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Abstract. We show that for any α ă 1
7

there exist α-Hölder continuous weak solutions of the
three-dimensional incompressible Euler equation, which satisfy the local energy inequality and
strictly dissipate the total kinetic energy. The proof relies on the convex integration scheme
and the main building blocks of the solution are various Mikado flows with disjoint supports in
space and time.

1. Introduction

In this work, we consider the Cauchy problem for the incompressible Euler equations on the
spatially periodic domain r0, T s ˆ T3,

#

Btv `∇ ¨ pv b vq `∇p “ 0

∇ ¨ v “ 0.
(1.1)

where T3 “ r´π, πs3 and 0 ă T ă 8. The Euler equations describe the motion of an ideal
volume-preserving fluid: v : r0, T s ˆ T3 Ñ R3 represents the velocity of the fluid and p :
r0, T s ˆ T3 Ñ R the pressure.

A distributional solution of (1.1) is a solenoidal vector field v P L2pr0, T s ˆ T3;R3q for which
the first equation (the momentum equation) holds distributionally (i.e. the distributional curl
of Btv ` ∇ ¨ pv b vq vanishes). The pressure is the unique (up to a time-dependent constant)
solution of ∆p “

ř

ij B
2
ijpvivjq. A globally dissipative Euler flow is a distributional solution which

belongs L3pr0, T s ˆ T3q and satisfies additionally the local energy inequality

Bt

ˆ

|v|2

2

˙

`∇ ¨
ˆˆ

|v|2

2
` p

˙

v

˙

ď 0 (1.2)

in the sense of distributions (note that, by the classical Calderon-Zygmund inequality, p P

L3{2pr0, T s ˆ T3q and hence p|v|2 is well defined). Integrating the latter inequality in space, we
derive that the global kinetic energy of the solution is nondecreasing:

d

dt

ż

|v|2

2
pt, xq dx ď 0 . (1.3)

In order to motivate the energy inequality, we recall the well-known fact that smooth solutions
satisfy the local energy equality, namely

Bt

ˆ

|v|2

2

˙

`∇ ¨
ˆˆ

|v|2

2
` p

˙

v

˙

“ 0 , (1.4)

which can be derived by scalar multiplying the momentum equation and making some standard
calculus manipulations. Correspondingly, smooth solutions preserve the total kinetic energy,
namely

ż

|v|2

2
px, tq dx ” const . (1.5)
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Next, consider “suitable” weak solutions of the Navier-Stokes equation
#

Btv `∇ ¨ pv b vq `∇p “ ε∆v

∇ ¨ v “ 0 ,
(1.6)

as defined in the celebrated work of Caffarelli, Kohn and Nirenberg [7]. The latter are distribu-
tional solutions in L8pr0, T s;L2pT3qq X L2pr0, T s;W 1,2pT3qq which satisfy a corresponding local
energy inequality

Bt

ˆ

|v|2

2

˙

`∇ ¨
ˆˆ

|v|2

2
` p

˙

v

˙

ď ε

ˆ

∆
|v|2

2
´ |Dv|2

˙

and hence a corresponding integrated form

d

dt

ż

|v|2

2
ď ´ε

ż

|Dv|2 . (1.7)

Such suitable weak solutions can be proven to exist for any given L2 (divergence-free) initial and,
thanks to the theory developed in [7], are regular outside of a compact set with zero Hausdorff
one-dimensional measure. If, as ε Ó 0, they were to converge strongly in L3 to a solution of the
Euler equation, the latter would be globally dissipative.

After a series of developments in the field, see [13, 14, 15, 1, 4, 2, 3, 5, 10, 19], Isett solved in
[18] a famous Conjecture of Lars Onsager in the theory of fully developed turbulence (cf. [21])
showing that for every α ă 1

3 there are α-Hölder solutions of (1.1) for which (1.5) fails. Slightly
after, Isett’s result was improved in [6] by Buckmaster, the first author, Székelyhidi and Vicol,
who showed the existence of α-Hölder solutions in the Onsager range for which (1.3) holds with
a strict inequality. As a rigorous mathematical validation of the classical Kolmogorov’s theory
of turbulence, it would be rather interesting if one could show that some of these dissipative
solutions can be recovered as strong limits of suitable weak solutions vk of the Navier-Stokes
equations with vanishing εk, since such a sequence would display anomalous dissipation, i.e.

lim inf
kÒ8

εk

ż T

0

ż

|Dvk|
2pt, xq dx dt ą 0

for some finite time T ą 0. However, as observed by Isett in [17], a strong limit of suitable
weak solutions of (1.6) would necessarily satisfy the local energy inequality (at least if the
convergence were to be in the L3 topology). This naturally motivates a stronger version of the
Onsager conjecture, namely the existence of α-Hölder globally dissipative solutions of the Euler
equations (i.e. satisfying (1.1) and (1.2)) for which

ż

|v|2

2
pT, xq dx ă

ż

|v|2

2
p0, xq dx . (1.8)

The first author and László Székelyhidi produced the first bounded examples in [11], while
Isett in [17] has recently provided the first Hölder examples. In this paper we improve upon the
regularity obtained by Isett, even though we are still relatively far from the conjectural threshold
1
3 :

Theorem 1.1. For any 0 ď β ă 1
7

1 there are globally dissipative weak solutions v to the Euler

equation (1.1) in Cβpr0, T s ˆ T3q for which (1.8) holds.

As it is the case of [17] (and in fact of any “convex integration” arguments starting from
[12, 13]) a byproduct of the construction is that neither (1.2) nor (1.4) are enough to restore
uniqueness of weak solutions.

1For the reason for the restriction, we refer to Section 10.
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Theorem 1.2. For any 0 ď β ă 1
7 , we can find infinitely many time-global weak solutions v

to the Euler equation (1.1) in Cβpr0, T s ˆ T3q which have zero mean, satisfy the local energy
equality (1.4) and share the same initial data.

While the statement above imposes (1.4), which is clearly stronger than (1.2), it is not difficult
to modify our arguments to produce an analogous example of infinitely many distinct globally
dissipative weak solutions with the same initial data and such that (1.8) holds.

2. Outline of the proof

We construct globally dissipative Euler flows approximated by sequences of dissipative Euler-
Reynolds flows, introduced in [17].

Definition 2.1 (Dissipative Euler-Reynolds flows). A tuple of smooth tensors pv, p,R, ϕq is a
dissipative Euler-Reynolds flow with global energy loss Eptq if the tuple solves the Euler-Reynolds
system with the Reynold-stress R` E

3 Id and the relaxed local energy equality:
$

’

&

’

%

Btv `∇ ¨ pv b vq `∇p “ ∇ ¨
`

R` E
3 Id

˘

“ ∇ ¨R
∇ ¨ v “ 0

Bt
`

1
2 |v|

2
˘

`∇ ¨
``

1
2 |v|

2 ` p
˘

v
˘

“ Dt

`

1
2 trR` E

2

˘

`∇ ¨ pRvq `∇ ¨ ϕ,
(2.1)

where the advective derivative Dt is Dt “ Bt ` pv ¨ ∇q and p∇ ¨ Rqj “ BiRij . Even though it
is not really essential for our arguments, to be consistent with the term dissipative, we assume
that E1 ď 0. Note moreover that the addition of a constant to E. We will therefore impose

Ep0q “ 0 (2.2)

and observe that, as a consequence,

0 ě Eptq “
1

2

ż

|v|2px, tq dx´
1

2

ż

|v|2px, 0q dx (2.3)

(which thus justifies the term energy loss).

It is obvious that when R, ϕ are all zero, pv, pq becomes a globally dissipative Euler flow
(and the requirement E1 ď 0 is used only in this simple conclusion). The form of the errors are
motivated by writing the Euler equations and the local energy equality in terms of the averaged
(in space) pair of a given globally dissipative Euler flows.

2.1. Induction scheme. The proof of the main theorem is based on an iterative procedure,
similarly to all the literature which came out after the works [13, 14], which introduced the
“Euler-Reynolds flows”, namely the system of PDEs consisting of the first two equations in
(2.1). The idea to handle the local energy inequality by adding the third equation and the
unknown ϕ is instead a notable contribution of [17]. In the inductive procedure we assume to
have a tuple pvq, pq, Rq, ϕqq solving (2.1) for which the “error pRq, ϕqq” is suitably small. At
the step q ` 1 we aim at finding a new dissipative Euler-Reynolds flow with reduced error is
substantially reduced compared to that of step q. This is accomplished by adding a suitable
correction pwq`1,

˝
qq`1q to the velocity and pressure pvq, pqq, namely defining vq`1 “ vq ` wq`1

and pq`1 “ pq `
˝
qq`1 so that the new error pRq`1, ϕq`1q (which roughly speaking is determined

by the equations) is sensibly smaller than pRq, ϕqq. The precise statement is given in Proposition
2.3.

First of all for q P N (where we use the convention that 0 P N) we introduce the frequency λq

and the amplitude δ
1
2
q of the velocity vq, which have the form

λq “ rλ
pbqq
0 s, δq “ λ´2α

q ,
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where α is a positive parameter smaller than 1 and b and λ0 are real parameters larger than 1
(however, while b will be typically chosen close to 1, λ0 will be typically chosen very large). In

particular δ
1
2
q λq is a monotone increasing sequence.

In the induction hypothesis, we will assume several estimates on the tuple pvq, pq, Rq, ϕqq. For
technical reasons, the domains of definition of the tuples is changing at each step and it is given
by r´τq´1, T ` τq´1s ˆ T3, where τ´1 “ 8 and for q ě 0 the parameter τq is defined by

τq “

ˆ

C0Mλ
1
2
q λ

1
2
q`1δ

1
4
q δ

1
4
q`1

˙´1

for some geometric constant C0 and M (which will specified later in (3.9) and Proposition
2.3, respectively). Note the important fact that τq is decreasing in q. In order to shorten our
formulas, it is convenient to introduce the following notation:

‚ I ` σ is the concentric enlarged interval pa´ σ, b` σq when I “ ra, bs;
‚ }Fq}N is the C0

t C
N
x norm of Fq on its domain of definition, namely

}Fq}N :“ }Fq}C0pr0,T s`τq´1;CN pT3qq .

We are now ready to detail the inductive estimates:

}vq}0 ď 1´ δ
1
2
q , }vq}N ďMλNq δ

1
2
q , }pq}N ď λNq δq, N “ 1, 2, (2.4)

and

}Dtpq}N´1 ď δ
3
2
q λ

N
q , (2.5)

}Rq}N ď λN´3γ
q δq`1, }DtRq}N´1 ď λN´3γ

q δ
1
2
q δq`1, N “ 0, 1, 2 (2.6)

}ϕq}N ď λN´3γ
q δ

3
2
q`1, }Dtϕq}N´1 ď λN´3γ

q δ
1
2
q δ

3
2
q`1, N “ 0, 1, 2 (2.7)

where Dt “ Bt ` vq ¨∇ and γ “ pb´ 1q2.

Remark 2.2. Throughout the rest of the paper we will typically estimate }F }N and }DtF }N´1

for several functions, vectors and tensors F . However, in a writing like (2.6) and (2.7), for N “ 0
we are not claiming any negative Sobolev estimate on DtF : the reader should just consider the
advective derivative estimate to be an empty statement when N “ 0. The reason for this
convention is just to make the notation easier, as we do not have to state in a separate line the
estimate for }F }0 in many future statements.

It seems natural to impose that E
3 Id has a size comparable to R0 and require

}E}0 ď δ1

}E1}0 ď δ
1
2
0 δ1 ,

where we abuse notation and write }F }0 “ }F }C0pRq for a time function F . As we already
discussed the dissipative Euler-Reynolds system is invariant under addition to E of a constant
and we adopt the normalization condition Ep0q “ 0. We will therefore assume

Ep0q “ 0 , E1 ď 0 and }Epnq}0 ď δ
n
2
0 δ1 @n “ 0, 1. (2.8)

Under this setting, the core inductive proposition is given as follows.

Proposition 2.3 (Inductive proposition). There exists a geometric constant Mą 1 and func-
tions b̄pαq ą 1 and Λ0pα, b,Mq ą 0 such that the following property holds. Let α P p0, 1

7q,

b P p1, b̄pαqq and λ0 ě Λ0pα, b,Mq and assume that a tuple of tensors pvq, pq, Rq, ϕqq is a dis-
sipative Euler-Reynolds flow defined on the time interval r0, T s ` τq´1 satisfying (2.4)-(2.7) for
an energy loss Eptq satisfying (2.8). Then, we can find a corrected dissipative Euler-Reynolds
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flow pvq`1, pq`1, Rq`1, ϕq`1q on the time interval r0, T s` τq for the same energy loss Eptq which
satisfies (2.4)-(2.7) for q ` 1 and

}vq`1 ´ vq}0 `
1

λq`1
}vq`1 ´ vq}1 ďMδ

1
2
q`1. (2.9)

While the latter proposition would be enough to prove Theorem 1.1, we will indeed need a
technical refinement in order to show Theorem 1.2. We have decided to state such refinement
separately in order to improve the readability of our paper. In its statement we will need the
following convention:

‚ given a function f on r0, T s ˆ T3, supptpfq will denote its temporal support, namely

supptpfq :“ tt : D x with fpt, xq ‰ 0u .

‚ given an open interval I “ ra, bs, |I| will denote its length pb´ aq and I ` σ will denote
the concentric enlarged interval pa´ σ, b` σq.

Proposition 2.4 (Bifurcating inductive proposition). Let the geometric constant Mą 1, the
functions b̄, Λ0, the parameters α, b, λ0 and the tuple pvq, pq, Rq, ϕqq be as in the statement of
Proposition 2.3. For any time interval I Ă p0, T q with |I| ě 3τq we can produce a first tuple

pvq`1, pq`1, Rq`1, ϕq`1q and a second one pṽq`1, p̃q`1, R̃q`1, ϕ̃q`1q which share the same initial
data, satisfy the same conclusions of Proposition 2.3 and additionally

}vq`1 ´ ṽq`1}C0pr0,T s;L2pT3qq ě δ
1
2
q`1, supptpvq`1 ´ ṽq`1q Ă I. (2.10)

Furthermore, if we are given two tuples pvq, pq, Rq, ϕqq and pṽq, p̃q, R̃q, ϕ̃qq satisfying (2.4)-(2.7)
and

supptpvq ´ ṽq, pq ´ p̃q, Rq ´ R̃q, ϕq ´ ϕ̃qq Ă J

for some interval J Ă p0, T q, we can exhibit corrected counterparts pvq`1, pq`1, Rq`1, ϕq`1q and

pṽq`1, p̃q`1, R̃q`1, ϕ̃q`1q again satisfying the same conclusions of Proposition 2.3 together with
the following control on the support of their difference:

supptpvq`1 ´ ṽq`1, pq`1 ´ p̃q`1, Rq`1 ´ R̃q`1, ϕq`1 ´ ϕ̃q`1q Ă J ` pλqδ
1
2
q q
´1. (2.11)

2.2. Proof of Theorem 1.2. In this argument we assume T ě 20. Fix β ă 1
7 and α P pβ, 1

7q.
Then, choose b and λ0 in the range suggested in Proposition 2.3. We take E ” 0 and we start
with

pv0, p0, R0, ϕ0q “ p0, 0, 0, 0, 0q .

