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We survey recent results in the mathematical literature
on the equations of incompressible fluid dynamics,
highlighting common themes and how they might
contribute to the understanding of some phenomena
in the theory of fully developed turbulence.

1. Introduction

A central issue in any theory of turbulence is how to
define, calculate or model Reynolds stresses. Of course
there is general agreement that Reynolds stresses arise
because products of averages are in general not equal
to averages of products. However, the notion of taking
averages is difficult to formalize mathematically in a
useful way: whether long-time averages as proposed
by Reynolds or ensemble averages as in Kolmogorov’s
work, since very little is known about the object to which
the averaging is applied (global-in-time solutions of
Navier-Stokes or a physically meaningful measure over
ensembles), it is very difficult to deduce first principles
information beyond dimensional analysis.

In this paper our aim is to propose an approach to
this difficulty, based on weak convergence techniques
combined with the method of convex integration.
Although a deterministic approach towards turbulence
via weak convergence techniques is not at all new,
our contribution here is to emphasize two strands of
development in the mathematical analysis of nonlinear
PDEs which we believe should deserve more attention
in fluid dynamics. Firstly, the concept of weak stability
of an equation (that is, stability/continuity of certain
nonlinearities under weak convergence), when combined
with natural energy bounds, may give nontrivial
constraints on possible closure models which cannot be
easily deduced from ensemble or long-time averages.
Secondly, using the method of convex integration one can
construct examples of weak solutions which may be
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used to show sharpness of the constraints thus obtained as well as sharpness of various scaling
laws. We illustrate these points of view with several recent examples.

2. Weak convergence as a mathematical tool of averaging

In a nutshell, the challenge in turbulence is to be able to efficiently relate macroscopic quantities
to the microscopic description of the flow dynamics, a problem shared with many other branches
of mathematics and physics. A great difficulty in turbulent flows, however, is that typically there
is a large number of active length scales, in contrast with, say, classical homogenization or kinetic
theory - hence one refers to molar rather than molecular scales [57]. This lack of scale separation
limits the applicability of methods based on formal asymptotic expansion. Furthermore, it leads
to difficulties when trying to define averages: both the classical approach of O. Reynolds via long-
time averages and the more modern statistical approach via ensemble averages suffer from this
difficulty.

Starting with the work of A. Kolmogorov, the probabilistic approach, postulating the existence
of a probability measure with certain symmetries, has been very successful in deducing scaling
laws, most prominently the 5/3 law for energy distribution in the inertial range [44]. However,
without further information on how this measure arises, it is difficult to go beyond. There have
been many attempts to prove existence of a physically plausible stationary measure, and even
though these were very successful in the 2D case (cf. [47,54]), to our knowledge in 3D none has so
far succeeded.

The main argument in favour of a probabilistic description of turbulence is the observed
lack of uniqueness [63] combined with the observed reproducibility of statistics. As far as the
former is concerned, in the past decade a number of analytical results appeared, showing that
even in the deterministic case a high level of non-uniqueness is present in suitable classes of
weak solutions. It is worth emphasizing that the non-uniqueness in such examples is not a
mathematical pathology, but seems to be a generic phenomenon, strongly suggesting that a
probability measure on ensembles with restored symmetries may exist even without having to
resort to stochastic modifications of the basic continuum equations. In the next sections we will
survey some of these results. For the moment we wish to point out that such results originate from
a deeper understanding of the interaction between micro- and macro-scales, which is obtained
from applying techniques from two different strands of development in mathematical analysis: on
the one hand weak convergence techniques, in particular the point of view pioneered by L.Tartar
(cf. [75]) of studying special nonlinear quantities stable under weak convergence, and on the other
hand the programme of M. Gromov (cf. [46]) of viewing systems of partial differential equations
as differential inclusions together with the tools he developed to solve them, first and foremost
convex integration.

The idea to use weak convergence techniques to obtain a deterministic alternative to
probabilistic theories of turbulence is not new. J. Leray in his landmark paper [56] not only
introduced the notion of weak solution to the Navier-Stokes equations on R® which includes the
energy inequality (which he referred to as solutions turbulentes), but proved its global existence by
using weak convergence and compactness.

Concerning the inviscid limit, a programme to characterize possible oscillations and
concentrations in the velocity field has been initiated by DiPerna and Majda [38], with
considerable success in the 2D case, in particular with the proof of global existence of weak
solutions to vortex sheet initial data by J. M. Delort [35]. More generally, it has been proposed
by P. Lax in [55] that ensemble averages could be replaced by weak limits, in analogy with the
zero dispersion limit of KdV, although the author did point out that an important difference to
hydrodynamical turbulence is that oscillations in the dispersive context appear on a single scale.
This approach was further investigated in Bardos et al [2] using the Wigner transform.
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The starting point in all these approaches is the formula

w-lim ug, =: 4, w-lim (up @ ug) = ® @+ R, (2.1)
k—o0 k—oo

where w-lim refers to a weak limit in a suitable space, and R can be interpreted as a deterministic
analogue of the Reynolds stress tensor. The first task is then to deduce nontrivial information on
R, such as does it satisfy an equation (c.f. closure problem) or an inequality? An important point
is that in typical situations (such as the one considered by DiPerna and Majda) the approximating
sequence uy, is not just weakly convergent but, more importantly, a solution of the Navier-Stokes
equations with viscosity tending to zero.

(a) Tartar’'s framework

The systematic analysis of possible oscillatory behaviour under a differential constraint has been
initiated in the work of L. Tartar in the 1970s [75,76]. The basic framework consists of a vector-
valued state variable z: U — R” defined on an open set U C R%, which is subject to a set of
balance laws

d
> A'9iz=0 inU, (2.2)
=1

and a set of constitutive equations, which may be represented as a submanifold K c R? in state-
space:
z(y)e K, forall yeU. (2.3)

The central question is to characterize the set of values that can be reached by limits of weakly
convergent sequences zj of exact or approximate solutions. That is, characterize the smallest set
K’ containing K such that, whenever z;, is a sequence of exact or approximate solutions with
2, — Z, then Z(y) € K’ for almost every y € U.

In this generality we are being vague on purpose concerning the functional setting, e.g. the
precise notion of “approximate solution” or the precise notion of “weak convergence”. The
precise setting may vary from case to case (as examples below show), but the general principle is
always the same: characterizing K’ amounts to a mathematical closure problem, which is free from any
modelling ansatz. Indeed, on an abstract level this can be explained as follows: let &’ be a Banach
space, representing the space of functions respecting certain a priori bounds (e.g. energy bounds),
and let S C X be the space of solutions of the system under consideration. The main questions
are: Is S weakly closed in X'? If not, what is its weak closure S C X? The basic principle behind
these questions is that

PRINCIPLE I: It is the weak closure S rather than S which bears physical significance.

