2022 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW)

Least Squares on GPUs
in Multiple Double Precision

Jan Verschelde”
University of Illinois at Chicago
Department of Mathematics, Statistics, and Computer Science
851 S. Morgan St. (m/c 249), Chicago, IL 60607-7045
Email: janv@uic.edu, URL: http://www.math.uic.edu/~Jjan.

Abstract—This paper describes the application of the code
generated by the CAMPARY software to accelerate the solving of
linear systems in the least squares sense on Graphics Processing
Units (GPUs), in double double, quad double, and octo double
precision. The goal is to use accelerators to offset the cost
overhead caused by multiple double precision arithmetic. For the
blocked Householder QR and the back substitution, of interest
are those dimensions at which teraflop performance is attained.
The other interesting question is the cost overhead factor that
appears each time the precision is doubled.

Experimental results are reported on five different NVIDIA
GPUs, with a particular focus on the P100 and the V100, both
capable of teraflop performance. Thanks to the high Compute
to Global Memory Access (CGMA) ratios of multiple double
arithmetic, teraflop performance is already attained running the
double double QR on 1,024-by-1,024 matrices, both on the P100
and the V100. For the back substitution, the dimension of the
upper triangular system must be as high as 17,920 to reach
one teraflops on the V100, in quad double precision, and then
taking only the times spent by the kernels into account. The
lower performance of the back substitution in small dimensions
does not prevent teraflop performance of the solver at dimension
1,024, as the time for the QR decomposition dominates.

In doubling the precision from double double to quad dou-
ble and from quad double to octo double, the observed cost
overhead factors are lower than the factors predicted by the
arithmetical operation counts. This observation correlates with
the increased performance for increased precision, which can
again be explained by the high CGMA ratios.

Keywords and phrases. acceleration, back substitution,
blocked Householder QR, Graphics Processing Unit (GPU),

least squares, multiple double, multiprecision.

I. INTRODUCTION

Many applications in scientific computing may benefit from
extended precision, e.g., [8] applies double doubles. However,
the cost overhead caused by multiprecision arithmetic is a valid
concern. This paper experimentally demonstrates that this cost
overhead can be mitigated by the acceleration on a Graphics
Processing Unit (GPU) capable of teraflop performance.

The least squares solution x of a linear system Ax = b
minimizes the sum of the squares of b—Ax, or |b—Ax||3. The
decomposition of the matrix A into an orthogonal matrix @
and an upper triangular matrix R, A = QR reduces Ax = b
to Rx = QT'b, solved by back substitution. The Householder
QR factorization is numerically stable [6, Theorem 3.5].

“Supported by the National Science Foundation under grant DMS 1854513.

978-1-6654-9747-3/22/$31.00 ©2022 IEEE
DOI 10.1109/IPDPSW55747.2022.00139

828

TABLE I
OPERATIONAL COUNTS FOR DOUBLE DOUBLE, QUAD DOUBLE, AND OCTO
DOUBLE ARITHMETIC. FOR EXAMPLE: ONE DIVISION (DIV) OF TWO QUAD
DOUBLES REQUIRES 266 ADDITIONS (+), 510 SUBTRACTIONS (—), 112
MULTIPLICATIONS (%), AND 5 DIVISIONS (/) IN DOUBLE PRECISION
ARITHMETIC, WHICH SUMS (X)) UP TO 893 DOUBLE PRECISION
FLOATING-POINT OPERATIONS AND AVERAGES TO 439.3.

double double: 37.7x
+ — * / b
add 8 12 20
mul 5 9 9 23
div 33 18 16 3 70
quad double: 439.3x
+ — * / b
add 35 54 89
mul 99 164 73 336
div 266 510 112 5 893
octo double: 2379.0x
+ - * / X
add 95 174 269
mul 529 954 259 1742
div | 1599 3070 448 9 5126

The blocked Householder QR factorization [4] is rich in
matrix-matrix products [7], well suited for GPU acceleration,
as demonstrated in [3] and [34], with further developments
in [1], [2], [15], [25], and [26]. The development of the code
for this paper benefited greatly from the exposition in [13]. To
develop a GPU accelerated back substitution algorithm, ideas
were taken from [21], based on formulas proposed in [9].

The suitability of double double and triple precision Basic
Linear Algebra Subroutines (BLAS) was shown in [17], [18].

A. Multiple Double Arithmetic

A multiple double number is an unevaluated sum of multiple
doubles. The arithmetical operations on multiple double num-
bers are defined by algorithms in double precision arithmetic.
To extend the double precision m times, compute with m
doubles. Table I tallies the cost overhead to multiply the pre-
cision with 2, 4, and 8, corresponding respectively to double
double, quad double, and octo double precision, to about 32,
64, and 128 decimal places of precision. The averages (37.7,
439.3, 2379.0) predict the arithmetical cost overhead factors.

Parallel algorithms are applied to offset the cost overhead
caused by multiple precision arithmetic. A specific question
asks for the smallest dimension of the linear system for

which teraflop performance is obtained. Experiencing teraflop
performance in quad double arithmetic on a GPU is similar
to about 2.2 gigaflops performance in double arithmetic on a
single threaded execution, as the average cost of quad double
operations is 439. The 439 is obtained as the average of the
> column under the quad double header in Table L.

Double double and quad double arithmetic are provided
by QDIlib [10], with its GPU version in [16]. The software
CAMPARY [12] defines code generators for general multiple
float and double arithmetical operations. The handbook [19,
Chapter 14] describes multiple double arithmetic.

The Compute to Global Memory Access (CGMA) ratio [14]
is the number of floating-point calculations performed by a
kernel for each access to the global memory. Looking back
at the counts in Table I, the division of two quad double
numbers requires 893 double precision operations on a total
of 8 doubles, naturally leading to a very high CGMA ratio.
An alternative to the CGMA ratio is the roofline model [35].
This model is applied in Figure 5 to the tiled accelerated back
substitution in quad double precision on the V100.

The specific motivation for this paper is the development
of a scalable implementation of a new path tracker [23] to
solve systems of polynomial equations in several variables.
One component of the path tracker is the solution of a
lower triangular block Toeplitz system [5], where the diagonal
matrix is the evaluated Jacobian matrix at the current point
on the path. An error analysis in [24] motivates the need for
multiprecision arithmetic if a guaranteed accuracy is desired.
Because of the propagation of roundoff errors, the leading
coefficients in the power series must be computed most
accurately, at a precision higher than the hardware double
precision. Recently, PHCpack [29] was extended [30] with
the code for the multiprecision arithmetic generated by the
CAMPARY software, and applied to accelerate the polynomial
evaluation and differentiation at power series [31].

The power series computation provides input to Padé ap-
proximations, applied in the holomorphic embedding load
flow method [27], [28], to solve steady state equations of
power systems, using complex analysis. As indicated in [22],
multiprecision arithmetic adds significant value.

B. On Alternatives to CAMPARY

Compared to genuine multiprecision arithmetic, multiple
double numbers have a limited number of precision levels,
one cannot specify the precise number of bits in the precision.
Another limitation is that the size of the exponents are the
same as the exponent size of any double.