It is easy to see that it solves (2.1) and satisfies (2.4)-(2.7). Now, the conclusion of Proposition
2.3 would be trivial in this case, since we could simply define pv1, p1, R1, ϕ1q to be identically 0.
Nonetheless, consider any sequence of solutions pvq, pq, Rq, ϕqq to (2.1) and satisfying (2.4)-(2.7)
and (2.9). Since the sequence tvqu also satisfies (2.9), it is Cauchy in C0pr0, T s;CαpT3qq. Indeed,
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for any q ă q1, we have the following estimates2

}vq1 ´ vq}C0pr0,T s;CαpT3qq ď

q1´q
ÿ

l“1

}vq`l ´ vq`l´1}C0pr0,T s;CβpT3qq

À

q1´q
ÿ

l“1

}vq`l ´ vq`l´1}
1´β
0 }vq`l ´ vq`l´1}

β
1

À

q1´q
ÿ

l“1

λβq`1δ
1
2
q`1 “

q1´q
ÿ

l“1

λβ´αq`1 Ñ 0,

as q goes to infinity because of β´α ă 0. Therefore, we obtain its limit v in C0pr0, T s;CαpT3qq.
Also, we note that pq solves ∆pq “ div divpRq ´ vq b vqq. By using the convergence of vq
in C0pr0, T s;CαpT3qq to v (and that of Rq to 0 in C0pr0, T s;CαpT3qq: note that an analogous
interpolation argument can be used for Rq as well), we can obtain a mean-zero pressure p as
the limit of pq in C0pr0, T s;CαpT3qq, by Schauder estimates. Since pRq, ϕqq converges to 0 in
C0pr0, T s ˆ T3q, the limit pv, pq solves the Euler equation (1.1) and satisfies the local energy
equality (1.4) in the distributional distribution. Estimating

}Btvq}0 ď }vq}0}Dvq}0 ` }Dpq}0 ` }DRq}0 ,

the time regularity of v can be concluded with an analogous interpolation argument. Alterna-
tively it follows from the general results of [16] (see also [8] for a different argument). Hence
v P Cαpr0, T s ˆ T3q. We mention in passing that the pressure can be shown to belong to C2α

(in time and space): this can be concluded again by interpolation as done above or it can be
inferred from the general results of [16, 8].

On the other hand, fix q̄ P N satisfying bq̄ ě q̄. At the q̄th step using Proposition 2.4 we
can produce two distinct tuples, one which we keep denoting as above and the other which we
denote by pṽq, p̃q, R̃q, ϕ̃qq and satisfies (2.10), namely

}ṽq̄ ´ vq̄}C0pr0,T s;L2pT3qq ě δ
1
2
q , supptpvq ´ ṽqq Ă I ,

with I “ p10, 10 ` 3τq̄´1q. Applying now the Proposition 2.3 iteratively, we can build a new

sequence pṽq, p̃q, R̃q, ϕ̃qq of approximate solutions which satisfy (2.4)-(2.9) and (2.11), inductively.
Arguing as above, this second sequence converges to a solution pṽ, p̃q to the Euler equation (1.1)
satisfying (1.4). Indeed, ṽ P Cβpr0, T s ˆ T3q. We remark that for any q ě q̄,

supptpvq ´ ṽqq Ă I `
8
ÿ

q“q̄

pλqδ
1
2
q q
´1 Ă r9, T s,

(by adjusting λ0 to be even larger than chosen above, if necessary), and hence ṽq shares initial
data with vq for all q. As a result, two solutions ṽq and vq have the same initial data. However,

2Here and in the rest of the note, given two quantities Aq and Bq depending on the induction parameter
q we will use the notation A À B meaning that A ď CB for some constant C which is independent of q. In
some situations we will need to be more specific and then we will explicitely the depndence of C on the various
parameters involved in our arguments.
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the new solution ṽ differs from v because

}v ´ ṽ}C0pr0,T s;L2pT3qq ě }vq̄ ´ ṽq̄}C0pr0,T s;L2pT3qq ´

8
ÿ

q“q̄

}vq`1 ´ vq ´ pṽq`1 ´ ṽqq}C0pr0,T s;L2pT3qq

ě }vq̄ ´ ṽq̄}C0pr0,T s;L2pT3qq ´ p2πq
3
2

8
ÿ

q“q̄`1

p}vq`1 ´ vq}0 ` }ṽq`1 ´ ṽq}0q

ě δ
1
2
q̄ ´ 2p2πq

3
2M

8
ÿ

q“q̄

δ
1
2
q`1 ą 0.

The last inequality follows from adjusting λ0 to a larger one if necessary. By changing the choice
of time interval I and the choice of q̄, we can easily generate infinitely many solutions.

2.3. Proof of Theorem 1.1. Fix β ă 1
7 and as above choose α P pβ, 1

7q. In order to prove Theo-
rem 1.1 it suffices to produce a nonzero E which satisfies (2.8) and a starting tuple pv0, p0, R0, ϕ0q

which satisfies (2.1)-(2.7). In fact, arguing as in the previous section we can use inductively
Proposition 2.3 to produce a sequence pvq, pqq which is converging uniformly to a Cα solution
pv, pq of the Euler equations on [0,T] for which, additionally, the identity

Bt
|v|2

2
`∇ ¨

ˆˆ

|v|2

2
` p

˙

v

˙

“ E1

holds. Since any time-dependent function χ P C8c pp0, T qq would be an admissible test function,
we conclude

´

ż 8

0
Btχ

ż

T3

|v|2

2
pt, xq dx dt “

ż 8

0
E1ptqχptq dt .

Given that E is C1, the latter implies that the total kinetic energy is a C1 function and it in
facts coincides with E up to a constant, namely

ż

T3

|v|2

2
pT, xq dx´

ż

T3

|v|2

2
p0, xq dx “ EpT q ´ Ep0q.

On the other hand Ep0q “ 0, E1 ď 0 and E is not identically 0. In particular EpT q ´ Ep0q ă 0.
We are thus left with the task of finding a suitable E and a starting tuple. E will be assumed

to be smooth. We fix an integer parameter λ̄ ą 0 (which will be chosen appropriately later) and
define

p0 “ 0, ϕ0 “ 0,

v0 “ p1´ 2δ
1
2
0 ` Eptqq

1
2 pcos λ̄x3, sin λ̄x3, 0q

and

R0 :“ λ̄´1 d

dt
p1´ 2δ

1
2
0 ` Eptqq

1
2

¨

˝

0 0 sin λ̄x3

0 0 ´ cos λ̄x3

sin λ̄x3 ´ cos λ̄x3 0

˛

‚ .

Note that, by assuming λ0 large enough, 0 ď δ0 ´ δ1 ď 2δ
1
2
0 ´ Eptq ď 3δ

1
2
0 ď

1
2 and thus v0 and

R0 are well defined and smooth, since

1´ 2δ
1
2
0 ` Eptq ě

1

2
. (2.12)

Moreover, it is easy to check that the tuple satisfies (2.1), and (2.7). Our task is therefore to
show that we can choose a nontrivial E and a λ̄ so to satisfy all the estimates (2.4) and (2.6).

We start recalling that E ď 0 and estimating

}v0}N ď p1´ 2δ
1
2
0 q

1
2 λ̄N ,
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which implies that (2.4) is satisfied as soon as

λ̄ ď λ0δ
1
2
0 . (2.13)

As for (2.6) we estimate

}R0}N ď Cλ̄N´1}E1}0

}DtR0}N “ }BtR0}N ď Cλ̄N´1p}E2}0 ` }E
1}20q ,

where C is a geometric constant. Considering that by (2.13) we already have λ̄ ď λ0 and that

}E1}0 ď δ
1
2
0 δ1 by assumption (and hence }E1}20 ď δ0δ

2
1 ď δ0δ1), it suffices to impose }E2}0 ď δ0δ1

and

λ̄ ě Cλ3γ
0 δ

1
2
0 . (2.14)

Since the existence of a nontrivial smooth function E with Ep0q “ 0, E1 ď 0, and }Epnq}0 ď δ
n
2
0 δ1

for n “ 0, 1, 2 is obvious (choose for example Eptq “ ´δ1p1 ´ expp´δ
1
2
0 tqq), we just need to

check that the requirements (2.13) are mutually compatible for some choice of the parameters
satisfying the assumptions of Proposition 2.3: taking into account that λ̄ must be an integer, the

requirement amounts to the inequality δ
1
2
0 pλ0 ´ Cλ

3γ
0 q ě 1. Recall that 3γ “ 3pb ´ 1q2 and the

restrictions on b given by Proposition 2.3 certainly allows us to choose b so that 3pb´ 1q2 ă 1
2 .

The compatibility is then satisfied if λ0 ą Cλ
1
2
0 ` 1. Since C is a geometric constant, we just

need a sufficiently large λ0, which is again a restriction compatible with the requirements of
Proposition 2.3.

3. Construction of the velocity correction

In this section we detail the construction of the correction w :“ vq`1´vq. As in the literature
which started from the paper [13], the perturbation w is, in first approximation, obtained from
a family of highly oscillatory stationary solution of the incompressible Euler equation, which are
modulated by the errors Rq and ϕq and transported along the “course grain flow” of the vector
field vq. There are several choices of stationary solutions that one could use. In this paper
our choice falls on what has proved to be the most efficient ones found so far, called Mikado
flows and first introduced in [10]. In order to define them, consider a function ϑ on R2 and let
Ūpxq “ e3ϑpx1, x2q, where e3 “ p0, 0, 1q. Then it can be readily checked that Ū is a stationary
solution. We can now apply a stretching factor s ą 0, a general rotation O and a translation by
a vector p to define

Upxq “ sOŪpO´1px´ pqq .

Observe that the periodization of this function defines a stationary solution on T3 when Oe3

belongs to aQ3 for some a ą 0. From now on, with a slight abuse of our terminology, the word
Mikado flow will always refer to such periodization. Moreover the vector f “ sOe3 will be,
without loss of generality assumed to belong to Z3 and will be called the direction of the Mikado
flow, while p will be called its shift.

In this paper f will vary in a finite fixed set of directions F (which in fact has cardinality 270)
and for each f we will specify an appropriate choice of ϑ, which will be smooth and compactly
supported in a disk Bp0, d04 q. The precise choice will be specified later. ϑ will not depend on
the shift p and we will denote by Uf the corresponding Mikado flows when p “ 0. Observe that
Uf “ fψf for some smooth ψf P C

8
c pR3q with f ¨∇ψf “ 0. One key point, which is used since

the pioneering work [10] is the following elementary lemma:
8



Lemma 3.1. For each f P F , let ppfq P R3, γf P R and λ P Nzt0u. Assume that the supports
of the maps Uf p¨ ´ ppfqq are pairwise disjoint. Then

ÿ

fPF
γfUf pλpx´ ppfqqq

is a stationary solution of the incompressible Euler equations on T3.

Note that the supports of the functions Uf p¨ ´ pq and ψf p¨ ´ pq are contained in a d0
4 -

neighborhood of

lf ` p :“
 

x P T3 : px´ σf ´ pq P 2πZ3 for some σ P R
(

. (3.1)

If d0 is sufficiently small, depending on f , the latter is a “thin tube” winding around the torus
a finite number of time (this inspired the authors of [10] to call Uf a Mikado flow, inspired
by the classical game originating in Hungary). In a first approximation we wish to define our
perturbation vq`1 ´ vq as

ÿ

fPF
γf pRqpt, xq, ϕqpt, xqqUf pλpx´ ppfqq

where the coefficients γf are appropriately chosen smooth functions (later on called “weights”),
λ is a very large parameter and the ppfq are appropriately chosen shifts to ensure the disjoint

support condition of Lemma 3.1 (namely that the d0
4 -neighborhoods of lf ` ppfq are pairwise

disjoint). As already pointed out such Ansatz must be corrected and we need to modify the
perturbation so that it is approximately advected by the velocity vq. Note that on large time-
scales the flow of the velocity vq does not satisfy good estimates, while it satisfies good estimates
on a sufficiently small scale τq. Following [3] and [15] this issue is solved by introducing a partition
of unity in time and “restarting’ the flow at a discretized set of times, roughly spaced according
to the parameter τq. However, unlike [3] and [15] one has to face the delicate problem of keeping
the supports of the various Mikado flows disjoint. This is done by discretizing the construction
in space too, taking advantage of the fact that for sufficiently small space and time scales, the
supports of the transported Mikado flows remain roughly straight thin tubes: the argument
requires then a subtle combinatorial choice of the “shifts”. As in [13] the introduction of the
space-time discretization deteriorates the estimates and accounts for the Hölder threshold 1

7 .
This is certainly better than the exponent achieved by Isett in [17], however it comes short of
the conjectural exponent 1

3 precisely because of the several additional errors introduced by the
discretization.

We break down the exact description of the perturbation in the following steps:

‚ In Section 3.1 we describe the choice of the directions F and the respective functions
ψf ;

‚ In Section 3.2 we describe an appropriate regularization of the pvq, pq, Rq, ϕqq and we
introduce the drift of the regularized velocity;

‚ In Section 3.3 we describe the main part of the velocity perturbation, which involves the
space-time discretization, the combinatorial choice of the shifts and the drifted Mikado
flows;

‚ In Section 3.4 we detail the choice of the weight of each Mikado flow;
‚ In Section 3.5 we specify a further correction of the main velocity perturbation, which

ensures that vq`1 is solenoidal.

3.1. Mikado directions. To determine a set of suitable directions f , we recall two geometric
lemmas. In the first we denote by S the subset of R3ˆ3 of all symmetric matrices, let Id be the
identity matrix and set |K|8 :“ |pklmq|8 “ maxl,m |klm| for K P R3ˆ3.

9



Lemma 3.2 (Geometric Lemma I). Let F “ tfiu
6
i“1 be a set of vectors in Z3 and C a positive

constant such that

6
ÿ

i“1

fi b fi “ CId, and tfi b fiu
6
i“1 forms a basis of S . (3.2)

Then, there exists a positive constant N0 “ N0pFq such that for any N ď N0, we can find
functions tΓfiu

6
i“1 Ă C8pSN ; p0,8qq, with domain SN :“ tId´K : K is symmetric, |K|8 ď Nu,

satisfying

Id´K “

6
ÿ

i“1

Γ2
fi
pId´Kqpfi b fiq, @pId´Kq P SN .

Proof. Since fi b fi is a basis for S, there are unique linear maps Li : SÑ R such that

A “
ÿ

i

LipAq fi b fi @A P S .

On the other hand by (3.2) and the uniqueness of such maps, LipIdq “
1
C for all i. Choose now

N0 so that LipAq ě
1

2C for all A P SN0 . It thus suffices to set ΓfipAq :“
a

LipAq for all A P SN0

to find the desired functions. �

Lemma 3.3 (Geometric Lemma II). Suppose that

tf1, f2, f3u Ă Z3zt0u is an orthogonal frame and f4 “ ´pf1 ` f2 ` f3q. (3.3)

Then, for any N0 ą 0, there are affine functions tΓfku1ďkď4 Ă C8pVN0 ; rN0,8qq with domain
VN0 :“ tu P R3 : |u| ď N0u such that

u “
4
ÿ

k“1

Γfkpuqfk @u P VN0 .