One very important mathematical application is the following: if S is weakly closed in X, there is
a good chance that the existence of global solutions can be proved using a suitable approximation
scheme. More generally, the same is true for global weak solutions if S consists of weak solutions.
Without being too precise, for weak solutions the balance laws and constitutive equations should
still be valid in a weak sense (e.g. (2.2) in the sense of distributions and (2.3) for almost every y).

(b) Differential inclusions

A second strand of development which is relevant to our considerations concerns the theory of
(partial) differential inclusions, the simplest type of which can be stated as

Df(y)e K, aeyeU. (2.4)

Here U C R? is an open set as above and f : U — R™ is a (weakly) differentiable map with total
derivative D f(y). Typically one considers the boundary value problem, when (2.4) is coupled
with a condition of the type f = fo on OU for some given fy.
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Early results treated the case when either the domain or the range is one-dimensional [4,13,14].
Here the key concept is convexity; A typical result is that for linear boundary maps fo(z) =a -z
the differential inclusion (2.4) is solvable provided a € int K°, denoting the topological interior
of the convex hull. Conversely, it is not difficult to see by integrating that a € K° is a necessary
condition for solvability. In fact more is true: one can show using the Baire category theorem that
typical solutions of the relaxed differential inclusion

Df(y)€int K°°, ae.ycU, (2.5)

are in fact solutions of the original problem (2.4).
In the vectorial case, when d,m > 1, such a general statement cannot be expected, as simple
examples demonstrate:

(i) If K=0(d), the boundary value problem has a solution for any linear boundary
map fo(z) = Az with A € int O(d)®® = {A:1d — AT A >0}, and, more generally, for any
strictly short boundary map fq - here strictly short means that fo maps any curve to a
stricty shorter curve. In analytic terms this is equivalent to the requirement D fy(x) €
int O(d)“° for a.e. z.

(ii) If K = SO(d), the only solutions of (2.4) are affine maps f(z) =b + Az with A € SO(d).

Thus, in general the geometry of the set K strongly interacts with the differential constraint (to be
a gradient) - very much akin to the type of situations studied in (2.2)-(2.3). A kind of meta-theorem
in the theory of differential inclusions [24,52,62] is that, up to technical conditions, for existence
theorems of (2.4) the relaxation K’ introduced in connection with (2.2)-(2.3) can be used as a
replacement of the convex hull. However, there is an important technical caveat: the set K " has
to be sufficiently large in a topological sense. A sufficient condition is that K’ C R? has nonempty
interior, but a key point in Tartar’s framework is that certain (linear or nonlinear) constraints may
restrict K’ to a lower-dimensional variety - a concrete example will be presented below in the
context of MHD turbulence.

Combining the general framework of Tartar in (2.2)-(2.3) with techniques developed for the
existence theory of vectorial differential inclusions (2.4) leads to the following basic principle
(again formulated in an imprecise way, ignoring technical side conditions):

PRINCIPLE II: Typical elements of S are in fact elements of S.

Here again “typical” refers to Baire category. As such, using this principle to prove existence of
solutions invariably leads to weak solutions with often paradoxical properties which are highly
irregular. In this sense this principle is closely related to the construction of Weierstrass’ famous
example of continuous but nowhere differentiable functions, which can be achieved either by a
direct construction of its slowly decaying Fourier series, or by using Baire category. It turns out
that both techniques have an appropriate analogy for the general case arising in (2.2)-(2.3) - the
former is often referred to as convex integration [62], the latter has been treated in [24,52].

In the past decade the two principles formulated above have led to a new paradigm in fluid
mechanics, with the appearance of a number of counterintuitive statements such as the existence
of paradoxical weak solutions on the one hand, but also theorems which bear considerable
relevance to the physics of fluids and in particular turbulence.

3. Examples
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(a) The Euler equations

Returning to the basic formula (2.1), let us now consider the case that the approximating sequence
(ug ) consists of solutions of the incompressible Euler equations. That is

Oruy, +divug @ ug, + Vpr, =0

(3.1)
divug =0
In addition, since for smooth solutions of the Euler equations the kinetic energy
1 2
Ew)y==| |ul"dzx
2 Jps
is a conserved quantity, it is natural to assume a uniform bound of the type
sup gl p2(rs) < M (3.2)
t<T

for some fixed M. Then characterizing the weak limit # amounts to looking at the weak L? closure
of weak solutions of the Euler equations S in the space X C L*(T? x [0, T]) of solenoidal velocity
fields with the energy bound (3.2).
As already pointed out in the previous section, any limit @ certainly satisfies an equation of the
form
du+div(z®u+ R)+Vp=0
(3.3)
diva=0

where R is a deterministic analogue of the Reynolds stress tensor (2.1). The “convexity restriction”
alluded in the previous section leads to the information that, for any z,t the tensor R(z,t) is
necessarily symmetric, positive semi-definite and |a| + tr R < M.

In [30,31] it is shown that this is in fact the only constraint satisfied by the weak limit. The main
result can be formulated as follows:

Theorem 3.1. Let (u, R) be a bounded weak solution of (3.3) such that R is symmetric and pointwise
either positive definite or zero. Then there exists a sequence of weak solutions uy, of (3.1) such that |u|? =
|@|? + tr R for almost every (x,t), and wj, — @ weakly in L? as k — oo.

In the special case when R is a multiple of the identity matrix, R = xId, with x compactly
supported in space-time, this theorem recovers the pioneering result of Scheffer [66], that is, the
existence of nontrivial weak solutions of the incompressible Euler equations that have compact
support in space and time.

Surprisingly, this counter-intuitive “softness” of weak solutions of the incompressible Euler
equations is common to a number of other equations and problems in fluid dynamics and the
techniques used to prove Theorem 3.1 have proved to be surprisingly robust (see [9,18,22,70,72—
74]

(b) The Navier-Stokes equations

Proceeding as in the previous section, the natural energy bound for solutions of the Navier-Stokes
equations
8tuk + div up Q@ ug + Vpk = Auk
(3.4)
divug =0

is given by

t
sup (nuk(-,t)n% +| HDuk(-,r)n%?dT) <M. (35)
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In his pioneering work [56] J. Leray used the above energy bound to prove the existence of global
weak solutions to the Cauchy problem for (3.4) when the initial data ug belongs to L?. In the
framework considered above, Leray’s work can be summarized in two main discoveries:

(i) The space of solutions of (3.4) satisfying (3.5) is compact. The main point here is that the
embedding H' < L? is compact.