The authors of [11] compare CAMPARY and CUMP [20] to
their GPU implementation of multiprecision arithmetic based
on the multiple residue number system. The double double
arithmetic of CAMPARY performs best for the problem of
matrix-vector multiplication. Concerning quad double preci-
sion, the authors of [11] write “the CAMPARY library is faster
than our implementation; however as the precision increases
the execution time of CAMPARY also increases significantly.”

829

C. Contributions and Organization

The main result is the teraflop performance obtained for the
multiple double precision least squares solver, obtained already
for relatively modest dimensions. The code generated by the
CAMPARY software is applied to solving linear systems in the
least squares sense in double double, quad double, and octo
double precision, for real and complex matrices. The resulting
programs are self contained, available in a github repository,
under the GPL-v3.0 License, thus promoting reproducibility.

The next two sections on accelerating the back substitution
and the blocked Householder QR are meant to provide self-
contained introductions to the parallel implementations and to
explain the legends in the tables in the computational exper-
iments section. Multiple double arithmetic allows for a finer
granularity level as more blocks of threads can collaborate
in one matrix-vector product. The computational experiments
start in the fourth section.

II. ACCELERATED BACK SUBSTITUTION

Data parallel algorithms execute the same instructions on
different data. On graphics processing units, this execution is
performed by blocks of threads, scheduled in multiples of 32.
These blocks reside on a number of streaming multiprocessors,
for a total of several thousands of cores. In order to fully
occupy the device, the parallelism must be sufficiently fine
involving tens of thousands of threads.

In accelerating the back substitution to solve an upper
triangular linear system, the coefficient matrix is divided up
into tiles. The ideas will be illustrated on a 3-by-3 tiled system:

Ui Aip A
Ux=b, U= Uy Az |, (D
Us
X1 b1
X = X2) b = b2) (2)
X3 b3

where U, Us, Us are upper triangular matrices, with nonzero
elements on their diagonal, and A; 2, A;3, and Ay 3 are
general matrices. All matrices have the same dimensions. The
length of by, bo, and bs equals the number of rows in each
matrix.

In the traditional version of the back substitution algorithm,
the last instruction to compute z; is the division by the element
on the diagonal. To introduce more parallelism, the tiles on
the diagonal are first inverted. The parallel back substitution
happens in two stages:

1) Invert all tiles on the diagonal:

Ufl Ao A3
V= Ut Asz |- 3)
Ut

The inverse of an upper triangular matrix is again upper
triangular. Each column of the inverse is the solution of
an upper triangular system. The columns of the inverse
can be computed independently from each other.

2) The back substitution alternates between multiplying
with the inverses and updating the right hand side
vectors. The statements on the same line below are
executed in parallel.

x3 = Uj;'bs, @
by = by— Aysxs, by := by — A1sx3, 5)
xy = Ujy'by, ©
b1 = by — A 9xo,)
x; = U'b;. 3

In each step, at least one matrix-vector multiplication is
executed. Each back substitution step requires less work. With
multiple double arithmetic, the back substitution steps are
executed at a finer level: multiple blocks of threads cooperate
to compute one matrix-vector product.

One could be concerned that the matrix inverse would lead
to numerical instabilities. However, the tiles are of a much
smaller size than the entire matrix, typically by a factor of at
least the number of multiprocessors. Smaller upper triangular
matrices have smaller condition numbers than larger ones.

The example suffices to introduce the main ideas in the
algorithm. To describe the parallelism better, the accelerated
algorithm is presented next in a more formal manner.
Algorithm 1: TILED ACCELERATED BACK SUBSTITUTION.

Input N is the number of tiles,
n is the size of each tile,
U is an upper triangular Nn-by-Nn matrix,
b is a vector of size Nn.
Output x is a vector of size Nn: Ux = b.
1) Let U, Us, ..., Uy be the n-by-n tiles on the diagonal

of U. Replace each U; with its inverse U;l, with N
blocks of n threads. Labeling threads starting the count
at 1, the k-th thread in each block solves the upper
triangular system Uv = e, where k is the k-th n-
dimensional unit vector.

2) Fori=N,N—1,...,1do

a) Compute x; := Ui_lbi by one block of n threads.
b) Simultaneously update b; := b; — A4, ;x;, for j €
{1,2,...,i— 1}, with 4 — 1 blocks of n threads.
Algorithm 1 executes 1 + N (N + 1)/2 kernel launches.

If N streaming multiprocessors are available and n is a good
fit to keep the device fully occupied, then the computation of
all inverses in the first stage can happen in time proportional
to n2, which is the cost of solving one upper triangular linear
system of dimension n.

Each step in the second stage of Algorithm 1 involves a
matrix-vector multiplication executed in time proportional to
n, done by one block of threads. There are N steps and if
sufficiently many multiprocessors are available, then the total
cost of the second stage is proportional to Nn. If n = N, the
cost of the first stage can be viewed as proportional to Nn,
so a good parallel execution of Algorithm 1 can be done in
time proportional to Nn, which corresponds to the dimension
of the upper triangular linear system Ux = b.

The formulation of Algorithm 1 does not specify the staging
of the data. In particular, the matrix U of multiple doubles is
not stored as U = [u; ;], where w;; is a multiple double,
but as an array U = [Uy,Us, ..., U] of m matrices, where
U, holds the most significant doubles and U,,, holds the least
significant doubles. Similarly, the b in the input of Algorithm 1
is an array of m arrays [by, ba, ..., by, ordered in the order
of significance. This facilitates the staggered application of
multiprecision arithmetic and benefits the efficient memory
coalescing: adjacent threads in one block of threads read
adjacent data in memory, avoiding bank conflicts. This repre-
sentation naturally extends to complex arrays, where the real
and imaginary parts are kept separately.

The two questions which will be answered experimentally
are the following. What is the smallest dimension for which
teraflop performance is obtained? Obviously, the lower thresh-
old for N should be the number of streaming multiprocessors,
and n should be a multiple of 32. The second question asks
for the cost overhead factor in the three times the precision is
doubled, from double to double double, from double double
to quad double, and from quad double to octo double.

III. BLOCKED ACCELERATED HOUSEHOLDER QR

The blocked Householder QR is introduced on a 3m-by-3n
tiled matrix, m > n:
ALQ Al,l is 3m-by-n,
A= | A1y | Ao | Asg |, Aipism-by-2n, (9)
A373 AQ’Q is Zm—by—n,
As 3 and As 3 are m-by-n. The Householder transformations
are accumulated in an orthogonal 3m-by-3m matrix). The
upper triangular reduction R of A is written in the matrix A.
The m-by-m identity matrix is represented by [in the
sequence of the evolution of A, Q) below:

A1,2 I
A | Asp | Ao |, I (10)
i Aszz | | I
- R [
— | Rig|Asp | Ao |, Q1|1 (11
L AS’S] L I
- Ry 1T
— | Rig | Rop | Ros |, | Q1| Q2 (12)
i Azz | | I
L R 1T
= | Riy | Rop | Ros |,| Q| Q2]Q3 |.(13)
R33 |

One tile Ry, ;. is computed column by column. For each col-
umn, a Householder vector v and corresponding 3 = 2/vTv
value is computed. The Householder reflector P = I — fvvT
with the v determined so Px = ||x||ze; (with a sign
computation as in [7, Algorithm 5.1.1]), where x contains
the numbers in the current column starting at the diagonal,

and where e; = (1,0,...,0)”. The Householder matrices are
aggregated in an orthogonal matrix of the form
Pyy =T+ WYT, (14)

where Y stores the Householder vectors and has a trapezoidal
shape. The matrix W is computed from the Householder
vectors and their corresponding B values. With this WY
representation of the Householder matrices, the updates to @
and R can then written as

Q Q+Q*W*YT,
R R+Y«WTxC,

(15)
(16)

where C' is the current matrix to be updated. The above
formulas are rich in matrix-matrix products which are very
suitable for GPU acceleration. The columns z of the matrix
W follow the formulas

z=—B(v+WYTv), (17)

which require matrix-vector products. On complex data, the
transpose T is replaced by the Hermitian transpose .

