computations. The Johns

Hopkins University Press, third edition, 1996.
[8] Y. He and C. H. Q. Ding. Using accurate arithmetics to improve

numerical reproducibility and stability in parallel applications. The
Journal of Supercomputing, 18:259–277, 2001.

[9] D. H. Heller. A survey of parallel algorithms in numerical linear algebra.
SIAM Review, 20(4):740–777, 1978.

[10] Y. Hida, X. S. Li, and D. H. Bailey. Algorithms for quad-double
precision floating point arithmetic. In 15th IEEE Symposium on
Computer Arithmetic (Arith-15 2001), pages 155–162. IEEE Computer
Society, 2001.

[11] K. Isupov and V. Knyazkov. Multiple-precision matrix-vector multi-
plication on graphics processing units. Program Systems: Theory and
Applications, 11(3):62–84, 2020.

[12] M. Joldes, J.-M. Muller, V. Popescu, and Tucker. W. CAMPARY: Cuda
Multiple precision arithmetic library and applications. In Mathematical
Software – ICMS 2016, the 5th International Conference on Mathemat-
ical Software, pages 232–240. Springer-Verlag, 2016.

[13] A. Kerr, D. Campbell, and M. Richards. QR decomposition on GPUs. In
D. Kaeli and M. Leeser, editors, Proceedings of 2nd Workshop on Gen-
eral Purpose Processing on Graphics Processing Units (GPGPU’09),
pages 71–78. ACM, 2009.

[14] D. B. Kirk and W. W. Hwu. Programming Massively Parallel Proces-
sors. A Hands-on Approach. Morgan Kaufmann, 2010.

[15] J. Kurzak, R. Nath, P. Du, and J. Dongarra. An implementation of the
tile QR factorization for a GPU and multiple GPUs. In Applied Parallel
and Scientific Computing, 10th International Conference, PARA 2010,
volume 7134 of Lecture Notes in Computer Science, pages 248–257.
Springer-Verlag, 2012.

[16] M. Lu, B. He, and Q. Luo. Supporting extended precision on graphics
processors. In Proceedings of the Sixth International Workshop on Data
Management on New Hardware (DaMoN 2010), pages 19–26, 2010.

[17] D. Mukunoki and D. Takashashi. Implementation and evaluation of
quadruple precision BLAS functions on GPUs. In Applied Parallel
and Scientific Computing, 10th International Conference, PARA 2010,
volume 7133 of Lecture Notes in Computer Science, pages 249–259.
Springer-Verlag, 2012.

[18] D. Mukunoki and D. Takashashi. Implementation and evaluation of triple
precision BLAS subroutines on GPUs. In The 2012 IEEE International
Parallel and Distributed Processing Symposium Workshops (IPDPSW),
pages 1372–1380. IEEE, 2012.

[19] J.-M. Muller, N. Brunie, F. de Dinechin, C.-P. Jeannerod, M. Joldes,
V. Lefèvre, G. Melquiond, N. Revol, and S. Torres. Handbook of
Floating-Point Arithmetic. Springer-Verlag, second edition, 2018.

[20] T. Nakayama and D. Takahashi. Implementation of multiple-precision
floating-point arithmetic library for GPU computing. In Proc. 23rd
IASTED International Conference on Parallel and Distributed Comput-
ing and Systems (PDCS 2011), pages 343–349. ACTA Press, 2011.

[21] W. Nasri and Z. Mahjoub. Optimal parallelization of a recursive
algorithm for triangular matrix inversion on MIMD computers. Parallel
Computing, 27:1767–1782, 2001.

[22] S. D. Rao and D. J. Tylavsky. Theoretical convergence guarantees ver-
sus numerical convergence behavior of the holomorphically embedded
power flow method. Electrical Power and Energy Systems, 95:166–176,
2018.

[23] S. Telen, M. Van Barel, and J. Verschelde. A robust numerical path
tracking algorithm for polynomial homotopy continuation. SIAM J. Sci.
Comput., 42(6):A3610–A3637, 2020.

[24] S. Telen, M. Van Barel, and J. Verschelde. Robust numerical tracking
of one path of a polynomial homotopy on parallel shared memory
computers. In Proceedings of the 22nd International Workshop on
Computer Algebra in Scientific Computing (CASC 2020), volume 12291
of Lecture Notes in Computer Science, pages 563–582. Springer-Verlag,
2020.

[25] S. Tomov, J. Dongarra, and M. Baboulin. Towards dense linear algebra
for hybrid GPU accelerated manycore systems. Parallel Computing,
36(5):232–240, 2010.

[26] S. Tomov, R. Nath, H. Ltaief, and J. Dongarra. Dense linear algebra
solvers for multicore with GPU accelerators. In The 2010 IEEE
International Parallel and Distributed Processing Symposium Workshops
(IPDPSW), pages 1–8. IEEE, 2010.

[27] A. Trias. The holomorphic embedding load flow method. In 2012 IEEE
Power and Energy Society General Meeting, pages 1–8. IEEE, 2012.

[28] A. Trias and J. L. Martin. The holomorphic embedding loadflow method
for DC power systems and nonlinear DC circuits. IEEE Transactions
on Circuits and Systems, 63(2):322–333, 2016.

[29] J. Verschelde. Algorithm 795: PHCpack: A general-purpose solver for
polynomial systems by homotopy continuation. ACM Trans. Math.
Softw., 25(2):251–276, 1999.

[30] J. Verschelde. Parallel software to offset the cost of higher precision.
ACM SIGAda Ada Letters, 40(2):59–64, 2020.

[31] J. Verschelde. Accelerated polynomial evaluation and differentiation
at power series in multiple double precision. In The 2021 IEEE
International Parallel and Distributed Processing Symposium Workshops
(IPDPSW), pages 740–749. IEEE, 2021.

[32] J. Verschelde and G. Yoffe. Orthogonalization on a general purpose
graphics processing unit with double double and quad double arithmetic.
In The 2013 IEEE International Symposium on Parallel and Distributed
Processing, Workshops and Phd Forum, pages 1373–1380. IEEE, 2013.

[33] D. Viswanath and L. N. Trefethen. Condition numbers of random
triangular matrices. SIAM J. Matrix Anal. Appl., 19(2):564–581, 1998.

[34] V. Volkov and J. Demmel. Benchmarking GPUs to tune dense linear
algebra. In Proceedings of the 2008 ACM/IEEE conference on Super-
computing. IEEE Press, 2008. Article No. 31.

[35] S. Williams, A. Waterman, and D. Patterson. Roofline: an insightful
visual performance model for multicore architectures. Communications
of the ACM, 52(4):65–76, 2009.

837