(ii) An appropriate regularization of the equations produces a sequence of approximate
solutions to the Cauchy problem with the energy bound (3.5) and the compactness (i)
can be used to show existence of am exact solution.

Of course the energy bound above is not the only possible choice; one might ask what happens
if we only assume a uniform bound of kinetic energy (disregarding the cumulative dissipation).
In this case the compactness argument of Leray fails, and a priori we once again merely obtain a
Reynolds stress term. In a recent landmark paper [10] Buckmaster and Vicol were able to show
that this is optimal in the following sense.

Theorem 3.2. Let (i, R) be a smooth solution of

O +div(a®u+ R) + Vp= Au
(3.6)
divu=0

such that R is symmetric and positive definite. Then there exists a sequence of weak solutions uy, of (3.4)
such that uy, — @ weakly in L? as k — oo.

The significance of the failure of compactness in this theorem can be explained as follows.
Since now (3.5) is replaced by (3.2), the only additional control on oscillatory behaviour must
come from the equation itself, in particular integrability of the dissipative term. In other words,
combining the inertial, Reynolds and dissipative terms in (3.6) as one stress term of the form
(@ @+ R+ Du+ DuT), the issue is to decide whether Du + Du” dominates @ ® @; Thus, the
failure of the embedding W1! < L? in 3D lies at the core of Theorem 3.2.

To emphasize this point, we mention that in [58] the statement of Theorem 3.2 was extended
to weak solutions of the hyperviscous Navier-Stokes equations, where the dissipative term Au is
replaced by —(—Au)? with 0 < 5/4, under the kinetic energy bound (3.2). This result is related to
the fact that the embedding W2~11 < L2 is compact if and only if 6 > 5/4. Another variation
on this theme concerns power-law fluids, where Au is replaced by Apu, the p-Laplacian. In this
case the energy bound including cumulative dissipation takes the form

t
sup (uukc,t)n%z + L ||Duk<-,f>uipd7) <M. (37)

Thus, the issue of weak stability is decided by whether the embedding W7 < L? is compact,
and indeed: the analogue of Leray’s theorem (existence of weak solutions satisfying the energy
inequaliy via compactness) has been proved in [65] for p > 6/5, whereas the analogue of Theorem
3.2 has been proved in [11] for p < 6/5.

Further interesting examples using these ideas include the optimality of the DiPerna-Lions
theory for transport equations with Sobolev coefficients (see [5,59-61]) and the optimality of the
Ladyzenskaya-Prodi-Serrin regularity criterion (see [17]).

(c) Ideal MHD

In the above examples the construction of weak solutions relied on (super-critical) scaling for the
perturbations, just below the compactness range. In particular the relaxation in each case turned
out to agree with the convex hull, no weakly continuous quantities remained. An interesting
example exhibiting a relaxation which on the one hand is constrained by weakly continuous
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quantities but on the other hand is still sufficiently rich to be able to adapt the techniques above
is provided by the ideal magnetohydrodynamic system (MHD in short). Here the incompressible
Euler equations are coupled with the Faraday system via Ohm’s law. The MHD system, with
nonzero viscosity and magnetic resistivity, is a widely accepted model for electrically conducting
fluids such as plasmas and liquid metals (see [45] and [71]). The ideal MHD system, where
kinematic viscosity and magnetic diffusivity is set to zero, contains a wealth of mathematical
structure [1] and can be written as

Opu+div(u®@u—B® B)+ Vp=0,
0tB+V x (B xu)=0, (3.8)
divu=div B=0,

Moreover, in analogy with the role of the incompressible Euler equations for hydrodynamical
turbulence, the ideal system is relevant in the inviscid, irresitive “turbulent” limit in the context
of weak solutions.

The three known conserved quantities for the ideal MHD system are the total energy &, cross-
helicity W and magnetic helicity H, defined as

1
Ew.B) =5 | fu+ B

W(u,B):J u- Bdz,
T3

H(B):J A-Bdx.

T3

Here A is a vector potential of B, so that curl A= B. In is well known and easy to verify that in
the periodic setting (or in contractible domains) H is well defined and does not depend on the
particular choice of potential. Thus, in analogy with the Euler equations, it is natural to study
weak solutions in the energy space, that is, solutions with u, B € L*(0, T} L? (11‘3)). In a recent
remarkable paper [3] the authors were able to construct, using a variant of convex integration,
non-trivial weak solutions in the energy space:

Theorem 3.3. There exist weak solutions u, B € L°°(0,T; L*(T?)) of the ideal MHD system (3.8) for
which none of the quantities £, VW or H are conserved in time.

The behaviour of formally conserved quantities in classes of weak solutions is of general
interest [53] and of particular relevance to MHD turbulence for the following reason. Whilst
anomalous dissipation (of total energy) is an observed feature of turbulent plasmas, similarly
to turbulent flows, it has also been observed that the dissipation rate of total energy is order
of magnitudes higher than the rate of change in total magnetic helicity, and, indeed, various
astrophysical plasmas tend to evolve toward a non-trivial force-free state V x B =aB, with
magnetic helicity given by the initial configuration. A cornerstone of the Woltjer-Taylor relaxation
theory [77,79] is thus the expectation that total magnetic helicity remains essentially constant
during the primary dissipation stage of energy, until an essentially minimal energy configuration
subject to given helicity is reached. A widely accepted mechanism for this process is magnetic
reconnection. On the level of mathematical analysis, one would thus expect [12] that a physically
relevant class of weak solutions of ideal MHD should reflect both the property of non-vanishing
energy dissipation rate and the property of conservation of magnetic helicity.

To obtain such a class of weak solutions, let us look again at the programme sketched above,
i.e. consider a sequence of solutions (uy, By) of (3.8), is the uniform bound

f2¥(|‘“k||L2(T3) + || BrllL2(r3)) <M (3.10)

10000000 V 008 "H "SUBLL lud Bi0'BulysgndAlaioosiesos-els) H



for some fixed M. Once again we ask the question: what equation will the weak L? limit
(uk, By) — (@, B) satisfy. In other words we would like to characterize the weak closure S C
X = L? x L? under the assumption that S consists of solutions of the ideal MHD system with the
uniform bound (3.10).