As stated in [13], the computation of W is expected to be
the bottleneck.

The structured description of the accelerated version of
the blocked Householder QR algorithm below serves as an
explanation of the legend of the tables in the next section.

Algorithm 2: BLOCKED ACCELERATED HOUSEHOLDER QR.
Input N is the number of tiles,

n is the size of each tile,

M 1is the number of rows, M > Nn,

A is an M-by-Nn matrix.

@ is an orthogonal M-by-M matrix,

R is an M-by-Nn matrix, A = QR.

For k=1,2,...,N do

1) For{=1,2,...n do

a) compute v and f3,

b) update Ry .

If the size of the current column is less than n, then
only one block of threads computes. Otherwise, several
blocks compute v, collaborate to update of Ry j, and
there is one separate kernel to compute 3RT x v, which
also involves a sum reduction with multiple blocks.
Given n pairs (v,) computed in the previous stage, the
matrices W, Y, and their product Y+W7T are computed.
Update @ in two stages:

a) QWY :=Q«WYT, where WYT = (YWT)T,

b) Q:=Q+QWY.

Separating the matrix-matrix multiplication from the
addition clearly shows the cost differences. In multiple
precision arithmetic, the cost of the addition is however
not negligible.

4) If k < N, then update R, in two stages:

a) YWTC :=YWTxC,
b) R:=R+YWTC.

As the code is geared towards multiple double arithmetic,
the implementation of the matrix-matrix products differs from
the double precision implementations recommended in the
literature. When defining kernels for the matrix-matrix multi-
plication in double precision, tiles of matrices are loaded into

Output

2)

3)

831

shared memory to obtain better CGMA ratios, as explained
in [14, Chapter 5]. Thanks to the high CGMA ratios of
multiple double precision, the entries of the matrix can be
loaded directly into the registers of the kernel that computes
one number of the product.

The staging of the data applies the same representation of
multiple double vectors and matrices via multiple arrays of
doubles, as explained at the end of Algorithm 1.

The computational cost of Algorithm 2 is proportional to
M3, if M = Nn, for notational simplicity. If the device
is fully occupied, then the hope is to reduce the cost by a
factor of M and to observe a time proportional to M?2. In
the experiments, as the dimension then doubles, the hope is
to observe the total time multiplied by a factor closer to four
than to eight.

As before, with the back substitution, the first question is to
ask for which dimensions teraflop performance is attained. The
second is to experimentally compute the actual cost overhead
factors of doubling the precision.

IV. COMPUTATIONAL EXPERIMENTS

In designing the experiments, the first concern is to find
sufficiently large dimensions at which teraflop performance
is attained, mainly in quad double precision. In the runs at
different precisions, timings on the double precision version
are listed, but are not used in the comparisons as the imple-
mentation was made for multiple double precision arithmetic.
Another reason for not comparing the timings of runs in double
precision is that the dimensions are not yet large enough to
fully occupy the device.

In a first comparison of runs at different precisions, the tile
size and the corresponding number of threads per block are
fixed to the same number for all precisions. However, in double
double precision, the number of threads per block should be
higher than in octo double precision.

In all tables, all time units are milliseconds. The units of
flops (floating-point operations per second) are gigaflops.

A. Notes on the Implementation

The code for the multiple double arithmetical operations
generated by the CAMPARY software [12] was customized for
each precision in the following manner. Instead of representing
a quad double number by an array of four doubles, all
arithmetical operations work on four separate variables, one
for each double. By this customization an array of quad
doubles is stored as four separate arrays of doubles and a
matrix of quad doubles is represented by four matrices of
doubles. If one would be only interested in double double
and quad double, then the double2 and double4 types of
the CUDA SDK will work just as well (as we did in [32]), but
then performance drops are to be expected with complex quad
doubles already and then also for the more general multiple
double arithmetic.

QDIlib [10] provides definitions for the square roots and
various other useful functions for double double and quad
double arithmetic. Those definitions are extended to octo

TABLE 11
THE COLUMNS LIST THE CUDA CAPABILITY, THE NUMBER OF
MULTIPROCESSORS, THE NUMBER OF CORES PER MULTIPROCESSOR, THE
TOTAL NUMBER OF CORES, AND THE GPU CLOCK RATE. FOR EVERY
GPU, 1T1s HOST CPU IS LISTED WITH ITS CLOCK RATE.

NVIDIA GPU CUDA | #MP | #coressMP | #cores | GHz
Tesla C2050 2.0 14 32 448 1.15
Kepler K20C 3.5 13 192 2496 0.71
Pascal P100 6.0 56 64 3584 1.33

Volta V100 7.0 80 64 5120 1.91
GeForce RTX 2080 7.5 46 64 2944 1.10
NVIDIA GPU host CPU GHz
Tesla C2050 Intel X5690 3.47
Kepler K20C Intel E5-2670 2.60
Pascal P100 Intel E5-2699 2.20

Volta V100 Intel W2123 3.60
GeForce RTX 2080 Intel i9-9880H 2.30

double precision, also with the customization of representing
an octo double number as eight different variables.

The _ forceinline__ directive was added to all the
device functions that define the multiple double arithmetic.
All . cu files are compiled with nvcc -03.

For every kernel in the implementation of Algorithms 1
and 2, a small function accumulates the number of arithmetical
operations. Then the total number of floating-point operations
is computed at the end of the run, using the numbers in Table I
as multipliers. In the application of the roofline model, the
number of bytes in each computation is obtained from the
dimensions of the problem, multiplied by the size of each
multiple double number.

Random numbers were generated for the input matrices.
In the standalone tests on the back substitution solver, the
random upper triangular matrices were computed on the host
as the output of an LU factorization, as the condition numbers
of random triangular matrices almost surely grow exponen-
tially [33]. All tests were run on well conditioned problems,
so the residuals ||b — Ax||3 of the computed solution x
to the linear system Ax b is of the expected accuracy,
corresponding to the level of the multiple double precision.

The same code runs on five different NVIDIA GPUs. The
C2050, K20C, P100, V100 are housed in CentOS workstations
and the gcc compiler is used to compile the code on the
host. The RTX 2080 resides in a Windows laptop, and the
community edition of Microsoft Visual Studio is used.