Proof. Since tfku
3
i“1 is orthogonal, any vector u in R3 can be written as u “

ř3
i“1

u¨fk
|fk|2

fk. Define

Γfkpuq “

#

2N0 `
u¨fk
|fk|2

, k “ 1, 2, 3

2N0 k “ 4.

Clearly the functions are affine (and thus smooth), whereas a direct computation gives u “
ř4
k“1 Γfkpuqfk. If u P VN0 , using |u| ď N0 and |fk| ě 1, we get |Γfkpuq| ě 2N0´

|u|
|fk|

ě N0 when

k “ 1, 2, 3. Therefore, it is obvious to have |Γfkpuq| ě N0 for any u P VN0 . �

Based on these lemmas, we choose 27 pairwise disjoint families F j indexed by j P Z3
3, where

each F j consists further of two (disjoint) subfamilies F j,R Y F j,ϕ with cardinalities |F j,R| “ 6
and |F j,ϕ| “ 4, chosen so that F j,R and F j,ϕ satisfy (3.2) and (3.3), respectively. For example,
for j “ p0, 0, 0q we can choose

F j,R “ tp1,˘1, 0q, p1, 0,˘1q, p0, 1,˘1qu, F j,ϕ “ tp1, 2, 0q, p´2, 1, 0q, p0, 0, 1q, p1,´3,´1qu

and then we can apply 26 suitable rotations (and rescalings). Next, the function ϑ will be chosen
for each f in two different ways, depending on whether f P F j,R or f P F j,ϕ. Introducing the
shorthand notation xuy “́ ´´

ş

T3 upxq dx, we impose the moment conditions

xψf y “ xψ
3
f y “ 0, xψ2

f y “ 1 @f P F j,R,

xψf y “ 0, xψ3
f y “ 1 @f P F j,ϕ.

(3.4)
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The main point is that the Mikado directed along f P F j,R will be used to “cancel the error Rq”,
while the ones directed along f P F j,ϕ will be used to “cancel the error ϕq” and the different
moment conditions will play a major role. In both cases we assume also that

supppψf q Ă B
´

lf ,
η

10

¯

:“ tx P R3 : |x´ y| ă η
10 for some y P lfu , (3.5)

where η is a geometric constant which will be specified later, cf. Proposition 3.5.

3.2. Regularization and drift. We start by suitably smoothing the tuple pvq, pq, Rq, ϕqq. To
this aim we first introduce the parameters ` and `t, defined by

` “
1

λ
3
4
q λ

1
4
q`1

ˆ

δq`1

δq

˙
3
8

, `t “
1

λ
1
2
´3γ

q λ
1
2
q`1δ

1
4
q δ

1
4
q`1

.

The space regularizations of vq and pq are defined by applying a “low-pass filter” which roughly
speaking eliminates all the waves larger than `´1. In order to do so we first introduce some
suitable notation. First of all, for a function f in the Schwartz space SpR3q, the Fourier transform
of f and its inverse on R3 are denoted by

pfpξq “
1

p2πq3

ż

R3

fpxqe´ix¨ξdx, qfpxq “

ż

R3

fpξqeix¨ξdξ.

As usual, we understand the Fourier transform on more general functions as extended by duality
to S 1pR3q. Since practically all the objects considered in this note are functions, vectors and
tensors defined on I ˆ T3 for some time domain I Ă R, regarding them as spatially periodic
functions on I ˆ R3, we will consider their Fourier transform as time-dependent elements of
S 1pR3q. We then follow the standard convention on Littlewood-Paley operators. We let mpξq be

a radial smooth function supported in Bp0, 2q which is identically 1 on Bp0, 1q. For any number
j P Z and distribution f in R3, we set

{Pď2jfpξq :“ m

ˆ

ξ

2j

˙

f̂pξq, {Pą2jfpξq :“

ˆ

1´m

ˆ

ξ

2j

˙˙

f̂pξq,

and for j P Z

zP2jfpξq :“

ˆ

m

ˆ

ξ

2j

˙

´m

ˆ

ξ

2j´1

˙˙

f̂pξq.

For a positive real number S, we finally let PďS equal the operator Pď2J for the largest J such

that 2J ď S. We are thus ready to introduce the coarse scale velocity v` and pressure p` defined
by

v` “ Pď`´1vq, p` “ Pď`´1pq . (3.6)

Note that, regarding v as a spatially periodic function on I ˆ T3, Pď`´1v can be written as the
space convolution of v with the kernel 23J

qmp2J ¨q, which belongs to SpR3q. In particular v` is
also spatially periodic and will be in fact regarded as a function on I ˆ T3. Similar remarks
apply to several other situations in the rest of this note.

The regularization of the errors Rq and ϕq is more laborious and follows the intuition that,
while we need to regularize them in time and space, we want such regularization to give good
estimates on their advective derivatives along v`, for which we introduce the ad hoc notation

Dt,` :“ Bt ` v` ¨∇ .
11



First of all we let Φpτ, x; tq be the forward flow map with the drift velocity v` defined on some
time interval ra, bs starting at the initial time t P ra, bq:

#

BτΦpτ, x; tq “ v`pτ,Φpτ, x; tqq

Φpt, x; tq “ x .
(3.7)

Remark 3.4. Strictly speaking the map above is defined on ra, bs ˆR3. Note however that the
periodicity of v` implies that Φ induces a well-defined map from ra, bs ˆ T3 into T3. From now
on we will implicitly identify both maps.

We then take a standard mollifier ρ on R, namely a nonnegative smooth bump function
satisfying }ρ}L1pRq “ 1 and supp ρ Ă p´1, 1q. As usual we set ρδpsq “ δ´1ρpδ´1sq for any δ ą 0.
We can thus introduce the mollification along the trajectory

pρδ ˚Φ F qpt, xq “

ż

R
F pt` s,Φpt` s, x; tqqρδpsqds.

(Note that if F and v` are defined on some time interval ra, bs, then ρδ ˚Φ F is defined on
ra, bs ´ δ.) This mollification can be found in [15] and is designed to satisfy

Dt,`pρδ ˚Φ F qpt, xq “

ż

pDt,`F qpt` s,Φpt` s, x; tqqρδpsqds “ ´

ż

F pt` s,Φpt` s, x; tqqρ1δpsqds .

The regularized errors are then given by

R` “ ρ`t ˚Φ Pď`´1Rq, ϕ` “ ρ`t ˚Φ Pď`´1ϕq. (3.8)

These errors can be defined on r0, T s ` 2τq by the choice of sufficiently large λ0. We will need
later quite detailed estimates on the difference between the original tuple and the regularized
one and on higher derivative of the latter. Such estimates are in fact collected in Section 5.

3.3. Partition of unity and shifts. We first introduce nonnegative smooth functions tχnunPZ3

and tθmumPZ whose sixtth powers give suitable partitions of unity in space R3 and in time R,
respectively:

ÿ

nPZ3

χ6
npxq “ 1,

ÿ

mPZ
θ6
mptq “ 1.

Here, χnpxq “ χ0px´ 2πnq where χ0 is a non-negative smooth function supported in Qp0, 9{8πq

satisfying χ0 “ 1 on Qp0, 7{8πq, where from now on Qpx, rq will denote the cube ty : |y´x|8 ă ru
(with |z|8 :“ maxt|zi|u). Similarly, θmptq “ θ0pt ´ mq where θ0 P C

8
c pRq satisfies θ0 “ 1 on

r1{8, 7{8s and θ0 “ 0 on p´1{8, 9{8qc. Then, we divide the integer lattice Z3 into 27 equivalent
families rjs with j P Z3

3 via the usual equivalence relation

n “ pn1, n2, n3q „ ñ “ pñ1, ñ2, ñ3q ðñ ni ” ñi mod 3 for all i “ 1, 2, 3.

We use these classes to define the set of indices

I :“ tpm,n, fq : pm,nq P Zˆ Z3 and f P F rnsu .
For each I we denote by fI the third component of the index and we further subdivide I into
IR Y Iϕ depending on whether fI P F rns,R or fI P F rns,ϕ. Next we introduce the parameters
τ “ τq and µ “ µq with τ´1

q ą 0 and µ´1
q P Nzt0u, which are explicitly given by

µ´1
q “ 3rλ

1
2
q λ

1
2
q`1δ

1
4
q δ
´ 1

4
q`1{3s, τ´1

q “ 40πMη´1 ¨ λ
1
2
q λ

1
2
q`1δ

1
4
q δ

1
4
q`1, (3.9)

(note that M in τq is required in order to satisfy the last condition in (6.7)). we define

θIptq “

#

θ3
mpτ

´1tq, I P IR

θ2
mpτ

´1tq, I P Iϕ,
χIpxq “

#

χ3
npµ

´1xq, I P IR

χ2
npµ

´1xq, I P Iϕ .
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Next, for each I let UfI be the corresponding Mikado flow. Moreover, given I “ pm,n, fq,
denote by tm the time tm “ mτ and let ξI “ ξm be the solution of the following PDE (which
we understand as a map on Rˆ T3 taking values in T3, cf. Remark 3.4):

#

Btξm ` pv` ¨∇qξm “ 0

ξmptm, xq “ x
(3.10)

In the rest of the paper ∇ξI will denote the Jacobi Matrix of the partial derivatives of the
components of the vector map ξI and we will use the shorthand notations ∇ξJI , ∇ξ´1

I and ∇ξ´JI
for, respectively, its transpose, inverse and transport of the inverse. Moreover, for any vector
f P R3 and any matrix A P R3ˆs the notation ∇ξIf and ∇ξIA (resp. ∇ξ´1

I f , etc.) will be used
for the usual matrix product, regarding f as a column vector (i.e. a R3ˆ1-matrix).

For each I “ pm,n, fq we will also choose a shift

zI “ zm,n ` p̄f P R3

and, setting λ “ λq`1, we are finally able to introduce the main part of our perturbation, which
is achieved using the following “master function”

W pR,ϕ, t, xq :“
ÿ

IPI

θIptqχIpξIpt, xqqγIpR,ϕ, t, xq∇ξ´1
I pt, xqUfI pλpξIpt, xq ´ zIqq , (3.11)

where the γI ’s are smooth scalar functions (the “weights”) whose choice will be specified in the
next section. In order to simplify our notation we will use UI for UfI p¨ ´ zIq, ψI for ψfI p¨ ´ zIq

and f̃I for ∇ξ´1
I fI . We therefore have the writing

W :“
ÿ

IPI

θIχIpξIqγI f̃IψIpλξIq . (3.12)

Note that, since we want W to be a periodic function of x, we will impose

zm,n “ zm,n1 if µpn´ n1q P 2πZ3. (3.13)

Finally, the main part of the correction vq`1 ´ vq will take the form

wopt, xq :“W pR`pt, xq, ϕ`pt, xq, t, xq (3.14)

which is well-defined on r0, T s ` 2τq. (Indeed, it is possible to have r0, T s ` 3τq Ă r0, T s ` τq´1

by the choice of sufficiently large λ0). In the rest of Section 3, without mentioning, our analysis
is done in the time interval r0, T s ` 2τq. Given the complexity of several formulas and future
computations, it is convenient to break down the functions W and wo in more elementary pieces.
To this aim we introduce the scalar maps

wIpt, xq :“ θIptqχIpξIpt, xqqψIpλpξIpt, xqqq ,

using which we can write

W pR,ϕ, t, xq “
ÿ

IPI

γIpR,ϕ, t, xq∇ξIpt, xq´1fIwIpt, xq “
ÿ

IPI

γIpR,ϕ, t, xqf̃Ipt, xqwIpt, xq

and

wo “
ÿ

IPI

γI∇ξ´1
I fIwI “

ÿ

IPI

γI f̃IwI .

The crucial point in our construction is the following proposition, whose proof will be given in
Section 6.3.

Proposition 3.5. There is a constant η “ ηpFq in (3.5) such that it allows a choice of the shifts
zI “ zm,n`p̄f which ensure that for each pµq, τq, λq`1q, the conditions supppwIqXsupppwJq “ H
for every I ‰ J and that (3.13) for every m,n and n1.
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3.4. Choice of the weights. We next detail the choice of the functions γI , subdividing it into
two cases.

3.4.1. Energy weights. The weights γI for I P Sϕ will be chosen so that the low frequency part
of 1

2 |wo|
2wo makes a cancellation with the mollified unsolved current ϕ`. Because of Proposition

3.5, we have

|wo|
2wo “

ÿ

IPI

θ3
Iχ

3
IpξIqγ

3
Iψ

3
I pλq`1ξIq|∇ξ´1

I fI |
2∇ξ´1

I fI

“
ÿ

IPI

θ3
Iχ

3
IpξIqγ

3
I xψ

3
f y|f̃I |

2f̃I
loooooooooooooooomoooooooooooooooon

“:p|wo|2woqL

`
ÿ

IPI

θ3
Iχ

3
IpξIqγ

3
I

`

ψ3
I pλq`1ξIq ´ xψ

3
I y
˘

|f̃I |
2f̃I

loooooooooooooooooooooooooooomoooooooooooooooooooooooooooon

“:p|wo|2woqH

.