Since

OtBr +V X B, =0,
div B =0,
with electric field Ey = By, x ug, the uniform bound (3.10) implies also

sup || Egl[z1(3) < M. (3.11)
t<T

From this one may deduce for the associated vector potentials Ay,

sup sup (|| A | g1 (r3) + 10t Akl L1 (13)) < 00. (3.12)
k t<T

Applying the Aubin-Lions lemma one concludes strong convergence A — A in L2, and
consequently that H(By,) — H(B) (see [43] and [42], where the physically more relevant problem
of the inviscid limit is treated). In particular magnetic helicity remains stable under the weak
closure from S to S.

More generally and analogously to the passage from (3.1) to (3.3), we might ask for the
characterization of the Reynolds-type term R as well as the limiting electric field  in the system

Oi+div(e®@u—B®B+R)+Vp=0,
HB+V xE=0, (3.13)
diva=div B=0,

An interesting question in this context is to decide whether E - B =0 (as compared with the
original system (3.8), where E = B X u). Indeed, a formal calculation shows that

4348) :fzj B Bds

dt T3 '
so that orthogonality of B and E is key to helicity conservation. This is precisely the type of
question whose general study was pioneered in the work of Tartar and Murat. Indeed, we recall
the following version of the div-curl lemma [75,76]: Suppose we have a sequence of magnetic
and electric fields (Bg, E) — (B, E) converging weakly in LP x L”" and such that {V By}
and {0:By + V x E} are uniformly bounded in LP x LP". Then By, - Ej, = B - E in the space
of measures. Observe that, since Ej, = By X uy, the energy bound in (3.10) is not enough to put
us in this setting. On the other hand, for instance if we assume uniform bounds on (uy), (B)
in L?, then (E},) is bounded in L3/? and the div-curl lemma applies. A closely related result
in [51] is that in fact for any weak solution of (3.8) with v, B € L3 magnetic helicity is a conserved
quantity. In terms of the general framework sketched in Section 2 this implies that in the L? (and
in particular the bounded) setting the relaxed constitutive set K’ has empty interior, because
necessarily B - E = 0. Conversely, adding this condition to (3.13) leads to a relaxation of ideal
MHD which is consistent with the Woltjer-Taylor theory, and in particular to the following result
in [43]:

Theorem 3.4. There exist weak solutions u, B € L of the ideal MHD system (3.8) for which € and W
are not conserved in time, but magnetic helicity H remains constant.

Finally, to close this section we recall that, beside conditions for the conservation of magnetic
helicity, also the conservation of energy and cross-helicity have been studied in [12,51,78,80].
Conservation of the magnetic helicity was shown in [12] for solutions w, B which are Holder
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continuous in space with exponents 61,0z, respectively, with 61 4 20> > 1 (the statement is
actually more precisely formulated in Besov spaces). This type of analysis was very much
motivated by the analogous question of energy conservation for the Euler equations and
Onsager’s celebrated conjecture. This is the subject of the next section.

(d) The Onsager conjecture

A cornerstone of turbulence theory is the K41 scaling law of the energy spectrum and, closely
linked, the conjecture of Onsager on optimal Holder exponents of dissipative weak solutions of
the Euler equations. Let us recall briefly the mathematical statements.

One interesting byproduct of [30] is that there is a “systematic” way of constructing an exact
(albeit weak) L? solution which approximates a triple as (3.3). Think of uj in (3.1) as an exact
solution of Euler v which we want to be sufficiently close (in the weak topology of L?) to the
solution u of (3.3). Informally the paper [30] gives an algorithm to “eliminate” R and produce v
as a perturbation of u. Five years after [30], motivated by a celebrated conjecture by Lars Onsager,
in [32] we proposed a second algorithm which achieves the same, this time producing a continuous
solution.

Onsager suggested in his famous note [64] the possibility of anomalous dissipation for weak
solutions of the Euler equations as a consequence of Kolmogorov’s energy cascade. Even though
the theory of Kolmogorov is a statistical theory, dealing with random fields whose distribution
laws need to satisfy several postulates, Onsager stated his conjecture as a “pure PDE” that could
be studied directly and which, after nearly 70 years, we can finally state the theorem:

Theorem 3.5. Let (v, p) be a weak solution of (3.1) on the periodic 3-dimensional torus T with
(@, t) —v(y, )| <Clo—y|”  Va,y,t (3.14)

(where C'is a constant independent of x, y, t).

(a) If 6 > %, then E(t) is necessarily constant;
(b) For 6 < % there are solutions for which E(t) is strictly decreasing.

A first result in part (a) of Theorem 3.5 was fist achieved by Eyink in [40]. The exact statement
was then proved by Constantin, E, and Titi in [20] using a regularization procedure and a clever
and powerful, yet elementary, commutator estimate. Part (b) has been proved following a series of
partial results and gradual improvements [6,7,27,33], finally culminating in [48]. In [48] the author
was able to prove, for any 6 < 1/3, the existence of nontrivial solutions satisfying (3.14), which
are compactly supported in time. A construction, along the same lines of [48], of solutions which
have strictly decreasing E(t) has been later given in [8]. The regularity has been subsequently
improved on a logarithmic scale in [50], but the critical exponent § = 1/3 remains open (for the
critical result for part (a) see [15]).

In order to show Theorem 3.5 one needs to go beyond the general question of closure under
natural energy bounds, and the constructions involved in the proof as well as its implications
for stability and closure go well beyond the examples given in the previous paragraphs. To
emphasize this point, note that the Navier-Stokes with fractional dissipation

du+divu@u+ Vp=—(—A)%
(3.15)
divu=0

still has same compactness properties as the standard case, leading to weak stability of the
equations and existence of Leray-Hopf solutions. At the same time the techniques leading up
to Theorem 3.5 can be adapted to show existence (and non-uniqueness) for Leray-Hopf solutions
of (3.15), cf. [19,36]. In other words, for o < %, solutions (ug, py) of (3.15) under the natural “Leray
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bound” .
2
sup (nuk(-,t)np [

(=AY 2. (, T)||2L2d7> <M, (3.16)
0

enjoy weak stability (since the embedding H® — L?is compact, c.f. Section (b)), but can also be
produced using “convex integration” methods, a phenomenon which to our knowledge has not
been observed before in any other situation.

While the classical justification for the exponent % in Theorem 3.5 given in the physics
literature is based essentially on dimension analysis and, crucially, the law of finite energy
dissipation, the proof of Theorem 3.5 suggests an entirely different heuristics, which does not
rely on energy considerations.