The code is free and open source, released under the
GPU GPL license, in the PHCpack source available on
https://github.com/janverschelde/PHCpack.

B. Equipment

Using the same setup as in [31], Table II lists the main
characteristics of five GPUs used to develop the code.

While running the same software on different GPUs is
convenient, the obvious disadvantage is that the more advanced
features of the newer devices are not utilized. Important in the
investigation of the scalability is the attention to teraflop per-
formance and the ratios of the theoretical peak performances
of the V100 over the P100.

832

TABLE III
BLOCKED HOUSEHOLDER QR IN DOUBLE DOUBLE PRECISION, ON A
1,024-BY-1,024 MATRIX, WITH 8 TILES OF SIZE 128.

stage in Linux on the host Windows

Algorithm 2 H C2050 ‘ K20C ‘ P100 ‘ V100 H RTX 2080
B,v 35.5 43.8 21.4 16.2 26.2

BRT x v 418.8 897.8 89.6 76.6 389.7
update R 107.0 107.6 23.0 15.2 475
compute W 1357.8 | 1631.8 349.2 222.4 1298.4
Y «WT 100.0 50.3 9.7 6.6 153.5
QxwYyT 790.9 4239 712 52.1 1228.8
YWT % C || 6068.5 | 2345.2 141.2 61.6 822.6
Q+ QWY 24 1.6 0.4 0.4 0.7
R+YWTC 7.4 4.2 0.7 0.5 0.8
all kernels || 8888.3 | 5506.1 712.4 451.5 3968.2
wall clock || 9083.0 | 5682.0 826.0 568.0 4700.0
kernel flops 115.8 187.0 | 14453 | 2280.4 259.5
wall flops 113.4 181.2 | 1247.2 | 1812.7 219.1

In each run, the elapsed times of the kernel launches are
measured by cudaEventElapsedTime and are expressed
in milliseconds. The wall clock times include the sum of times
spent by the kernels, with the added memory transfers. The
kernel flops in the tables below are the totals of the counts
of the double precision operations over the sum of the times
spent by the kernels. The total wall clock time is used in the
wall flops.

C. Blocked Householder QR on Five Different GPUs

The theoretical double peak performance of the P100 and
the V100 are 4.7 TFLOPS and 7.9 TFLOPS respectively.
Therefore, if the code scales well, one may expect the V100
to be about 1.68 times faster than the P100.

For the total kernel time in Table III, compare the scaled
observed time on the V100: 451.5 x 1.68 =~ 758.5, with the
observed 712.4 of the P100. Comparing wall clock times is
harder, because of different clock speeds of the host processor
and the workstation that hosts the P100 has 256GB of RAM,
whereas the RAM of the host of the V100 holds 32GB.

For historical perspective, the oldest C2050 was purchased
in 2011 and the V100 in 2019. The ratio of the sum of
the times spent on all kernels of the C2050 over V100:
8888.3/451.5 ~ 19.6, indicating about a double speedup every
two years. The tile size of 128 (and the number of threads per
block) is most likely not the best choice for the K20C, which
has 192 cores per streaming multiprocessor. We used the K20C
in [32]. In the single experiment comparison in Table III, the
GeForce RTX 2080 Max-Q outperforms the K20C.

D. Blocked Householder QR in Four Different Precisions

Based on the operational counts in Table I, one could predict
the overhead factors from the averages in the ¥ column, which
are 37.7 for double double, 439.3 for quad double, and 2379.0
for octo double. Based on those averages, going from double
double to quad double would cause all times to be multiplied
by 11.7. Similarly, the predicted overhead factor is 5.4 when
going from quad double to octo double.

‘I RTX 2080
P100
‘mmm V100

12

2-log of kernel times in milliseconds

2d

4d 8d

Fig. 1. 2-logarithms of the times spent by all kernels of QR on the RTX 2080,
the P100, and the V100 in double double (2d), quad double (4d), and octo
double (8d) precision, with data in Table IV.

Table IV illustrates the cost overhead of doubling the
precision three times and is summarized by Figure 1. From
double double to quad double, taking ratios of kernels times
5187.0/712.7 = 7.3 on the P100, and the similar ratio on
the V100 is 3167.0/446.8 ~ 7.1. Both ratios are consistent
and less than the predicted factor of 11.7. On the RTX 2080,
the ratio is 35826.7/3999.5 9.0 < 11.7. From quad
double to octo double, the kernels time ratio on the P100 is
20547.5/5187.0 ~ 4.0 and 11754.6/3167.0 ~ 3.7. In both
cases, the observed factors are less than the predicted 5.4, as is
also the case on the RTX 2080: 160802.8/35826.7 ~ 4.5. That
the observed cost overhead factors are more favorable than the
predicted ones correlates with the increased performance for
increased precisions.

E. Real and Complex Double Double QR

Working with complex arithmetic requires about four times
as many arithmetical operations than on real data. Table V lists
times on 512-by-512 matrices, of real and complex double
double numbers. Keeping the dimension 512 constant, fewer
tiles but larger tiles are selected with each execution.

Looking at the flops in Table V, teraflop performance is
reached for both real and complex matrices, for 128 as the tile
size. At 4 x 128, the device is best occupied. But if interested
in total wall clock times, then 16 x 32 is best.

In a dimension as small as 512, the computation of W
dominates. Would this still be the case if the dimensions
increase?

~
~

FE. Quad Double QR for Increasing Dimensions

How do the execution times of the QR decomposition
evolve for increasing dimensions? Table VI lists the times for
dimensions 512, 1024, 1536, and 2048. Figure 2 shows the
evolution of all kernel times.

At dimension 512, the computation of W dominates in all
precisions. The accumulated times of all kernels devoted to
computing W drops to the thirdmost largest time in dimen-
sion 2048. The two most time consuming kernels are those
that do the matrix-matrix multiplications.

Doubling the dimension, from 512 to 1024, the ratios of
the wall clock times in double double, quad double, and
octo double precision are respectively 321.0/155.0 ~ 2.1,

833

TABLE IV
BLOCKED HOUSEHOLDER QR IN DOUBLE (1D), DOUBLE DOUBLE (2D),
QUAD DOUBLE (4D), AND OCTO DOUBLE (8D) PRECISION, ON A
1,024-BY-1,024 MATRIX, WITH 8 TILES OF SIZE 128, ON THE RTX 2080,
THE P100, AND THE V100.