In order to find the desired γI , we introduce the notation Im,n,ϕ for tI P Iϕ : I “ pm,n, fqu
and we observe that, by (3.4), it suffices to achieve

p|wo|
2woqL “

ÿ

m,n

θ6
m

ˆ

t

τq

˙

χ6
n

ˆ

ξm
µq

˙

ÿ

IPIm,n,ϕ

γ3
I |f̃I |

2f̃I . (3.15)

Next we look for our coefficients in the following form:

γI “
λ´γq δ

1
2
q`1ΓI

|f̃I |
2
3

,

where ΓI will be specified in a moment.
Recall that ξI is a solution to (3.10) and satisfies ∇ξI |t“tm “ Id and

∇ξ´1
I pt, xq “ ∇Φmpt, ξIpt, xqq ,

where Φm is the “forward flow” Φpt, x; tmq introduced in (3.7) and thus solves
#

BtΦmpt, xq “ v`pt,Φmpt, xqq

Φmptm, xq “ x.
(3.16)

This implies that

}∇ξI}C0pImˆR3q ď expp2τq}∇vq}0q ď expp2Mτqλqδ
1
2
q q,

}Id´∇ξ´1
I }C0pImˆR3q“ }Id´∇Φm}C0pImˆR3q

ď 2τq}∇Φm}C0pImˆR3q}∇vq}0

ď 2Mτqλqδ
1
2
q expp2Mτqλqδ

1
2
q q

(3.17)

for the time interval Im “ rtm ´ 1
2τq, tm `

3
2τqs X r0, T s ` 2τq. Therefore, for sufficiently large

λ0, we have

|f̃I | “ |∇ξ´1
I fI | ě

3

4

}2λ3γ
q δ

´ 3
2

q`1p∇ξIqϕ`}C0
x
ď 3C1

on the support of θI for some C1. Since tfI : I P Im,n,ϕu “ F rns,ϕ satisfies (3.3), we can apply
Lemma 3.3 with N0 “ 3C1 to solve

´2ϕ` “
ÿ

IPIm,n,ϕ

γ3
I |f̃I |

2f̃I ðñ ´2λ3γ
q δ

´ 3
2

q`1p∇ξIqϕ` “
ÿ

IPIm,nϕ

Γ3
IfI
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on each support of θI (observe that we have crucially used that ξI “ ξm is independent of fI for

I P Sm,n,ϕ). We are thus in the position to apply Lemma 3.3 to the set F rns,ϕ “ tfI : I P Im,n,ϕu

and we let ΓfI , I P Im,n,ϕ be the corresponding functions. As a result, we can set

ΓIpt, xq “ Γ
1
3
fI
p´2λ3γ

q δ
´ 3

2
q`1p∇ξIqϕ`q . (3.18)

Note that the smoothness of the selected functions ΓfI depends only on C1 and that in fact
Lemma 3.3 is just applied 27 times, taking into consideration that rns P Z3

3. For later use we
record here the important “cancellation property” that the choice of our weights achieves:

1

2
p|wo|

2woqL “ ´ϕ`. (3.19)

3.4.2. Reynolds weights. Similarly to the previous section we decompose wo b wo into the low
and high frequency parts,

wo b wo “
ÿ

I

θ2
Iχ

2
IpξIqγ

2
Iψ

2
I pλq`1ξIqf̃I b f̃I

“
ÿ

I

θ2
Iχ

2
IpξIqγ

2
I xψ

2
I yf̃I b f̃I

looooooooooooooomooooooooooooooon

“:pwobwoqL

`
ÿ

I

θ2
Iχ

2
IpξIqγ

2
I

`

ψ2
I pλq`1ξIq ´ xψ

2
I y
˘

f̃I b f̃I
looooooooooooooooooooooooooomooooooooooooooooooooooooooon

pwobwoqH

.

Since the weights for I P Iϕ have already been established, for each fixed pm,nq we denote by
Ipm,nq the sets of indices pm1, n1q such that maxt|m ´ m1|8, |n ´ n1|8u ď 1 (where |u|8 :“
maxt|u1|, |u2|, |u3|u for any u P R3) and rewrite

pwo b woqL “
ÿ

m,n

θ6
m

ˆ

t

τq

˙

χ6
n

ˆ

ξm
µq

˙

ÿ

IPIm,n,R

γ2
I f̃I b f̃I `

ÿ

JPIϕ

θ2
Jχ

2
JpξIqγ

2
Jxψ

2
Jyf̃J b f̃J

“
ÿ

m,n

θ6
m

ˆ

t

τq

˙

χ6
n

ˆ

ξm
µq

˙

»

—

—

—

–

ÿ

IPIm,n,R

γ2
I f̃I b f̃I `

ÿ

JPIm1,n1,ϕ
pm1,n1qPIpm,nq

θ2
Jχ

2
JpξIqγ

2
Jxψ

2
Jyf̃J b f̃J

fi

ffi

ffi

ffi

fl

.

To make wo bwo cancel out δq`1Id´R`, we recall that f̃I b f̃I “ ∇ξ´1
I pfI b fIq∇ξ

´J
I and set

ÿ

IPIm,n,R

γ2
I fI b fI “ ∇ξI

«

δq`1Id´R` ´
ÿ

pm1n1qPIpm,nq

ÿ

JPIm1,n1,ϕ

θ2
Jχ

2
Jγ

2
JpξJqxψ

2
Jyf̃J b f̃J

ff

∇ξJI .

(3.20)

We now define MI as

MI “ δq`1r∇ξI∇ξJI ´ Ids ´∇ξIR`∇ξJI

´∇ξI

»

–

ÿ

pm1n1qPIpm,nq

ÿ

JPIm1,n1,ϕ

θ2
Jχ

2
JpξJqγ

2
Jxψ

2
Jyf̃J b f̃J

fi

fl∇ξJI

and γI “ δ
1
2
q`1ΓI (for I P Im,n,R) and impose

ÿ

IPIm,n,R

Γ2
IfI b fI “ Id` δ´1

q`1MI (3.21)

In order to show that such a choice is possible observe that we can make }δ´1
q`1MI}C0psupppθIqˆR3q

sufficiently small, provided that λ0 is sufficiently large, because of (3.17), }δ´1
q`1R`}0 À λ´3γ

q , and,
15



}δ´1
q`1γ

2
J}0 À λ´2γ

q when J P Im1n1,ϕ. We can thus apply Lemma 3.2 to tfI : I P Im,n,Ru “ F rns,R
and, denoting by ΓfI the corresponding functions, we just need to set

ΓI “ ΓfI pId´ δ
´1
q`1MIq .

Observe once again that this means applying Lemma 3.2 just 27 times, given that there are 27
different families F rns,R. We finally record the desired “cancellation property” that the choice
of the weights achieves:

pwo b woqL “
ÿ

m,n

θ6
m

ˆ

t

τq

˙

χ6
n

ˆ

ξm
µq

˙

pδq`1Id´R`q “ δq`1Id´R`. (3.22)

3.5. Fourier expansion in fast variables and corrector wc. In the rest of this article, we
use a representation of wo, wo bwo, and 1

2 |wo|
2wo based on the Fourier series of ψI , ψ

2
I and ψ3

I .

Indeed, since ψI is a smooth function on T3 with zero-mean, we have

ψIpxq “
ÿ

kPZ3zt0u

˝

bI,ke
ik¨x, ψ2

I pxq “
˝
cI,0 `

ÿ

kPZ3zt0u

˝
cI,ke

ik¨x, ψ3
I pxq “

˝

dI,0 `
ÿ

kPZ3zt0u

˝

dI,ke
ik¨x

(3.23)
In particular,

˝
cI,0 “ xψ

2
I y,

˝

dI,0 “ xψ
3
I y.

Since ψI is in C8pT3q, we have
ÿ

kPZ3

|k|n0`2|
˝

bI,k| `
ÿ

kPZ3

|k|n0`2|
˝
cI,k| `

ÿ

kPZ3

|k|n0`2|
˝

dI,k| À 1,
ÿ

kPZ3

|
˝
cI,k|

2 À 1. (3.24)

for n0 “ r
2bp2`αq
pb´1qp1´αq s. Also, it follows from fI ¨∇ψI “ fI ¨∇ψ2

I “ fI ¨∇ψ3
I “ 0 that

˝

bI,kpfI ¨ kq “
˝
cI,kpfI ¨ kq “

˝

dI,kpfI ¨ kq “ 0. (3.25)

Next, as a consequence of (3.19), (3.22), and (3.23), we have

wo “
ÿ

m

ÿ

kPZ3zt0u

δ
1
2
q`1bm,ke

iλq`1k¨ξI (3.26)

wo b wo “ δq`1Id´R` `
ÿ

m

ÿ

kPZ3zt0u

δq`1cm,ke
iλq`1k¨ξI (3.27)

1

2
|wo|

2wo “ ´ϕ` `
1

2

ÿ

m

ÿ

kPZ3zt0u

δ
3
2
q`1dm,ke

iλq`1k¨ξI (3.28)

1

2
|wo|

2 “ ´κ` `
3

2
δq`1 `

1

2

ÿ

m

ÿ

kPZ3zt0u

δq`1 trpcm,kqe
iλq`1k¨ξI . (3.29)

where κ` “
1
2 trpR`q and the relevant coefficients are defined as follows:

bm,k “
ÿ

I:mI“m

θIχIpξIqδ
´ 1

2
q`1γI

˝

bI,kf̃I “:
ÿ

I:mI“m

BI,kf̃I ,

cm,k “
ÿ

I:mI“m

θ2
Iχ

2
IpξIqδ

´1
q`1γ

2
I
˝
cI,kf̃I b f̃I ,

dm,k “
ÿ

I:mI“m

θ3
Iχ

3
IpξIqδ

´ 3
2

q`1γ
3
I

˝

dI,k|f̃I |
2f̃I .

(3.30)
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Observe that, by the choice of θI , if |m´m1| ą 1, then

suppt,xpbm,kq X suppt,xpbm1,k1q “ suppt,xpcm,kq X suppt,xpcm1,k1q

“ suppt,xpdm,kq X suppt,xpdm1,k1q “ H

for any k, k1 P Z3zt0u.
We next prescribe an additional correction wc to make w “ wo ` wc divergence-free. Since

we have (3.25) and the identity ∇ ˆ p∇ξJI UpξIqq “ ∇ξ´1
I p∇ ˆ UqpξIq for any smooth function

U (see for example [10]), we have

1

λq`1
∇ˆ

ˆ

˝

bI,k∇ξJI
ik ˆ fI
|k|2

eiλq`1k¨ξI

˙

“
˝

bI,k∇ξ´1
I fIe

iλq`1k¨ξI .

Using this, the “preponderant part” wo of the velocity correction can be written as

wo “
ÿ

mPZ
kPZ3zt0u

δ
1
2
q`1

ÿ

I:mI“m

BI,k∇ξ´1
I fIe

iλq`1k¨ξI

“
ÿ

mPZ
kPZ3zt0u

δ
1
2
q`1

λq`1

ÿ

I:mI“m

BI,k∇ˆ
ˆ

∇ξJI
ik ˆ fI
|k|2

eiλq`1k¨ξI

˙

.

Therefore, we define

wc “
δ

1
2
q`1

λq`1

ÿ

mPZ
kPZ3zt0u

ÿ

mI“m

∇BI,k ˆ
ˆ

∇ξJI
ik ˆ fI
|k|2

˙

eiλq`1k¨ξI “:
δ

1
2
q`1

λq`1µq

ÿ

m,k

em,ke
iλq`1k¨ξI (3.31)

where

em,k “ µq
ÿ

I:mI“m

∇pθIχIpξIqδ
´ 1

2
q`1γI

˝

bI,kq ˆ

ˆ

p∇ξIqJ
ik ˆ fI
|k|2

˙

. (3.32)

In this way, the final velocity correction vq`1 ´ vq “: w “ wo ` wc can be written as

w “ ∇ˆ

¨

˝

δ
1
2
q`1

λq`1

ÿ

I,k

BI,k∇ξJI
ik ˆ fI
|k|2

eiλq`1k¨ξI

˛

‚,

and hence it is divergence-free. For later use, we remark that if |m ´ m1|ą1, suppt,xpem,kq X

suppt,xpem1,k1q “ H holds for any k, k1 P Z3zt0u. Also, by its definition, the correction w has the
representation

w “
ÿ

mPZ

ÿ

kPZ3zt0u

δ
1
2
q`1pbm,k ` pλq`1µqq

´1em,kqe
iλq`1k¨ξI . (3.33)

4. Definition of the new errors

4.1. Preliminaries. To define the new triple pRq`1, ϕq`1q we need to “invert the divergence” of
vector fields and tensors. For this purpose, we recall the inverse divergence operator introduced
in [13].

Definition 4.1 (Inverse divergence operator). For any f P C8pT3;R3q, the inverse divergence
operator is defined by

pRfqij “ Rijkfk “ ´
1

2
∆´2Bijkfk `

1

2
∆´1Bkfkδij ´∆´1Bifj ´∆´1Bjfi.
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Remark 4.2. The image of the divergence free operator Rfpxq is designed to be a trace-free
symmetric matrix at each point x and to solve

divpRfq “ f ´ xfy .

To define unsolved currents, we also need an inverse divergence operator which maps a mean-
zero scalar function to a mean-zero vector-valued one. To this end, we abuse the notation and
define

pRgqi “ ∆´1Big.

Indeed, divRg “ g ´ xgy.

4.2. New Reynolds stress. Having defined the correction w of the velocity as in the previous
steps and after setting 0 for the correction on the pressure (namely pq`1 “ pq), we can reorganize
the Euler-Reynolds system and the relaxed local energy equality as the equations for the new
Reynolds stress Rq`1 and for the unsolved current ϕq`1, respectively.

We first define Rq`1. Using the given relation Btvq `∇ ¨ pvq b vqq `∇pq “ ∇ ¨Rq (note that

we are dropping Eptq
3 Id from the equation as the latter, being just a function of time, disappears

after we apply the divergence) , we can write the equation for Rq`1 as

∇ ¨Rq`1 “ Btvq`1 `∇ ¨ pvq`1 b vq`1q `∇pq`1

“ pBt ` v` ¨∇qw
looooooomooooooon

“∇¨
˚

RT

`w ¨∇v`
loomoon

“:∇¨
˚

RN

`∇ ¨ pw b w `R`q
looooooooomooooooooon

“:∇¨
˚

RO

`∇ ¨ ppvq ´ v`q b w ` w b pvq ´ v`q `Rq ´R`q
loooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooon

“:∇¨
˚

RM

,

and
˚

RO can be decomposed further as

∇ ¨
˚

RO “ ∇ ¨ pwo b wo `R`q
looooooooooomooooooooooon

“∇¨
˚

RO1

`∇ ¨ pwo b wc ` wc b wo ` wc b wcq
loooooooooooooooooooooomoooooooooooooooooooooon

“∇¨
˚

RO2

.

In fact we will define Rq`1 as

Rq`1 “
˚

RT `
˚

RN `
˚

RO1 `
˚

RO2 `
˚

RM `
2

3
%ptqId . (4.1)

Note that the last summand is not impacting the divergence of Rq`1, since it is a function
of time only. The reason for introducing this extra term, which at the moment is not of any
relevance, will be clear once we get to the definition of the new current.

First, our choice of
˚

RO2 and
˚

RM are

˚

RO2 “ wo b wc ` wc b wo ` wc b wc . (4.2)

and
˚

RM “ Rq ´R`
looomooon

“
˚

RM1

`pvq ´ v`q b w ` w b pvq ´ v`q
loooooooooooooooooomoooooooooooooooooon

“
˚

RM2

,
(4.3)

which are the only two Reynolds stress errors which might have nonzero trace. For the other
errors, we solve the divergence equation by using the inverse divergence operator R in Definition

18



4.1 to get trace-free errors, namely we set
˚

RO1 “ Rp∇ ¨ pwo b wo `R`qq
˚

RN “ Rpw ¨∇v`q
˚

RT “ RpBtw ` v` ¨∇wq .

Observe that all the tensors to which we apply the operator R have zero average, because
w ¨∇v` “ ∇ ¨ pw b v`q, v` ¨∇w “ ∇ ¨ pv` b wq and w (and therefore Btw) have zero average.

As a result, we also have

trRq`1 “ trp
˚

RO2 `
˚

RM q ` 2% ,

which gives

κq`1 :“
1

2
trRq`1 “

1

2
trp

˚

RO2 `
˚

RM q ` %. (4.4)

In fact, for later use we will split the function % into the sum of three functions, %0 ` %1 ` %2

and we thus have

κq`1 “
1

2
trp

˚

RO2 `
˚

RM q ` %0 ` %1 ` %2 .