The main mechanism to produce non-conservative solutions is in fact an algorithm which we
will present in the form of an iteration scheme. Assuming that we start with a sufficiently smooth!
(vo, po, Ro) = (u,p, R) as in (3.3), at each step of the iteration we add an oscillatory correction
in order to decrease the defect to being a solution. More precisely, we construct inductively a
sequence of smooth solutions (vq, pq, Rq), ¢=1,2,... to

Orvg + div(vg ® vg) + Vpg =div Ry,
(3.17)
divug =0,

such that vy — v and R4 — 0 uniformly.

We write vy 11 = vgq + wg+1 Where we think of vg as the “mean flow” on length-scales > A, !
and wg11 as a “fluctuation” on this scale. Up to lower order corrections wg41 should have the
form

Wq+1 (:U7 t) =W ("Uq(m’ t)7 Rq(m» t)7 A(]‘l’lxa )‘qult) ) (3.18)

where W (v, R,§,7) is some “master function” and Aq41 a parameter which increases at least
exponentially fast at each step.

The basic idea for reducing the error with such an ansatz is the following: assuming that vg is
already the correct solution up to spatial frequencies of order Ay, and w41 is supported on spatial
frequencies of order A, 1, it is easy to see that the only possibility for wq41 to correct the error Ry
is via the high-high to low interaction in the product wg41 ® wq4+1. We hope to “cancel R;” with
the latter interaction and achieve a new Reynolds stress R,.1 with Fourier support on frequencies
of order ;41 and much smaller size. In this way we can push the error to high frequencies (and
reduce its size) by successively “undoing” the averaging process leading to Reynolds stresses.

As explained in [34], starting from the ansatz (3.18) (and a similar one pgi1(z,t)=
P(vg(x,t), Rg(x,t), \gq+12, Ag+1)), it is possible to write down a family of “ideal” conditions that
W would have to satisfy so to give a “clean” iteration leading to a proof of Theorem 3.5(b). These
conditions are

o {—W(v, R, &, 7) is 2m-periodic with vanishing average, i.e.

1
o The average stress is given by R, i.e.
(WeW)=R. (3.20)

e W and P satisfy

0-W + v VeW + dive(W @ W) + VP =0
(3.21)
diveW =0.
Note that this is no serious restriction, as any triple (v, p, R) can be easily smoothed to a new triple still solving (3.3): in fact
there are several ways of doing this, given that the system is very much underdetermined.
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Assuming a W as above exists and it is smooth in all variables?, the best we can hope, in view of
(3.20) are bounds of the form

WIS IRIY?, 18.W| < RIV?, |9pW| <RIV, (322)

Assuming the existence of a such a profile W, the next stress tensor R, 1 would then be defined
through

Rypr = — div’! [9tvq+1 + div (vg41 ® vg41) + qu+1]

- div! [atwq—H +vg - Vwgy1 +div (wgt1 ® wgy1 — Re) + V(pg+1 — pq)]

=R,
—div? [wqﬂ . Vvq] (3.23)
=R,

where div ™! is a suitable operator of order —1 which inverts the divergence.
In order to gain an understanding of the size of the two terms R((I:)_l we can expand the

argument of the operator div~! in Fourier series in the fast variables, with coefficients which
depend on the slow variables. We illustrate this principle in the case of for the second term:

R =div™ [wqﬂ-wq]:div*1 S apla etk (3.24)
kEZB k40

The coefficients cy (z, t) vary much slower than the rapidly oscillating exponentials and moreover
the coefﬁcient co vanishes: this is in fact the content of condition (3.19). When we apply the
operator div™! we can therefore treat the ¢, as constants and gain a factor ﬁ in the outcome:
a typically “stationary phase argument”. The conditions (3.19) and (3.20) ensure that the same
argument can be applied when dealing with R«S _gl. (3.19) ensures that when the differential
operators hit the fast exponentials the resulting term vanishes, while (3.20) guarantees that the
Fourier expansion in the fast variables misses the zero frequency coefficient: (3.20) encodes the
high-high to low interaction with which the perturbation “cancels” Ry.
Returning to (3.24) observe that:

o Ifo, 1/2 /"1 is the size of the perturbation wq1, the condition (3.20) implies that the size of Ry
must be dg41;
e Since the frequency of the perturbation wyq is Aq, the size of Dvy is 5;/ 2)\q ;

o We thus expect the size of R( )1 to be 61/2 61/2/\(1)\[1_&1

We do not enter into similar considerations for the term R[(;L)lz it can be readily checked that,
under the above conditions, we can expect it to be of smaller size. Thus, in order to close the
iteration scheme we need the relation

1/2.1/2 Aq
dq" 79, <dg42.- 3.25
q q+1 )\q+1 > O0g+2 ( )
Assuming an exponential growth of the frequencies A\q = A\? and a related exponential decay of
the sizes 64 = A~299 it can be readily checked that (3.25) leads to the constraint

—ag—alg+1)+qg—(¢g+1)<—2a(q+2)

?In reality this family of conditions is somewhat naive and there is no such W which would satisfy the bound (3.22). The
main issue is in the advective part 9;vq 4+ v - V¢ W of equation (3.21). While it is not possible to accomodate (3.21) exactly,
the main idea around the problem is that the condition does not need to be fulfilled “exactly”, but we can allow for a suitable
error. In a nutshell all the literature leading from [32] to [48] (and its improvement [8]) has been an effort of making the latter
error as tame as possible.
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ie. a< % Since the C” size of the perturbation is 6;421)\5 , the critical threshold % appears

naturally for the Holder convergence of the sequence.

(e) The inviscid limit

Recalling that Kolmogorov’s theory pertains to the Navier-Stokes equations, a very appealing
question is: can we produce a sequence of solutions to (uq, pq) of

Orug + divug ® ug + Vpg = vgAug
(3.26)
divug =0

with viscosity 14 converging to 0, bounded kinetic energy and which converge to a dissipative
weak solution (u,p) of the Euler equations? As pointed out in [16,23,28], assuming a uniform
energy spectrum as in Kolmogorov, this is to be expected. A tempting conjecture would be that
at least some of the weak solutions of the Euler equations produced via the methods described in
the previous paragraphs can be approximated with solutions of the Navier-Stokes equations.

Remarkably, at the level of weak solutions of Navier-Stokes, this has been proved by
Buckmaster and Vicol in [10]. However, the solutions produced in [10] are highly irregular and,
more importantly, do not satisfy the stronger condition “a la Leray” (3.5). A totally open question
is thus whether any of the chaotic behavior witnessed by weak solutions of the Euler equations
can in fact be achieved by limits of Leray solutions of the Navier-Stokes equations with bounded
kinetic energy.