stage in times on the RTX 2080
Algorithm 2 H Id | 2d | 4d | 8d
B,v 13.0 26.3 108.1 451.8
BRT x v 46.3 338.0 1740.9 4994.3
update R 11.3 47.7 376.9 1669.6
compute W 111.7 | 1309.4 | 12346.8 56484.2
Y «W7T 5.1 154.7 1476.3 6746.7
Q+wWYT 40.2 | 1238.7 | 11815.5 54008.9
YWT«C || 110.1 833.3 7957.3 36430.5
Q+ QWY 0.3 0.7 3.1 9.4
R+YWTC 0.5 0.8 1.9 7.3
all kernels || 338.6 | 3999.5 | 35826.7 | 160802.8
wall clock || 562.0 | 4708.0 | 37087.0 | 163219.0
kernel flops 141.5 257.4 284.1 299.7
wall flops 85.2 218.7 274.5 295.3
stage in times on the P100
Algorithm 2 H Id | 2d | 4d | 8d
B,v 12.6 21.6 583 412.4
BRT xv 44.4 89.7 760.7 2998.5
update R 14.2 23.0 96.3 359.9
compute W 98.3 349.3 2752.3 9857.5
Y «WT 3.0 9.7 96.8 484.7
Q+wYT 25.0 71.0 747.0 3745.4
YWT *C 67.1 141.3 672.8 2681.7
Q+ QWY 0.2 04 0.9 2.0
R+YWTC 0.4 0.7 1.8 5.5
all kernels || 256.2 712.7 5187.0 20547.5
wall clock || 311.0 827.0 5381.0 20870.0
kernel flops 180.6 | 1444.6 1962.4 2345.4
wall flops 154.0 | 1244.8 1891.5 2309.2
stage in times on the V100
Algorithm 2 H Id | 2d | 4d | 8d
B,v 73 15.8 374 180.2
BRT xv 28.8 772 4704 1304.0
update R 9.4 15.1 58.9 197.9
compute W 79.5 2232 1551.0 5700.9
Y «W7T 0.8 6.5 66.3 281.3
QxwYyT 8.2 56.7 516.8 22492
YWT *C 24.0 51.4 464.4 1834.5
Q+ QWY 0.2 0.4 0.8 1.6
R+YWTC 0.2 0.4 1.0 4.8
all kernels 158.4 446.8 3167.0 11754.6
wall clock || 206.0 560.0 3356.0 12059.0
kernel flops || 302.5 | 2304.3 3214.0 4099.9
wall flops || 232.8 | 1837.3 3033.0 3996.3

3366.0/777.0 ~ 4.3, and 12735.0/2681.0 = 4.8, correspond-
ing to significant increases in performance.

While teraflop performance is maintained, notice in Ta-
ble VI the drop in performance at dimension 2048 in double
double arithmetic. This drop is most likely due to the kernels
for the matrix-matrix multiplication that do not take advantage
of the shared memory, as the double double arithmetic has
not yet a high enough CGMA ratio, compared to the higher
multiple double arithmetic. Although not as much as in double
double precision, there is also a drop in performance in the
other precisions for the two largest dimensions.

TABLE V
BLOCKED HOUSEHOLDER QR IN DOUBLE DOUBLE PRECISION, ON REAL
AND COMPLEX MATRICES OF DIMENSION 512, FOR INCREASING TILE
SIZES, 512 = 16 x 32 = 8 x 64 = 4 x 128 = 2 x 256, ON THE V100.

stage in on real matrices

Algorithm 2 H 16 x32 | 8x64 | 4x128 | 2 X256
B,v 6.5 10.7 7.8 7.7
BRT xv 124 22.0 20.2 20.0
update R 2.3 4.9 9.9 46.6
compute W 229 41.9 54.1 81.7
Y «WT 0.5 0.9 1.0 1.1
Q+wyT 43 7.0 3.9 2.8
YWT xC 4.0 6.3 3.6 1.5
Q+ QWY 0.1 0.1 0.1 0.1
R+YWTC 0.1 0.1 0.1 0.1
all kernels 532 94.0 100.5 161.6
wall clock 101.0 170.0 155.0 208.0
kernel flops 428.4 785.9 1089.8 7773
wall flops 226.6 434.5 707.4 603.3

stage in on complex matrices
Algorithm 2 H 16 x32 | 8x64 | 4x128 | 2x 256
B,v 8.5 8.4 8.3 8.9
BRT xwv 20.6 36.8 36.7 37.3
update R 3.0 6.8 20.5 204.7
compute W 38.9 126.6 144.3 248.9
Y*«WwT 0.9 33 3.7 4.5
QrwyT 12.7 26.4 15.1 11.3
YWT xC 12.4 18.6 9.8 5.1
Q+ QWY 0.2 0.2 0.1 0.1
R+YWTC 0.3 0.2 0.1 0.1
all kernels 97.4 227.4 238.5 420.8
wall clock 158.0 306.0 311.0 479.0
kernel flops 6289 | 1299.8 1836.7 1194.8
wall flops 387.2 967.3 1407.8 1050.5

2-log of kernel times in milliseconds

512

1024 1536 2048

Fig. 2. 2-logarithms of the times spent by all kernels of QR on the V100
in double double (2d), quad double (4d), and octo double (8d) precision, for
increasing dimensions, for the data in Table VI.

G. Back Substitution in Four Different Precisions

The high CGMA ratios makes that the overhead cost of
doubling the precisions is less than the predicted overhead
factors. Would this also be the case for the back substitution?

Consider the doubling of both the dimension and the pre-
cision. Table VII records the times of the back substitution
on upper triangular matrices of sizes 5120 = 64 x 80,
10240 128 x 80, and 20480 = 256 x 80, where the
first factors in the dimensions are the size of each tile and
the second factors are the number of tiles. In octo double
precision, shared memory capacities limit the tile size to 128,
so then 20480 = 128 x 160. The high wall clock time in octo

834

TABLE VI
BLOCKED HOUSEHOLDER QR IN DOUBLE DOUBLE, QUAD DOUBLE, AND
OCTO DOUBLE PRECISION, ON REAL MATRICES OF INCREASING
DIMENSIONS, FOR INCREASING NUMBER OF TILES, 512 = 4 x 128,
1024 = 8 x 128, 1536 = 12 x 128, 2048 = 16 x 128, ON THE V100.

double double precision

stage in 512 1024 1536 2048
Algorithm 2 || 4 x 128 ‘ 8 x 128 | 12 x 128 ‘ 16 x 128
B,v 7.9 8.2 16.5 345
BRT xv 20.3 36.7 144.6 652.0
update R 9.9 20.5 28.9 58.8
compute W 53.9 144.2 556.2 2278.7
Y «Ww7T 1.0 3.7 24.9 194.2
QrwyT 4.0 15.1 201.3 3048.9
YWT % C 34 9.7 481.6 20534.4
Q+ QWY 0.1 0.1 0.7 5.6
R+YWTC 0.1 0.1 0.9 7.8
all kernels 100.5 238.2 1455.8 26815.0
wall clock 155.0 321.0 1627.0 27230.0
kernel flops 1089.7 1839.0 2475.1 1087.8
wall flops 706.5 1364.9 2214.4 1071.2

quad double precision

stage in 512 1024 1536 2048
Algorithm 2 || 4 x 128 ‘ 8 x 128 ‘ 12 x 128 ‘ 16 x 128
B,v 21.0 37.4 54.1 71.6
BRT xv 115.5 470.9 1073.8 1939.9
update R 49.0 59.0 74.6 91.2
compute W 412.6 1553.5 3438.2 6104.3
Y« W7T 9.6 66.3 214.2 517.6
Q+wyT 415 538.3 2511.0 7643.9
YWT xC 249 409.3 6057.1 17991.2
Q+ QWY 0.1 0.8 2.5 5.7
R+YWTC 0.1 0.9 5.6 7.0
all kernels 674.3 3136.5 13431.2 34372.5
wall clock 777.0 3366.0 13835.0 34960.0
kernel flops 1605.7 32453 2366.8 2097.0
wall flops 1392.6 3024.4 2297.7 2061.7