4.3. New current. Applying the frequency cut-off Pď`´1 to the Euler-Reynolds system, we
have

Btv` `∇ ¨ pv` b v`q `∇p` “ ∇ ¨ Pď`´1Rq `Qpvq, vqq.

where, upon setting pvqb vqq` “ Pď`´1pvqb vqq, the term Qpvq, vqq is the following commutator:

Qpvq, vqq :“ ∇ ¨ pv` b v` ´ pvq b vqq`q . (4.5)

Also, we recall that the tuple pvq, pq, Rq, ϕqq solves

Bt

ˆ

1

2
|vq|

2

˙

`∇ ¨
ˆˆ

1

2
|vq|

2 ` pq

˙

vq

˙

“ pBt ` vq ¨∇qκq ` 1
2E

1ptq `∇ ¨ pRqvqq `∇ ¨ ϕq,

with κq :“ 1
2 trpRqq. Using these equations, the relaxed local energy equality for pvq`1, pq`1, Rq`1, ϕq`1q

can be reorganized as

Bt

ˆ

1

2
|vq`1|

2

˙

`∇ ¨
ˆˆ

1

2
|vq`1|

2 ` pq`1

˙

vq`1

˙

“1
2E

1ptq ` pBt ` vq ¨∇q
ˆ

1

2
|w|2 ` κq ` pvq ´ v`q ¨ w

˙

looooooooooooooooooooooooooomooooooooooooooooooooooooooon

“:pBt`vq`1¨∇qpκq`1´%1´%2q`∇¨
˚
ϕT

`∇ ¨
ˆˆ

1

2
|w|2

˙

w ` ϕ`

˙

loooooooooooooomoooooooooooooon

“∇¨˚ϕO

` divpRq`1vq`1q´divpRq`1wq
looooooomooooooon

“∇¨˚ϕR

`∇ ¨
ˆˆ

1

2
|vq ´ v`|

2 ` ppq ´ p`q

˙

w

˙

`∇ ¨ pϕq ´ ϕ`q `∇ ¨ ppw b w `Rq ´Rq`1qpvq ´ v`qq
looooooooooooooooooooooooooooooooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooon

“∇¨˚ϕM

` pdivPď`´1Rq `Qpvq, vqqq ¨ w
loooooooooooooooooomoooooooooooooooooon

“∇¨˚ϕH1`Bt%1

` pw b w ´ δq`1Id`Rq ´Rq`1 ` pvq ´ v`q b w ` w b pvq ´ v`qq : ∇vJ`
looooooooooooooooooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooooooooooooooooon

“Bt%2`∇¨
˚
ϕH2

.
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The functions %0, %1, and %2 will be defined so to ensure that the divergence equations can be
solved. Indeed observe that in order to solve ∇ ¨ z “ f on the periodic torus, it is necessary and
sufficient that the average of f equals 0. In fact under such assumption a solution is provided
by the operator R introduced above. More precisely, first of all we observe that we can set

˚
ϕO :“

˚
ϕO1 `

˚
ϕO2 :“ R

`

∇ ¨
``

1
2 |wo|

2
˘

wo ` ϕ`
˘˘

`R
`

∇ ¨
`

1
2p|w|

2w ´ |wo|
2woq

˘˘

(4.6)
˚
ϕR :“ pRq`1 ´

2
3%Idqw (4.7)

˚
ϕM :“

`

1
2 |vq ´ v`|

2 ` ppq ´ p`q
˘

w ` ϕq ´ ϕ`

` pw b w´δq`1Id`Rq ´Rq`1 `
2
3%Idqpvq ´ v`q .

(4.8)

Next, recall that κq`1 “
1
2 trp

˚

RO2 `
˚

RM q ` % and that

1

2
|w|2 ` κq ` pvq ´ v`q ¨ w “

3

2
δq`1 `

1

2
trp

˚

RO2 `
˚

RM q `
1

2
tr pwo b wo ´ δq`1Id`R`q

“
3

2
δq`1 ` κq`1 ´ %`

1

2
tr pwo b wo ´ δq`1Id`R`q .

(4.9)

In particular, the equation for
˚
ϕT becomes:

∇ ¨ ˚ϕT ` %10 “divp´pκq`1 ´ %qw `
1
2 tr pwo b wo ´ δq`1I `R`q pvq ´ v`q

` 1
2Dt,` tr pwo b wo ´ δq`1I `R`q

(where we have used that ∇ ¨ w “ 0). Hence we can define
˚
ϕT “

˚
ϕT1 `

˚
ϕT2 and %0 as

˚
ϕT1 “ ´pκq`1 ´ %qw `

1

2
tr pwo b wo ´ δq`1I `R`q pvq ´ v`q (4.10)

%0ptq “

ż t

0
xDt,`

1
2 tr pwo b wo ´ δq`1I `R`qypsq ds (4.11)

˚
ϕT2 “ R

`

Dt,`
1
2 tr pwo b wo ´ δq`1I `R`q

˘

. (4.12)

Observe that %0 is defined in such a way that div
˚
ϕT2 ` %10 “ Dt,`

1
2 tr pwo b wo ´ δq`1I `R`q.

Similarly, we set

%1ptq :“

ż t

0
xpdivPď`´1Rq `Qpvq, vqqq ¨ wypsq ds (4.13)

%2ptq :“

ż t

0
xpw b w ´ δq`1Id`Rq ´Rq`1 ` pvq ´ v`q b w ` w b pvq ´ v`qq : ∇vJ` ypsq ds (4.14)

and
˚
ϕH1 :“ R ppdivPď`´1Rq `Qpvq, vqqq ¨ w ´ Bt%1q

˚
ϕH2 :“ R

`

pw b w ´ δq`1Id`Rq ´Rq`1 ` pvq ´ v`q b w ` w b pvq ´ v`qq : ∇vJ` ´ Bt%2

˘

.

Observe that, while Rq`1 has been defined in terms of %, we have

Rq`1 : ∇vJ` “ p
˚

RT `
˚

RN `
˚

RO1 `
˚

RO2 `
˚

RM `
2

3
%ptqIdq : ∇vJ`

“ p
˚

RT `
˚

RN `
˚

RO1 `
˚

RO2 `
˚

RM q : ∇vJ`
since Id : ∇vJ` “ ∇ ¨ v` “ 0. In particular the right hand side of (4.14) is independent of %2.

5. Preliminary estimates

We now start detailing the estimates which will lead to the proof of the inductive propositions.
In this section, we set } ¨ }N “ } ¨ }C0pr0,T s`τq ;CN pT3qq.
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5.1. Regularization. First of all we address a series of a-priori estimates on the regularized
tuple and on their differences with the original one. By its construction, we can easily see that

}v`}N ÀN `´Nδ
1
2
q , }p`}N ÀN `´Nδq, @N ě 1,

}Ds
t,`R`}0 Às `

´s
t λ´3γ

q δq`1, }Ds
t,`ϕ`}0 Às `

´s
t λ´3γ

q δ
3
2
q`1, @s ě 0.

Also, there exists b̄pαq ą 1 such that for any b P p1, b̄pαqq we can find Λ0 “ Λ0pα, b,Mq with
the following property: if λ0 ě Λ0, then |∇N`1Φpt ` s, x; tq| ÀM `´N holds for N ě 0 and
s P r´`t, `ts. This implies

`st}D
s
t,`R`}NÀs,N,M `´Nλ´3γ

q δq`1 (5.1)

`st}D
s
t,`ϕ`}NÀs,N,M `´Nλ´3γ

q δ
3
2
q`1. (5.2)

For the detailed computation, see [15, Section18].
On the other hand, the differences between the regularized objects pv`, p`, R`, ϕ`q and their

original counterparts satisfy the following estimates.

Lemma 5.1. There exists b̄pαq ą 1 such that for any b P p1, b̄pαqq we can find Λ0pα, b,Mq
with the following property. If λ0 ě Λ0 and N P t0, 1, 2u (recall that we follow the notational
convention explained in Remark 2.2) then:

}vq ´ v`}N ` δ
´ 1

2
q }Dt,`pvq ´ v`q}N´1 À `2´Nλ2

qδ
1
2
q , (5.3)

}pq ´ p`}N ` δ
´ 1

2
q }Dt,`ppq ´ p`q}N´1 À `2´Nλ2

qδq, (5.4)

}Rq ´R`}N ` δ
´ 1

2
q`1}Dt,`pRq ´R`q}N´1 À λNq`1λ

1
2
q λ
´ 1

2
q`1δ

1
4
q δ

3
4
q`1 (5.5)

}ϕq ´ ϕ`}N ` δ
´ 1

2
q`1}Dt,`pϕq ´ ϕ`q}N´1 À λNq`1λ

1
2
q λ
´ 1

2
q`1δ

1
4
q δ

5
4
q`1. (5.6)

Here, we allow the implicit constants to be depending on M .

Proof. Set Pą`´1F :“ F ´ Pď`´1F “ Pą2JF , where J P N is the largest natural number such
that 2J ď `´1. By Bernstein’s inequality, we have }F ´ Pď`´1F }0 “ }Pą`´1F }0 À `j}∇jF }0 for
any F P CjpT3q. Using (2.4) we then get

}vq ´ v`}N À `2´N}∇2v}0 À `2´Nλ2
qδ

1
2
q ,

}pq ´ p`}N À `2´N}∇2p}0 À `2´Nλ2
qδq.

Also, we have

pF ´ ρ`t ˚Φ F qpt, xq “

ż

R
pF pt` s,Φpt` s, x; tqq ´ F pt, xqqρ`tpsqds

“

ż

R

ż s

0
Dt,`F pt` τ,Φpt` τ, x; tqqdτρ`tpsqds,

from which we conclude }F´ρ`t˚ΦF }C0pra,bsˆT3q À `t}Dt,`F }C0pra,bs``tˆT3q because of supppρ`tq Ă
p´`t, `tq. In addition, we have a following decompositions,

F ´ ρ`t ˚Φ Pď`´1F “ pF ´ Pď`´1F q ` pPď`´1F ´ ρ`t ˚Φ Pď`´1F q, (5.7)

Dt,`Pď`´1F “ Pď`´1Dt,`F ` rv` ¨∇, Pď`´1sF , (5.8)

where as usual rA,Bs denotes the commutator AB ´ BA of the two operators A and B. Note
that Dt,`F can be further decomposed as Dt,`F “ DtF `pvq´v`q ¨∇F . Then, using (2.6), (2.7),
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and (A.3), we obtain

}Rq ´R`}0 À }Pą`´1Rq}0 ` `t}Dt,`Pď`´1Rq}CpIqˆT3q

À `2}Rq}2 ` `tp}Dt,`Rq}CpIqˆT3q ` `}∇vq}CpIqˆT3q}∇Rq}CpIqˆT3qq

À pp`λqq
2 ` `tλqδ

1
2
q qλ

´3γ
q δq`1 À λ

1
2
q λ
´ 1

2
q`1δ

1
4
q δ

3
4
q`1,

and

}ϕq ´ ϕ`}0 À }Pą`´1ϕq}0 ` `t}Dt,`Pď`´1ϕq}CpIqˆT3q

À `2}ϕq}2 ` `tp}Dt,`ϕq}CpIqˆT3q ` `
1}∇vq}CpIqˆT3q}∇ϕq}CpIqˆT3qq

À pp`λqq
2 ` `tλqδ

1
2
q qλ

´3γ
q δ

3
2
q`1 À λ

1
2
q λ
´ 1

2
q`1δ

1
4
q δ

5
4
q`1,

where Iq “ r0, T s ` τq´1. Furthermore, we use |∇NΦpt ` s, x; tq| ÀM λN´1
q for N “ 1, 2,

s P r´`t, `ts, t ě 0, and combine it with (2.6), (2.7), and (A.1), to obtain for N “ 1, 2,

}Rq ´R`}N À }Pą`´1Rq}N ` }Rq}N ` }R`}N À pλ
N
q`1p`λqq

2 ` λNq qλ
´3γ
q δq`1

À λNq`1λ
1
2
q λ
´ 1

2
q`1δ

1
4
q δ

3
4
q`1

and

}ϕq ´ ϕ`}N À }Pą`´1ϕq}N ` }ϕq}N ` }ϕ`}N À pλ
N
q`1p`λqq

2 ` λNq qλ
´3γ
q δ

3
2
q`1

À λNq`1λ
1
2
q λ
´ 1

2
q`1δ

1
4
q δ

5
4
q`1,

provided that sufficiently small b´ 1 ą 0 and sufficiently large λ0.
Now, we consider the advective derivatives. We remark that for F` “ Pďl´1F , we can write

Dt,`pF ´ F`q “ Dt,`Pą`´1F “ Pą`´1Dt,`F ` rv` ¨∇, Pą`´1sF.

Then, we apply this to F “ v and F “ p and use (A.4) to obtain

}Dt,`pvq ´ v`q}N´1 À }Pą`´1Dt,`vq}N´1 ` }rv` ¨∇, Pą`´1svq}N´1

À `}Dtvq}N ` `}pv ´ v`q ¨∇v}N ` `2´N}∇vq}20 À `2´N pλqδ
1
2
q q

2

and

}Dt,`ppq ´ p`q}N´1 À }Pą`´1Dt,`pq}N´1 ` }rv` ¨∇, Pą`´1spq}N´1

À `}Dtpq}N ` `}pvq ´ v`q ¨∇pq}N ` `2´N}∇v}0}∇pq}0 À `2´N pλqδ
1
2
q q

2δ
1
2
q .

In a similar way, we have

}Dt,`Pą`´1Rq}N´1 À }Dt,`Rq}N´1 ` `
2´N}∇vq}0}∇Rq}0 À λN´1

q`1 λqδ
1
2
q λ

´3γ
q δq`1

}Dt,`Pą`´1ϕ}N´1 À }Dt,`ϕq}N´1 ` `
2´N}∇vq}0}∇ϕq}0 À λN´1

q`1 λqδ
1
2
q λ

´3γ
q δ

3
2
q`1.

(5.9)

Simply applying the triangle inequality, it can be easily shown that

}Dt,`rPď`´1Rq ´ ρ`t ˚Φ Pď`´1Rqs}N´1 ď 2}Dt,`Pď`´1Rq}N´1 À λN´1
q`1 λqδ

1
2
q λ

´3γ
q δq`1

}Dt,`rPď`´1ϕq ´ ρ`t ˚Φ Pď`´1ϕqs}N´1 ď 2}Dt,`Pď`´1ϕq}N´1 À λN´1
q`1 λqδ

1
2
q λ

´3γ
q δ

3
2
q`1.

(5.10)

Combining (5.7), (5.9), and (5.10), it follows that

}Dt,`pRq ´R`q}N´1 À λNq`1δ
1
2
q`1 ¨ λ

1
2
q λ
´ 1

2
q`1δ

1
4
q δ

3
4
q`1

}Dt,`pϕq ´ ϕ`q}N´1 À λNq`1δ
1
2
q`1 ¨ λ

1
2
q λ
´ 1

2
q`1δ

1
4
q δ

5
4
q`1.

�
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5.2. Quadratic commutator. We next deal with a quadratic commutator estimate, which is a
version of the estimate in [9] leading to the proof of the positive part of the Onsager conjecture.