One possible way to phrase the latter question is the following. Consider the right hand
sides div R4 in the equation (3.17) produced by the iteration scheme described in the previous
paragraph. How far is such div R4 from v4Avg? Recall that the solutions produced by the scheme
are in fact smooth, and so if we were able to produce them so that div Rq = v4Avg, we would in
fact get a sequence of smooth solutions of Navier-Stokes.

At the qualitative level there are some remarkable similarities between the terms div Ry
generated by the proof of Theorem 3.5 and what the K41 theory predicts for the viscous
dissipation vqAugq. A first elementary observation is that v Avg = div vg(Dvg + quT ) and that
vg(Dvg + quT ) is a traceless symmetric tensor. These two properties can be shown to hold for
the tensors R, produced by pretty much all schemes following the one of [32].

A second observation is that, as already explained in the previous paragraph, along the
iteration leading to the proof of Theorem 3.5 the L sizes of Ry and vq are §,41 and 63/ ?, while

their typical length scale is \; '. Recalling that the Onsager threshold is given by §; = A, 2/ 3, the

size of Dvy is typically )\3/ 3 Since 5‘(‘5“ is expected to be constant, the size of Rq is Ay 2/3 and we
q

conclude that the relation Ry = vq(Dugq + Dug) would require vy = Ay 4/3 In other words, given
that ¢ = )\; _&{ 3 is the typical length of the latest correction, v4 would have to be the Kolmogorov’s
length scale. Thus the proof of Theorem 3.5 leads to a sequence of approximations of a dissipative
solution of Euler which can be interpreted as solutions to an “artificial viscosity” regularization:
with the latter interpretation, the scaling of this artificial viscosity is indeed the one predicted by
Kolmogorov’s theory®.

Clearly, such artificial viscosity misses much of the structure of the actual viscosity in (3.26).
For instance it misses the estimate (3.5). In fact smooth solutions of (3.26) satisfy the stronger
identity

2
|uq|

) aiv [ (L1l Dugl? = vy el 3.27
o +div TP |ug + vq|Dugl” =vq 5 (3.27)

3This is in fact not fully correct since the proof of Theorem 3.5 does not achieve the threshold 1 but rather gets ¢ close to it
for every positive .
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As remarked in [39], if u4 converge strongly in L? to some u, then the latter would be a weak
solution of incompressible Euler which satisfies the local energy inequality

2 2
aﬂ% + div (('% +p> u) <0. (3.28)

This suggests a stronger form of the Onsager conjecture, where the dissipative solution is required
to satisfy (3.28). The first such examples in the literature were given in [31], but the solutions in [31]
were only bounded. Holder weak solutions were first constructed by Isett in [49] and the Holder
regularity found in [49] has been later improved in [29], but these results are still relatively far
from the % threshold.

4. Conclusion

In this note we surveyed several results in the mathematical literature. First of all we highlighted
how the starting point for all of them is the natural question of weak stability of solutions of PDEs
under natural energy bounds. We then explained how a recent set of techniques can be used to:

o characterize weak limits which enjoy energy bounds;
o prove the optimality of some scaling laws derived in the theory of turbulence;
e provide a different heuristic for the latter.

Funding. CDL has been supported by the National Science Foundation under Grant No. DMS-1946175. LS
has been supported by the European Research Council under the European UniondAZs Horizon 2020 research
and innovation programme (grant agreement No.724298-DIFFINCL).

References

1. Arnold, VI, Khesin, B.A.: Topological methods in hydrodynamics. Applied Mathematical
Sciences, 125. Springer-Verlag, New York (1998)
2. BARDOS, C., GHIDAGLIA, J.-M., AND KAMVISSIS, S.
Weak convergence and deterministic approach to turbulent diffusion.
In Nonlinear wave equations (Providence, RI, 1998), vol. 263 of Contemp. Math. Amer. Math. Soc.,
2000, pp. 1-15.
3. BEEKIE, R., AND BUCKMASTER, T., AND VICOL, V.
Weak solutions of ideal MHD which do not conserve magnetic helicity.
arXiv:1907.10436
4. BRESSAN, A., AND FLORES, F.
On total differential inclusions.
Rend. Sem. Mat. Univ. Padova 92 (1994), 9-16.
5. BRUE, E., AND COLOMBO, M., AND DE LELLIS, C.
Positive solutions of transport equations and classical nonuniqueness of characteristic curves.
Arch. Ration. Mech. Anal. 240, 2 (2021), 10554A51090.
6. BUCKMASTER, T., AND DE LELLIS, C., AND ISETT, P., AND SZEKELYHIDI, L., JR.
Anomalous dissipation for 1/ 5-HAdilder Euler flows.
Ann. of Math. (2) 182, 1 (2015), 127-aAS172.
7. BUCKMASTER, T., AND DE LELLIS, C., AND SZEKELYHIDI, L., JR.
Dissipative Euler flows with Onsager-critical spatial regularity.
Comm. Pure Appl. Math. 69, 9 (2016), 1613-1670.
8. BUCKMASTER, T., AND DE LELLIS, C., AND SZEKELYHIDI, L., JR., AND VICOL, V.
Onsager’s conjecture for admissible weak solutions.
Comm. Pure Appl. Math. 72, 2 (2019), 29-274.
9. BUCKMASTER, T., AND SHKOLLER, S., AND VICOL, V.
Nonuniqueness of weak solutions to the SQG equation
Comm. Pure Appl. Math. 72,9 (2019), 1809-1874.
10. BUCKMASTER, T., AND VICOL, V.
Nonuniqueness of weak solutions to the Navier-Stokes equation
Ann of Math. (2) 189, 1 (2019), 101-144.

10000000 V 008 "H ‘SUBL] “lud Bio-BuiysigndAlaroosiesor-els)



11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

BURCZAK, J., AND MODENA, S., AND SZEKELYHIDI L. JR.

Non Uniqueness of power-law flows

arXiv:2007.08011

CAFLISCH, R.E., KLAPPER, I., STEELE, G.

Remarks on singularities, dimension and energy dissipation for ideal hydrodynamics and
MHD.

Comm. Math. Phys. 184, no. 2, 443-455 (1997)

CELLINA, A.

On the differential inclusion =’ € [-1, +1].

Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) 69, 1-2 (1980), 1-6 (1981).
CELLINA, A.

A view on differential inclusions.

Rendiconti del Seminario Matematico. Universitd e Politecnico Torino 63, 1974AS209 (2005).
CHESKIDOV, A., CONSTANTIN, P., FRIEDLANDER, S., AND SHVYDKOY, R.