octo double precision

stage in 512 1024 1536 2048
Algorithm 2 || 4 x 128 ‘ 8 x 128 ‘ 12 x 128 ‘ 16 x 128
B,v 94.7 188.3 282.8 385.1
BRT xv 309.5 1309.1 3009.7 5416.5
update R 167.5 199.0 245.1 300.4
compute W 1568.2 5828.6 12908.6 22944.3
Y« W7T 48.3 308.8 957.5 2082.8
Q«wYyT 187.2 2334.8 11259.2 34508.6
YWT xC 1149 2104.0 15982.0 42044.8
Q+ QWY 0.3 1.6 5.1 11.6
R4+YWTC 0.2 5.9 29.8 75.2
all kernels 2490.8 | 12280.1 44679.8 | 107769.2
wall clock 2681.0 | 12735.0 45419.0 | 108763.0
kernel flops 2058.2 3924.4 3368.5 3166.4
wall flops 1912.0 3784.2 3313.6 3137.5

double precision for 20480 is due to the limited 32 GB of
RAM at the host. Despite this anomaly, the times spent by
all kernels appear regular enough to reliably measure the cost
overhead factors from doubling the precisions.

In double precision, the times spent by the kernels are not
large enough to attain a good performance. At the largest di-
mension, half a teraflop is reached in double double precision;
in quad and octo double precision, 1.1 teraflop is observed.

Figure 3 shows the 2-logarithms of the times spent by all
kernels. As the cost of the back substitution is quadratic in
the dimension, the times are expected to quadruple when the

TABLE VII
BACK SUBSTITUTION IN FOUR DIFFERENT PRECISIONS ON PROBLEMS OF
INCREASING SIZE, ON THE V100.

double precision

stage in Algorithm 1 || 64 x 80 | 128 x 80 | 256 x 80
invert diagonal tiles 0.4 5.2 30.8
multiply with inverses 0.8 1.5 4.3
back substitution 1.8 22 59
time spent by kernels 3.0 8.9 41.0
wall clock time 47.0 147.0 526.0
kernel time flops 14.5 28.5 39.9
wall clock flops 0.9 1.7 3.1

double double precision

stage in Algorithm 1 || 64 x 80 | 128 x 80 | 256 x 80
invert diagonal tiles 1.2 9.3 46.3
multiply with inverses 1.7 33 8.9
back substitution 7.9 4.7 12.2
time spent by kernels 5.0 17.3 67.4
wall clock time 82.0 286.0 966.0
kernel time flops 190.6 318.7 525.1
wall clock flops 11.7 19.2 36.7

quad double precision

stage in Algorithm 1 “ 64 x 80 [128 x 80 [256 x 80
invert diagonal tiles 6.2 383 137.4
multiply with inverses 12.2 23.8 63.1
back substitution 133 26.7 112.2
time spent by kernels 31.7 88.8 312.7
wall clock time 187.0 619.0 2268.0
kernel time flops 299.4 614.2 1122.3
wall clock flops 50.8 88.1 154.8

octo double precision
stage in Algorithm 1 || 64 x 80 | 128 x 80 | 128 x 160

invert diagonal tiles 43.8 110.6 133.3

multiply with inverses 47.7 97.5 196.0

back substitution 49.2 108.0 283.7

time spent by kernels 140.7 316.2 613.1

wall clock time 465.0 1400.0 84448.0

kernel time flops 321.3 820.1 1166.7

wall clock flops 97.1 185.2 8.5
TABLE VIII

BACK SUBSTITUTION IN QUAD DOUBLE PRECISION IN
DIMENSION 20480 = N X n, FOR THREE DIFFERENT COMBINATIONS OF
N AND n, ON THE V100.

stage in Algorithm 1 || 320 x 64 | 160 x 128 | 80 x 256

invert diagonal tiles 135 35.8 132.3
multiply with inverses 49.0 47.5 64.3
back substitution 84.6 91.7 112.3
time spent by kernels 147.1 175.0 308.9
wall clock time 2620.0 2265.0 2071.0
kernel time flops 683.0 861.1 1136.1

wall clock flops H 383 ‘ 66.5 ‘ 169.5

dimension is doubled. This quadrupling is observed in double
double precision, but then becomes closer to doubling in octo
double precision, thanks to the higher performance in higher
precision. Observe that the heights of the quad double bar
is closer to the octo double bar than to the double double
bar. This is consistent with the predicted cost overhead ratios,
which are higher when going from double double to quad
double compared to the ratios from quad double to octo
double.

835

2-log of kernel times in milliseconds

5120

10240 20480

Fig. 3. 2-logarithms of the times in Table VII spent by all kernels of back
substitution on the V100, for dimension 5120, 10240, 20480, in double (1d),
double double (2d), quad double (4d), and octo double (8d) precision.

H. Tiled Back Substitution in Quad Double Precision

Table VIII lists times for different choices of N and n.
The V100 has 80 streaming multiprocessors, so in Table IX,
N = 80 and multiples of 32 are taken for n, in runs on
matrices of dimension 2,560, 5,120, 7,680, 10,240, 12,800,
15,360, 17,920, and 20,480. Teraflop performance on the V100
is attained for n = 224, at dimension 80 x n = 17,920.
Reading the first two lines of Table IX, observe that the time
to invert the diagonal tiles increases from a tiny 1.9 to 11.4
milliseconds as the dimension doubles, and from n = 96 on,
the time spent on inverting the diagonal tiles dominates the
times of the other two stages. The difference between the wall
clock time and the time spent by all kernels is significant.

Figure 4 shows the evolution of the times spent by all
kernels listed in Table IX. In the 2-logarithm plot, an increase
of one unit in the height of a bar equals a doubling of the time.
For which dimensions is the cost of Algorithm 1 proportional
to Nm? If the dimension doubles from 2,560 to 5,120 and
from 5,120 to 10,240 (corresponding to the bars for 32, 64,
and 128 in Figure 4), the doubling of the time is observed for
the P100 and the V100, for the RTX 2080, the increase from
dimension 5,120 to 10,240 is more than three times.

'EEE RTX 2080
P100

2-log of kernel times in milliseconds

32 64 96 128 160 192 224 256

Fig. 4. 2-logarithms of the times spent by all kernels for the back substitution
on the RTX 2080, the P100, and the V100 in quad double precision.