Lemma 5.2. For any N ě 0, Qpv, vq “ ∇ ¨ pv` b v` ´ pv b vq`q satisfies

}Qpvq, vqq}N À `1´N pλqδ
1
2
q q

2, }Dt,`Qpvq, vqq}N À `´Nδ
1
2
q pλqδ

1
2
q q

2. (5.11)

Here, we allow the implicit constants to be depending on M .

Proof. In order to simplify our notation we drop the subscript q fom vq. The estimate for
}Qpv, vq}N easily follows from (A.2). To estimate Dt,`Qpv, vq, we first decompose Qpv, vq into

Qpv, vq “ pv` ´ vq ¨∇v` ` rv ¨∇, Pď`´1sv.

Recall that {Pď`´1fpξq “ {Pď2Jfpξq “ m
´

ξ
2J

¯

pfpξq for some radial function m P S, where J P N
is the maximum number satisfying 2J ď `´1. For the convenience, we set qm`pxq “ 23J

qmp2Jxq.
Then, by Poison summation formula, Pď`´1fpxq “

ş

R3 fpx ´ yqqm`pyqdy holds. Using this, the
advective derivative of the commutator term can be written as follows,

Dt,`rv ¨∇, Pď`´1sv “ pBt ` v`pxq ¨∇q
ż

ppvpxq ´ vpx´ yqq ¨∇qvpx´ yqqm`pyqdy

“

ż

ppDt,`vpxq ´Dt,`vpx´ yqq ¨∇qvpx´ yqqm`pyqdy

´

ż

pv`pxq ´ v`px´ yqqa∇avbpx´ yq∇bvpx´ yqqm`pyqdy

`

ż

ppvpxq ´ vpx´ yqq ¨Dt,`∇qvpx´ yqqm`pyqdy

`

ż

pvpxq ´ vpx´ yqqapv`pxq ´ v`px´ yqqbpBabvqpx´ yqqm`pyqdy.

Based on the decompositions, we use (2.4), (5.3), and }|y|n qm`}L1pR3q À `n, n ě 0, to get

}Dt,`Qpv, vq}0 À }Dt,`pv ´ v`q}0}∇v`}0 ` }v ´ v`}0}Dt,`∇v`}0

` `}∇Dt,`v}0}∇v}0 ` `}∇v}30 ` `}∇v}0}Dt,`∇v}0 ` `2}∇v}20}∇2v}0 À `pλqδ
1
2
q q

3

Here, we use }∇Dt,`v`}0 ď }∇Dt,`pv` ´ vq}0 ` }∇Dtv}0 ` }∇pppv ´ v`q ¨∇qv`q}0 À pλqδ
1
2
q q

2, and

}Dt,`∇v`}0 ď }∇Dt,`v`}0 ` }∇v}20 À pλqδ
1
2
q q

2.

In the case of N ě 1, we remark that Dt,`Qpv, vq has frequency localized to À `´1, so that the
remaining estimates follows from the Bernstein inequality. Similarly, we also have

}Dt,`∇v`}N À `´N pλqδ
1
2
q q

2. (5.12)

�

5.3. Estimates on the backward flow. Finally we address the estimates on the backward
flow ξI .
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Lemma 5.3. For every b ą 1 there exists Λ0 “ Λ0pbq such that for λ0 ě Λ0 the backward flow
map ξI satisfies the following estimates on the time interval Im “ rtm´ 1

2τq, tm`
3
2τqsXr0, T s`2τq

}Id´∇ξI}C0pImˆR3q ď
1

5
(5.13)

}Ds
t,`∇ξI}C0pIm;CN pR3qq ÀN,M `´N pλqδ

1
2
q q

s (5.14)

}Ds
t,`p∇ξIq´1}C0pIm;CN pR3qq ÀN,M `´N pλqδ

1
2
q q

s, (5.15)

for any N ě 0 and s “ 0, 1, 2. Note that the implicit constants in the inequalities are independent
of the index I “ pm,n, fq. In particular,

}∇ξI}C0pIm;CN pR3qq ` }p∇ξIq´1}C0pIm;CN pR3qq ÀN `´N . (5.16)

The implicit constant in this inequality is also independent of M .

Proof. First, we can find Λ0pbq such that for any λ0 ě Λ0pbq, τq}∇v}0 ď 1
10 holds. Then, (5.13)

easily follows from (3.17). Also,

}∇ξI}C0pIm;CN pR3qq ÀN 1` τq}∇v`}N À 1` `´N À `´N (5.17)

which follows }p∇ξIq´1}C0pIm;CN pR3qq ÀN `´N . Since we have

Dt,`∇ξI “ ´p∇ξIqp∇v`q, D2
t,`∇ξI “ p∇ξIqp∇v`q2 ´ p∇ξIqDt,`∇v`,

using (5.12) and (5.17), }Ds
t,`∇ξI}C0pIm;CN pR3qq ÀN,M `´N pλqδ

1
2
q q

s easily follows. Lastly, we have

Dt,`p∇ξIq´1 “ ∇v`p∇ξIq´1, D2
t,`p∇ξIq´1 “ Dt,`∇v`p∇ξIq´1 ` p∇v`q2p∇ξIq´1.

Therefore, (5.15) can be obtained similarly. �

6. Choice of shifts: proof of Proposition 3.5

This section is perhaps the most crucial in our note, as it ensures the key property in the
construction of wo, namely the disjointness of the supports of the single blocks wI in its definition.

6.1. An elementary geometric observation. The basic tool is an elementary fact about
closed geodesics in the three-dimensional torus. In order to state it efficiently we introduce
the following notation. Given a vector f P Z3zt0u and a point p P R3, we consider the line
tλf`p : λ P Ru Ă R3. With a slight abuse of notation, we then denote by lf,p the “periodization”
of such line, namely

lf,p :“ tλf ` p : λ P Ru ` 2πZ3 , (6.1)

and the corresponding closed geodesic in T3. Next, given two closed geodesics s and σ in the
torus (or, equivalently, the periodizations of the corresponding lines in R3), we define

distps, σq :“ mint|x´ y| : x P s, y P σu

Lemma 6.1. Let F be a given family of vectors in Z3 with a finite cardinality and d be a given
positive real number. Then, we can find η “ ηpF , dq ą 0 such that the following holds. For any
two sets of closed geodesics tsfu “ tlf,pf ufPF and ts̃fu “ tlf,qf ufPF satisfying

distpsf , sgq ě 2d, distps̃f , s̃gq ě 2d, @f ‰ g P F , (6.2)

we can always find z P R3 with |z| ď 1
4d such that the shifted geodesics ts̄fu “ tlf,qf`zu from

ts̃fu by z satisfy

mintdistpsf , s̄gq : f, g P Fu ě η. (6.3)
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Proof. The proof is based on a contradiction argument. Suppose that there exist a family F
with a finite cardinality and a positive number d for which the statement fails no matter how
small η ą 0 is chosen. Considering then for each η “ 1

k with k P Nzt0u a pair of families of
geodesics which contradict the statement. We then achieve 2|F | sequences of closed geodesics

ts
pkq
f u and ts̃

pkq
g u, f, g P F , k P N such that:

(a) For any f P F , s
pkq
f and s̃

pkq
f are given by ls,pf pkq, ls,qf pkq for some choice of vectors

pf pkq, qf pkq, which without loss of generality we can assume to satisfy the bounds
|pf pkq|8, |qf pkq|8 ď π.

(b) The geodesics satisfy the bound

distps
pkq
f , spkqg q ě 2d, distps̃

pkq
f , s̃pkqg q ě 2d, @f ‰ g P F .

(c) For each k P N

max
|z|ď 1

4

”

min
!

distplf,pf pkq`z, lg,qkpgqq : f, g P F
)ı

ď
1

k
.

Clearly, by extraction of a subsequence we can assume that all the sequences tpf pkqu, tqf pkqu
converge to some limits pf and qf . We thus can consider the corresponding geodesics sf “ lf,pf

and s̃f “ lf,qf . The simple inequalities distps
pkq
f , sf q ď |pf pkq´pf | and distps̃

pkq
f , s̃f q ď |q

pkq
f ´ qf |

imply

lim
kÑ8

„

max
fPF

distps
pkq
f , sf q `max

fPF
distps̃

pkq
f , s̃f q



“ 0 .

This implies that

min
f,gPF

distplf,pf`z, lg,qgq “ 0, @|z| ď
1

4
d, (6.4)

distplf,pf , lg,pgq ě 2d, distplf,qf , lg,qgq ě 2d, @f ‰ g P F . (6.5)

Denote by T the collection of pf, gq P F ˆ F such that lf,pf X lg,qg ‰ H and set

δ “ mintdistplf,pf , lg,qgq : pf, gq R T u ą 0 .

Clearly, as long as |z| ă δ
2 , we have

distplf,pf`z, lg,qgq ě
δ

2
ą 0 @pf, gq R T . (6.6)

Consider next that, by (6.5), if p P lf,pf X lg,qg , then p cannot belong to any other geodesic lf 1,p1f
or lg1,q1g . Furthermore, for any |z| ď d{4, we have lf,pf`z X lg1,q1g “ H for all g1 ‰ g P F and

lf 1,p1f`z X lg,qg “ H for all f 1 ‰ f P F . Consider that, for pf, gq P T , either lf,pf X lg,qg has

finite cardinality (which occurs when f and g are not colinear) or else lf,pf “ lg,qg (which occurs
when f and g are colinear). In both cases, let Lpf, gq be the linear space spanned by tf, gu and
observe that, if z P S2 is any vector such that ζ R Lpf, gq, then there is δpf, g, ζq ą 0 such that

lf,pf`τζ X lg,qg “ H @τ P p0, δpf, g, ζqq .

Since tLpf, gq : pf, gq P T u is a set with finite cardinality, it is clear that we can choose a vector
ζ P S2 such that

ζ R
ď

pf,gqPT
Lpf, gq .

Having fixed such a ζ, if z “ τζ and τ is a sufficiently small positive number, we conclude from
the considerations above that |z| ď 1

4d and

lf,pf`z X lg,qg “ H @f, g P F .
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Given that F is a finite set, the latter statement clearly contradicts (6.4). �

6.2. Proof of Proposition 3.5: Set up. First of all we wish to determine the constant η of
the Proposition. Recall that a family F“ YjPZ3

3
F j Ă Z3zt0u has been fixed in Section 3.1 and

it consists of 270, pairwise noncolinear, elements. We first notice that we can choose a finite
family tp̄fufPF of shifts with the property that

lf,p̄f X lg,p̄g “ H @f ‰ g P F .

Hence we denote by d0 the positive number

3d0 :“ min
 

distplf,p̄f , lg,p̄gq : f ‰ g P F
(

and we apply Lemma 6.1 to F and d “ d0 to get the corresponding ηpF , d0q. The resulting
positive constant η of Proposition 3.5 is then η “ mintηpF , d0q, d0{2u. Therefore we will now
proceed to prove the claim of the Proposition.

In order to simplify our notation we will use µ, τ and λ in place of µq, τq and λq`1 and v in
place of v`. We recall the following consequences of our choice of the parameters, which will
play a fundamental role in the proof:

µ´1 ! λ P N, τ}∇v}0 ď
1

10
, µτ}∇v}0 ď

η

10πλ
. (6.7)

(Here, } ¨ }0 “ } ¨ }Cpr0,T s`τq´1ˆT3q.) Next, the choice of the zm,n will be made inductively in the
time discretization parameter m, so that

|zm,n| ď
d0

4
. (6.8)

Before coming to the specific choice, we argue that the condition (6.8) guarantees

supppwIq X supppwJq “ H for all I ‰ J with mI “ mJ “ m.

Indeed, observe that the last claim is implied by the disjointness of the supports of the functions
χIpξIqψIpλξIq and χJpξJqψJpλξJq. However ξI “ ξJ “ ξm and thus it suffices to show the
disjointness of the supports of χIp¨qψIpλ¨q, which depends only on the x variables. Moreover
observe that χIχJ “ 0 if |nI ´ nJ |8 ą 1. Hence it suffices to show

supppψIq X supppψJq “ H for all I “ pm,n, fq ‰ pm,n1, gq “ J when |n´ n1|8 ď 1. (6.9)

Under such assumption, by (3.5)

supppψIq Ă Bplf,p̄f`zm,n , η{10q

supppψJq Ă Bplg,p̄g`zm,n1 , η{10q

However, since I ‰ J and either rns ‰ rn1s or n “ n1, we necessarily have f ‰ g. This means
that distplf,p̄f , lg,p̄gq ě 2d0 and thus that

distplf,p̄f ` zm,n, lg,p̄g ` zm,n1q ě
3

2
d0 .

Since η ď d0
2 , the latter inequality ensures (6.9).

We are now left with the inductive specification of the extra shifts zm,n. At the initial step
m “ ´2, we just set zm,n “ 0. Next note that supppθIq X supppθJq “ H when |mI ´mJ | ą 1.
Hence in the inductive step we fix m and, assuming to have chosen zm1,n for all m1 ď m and all
n, we wish to choose the “next generation” of zm`1,n such that

supppθIχIpξIqψIpλξIqq X supppθJχJpξJqψJpλξJqq “ H @I “ pm` 1, n, fq,@J “ pm,n1, gq .

We will not deal with condition (3.13), as it will be clear from the algorithm for choosing zm`1,n

that it will be automatically satisfied. Recall next that supppθIq X supppθJq Ă pτpm ` 1q ´
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τ
8 , τpm` 1q ` τ

8 q “ ptm`1 ´
τ
8 , tm`1 `

τ
8 q, while ξI “ ξm`1 and ξJ “ ξm (defined in (3.10)). The

above condition is thus implied by

supppχIpξm`1pt, ¨qqψIpλξm`1pt, ¨qqq X supppχJpξmpt, ¨qqψJpλξmpt, ¨qq “ H

for all tm`1 ´
τ
8 ă t ă tm`1 `

τ
8 , I “ pm` 1, n, fq and J “ pm,n1, gq. (6.10)

Moreover, the choice of each zm`1,n will be independent of the choice of other zm`1,n̄ except for
the condition zm`1,n “ zm`1,n̄ when µpn ´ n̄q P 2πZ3, which will be enforced by the fact that
we will only specify the choice when n P r0, 2πµ´1s3.