Energy conservation and Onsager’s conjecture for the Euler equations.

Nonlinearity 21, 6 (2008), 1233-1252.

CHEN, G.-Q. AND GLIMM, ].

Kolmogorov’s theory of turbulence and inviscid limit of the Navier-Stokes equations in R?
Comm. Math. Physics 310, 1 (2012) 267-283.

CHESKIDOV, A., AND LUO, X.

Sharp nonuniqueness for the Navier-Stokes equations

arXiv:2009.06596

CHIODAROLI, E., DE LELLIS, C., AND KREML, O.

Global ill-posedness of the isentropic system of gas dynamics.

Comm. on Pure and Appl. Math. 68, (2015), 11573A$—1190.

CoLOMBO, M., AND DE LELLIS, C., AND DE ROSA, L.

IlI-posedness of Leray solutions for the hypodissipative Navier-Stokes equations.
Comm. Math. Phys. 362, 2 (2018), 659aAS-688.

CONSTANTIN, P., E, W., AND TIT1, E. S.

Onsager’s conjecture on the energy conservation for solutions of Euler’s equation.
Comm. Math. Phys. 165, 1 (1994), 207-209.

CONSTANTIN, P.,, MAJDA, A.]., AND TABAK, E.

Formation of strong fronts in the 2-D quasigeostrophic thermal active scalar.
Nonlinearity 7, 6 (1994), 1495-1533.

CORDOBA, D., FARACO, D., AND GANCEDO, F.

Lack of uniqueness for weak solutions of the incompressible porous media equation.
Arch. Ration. Mech. Anal. 200, 3 (2011), 725-746.

CONSTANTIN, P. AND VICOL, V.

Remarks on high Reynolds numbers hydrodynamics and the inviscid limit.

J. of Nonlinear Science 28, 2 (2018), 711-724.

DACOROGNA, B., AND MARCELLINI, P.

General existence theorems for Hamilton-Jacobi equations in the scalar and vectorial cases.
Acta Math. 178 (1997), 1-37.

DAFERMOS, C. M.

The entropy rate admissibility criterion for solutions of hyperbolic conservation laws.

J. Differential Equations 14 (1973), 202-212.

DAFERMOS, C. M.

Hyperbolic conservation laws in continuum physics, vol. 325 of Grundlehren der Mathematischen
Wissenschaften [Fundamental Principles of Mathematical Sciences].

Springer-Verlag, Berlin, 2000.

DANERI, S., AND SZEKELYHIDI, L., JR.

Non-uniqueness and h-principle for Hider-continuous weak solutions of the Euler equations.
Arch. Ration. Mech. Anal. 224, 2 (2017), 471-514.

DRivAs T. D. AND EYINK G. L.

An Onsager singularity theorem for Leray solutions of incompressible Naviera ASStokes
Nonlinearity 32, 11 (2019) 44-65.

DE LELLIS, C., AND KWON, H.

On Non-uniqueness of Holder continuous globally dissipative Euler flows
arXiv:2006.06482

10000000 V 008 "H "SUBLL lud Bi0'BulysgndAlaioosiesos-els)



30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

DE LELLIS, C., AND SZEKELYHIDI, L., JR.

The Euler equations as a differential inclusion.

Ann. of Math. (2) 170, 3 (2009), 1417-1436.

DE LELLIS, C., AND SZEKELYHIDI, L., JR.

On admissibility criteria for weak solutions of the Euler equations.

Arch. Ration. Mech. Anal. 195, 1 (2010), 225-260.

DE LELLIS, C., AND SZEKELYHIDI, L., JR.

Dissipative continuous Euler flows.

Invent. Math. 193, 2 (2013), 377-407.

DE LELLIS, C., AND SZEKELYHIDI, L., JR.

Dissipative Euler flows and Onsager’s conjecture.

J. Eur. Math. Soc. (JEMS) 16,7 (2014), 1467-4AS1505

DE LELLIS, C., AND SZEKELYHIDI, L., JR.

High dimensionality and h-principle in PDE.

Bull. Amer. Math. Soc. (N.S.) 54, 2 (2017), 247-282.

DELORT, J.-M.

Existence de nappes de tourbillon en dimension deux.

J. Amer. Math. Soc. 4, 3 (1991), 553-586.

DE ROsA, L.

Infinitely many Leray-Hopf solutions for the fractional Navier-Stokes equations.
Comm. Partial Differential Equations 44, 4 (2019), 335-365.

DIPERNA, R.J.

Compensated compactness and general systems of conservation laws.

Trans. Amer. Math. Soc. 292, 2 (1985), 383-420.

DIPERNA, R. J., AND MAJDA, A.].

Oscillations and concentrations in weak solutions of the incompressible fluid equations.
Comm. Math. Phys. 108, 4 (1987), 667-689.

DUCHON, J., AND ROBERT, R.

Inertial energy dissipation for weak solutions of incompressible Euler and Navier-Stokes
equations.

Nonlinearity 13, 1 (2000), 249-255.

EYINK, G. L.

Energy dissipation without viscosity in ideal hydrodynamics. I. Fourier analysis and local
energy transfer.

Phys. D 78, 3-4 (1994), 222-240.

EYINK, G. L., AND SREENIVASAN, K. R.

Onsager and the theory of hydrodynamic turbulence.

Reviews of Modern Physics 78 (2006).

FARACO, D. AND LINDBERG, S.

Proof of TayloraAZs Conjecture on Magnetic Helicity Conservation.

Comm. Math. Phys. 373, 707aAS738 (2020).

FARACO, D., LINDBERG, S. AND SZEKELYHIDI, L. JR.

Bounded Solutions of Ideal MHD with Compact Support in Space-Time.

Arch. Rat. Mech. Anal. 239, 51aAS93 (2020).

FriscH, U.

Turbulence. The legacy of A. N. Kolmogorov

Cambridge University Press, Cambridge, 1995.

GERBEAU, J.-F., AND LE Bris, C., AND LELIEVRE, T.

Mathematical methods for the magnetohydrodynamics of liquid metals.
Numerical Mathematics and Scientific Computation, Oxford University Press, Oxford, 2006.
GROMOV, M.

Partial differential relations, vol. 9 of Ergebnisse der Mathematik und ihrer Grenzgebiete (3).
Springer-Verlag, Berlin, 1986.

HAIRER, M., AND MATTINGLY, J. C.

Ergodicity of the 2D Navier-Stokes equations with degenerate stochastic forcing
Ann. of Math. (2) 164 (2006), 993-1032

ISETT, P.