Computing the ratios of the times spent by all kernels on the
P100 over the V100 gives 732.2/237.1 ~ 3.1 for dimension
17,920 and 813.1/314.5 = 2.6 for dimension 20,480. That
those ratios are still far above the expected 1.68 ratio is most
likely because the number 80 (of blocks and tiles) coincides

TABLE IX
TILED ACCELERATED BACK SUBSTITUTION IN QUAD DOUBLE PRECISION ON THE V100. THE DIMENSION OF THE MATRICES ARE MULTIPLES OF 80,
THAT IS: 80 X n, WHERE n = 32,64, 96, 128, 160, 192, 224, AND 256.

stage in Algorithm 1 || 32 | 64 | 96 | 128 | 160 | 192 | 224 | 256
invert diagonal tiles 1.9 114 21.2 36.3 61.8 78.9 103.3 138.2
multiply with inverses 6.4 12.7 18.2 239 38.9 47.1 552 63.1
back substitution 11.3 13.8 19.8 26.2 442 58.6 78.6 113.2
time spent by kernels 19.6 37.8 59.2 86.4 145.0 184.6 237.1 314.5
wall clock time || 90.0 | 251.0 | 482.0 | 776.0 | 1181.0 | 1577.0 | 2150.0 | 2886.0
kernel time flops 949 | 2509 | 439.6 | 631.7 677.4 867.0 | 10259 | 11159
wall clock flops 20.7 37.8 54.0 70.3 83.1 101.5 113.2 121.6
with the number of streaming multiprocessors of the V100, 4.0
whereas the P100 has 64 streaming multiprocessors.
What is the best choice of N and n for a matrix of 35
dimension 20,4807 For the parallelism in GPU acceleration,
fixing IV at 80 gives the best performance as illustrated in g ‘o o0
Table VIII. Doubling n from 64 to 128, and to 256 increases ; ' o oY
the time spent by all kernels, but decreases the total wall clock g °
time from 2.620 seconds to 2.071 seconds, as the performance EE o
then nearly doubles.
The roofline model [35] is applied to visualize the perfor- 2.01 e
mance. The arithmetic intensity of a computation is the ratio
of the number of floating point operations over the number 15 , | , |
0 1 2 3 4 5

of bytes in the computation. For the V100, the ridge point is
computed as 7900/870 = 9.08, as the ratio of the theoretical
peak performance and the memory bandwidth. Problems with
an arithmetic intensity larger than 9 are compute bound, as
their performance is bounded by the theoretical peak perfor-
mance of 7.9 TFLOPS. A problem with an arithmetic intensity
less than 9 is memory bound, as its performance is bounded
by the memory bandwidth of 870 GB/second. Table X lists the
arithmetic intensities for the back substitution in quad double
precision, for dimensions that are multiples of 80. Figure 5
shows the roofline model for this experiment.

The leftmost dot in Figure 5 is an outlier because at n = 32,
the V100 is only half occupied, as the V100 has 64 cores per
streaming multiprocessor. For an increasing number of threads
per block, the arithmetic intensity increases.

L. Least Squares Solving in Four Different Precisions

Table XI summarizes the times and the flops of solving
a linear system in the least squares sense, in four different
precisions. The blocked accelerated Householder QR of Al-
gorithm 2 is followed by Algorithm 1, the tiled accelerated
back substitution.

TABLE X
ARITHMETIC INTENSITY (1) AND THE KERNEL TIME FLOPS (2) FOR THE
TILED ACCELERATED BACK SUBSTITUTION IN QUAD DOUBLE PRECISION
ON THE V100. THE DIMENSIONS ARE MULTIPLES OF 80, THAT IS: 80 X n,
WHERE n = 32,64, 96, 128, 160, 192,224, AND 256.

| 32 | 64 | 96 | 128 | 160 | 192 | 224 | 256
(1) |[5871 | 1500 | 2740 | 4308 | 6203 | 8427 | 10980 | 13860
(@) || 119.1 | 263.9 | 440.7 | 633.8 | 679.0 | 852.9 | 1036.0 | 1113.6

10-log of the number of flops per number of bytes

Fig. 5. Roofline plot for the data in Table X. The first coordinate of each
dot is the 10-log of the arithmetic intensity and the 10-log of the flops is the
second coordinate of each dot. As n increases, the dots move upwards to the
right, illustrating that the problem becomes more compute bound.

TABLE XI
LEAST SQUARES SOLVING IN DOUBLE (1D), DOUBLE DOUBLE (2D), QUAD
DOUBLE (4D), AND OCTO DOUBLE (8D) PRECISION, ON A 1,024-BY-1,024
LINEAR SYSTEM, WITH 8 TILES OF SIZE 128, ON THE V100. BS = BACK

SUBSTITUTION.
stage | 1d | 2d | 4d | 8&d

QR kernel time || 157.9 451.1 | 3020.6 | 11924.5
QR wall time || 204.0 566.0 | 3203.0 | 12244.0
BS kernel time 2.0 4.0 28.0 114.5
BS wall time 4.0 7.0 35.0 127.0
QR kernel flops || 303.4 | 2282.2 | 3369.8 4041.4
QR wall flops || 235.1 | 1819.6 | 3177.8 3936.1
BS kernel flops 8.1 89.8 127.9 149.1
BS wall flops 4.2 49.8 102.9 134.5
total kernel flops || 299.6 | 2262.9 | 3340.0 4004.4
total wall flops || 230.8 | 1797.3 | 3144.7 3897.0

Comparing the kernel times in Table XI in all precisions
shows that the time for the back substitution is about 100 times
less than the time for the QR decomposition. Consequently,
the lower performance of the back substitution in small di-
mensions does not lead to a significant reduction in the overall
performance of the solver.

As the QR decomposition has a cost that is cubic in the
dimension, versus the quadratic cost of the back substitution,

836

one could have expected at dimension 1,024 to see a factor
of one thousand in the ratios between the QR and the back
substitution. Or equivalently, the times for the QR would have
been one thousand times longer than for the back substitution.
Instead, the observed factor is closer to one hundred than one
thousand, thanks to the well performing GPU accelerated QR.

As a final observation, times on the QR decomposition of
a random 1,024-by-1,024 matrix in quad double precision, on
the V100 appear in Table IV, Table VI, Table XI, with respec-
tive kernel times 3167.0, 3136.5, 3020.6, and respective wall
clock times 3356.0, 3366.0, 3203.0, illustrating the fluctuations
of the measured milliseconds.

V. CONCLUSIONS

Taking 439, the average number of double operations in the
tallies of the operational counts for quad double arithmetic,
as the scaling factor, teraflop performance on a GPU can be
viewed as 2.2 gigaflops on a single threaded computation.
Using this interpretation, the experiments show that GPU
acceleration does compensate the overhead cost of quad double
arithmetic. In any case, the observed cost overhead ratios in
going from double double to quad double are less than the
ratios predicted by the operational count tallies.

REFERENCES

[1] E. Agullo, C. Augonnet, J. Dongarra, and M. Faverge. QR factorization
on a multicore node enhanced with mulitple GPU accelerators. In 2011
IEEE International Parallel and Distributed Processing Symposium,
pages 932-943. IEEE, 2011.

M. Anderson, G. Ballard, J. Demmel, and K. Kreutzer. Communication-
avoiding QR decomposition for GPUs. In 2011 IEEE International
Parallel and Distributed Processing Symposium, pages 48-58. IEEE,
2011.

M. Baboulin, J. Dongarra, and S. Tomov. Some issues in dense linear
algebra for multicore and special purpose architectures. Technical Report
UT-CS-08-200, University of Tennessee, 2008.