6.3. Proof of Proposition 3.5: conclusion. Let me be the smallest integer satisfying T ď
tme . From now on n P Z3 and m P t´1, ¨ ¨ ¨ ,meu are thus fixed and we wish to show that
for a suitable choice of zm,n satisfying (6.8), condition (6.10) holds. We recall the flow map
Φm introduced in (3.16) and observe that ξmpt, ¨q “ rΦmpt, ¨qs

´1. Moreover, by the semigroup
property of flows,

Φm`1ps,Φmptm`1, xqq “ Φmps, xq . (6.11)

and note that the latter can be equivalently written as

Φm`1ps, yq “ Φmps, ξmptm`1, yqq . (6.12)

These relations imply that

supppχJpξmpt, ¨qqψJpλξmpt, ¨qqq “ Φmpt, supppχJp¨qψJpλ¨qq (6.13)

supppχIpξm`1pt, ¨qqψIpλξm`1pt, ¨qqq “ Φmpt, ξmptm`1, supppχIp¨qψIpλ¨qqq . (6.14)

In particular, (6.10) is reduced to show

supppχJp¨qψJpλ¨qq X ξmptm`1, supppχIp¨qψIpλ¨qq “ H

for all I “ pm` 1, n, fq and J “ pm,n1, gq. (6.15)

Consider now xm`1 :“ ξmptm`1, 2πµnq and choose n such that xm`1 P Qn “ Qp2πµn, πµq. We
claim that ξmptm`1, supppχIqq cannot intersect supppχJq if |nJ ´n| ą 1, which follows from the
fact that Φmpt, ¨q is a diffeomorphism for every t and the claim that

ξmptm`1, supppχIqq Ă ξmptm`1, Qp2πµn,
9πµ

8 qq Ă Qpxm`1,
13πµ

8 q . (6.16)

The first inclusion is obvious because by definition suppχI Ă Qp2πµn, 9πµ
8 q. As for the second

inclusion, recall the estimates (cf. (3.17))

}∇ξmptm`1, ¨q}0 ď exppτq}∇vq}0q

}∇ξmptm`1, ¨q ´ Id}0 ď τq}∇vq}0 exppτq}∇vq}0q ď
1

5
.

Thus, for every x P Qp2πµn, 9πµ
8 q we can estimate

ξmptm`1, xq ´ xm`1 “ ξmptm`1, xq ´ ξmptm`1, 2πµnq

“

ż 1

0
∇ξmptm`1, λx` p1´ λq2πµnq ¨ px´ 2πµnq dλ

“ x´ 2πµn`

ż 1

0
p∇ξmptm`1, λx` p1´ λq2πµnq ´ Idq ¨ px´ 2πµnq dλ

“: x´ 2πµn` E .

Hence, in order to show the second inclusion in (6.16) it suffices to estimate

|E| ď }∇ξmptm`1, ¨q ´ Id}0|x´ 2πµn| ď
9
?

3

40
πµ ď

πµ

2
.

27



Given the argument above, (6.13) and (6.14) imply that

supppχJp¨qq X supp ξm`1ptm, supppχIqq “ H

for every I “ pm ` 1, n, fq and J “ pm,n1, fq with |n1 ´ n| ą 1. Therefore, in order to show
(6.15), we will focus on the following remaining cases:

supppψJpλ, ¨qq X ξmptm`1, χIp¨qψIpλ¨qq “ H

for all I “ pm` 1, n, fq and J “ pm,n1, gq with |n1 ´ n̄|8 ď 1. (6.17)

In particular note that tn1 : |n1 ´ n̄|8 ď 1u consists of 27 points in the integer lattice Z3,
containing exactly one element for each equivalence class in Z3

3.
In order to deal with these last 270 cases of indices for J together with the 10 cases of

possibility for I, observe first that, inserting s “ tm in (6.12), we have Φm`1ptm, ¨q “ ξmptm`1, ¨q
and thus (6.15) becomes in fact

supppψJpλ, ¨qq X Φm`1ptm, χIp¨qψIpλ¨qq “ H (6.18)

Introduce now the “frozen flow” Ψ given by
#

BtΨpt, xq “ vpt,Φm`1pt, 2πµnqq

Ψptm`1, xq “ x.

Observe that Ψpt, xq translates x by some vector depending on time and so

Ψpt, xq “ x`

ż t

tm`1

vps,Φm`1ps, 2πµnqqds “ x` uptq. (6.19)

Moreover, by definition Ψptm, 2πµnq “ xm`1, which means that, upon introducing x :“ xm`1´

2πµn,

Ψptm, xq “ x` x . (6.20)

Observe next that Φm`1ptm, 2πnµq “ Ψptm, 2πnµq. Hence for x P Qp2πµn, 9πµ
8 q Ą supppχIq we

can estimate

|Φm`1ptm, xq ´Ψptm, xq|8 ď

ż tm`1

tm

|BsΦm`1ps, xq ´ BsΨps, xq|8ds

ď

ż tm`1

tm

|vps,Φm`1ps, xqq ´ vps,Φm`1ps, 2πµnqq|8ds

ď τ}∇v}0}∇Φm`1}C0prtm,tm`1sˆT3q|x´ 2πµn|8

ď
9πµτ

4
}∇v}0 ď

η

4λ
.

(6.21)

In particular we conclude that

|Φm`1ptm, xq ´ px` xq| ď
η

4λ
.

If we introduce x̄ :“ λx, we conclude that

Φm`1ptm, supppχIp¨qψIpλ¨q Ă BpsupppψIpλ ¨ ´x̄qq, η{p4λqq .

Hence, (6.18) is satisfied if we have

supppψJq XBpsupppψIp¨ ´ x̄qq, η{4q “ H (6.22)

for the set 270 indices J “ pm,n1, gq with |n ´ n1|8 ď 1 and for the 10 indices I “ pm,n, gq.
Observe now that, by the construction of the ψJ ’s, we know that:

‚ The map tJ “ pm,n1, gq : |n1´n|8 ď 1, u Q J ÞÑ g P F is a one-to-one map and the map
tI “ pm` 1, n, fqu Q I Ñ f P F is injective.
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‚ We have that for each g P F there is a point p̃g such that

supppψJq Ă Bplg,p̃g , η{10q (6.23)

while for each I “ pm` 1, n, fq, if we let pf :“ p̄f ` x̄, then

BpsupppψIp¨ ´ x̄qq, η{4q Ă Bplf,pf`zm`1,n , 7η{20q. (6.24)

‚ Finally

distplf,pf , lf 1,pf 1 q ě 2d0 distplg,p̃g , lg1,p̃g1 q ě 2d0 @f ‰ f 1, g ‰ g1 . (6.25)

In particular, we are in the position to apply Lemma 6.1 and thus find a shift zm`1,n with

|zm`1,n| ď
d0
4 such that

distplf,pf`zm`1,n , lg,p̃gq ě η @f, g . (6.26)

Clearly, (6.23), (6.24) and (6.26) imply (6.22) and thus completes the proof of the proposition.

7. Estimates in the velocity correction

The main point of this section is to get the estimates on the velocity correction. In this
section, we set } ¨ }N “ } ¨ }C0pr0,T s`τq ;CN pT3qq.

The following proposition provides the estimates for the perturbation w.

Proposition 7.1. For N “ 0, 1, 2 and s “ 0, 1, 2, the following estimates hold for wo, wc, and
w “ wo ` wc:

τ sq }D
s
t,`wo}NÀMλ

N
q`1δ

1
2
q`1 (7.1)

τ sq }D
s
t,`wc}NÀMλ

N
q`1

δ
1
2
q`1

λq`1µq
(7.2)

τ sq }D
s
t,`w}NÀMλ

N
q`1δ

1
2
q`1, (7.3)

where the implicit constants are independent of s, N , and q in w “ wq`1. Moreover,

}w}N À λNq`1δ
1
2
q`1, (7.4)

where the implicit constant is additionally independent of M .

The latter estimates are in fact a simple consequence of estimates on the functions b, c, d and
e defined in (3.30) and (3.32)

Lemma 7.2. For any N ě 0 and s “ 0, 1, 2, the coefficients bm,k, cm,k, dm,k, and em,k defined
by (3.30) and (3.32) satisfy the following,

τ sq }D
s
t,`bm,k}NÀN,M µ´Nq max

I
|
˝

bI,k| (7.5)

τ sq }D
s
t,`cm,k}NÀN,M µ´Nq max

I
|
˝
cI,k| (7.6)

τ sq }D
s
t,`dm,k}NÀN,M µ´Nq max

I
|
˝

dI,k| (7.7)

τ sq }D
s
t,`em,k}NÀN,M µ´Nq max

I
|
˝

bI,k|. (7.8)

Moreover, for N “ 0, 1, 2,

}bm,k}N ` }em,k}N À µ´Nq max
I
|
˝

bI,k|, (7.9)

where the implicit constant is independent of M and N .
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Remark 7.3. Observe that, by the definition of the respective coefficients, the moduli |
˝

bI,k|,

|
˝
cI,k| and |

˝

dI,k| just depend on the third component of the index I “ pm,n, fq, since they involve
the functions ψf , but not the “shifts” zm,n. In particular, the set of their possible values is a
finite number, independent of q and just depending on the collection of the family of functions
ψf and on the frequency k.

Proof. First of all, it is easy to see that for any s ě 0 and N ě 0,

}Ds
t,`θI}C0pRq “ }B

s
t θI}C0pRq Às τ

´s
q ,

}χIpξIq}C0pIm;CN pR3qq ÀN µ´Nq , Ds
t,`rχIpξIqs “ 0,

(7.10)

where Im “ rtm ´
1
2τq, tm `

3
2τqs. Indeed, the estimate of χIpξIq follows from (5.14), Lemma

A.1, and `´1 ď µ´1
q . We remark that the implicit constants are independent of I.

Recall that when f P Iϕ,

γI “
λ´γq δ

1
2
q`1ΓI

|f̃I |
2
3

“
λ´γq δ

1
2
q`1ΓI

|∇ξ´1
I fI |

2
3

for

ΓIpxq “ Γ
1
3
fI
p´2λ3γ

q δ
´ 3

2
q`1p∇ξIqϕ`q

where Γf ’s are the functions given by Lemma 3.3. First it is easy to see that (5.15) implies

}Ds
t,`rp∇ξIq´1fIs}C0pIm;CN pR3qqÀN,M pλqδ

1
2
q q

s`´N . (7.11)

Also, using (5.14) and (5.2),

}Ds
t,`p2λ

3γ
q δ

´ 3
2

q`1p∇ξIqϕ`q}C0pIm;CN pR3qqÀN,M p`
´s
t ` pλqδ

1
2
q q

sq`´N À τ´sq `´N . (7.12)

Next, for any smooth functions Γ “ Γpxq and g “ gpt, xq we have

}Dt,`Γpgq}CNx À
ÿ

N1`N2“N

}Dt,`g}CN1
x
}p∇Γqpgq}

C
N2
x
,

}D2
t,`Γpgq}CNx À

ÿ

N1`N2“N

}D2
t,`g}CN1

x
}p∇Γqpgq}

C
N2
x
` }Dt,`g bDt,`g}CN1

x
}p∇2Γqpgq}

C
N2
x
,

(7.13)

and therefore we obtain by Lemma A.2

}Ds
t,`|p∇ξIq´1fI |

´ 2
3 }C0pIm;CN pR3qqÀN,M pλqδ

1
2
q q

s`´N

}Ds
t,`rpΓ

ϕ
j q

1
3 p´2λ3γ

q δ
´ 3

2
q`1p∇ξIqϕ`qs}C0pIm;CN pR3qqÀN,Mτ

´s
q `´N .

Here, we used (7.11) and (7.12) which we can apply thanks to the fact that |p∇ξIq´1fI | ě
3
4 and

ΓfI ě 3 (according to our choice of N0 in applying Lemma 3.3). Also the implicit constant in
the second inequality can be chosen to be independent of I because of the finite cardinality of
the functions fI . On the other hand, in the case of s “ 0 and N “ 0, 1, 2, because of (2.7) and
(5.16), the implicit constants in both inequalities can be chosen to be independent of N and M .
Therefore, it follows that, when I P Iϕ,

}Ds
t,`δ

´ 1
2

q`1γI}NÀN,Mτ
´s
q `´N . (7.14)

In particular, for N “ 0, 1, 2,

}δ
´ 1

2
q`1γI}N À `´N .
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On the other hand, when I P IR, recall that δ
´ 1

2
q`1γI “ ΓI “ ΓfI pId ´ δ´1

q`1MIq for a finite
collection of smooth functions fI chosen through Lemma 3.2. First we obtain the estimate for
MI ,

}MI}C0pIm;CN pR3qq

ÀN δq`1}p∇ξIqp∇ξIqJ ´ Id}C0pIm;CN pR3qq

`
ÿ

N1`N2`N3“N

}∇ξI}C0pIm;C
N1
x q
}R`}N2}∇ξI}C0pIm;C

N3
x q

`
ÿ

N1`N2`N3`N4“N

ÿ

J :fPFJ,ϕ

}∇ξI}C0pIm;C
N1
x q
}χ2

JpξJq}C0pIm;C
N2
x q
}γ2
J}C0pIm;C

N3
x q
}∇ξI}C0pIm;C

N4
x q

À δq`1µ
´N
q ,

using (5.13), (5.14), (5.1), (7.10), and (7.14), Similarly, we have

}Ds
t,`MI}N ÀN,M δq`1τ

´s
q µ´Nq ,

but }MI}N À δq`1µ
´N
q for N “ 0, 1, 2. Then, (7.13) and Lemma A.1 imply that when fI P FI,R,

for s “ 0, 1, 2 and N ě 0,

}Ds
t,`δ

´ 1
2

q`1γI}N “ }D
s
t,`pΓfI pId´ δ

´1
q`1MIqq}N ÀN,M τ´sq µ´Nq . (7.15)

In particular, for N “ 0, 1, 2, the implicit constant can be chosen to be independent of M and
N ;

}δ
´ 1

2
q`1γI}N À µ´Nq .

Finally, recall the definition of bm,k, cm,k, dm,k, and em,k. Then, the estimates (7.5)-(7.9) follows
from (7.10), (7.14), and (7.15). �

Proof of Proposition 7.1. Using (7.5), (7.8), (5.14), and (3.24), we easily have the estimates

λ´Nq`1}wo}N ÀN δ
1
2
q`1 and λ´Nq`1}wc}N ÀN pλq`1µqq

´1δ
1
2
q`1, recalling Remark 7.3. On the other

hand, we observe that Dt,`e
iλq`1k¨ξI “ 0 because of Dt,`ξI “ 0. Hence the remaining inequalities

in (7.1) and (7.2) are obtained in a similar fashion. Finally, (7.3) follows from (7.1) and (7.2).
Note that all estimates used in the proof have implicit constants independent of q. Moreover,
the finite cardinalities of the range of N and s make it possible to choose the implicit constants
in (7.1), (7.2), and (7.3) independent of N and s too. Furthermore, when s “ 0, we can also
make the implicit constants independent of M . �

8. A microlocal lemma

We will need in the sequel a suitable extension of [20, Lemma 4.1], where we will use the
notation

F rf spkq “́ ´´

ż

T3

fpxqe´ix¨kdx, fpxq “
ÿ

kPZ3

F rf spkqeik¨x

for the Fourier series of periodic functions.

Lemma 8.1 (Microlocal Lemma). Let T be a Fourier multiplier defined on C8pT3q by

F rThspkq “ mpkqF rhspkq, @k P Z3

for some m which has an extension in SpR3q (which for convenience we keep denoting by m).
Then, for any n0 P N, λ ą 0, and any scalar functions a and ξ in C8pT3q, T paeiλξq can be
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decomposed as

T paeiλξq “

«

ampλ∇ξq `
2n0
ÿ

k“1

Cλk pξ, aq : p∇kmqpλ∇ξq ` εn0pξ, aq

ff

eiλξ

for some tensor-valued coefficient Cλk pξ, aq and a remainder εn0pξ, aq which is specified in the
following formula:

εn0pξ, aqpxq “
ÿ

n1`n2
“n0`1

p´1qn1cn1,n2

n0!