A proof of Onsager’s conjecture.

Ann. of Math. (2) 188, 3 (2018), 871-963.

10000000 V 008 "H ‘SUBL] “lud Bio-BuiysigndAlaroosiesor-els)



49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

ISETT, P.

Nonuniqueness and existence of continuous, globally dissipative Euler flows.
arXiv:1710.11186 [math.AP].

ISETT, P.

On the endpoint regularity in OnsageraAZs conjecture.

arXiv:1706.01549 [math.AP].

KANG, E. AND LEE, J.,

Remarks on the magnetic helicity and energy conservation for ideal magneto-hydrodynamics,
Nonlinearity, 20 (2007), 11 26812689,

KIRCHHEIM, B.

Rigidity and Geometry of microstructures.

Habilitation thesis, University of Leipzig, 2003.

KLAINERMAN, S.

On NashaAZs unique contribution to analysis in just three of his papers.

Bull. AMS 54, 283aAS305 (2016).

KUKSIN, SERGEI AND SHIRIKYAN, ARMEN,

Mathematics of two-dimensional turbulence,

Cambridge Tracts in Mathematics, 194 (2012)

Cambridge University Press, Cambridge

LAX, P. D.

The zero dispersion limit, a deterministic analogue of turbulence.

Comm. Pure Appl. Math. 44, 1047aAS1056 (1991).

LERAY, J.

Sur le mouvement d"un liquide visqueux emplissant I'espace

Acta Math. 63,1 (1934), 193-248.

Vicol HOLMES, P., AND LUMLEY, J. L., AND BERKOOZ, G.

Turbulence, coherent structures, dynamical systems and symmetry

Cambridge Monographs on Mechanics. Cambridge University Press, Cambridge, 1996.
Luo, T. AND TiIT1, E. S.

Non-uniqueness of weak solutions to hyperviscous Navier-Stokes equations: on sharpness of
J.-L. Lions exponent

Calc. Var. Partial Differential Equations, 59 (2020), no. 3.

MODENA, S., AND SATTIG, G.

Convex integration solutions to the transport equation with full dimensional concentration.
Ann. Inst. H. PoincarAl' Anal. Non Lin’eaire 37, 5 (2020).

MODENA, S., AND SZEKELYHIDI, L. JR.

Non-uniqueness for the transport equation with Sobolev vector fields.

Ann. PDE 4,2 (2018).

MODENA, S., AND SZEKELYHIDI, L. JR.

Non-renormalized solutions to the continuity equation.

Calc. Var. Partial Differential Equations 58, 6 (2019).

MULLER, S., AND SVERAK, V.

Convex integration for Lipschitz mappings and counterexamples to regularity.

Ann. of Math. (2) 157, 3 (2003), 715-742.

VON NEUMANN, J.

Recent Theories of Turbulence.

Collected Works (1963).

ONSAGER, L.

Statistical hydrodynamics.

Nuovo Cimento (9) 6, Supplemento, 2(Convegno Internazionale di Meccanica Statistica) (1949),
279-287.

DIENING, L. AND RUZICKA, M. AND WOLE, J.,

EXISTENCE OF WEAK SOLUTIONS FOR UNSTEADY MOTIONS OF GENERALIZED NEWTONIAN
FLUIDS

Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 9 (2010) no. 1, 1-46.

SCHEFFER, V.

An inviscid flow with compact sVicolupport in space-time.

J. Geom. Anal. 3, 4 (1993), 343-401.

10000000 V 008 "H ‘SUBL] “lud Bio-BuiysigndAlaroosiesor-els)



67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

77.

78.

79.

80.

SHNIRELMAN, A.

On the nonuniqueness of weak solution of the Euler equation.

Comm. Pure Appl. Math. 50,12 (1997), 1261-1286.

SHNIRELMAN, A.

Weak solutions with decreasing energy of incompressible Euler equations.
Comm. Math. Phys. 210, 3 (2000), 541-603.

SHVYDKOY, R.

Lectures on the Onsager conjecture.

Discrete Contin. Dyn. Syst. Ser. S 3, 3 (2010), 473—-496.

SHVYDKOY, R.

Convex integration for a class of active scalar equations.

J. Amer. Math. Soc. 24, 4 (2011), 1159-1174.

Sermange, M., Temam, R.: Some mathematical questions related to the MHD equations.
Comm. Pure Appl. Math. 36, no. 5, 635-664 (1983)

SZEKELYHIDI, JR., L.

Weak solutions to the incompressible Euler equations with vortex sheet initial data.
C. R. Acad. Sci. Paris Sér. I Math. 349, 19-20 (2011), 1063-1066.

SZEKELYHIDI, JR., L.

Relaxation of the incompressible porous medium equation.

Ann. Sci. Ec. Norm. Sup. (4) 45, 3 (2012), 491-509.

SZEKELYHIDI, JR., L., AND WIEDEMANN, E.

Young measures generated by ideal incompressible fluid flows.

Arch. Rat. Mech. Anal. 206, 1 (2012), 333-366.

TARTAR, L.

Compensated compactness and applications to partial differential equations.
In Nonlinear analysis and mechanics: Heriot-Watt Symposium, Vol. IV, vol. 39 of Res. Notes in Math.
Pitman, Boston, Mass., 1979, pp. 136-212.

TARTAR, L.

Compensation effects in partial differential equations.

Rend. Accad. Naz. Sci. XL Mem. Mat. Appl. (5), 29, 395-453 (2005)

TAYLOR, J.B.

Relaxation of toroidal plasma and generation of reverse magnetic fields.
Phys. Rev. Lett. 33, (1974) 1139-1141.

WANG, Y., ZUO, B.

Energy and cross helicity conservation for the three-dimensional ideal MHD equartions in
bounded domain.

arxiv:1811.00411

WOLTJER, L.

A theorem on force-free magnetic fields.

Proc. Natl. Aca. Sci. USA 44, 6 (1958)

YU, X.

A note on the energy conservation of the ideal MHD equations.

Nonlinearity 22, 4 (2009), 913-922

10000000 V 008 "H "SUBLL lud Bi0'BulysgndAlaioosiesos-els) H



	1 Introduction
	2 Weak convergence as a mathematical tool of averaging
	(a) Tartar's framework
	(b) Differential inclusions

	3 Examples
	(a) The Euler equations
	(b) The Navier-Stokes equations
	(c) Ideal MHD
	(d) The Onsager conjecture
	(e) The inviscid limit

	4 Conclusion
	References