C. Bischof and C. F. Van Loan. The WY representation for products of
Householder matrices. SIAM J. Sci. Stat. Comput., 8(1):s1-s13, 1987.
N. Bliss and J. Verschelde. The method of Gauss-Newton to compute
power series solutions of polynomial homotopies. Linear Algebra and
its Applications, 542:569-588, 2018.

J. W. Demmel. Applied Numerical Linear Algebra. SIAM, 1997.

G. H. Golub and C. F. Van Loan. Matrix Computations. The Johns
Hopkins University Press, third edition, 1996.

Y. He and C. H. Q. Ding. Using accurate arithmetics to improve
numerical reproducibility and stability in parallel applications. The
Journal of Supercomputing, 18:259-277, 2001.

D. H. Heller. A survey of parallel algorithms in numerical linear algebra.
SIAM Review, 20(4):740-777, 1978.

Y. Hida, X. S. Li, and D. H. Bailey. Algorithms for quad-double
precision floating point arithmetic. In I5th IEEE Symposium on
Computer Arithmetic (Arith-15 2001), pages 155-162. IEEE Computer
Society, 2001.

K. Isupov and V. Knyazkov. Multiple-precision matrix-vector multi-
plication on graphics processing units. Program Systems: Theory and
Applications, 11(3):62-84, 2020.

M. Joldes, J.-M. Muller, V. Popescu, and Tucker. W. CAMPARY: Cuda
Multiple precision arithmetic library and applications. In Mathematical
Software — ICMS 2016, the 5th International Conference on Mathemat-
ical Software, pages 232-240. Springer-Verlag, 2016.

A. Kerr, D. Campbell, and M. Richards. QR decomposition on GPUs. In
D. Kaeli and M. Leeser, editors, Proceedings of 2nd Workshop on Gen-
eral Purpose Processing on Graphics Processing Units (GPGPU’09),
pages 71-78. ACM, 2009.

D. B. Kirk and W. W. Hwu. Programming Massively Parallel Proces-
sors. A Hands-on Approach. Morgan Kaufmann, 2010.

[2]

3

—

[4

=

[51
[6]
[71
[8]

[9

—

[10]

[11]

[12]

[13]

[14]

837

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29

[30]

[31

[32]

[33]

[34]

[35]

J. Kurzak, R. Nath, P. Du, and J. Dongarra. An implementation of the
tile QR factorization for a GPU and multiple GPUs. In Applied Parallel
and Scientific Computing, 10th International Conference, PARA 2010,
volume 7134 of Lecture Notes in Computer Science, pages 248-257.
Springer-Verlag, 2012.

M. Lu, B. He, and Q. Luo. Supporting extended precision on graphics
processors. In Proceedings of the Sixth International Workshop on Data
Management on New Hardware (DaMoN 2010), pages 19-26, 2010.
D. Mukunoki and D. Takashashi. Implementation and evaluation of
quadruple precision BLAS functions on GPUs. In Applied Parallel
and Scientific Computing, 10th International Conference, PARA 2010,
volume 7133 of Lecture Notes in Computer Science, pages 249-259.
Springer-Verlag, 2012.

D. Mukunoki and D. Takashashi. Implementation and evaluation of triple
precision BLAS subroutines on GPUs. In The 2012 IEEE International
Parallel and Distributed Processing Symposium Workshops (IPDPSW),
pages 1372-1380. IEEE, 2012.

J.-M. Muller, N. Brunie, F. de Dinechin, C.-P. Jeannerod, M. Joldes,
V. Lefevre, G. Melquiond, N. Revol, and S. Torres. Handbook of
Floating-Point Arithmetic. Springer-Verlag, second edition, 2018.

T. Nakayama and D. Takahashi. Implementation of multiple-precision
floating-point arithmetic library for GPU computing. In Proc. 23rd
IASTED International Conference on Parallel and Distributed Comput-
ing and Systems (PDCS 2011), pages 343-349. ACTA Press, 2011.

W. Nasri and Z. Mahjoub. Optimal parallelization of a recursive
algorithm for triangular matrix inversion on MIMD computers. Parallel
Computing, 27:1767-1782, 2001.

S. D. Rao and D. J. Tylavsky. Theoretical convergence guarantees ver-
sus numerical convergence behavior of the holomorphically embedded
power flow method. Electrical Power and Energy Systems, 95:166-176,
2018.

S. Telen, M. Van Barel, and J. Verschelde. A robust numerical path
tracking algorithm for polynomial homotopy continuation. SIAM J. Sci.
Comput., 42(6):A3610-A3637, 2020.

S. Telen, M. Van Barel, and J. Verschelde. Robust numerical tracking
of one path of a polynomial homotopy on parallel shared memory
computers. In Proceedings of the 22nd International Workshop on
Computer Algebra in Scientific Computing (CASC 2020), volume 12291
of Lecture Notes in Computer Science, pages 563-582. Springer-Verlag,
2020.

S. Tomov, J. Dongarra, and M. Baboulin. Towards dense linear algebra
for hybrid GPU accelerated manycore systems. Parallel Computing,
36(5):232-240, 2010.

S. Tomov, R. Nath, H. Ltaief, and J. Dongarra. Dense linear algebra
solvers for multicore with GPU accelerators. In The 2010 IEEE
International Parallel and Distributed Processing Symposium Workshops
(IPDPSW), pages 1-8. IEEE, 2010.

A. Trias. The holomorphic embedding load flow method. In 2012 IEEE
Power and Energy Society General Meeting, pages 1-8. IEEE, 2012.
A. Trias and J. L. Martin. The holomorphic embedding loadflow method
for DC power systems and nonlinear DC circuits. [EEE Transactions
on Circuits and Systems, 63(2):322-333, 2016.

J. Verschelde. Algorithm 795: PHCpack: A general-purpose solver for
polynomial systems by homotopy continuation. ACM Trans. Math.
Softw., 25(2):251-276, 1999.

J. Verschelde. Parallel software to offset the cost of higher precision.
ACM SIGAda Ada Letters, 40(2):59-64, 2020.

J. Verschelde. Accelerated polynomial evaluation and differentiation
at power series in multiple double precision. In The 2021 IEEE
International Parallel and Distributed Processing Symposium Workshops
(IPDPSW), pages 740-749. IEEE, 2021.

J. Verschelde and G. Yoffe. Orthogonalization on a general purpose
graphics processing unit with double double and quad double arithmetic.
In The 2013 IEEE International Symposium on Parallel and Distributed
Processing, Workshops and Phd Forum, pages 1373—-1380. IEEE, 2013.
D. Viswanath and L. N. Trefethen. Condition numbers of random
triangular matrices. SIAM J. Matrix Anal. Appl., 19(2):564-581, 1998.
V. Volkov and J. Demmel. Benchmarking GPUs to tune dense linear
algebra. In Proceedings of the 2008 ACM/IEEE conference on Super-
computing. IEEE Press, 2008. Article No. 31.

S. Williams, A. Waterman, and D. Patterson. Roofline: an insightful
visual performance model for multicore architectures. Communications
of the ACM, 52(4):65-76, 20009.