¨

ż 1

0

ż

R3

qmpyqe´iλ∇ξpxq¨yppy ¨∇qn1aqpx´ ryqeiλZrξsprqβn2rξsprqp1´ rq
n0dydr,

(8.1)

where cn1,n2 is a constant depending only on n1 and n2, and the function βnrξs is

βnrξsprq “ BnpiλZ
1prq, iλZ2prq, ¨ ¨ ¨ , iλZpnqprqq,

Zrξsprq “ Zrξsx,yprq “ r

ż 1

0
p1´ sqpy ¨∇q2ξpx´ rsyqds,

with Bn denoting the nth complete exponential Bell polynomial (cf. (8.6) for its definition).

Before coming to its proof, we collect an important consequence on the operator R.

Corollary 8.2. Let N “ 0, 1, 2 and F “
ř

kPZ3zt0u

ř

mPZ am,ke
iλq`1k¨ξm. Assume that a function

am,k fullfills the following requirements.

(i) The support of am,k satisfies supppam,kq Ă ptm ´
1
2τq, tm `

3
2τqq ˆR3. In particular, for m

and m1 neither same nor adjacent, we have

supppam,kq X supppam1,k1q “ H, @k, k1 P Z3zt0u. (8.2)

(ii) For any j ě 0 and pm, kq P Zˆ Z3,

}am,k}j ` pλq`1δ
1
2
q`1q

´1}Dt,`am,k}j Àj µ
´j
q |

˝
ak|,

ÿ

k

|k|n0`2|
˝
ak| ď aF ,

for some aF ą 0, where n0 “ r
2bp2`αq

pb´1qp1´αq s and } ¨ }j “ } ¨ }CpI;CjpT3qq on some time interval

I Ă R.

Then, for any b ą 1, we can find Λ0pbq such that for any λ0 ě Λ0pbq, RF satisfies the following
inequalities:

}RF }N À λN´1
q`1 aF , }

˚

DtRF }N´1 À λN´1
q`1 δ

1
2
q`1aF

upon setting
˚

Dt “ Bt ` vq`1 ¨∇.

8.1. Proof of Lemma 8.1. Recall that qm is the inverse Fourier transform of m in R3. By the
Poisson summation formula, we have

T paeiλξqpxq “ eiλξpxq
ż

R3

qmpyqapx´ yqeiλrξpx´yq´ξpxqsdy

“ eiλξpxq
ż

R3

qmpyqapxqe´iλ∇ξpxq¨ydy

` eiλξpxq
ż

R3

qmpyqe´iλ∇ξpxq¨ypHx,yp1q ´Hx,yp0qqdy

(8.3)
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where

Hx,yprq “ apx´ ryqeiλZx,yprq, Zrξsx,yprq “ r

ż 1

0
p1´ sqpy ¨∇q2ξpx´ rsyqds.

Indeed, it follows from

ξpx´ yq ´ ξpxq ` y ¨∇ξpxq “
ż 1

0
p1´ sqpy ¨∇q2ξpx´ syqds.

In order to avoid a cumbersome notation, from now we drop the index x,y in H and Z and the
dependence on ξ in Z. The decomposition of T paeiλξq follows from Taylor’s theorem applied to
H at r “ 0:

Hp1q ´Hp0q “
n0
ÿ

n“1

Hpnqp0q

n!
`

ż 1

0

Hpn0`1qprq

n0!
p1´ rqn0dr. (8.4)

The nth derivative of H can be computed by the Faà di Bruno’s formula,

Hpnqprq “
ÿ

n1`n2“n

cn1,n2B
n1
r papx´ ryqqB

n2
r e

iλZprq

“
ÿ

n1`n2“n

cn1,n2p´1qn1ppy ¨∇qn1aqpx´ ryqeiλZprqBn2piλZ
1, iλZ2, ¨ ¨ ¨ , iλZpn2qq

(8.5)

where Zpnq is the nth derivative of Z, and Bn is the nth complete exponential Bell polynomial
given by

Bnpx1, . . . , xnq “
n
ÿ

k“1

Bn,kpx1, x2, . . . , xn´k`1q, (8.6)

where

Bn,kpx1, x2, . . . , xn´k`1q “
ÿ n!

j1!j2! ¨ ¨ ¨ jn´k`1!

´x1

1!

¯j1 ´x2

2!

¯j2
¨ ¨ ¨

ˆ

xn´k`1

pn´ k ` 1q!

˙jn´k`1

,

and the summation is taken over tjku Ă NY t0u satisfying

j1 ` j2 ` ¨ ¨ ¨ ` jn´k`1 “ k, j1 ` 2j2 ` 3j3 ` ¨ ¨ ¨ ` pn´ k ` 1qjn´k`1 “ n. (8.7)

Observe that Z has the form Zprq “ rZ0prq, which follows

Zpnqprq “ nZ
pn´1q
0 prq ` rZ

pnq
0 prq, Zpnqp0q “ nZ

pn´1q
0 p0q. (8.8)

The nth derivative of Z0 is

Z
pnq
0 prq “

ż 1

0
p1´ sqp´sqnppy ¨∇qn`2ξqpx´ rsyqds. (8.9)

In particular,

Z
pnq
0 p0q “

ż 1

0
p1´ sqp´sqnpy ¨∇qn`2ξpxqds “

p´1qn

pn` 1qpn` 2q
py ¨∇qn`2ξpxq.

Therefore, we obtain

Hpnqp0q “
ÿ

n1`n2“n

cn1,n2p´1qn1py ¨∇qn1apxqBn2piλZ0p0q, ¨ ¨ ¨ , iλn2Z
pn2´1q
0 p0qq

“
ÿ

n1`n2“n

n2
ÿ

k“1

cn1,c2p´1qn1λkybn`k : ∇n1apxq b β̃n2,krξspxq,
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for some function β̃n2,krξspxq, and hence

n0
ÿ

n“1

ż

R3

H
pnq
x,y p0q

n!
qmpyqe´iλ∇ξpxq¨ydy “

2n0
ÿ

k“1

Cλk pξ, aq : p∇kmqpλ∇ξq

for some tensor-valued coefficient Cλk pξ, aq. Indeed, the factor ybn`k gives the pn` kqth deriva-
tives of m.

Considering the remainder, we use (8.5) to define εn0pξ, aq by

εn0pξ, aqpxq

“
1

n0!

ż 1

0

ż

R3

qmpyqe´iλ∇ξpxq¨ypHx,yq
pn0`1qprqdyp1´ rqn0dr

“
ÿ

n1`n2“n0`1

p´1qn1cn1,n2

n0!

¨

ż 1

0

ż

R3

qmpyqe´iλ∇ξpxq¨yppy ¨∇qn1aqpx´ ryqeiλZprqβn2rξsprqp1´ rq
n0dydr

where in the second equality

βn2rξsprq “ Bn2piλZ
1prq, iλZ2prq, ¨ ¨ ¨ , iλZpn2qprqq

“

n
ÿ

k“1

piλqkBn,kpZ
1prq, ¨ ¨ ¨ , Zn2´k`1prqq.

This completes the proof.

8.2. Proof of Corollary 8.2.
Step 1. Decomposition of F .

We first claim that F can be written as

F “ PÁλq`1

¨

˝

ÿ

m,k

am,ke
iλq`1k¨ξm

˛

‚´
ÿ

m,k

ε
λq`1
n0 pk ¨ ξm, am,kqe

iλq`1k¨ξm , (8.10)

where PÁλq`1 is defined by

PÁλq`1 “
ÿ

2jě 3
8
λq`1

P2j

and
ε
λq`1
n0 pk ¨ ξm, am,kq “

ÿ

2jě 3
8
λq`1

εn0,jpk ¨ ξm, am,kq.

The remainder εn0,jpξ, aq is obtained by applying Lemma 8.1 to P2j and n0 “ r
2bp2`αq

pb´1qp1´αq s. To

prove the claim, we first decompose PÁλq`1 into

PÁλq`1 “
ÿ

3
8
λq`1ď2jď2J

P2j ` Pą2J “: Pλq`1À¨ď2J ` Pą2J .

and denote the multipliers of Pλq`1À¨ď2J and P2j by mďJ and mj . Indeed, they satisfy

supppmďJq Ă Bp0, 2J`1q, mďJ “ 1 on Bp0, 2JqzBp0,
3

4
λq`1q

supppmjq Ă Bp0, 2j`1qzBp0, 2j´1q.

Then, since for any k P Z3zt0u,

3

4
|k| ď |∇pk ¨ ξmq| ď

5

4
|k|, on Im ˆ R3
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by }Id´∇ξm}C0pImˆR3q ď
1
4 , where Im “ ptm´ 1

2τq, tm`
3
2τqqXI, we have for any 2Jk ě 5

4λq`1|k|,

mďJkpλq`1∇pk ¨ ξmqq “ 1, mjpλq`1∇pk ¨ ξmqq “ 0, @j ą Jk,

on the support of am,k Therefore, applying Lemma 8.1 to Pλq`1À¨ď2Jk and P2j for j ą Jk, we

obtain

Pλq`1À¨ď2Jk pam,ke
iλq`1k¨ξmq “ am,ke

iλq`1k¨ξm `
ÿ

3
8
λq`1ď2jď2Jk

εn0,jpk ¨ ξm, am,kqe
iλq`1k¨ξm

P2j pam,ke
iλq`1k¨ξmq “ εn0,jpk ¨ ξm, am,kqe

iλq`1k¨ξm .

Indeed, the remainder in the first equality follows from mďJ “
ř

3
8
λq`1ď2jď2Jk mj . Summing

them up in j and reorganizing the terms, we have

am,ke
iλq`1k¨ξm “ PÁλq`1

´

am,ke
iλq`1k¨ξm

¯

´ ε
λq`1
n0 pk ¨ ξm, am,kqe

iλq`1k¨ξm . (8.11)

Taking summation again in m and k, the desired decomposition follows.

Step 2. The estimates for the remainder.
We aim to obtain the following estimates.

}
ÿ

m,k

ε
λq`1
n0 pk ¨ ξm, am,kq}0 Àn0 pλq`1µqq

´pn0`1qaF , (8.12)

}
ÿ

m,k

Dt,`ε
λq`1
n0 pk ¨ ξm, am,kq}0 Àn0 λq`1δ

1
2
q`1pλq`1µqq

´pn0`1qaF . (8.13)

First, we remark the following relations between parameters;

λq ď `´1 À µ´1
q À λq`1, λqδ

1
2
q À λq`1δ

1
2
q`1.

Recall the definition of εn0,jpξ, aq from (8.1):

εn0,jpk ¨ ξm, am,kqpxq

“
ÿ

n1`n2“n0`1

p´1qn1cn1,n2

n0!

ż 1

0

ż

R3

|mjpyqe
´iλq`1py¨∇qpk¨ξmqpxqpy ¨∇qn1am,kpx´ ryq

eiλq`1Zrk¨ξmsprqβn2rk ¨ ξmsprqp1´ rq
n0dydr.

It is obvious that

|e´iλq`1py¨∇qpk¨ξmqpxq| ď 1, |eiλq`1Zprq| ď 1,

|py ¨∇qn1am,kpx´ ryq| ď |y|
n1}am,k}n1 À |y|

n1µ´n1
q |

˝
ak|.

On the other hand, recall

βn2rk ¨ ξmsprq “
n2
ÿ

l“1

piλq`1q
lBn,lpZ

1prq, ¨ ¨ ¨ , Zn2´l`1prqq,

Zpnqprq “ Zrk ¨ ξms
pnqprq “ nZ

pn´1q
0 prq ` rZ

pnq
0 prq,

Z
pnq
0 prq “

ż 1

0
p1´ sqp´sqnpy ¨∇qn`2pk ¨ ξmqpx´ rsyqds. (8.14)

Using (5.14), it can be easily seen that for r P r0, 1s and t P Im,

}Zpnq}C0
x
ď }nZ

pn´1q
0 }C0

x
` }rZ

pnq
0 }C0

x

Àn |y|
n`1}∇pk ¨ ξmq}Cnx ` |y|

n`2}∇pk ¨ ξmq}Cn`1
x

À |y|n`1|k|µ´nq p1` |y|µ´1
q q.
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Therefore, in the same range of r and t,

}βn2rk ¨ ξmsprq}C0
x
Àn2

ÿ

λlq`1}pZ
1qj1 ¨ ¨ ¨ pZpn2´l`1qqjn2´l`1}C0

x

Àn2

n2
ÿ

l“1

λlq`1|y|
l|k|lp|y|µ´1

q q
n2

l
ÿ

i“0

p|y|µ´1
q q

i

Àn2 p|y|µ
´1
q q

n2 |k|n0`1
n2
ÿ

l“1

pλq`1|y|q
l
l
ÿ

i“0

p|y|µ´1
q q

i,

where the summations in the first inequality is taken over

1 ď l ď n2, j1 ` ¨ ¨ ¨ ` jn2´l`1 “ l, j1 ` ¨ ¨ ¨ ` pn2 ´ l ` 1qjn2´l`1 “ n2

and the last inequality follows from |k|l ď |k|n2 ď |k|n0`1 for any k P Z3zt0u. Combining all
estimates, the remainder εn0,jpk ¨ ξm, am,kq satisfies

}εn0,jpk ¨ ξm, am,kq}C0pImˆR3q Àn0 |k|
n0`1|

˝
ak|

n0`1
ÿ

l“1

l
ÿ

i“0

λlq`1µ
´pi`n0`1q
q }|y|l`i`n0`1

qmj}L1
ypR3q,

which implies that

}ε
λq`1
n0 pk ¨ ξm, am,kq}C0pImˆR3q À

ÿ

2jě 3
8
λq`1

}εn0,jpk ¨ ξm, am,kq}C0pImˆR3q

Àn0 |k|
n0`1|

˝
ak|pλq`1µqq

´pn0`1q.

Therefore, using supppε
λq`1
n0 pk ¨ ξm, am,kqq Ă supppam,kq and (8.2), we obtain the first part of the

claim:

}
ÿ

m,k

ε
λq`1
n0 pk ¨ ξm, am,kq}0 ď

ÿ

k

}
ÿ

m

ε
λq`1
n0 pk ¨ ξm, am,kq}C0

ď 3
ÿ

k

sup
m
}ε
λq`1
n0 pk ¨ ξm, am,kq}C0pImˆR3q

Àn0

ÿ

kPZ3zt0u

|k|n0`1|
˝
ak|pλq`1µqq

´pn0`1q À pλq`1µqq
´pn0`1qaF .

Indeed, we use }|y|n|mj}L1
ypR3q À p2

´jqn and µ´1
q ď λq`1.

To find the estimate for Dt,`εn0pk ¨ ξm, am,kq, we compute the advective derivatives of each
piece of the integrand of the integral in εn0,jpk ¨ ξm, am,kq as follows;

Dt,`e
´iλq`1py¨∇qpk¨ξmqpxq “ pBt ` v`pxq ¨∇xqe

´iλq`1∇pk¨ξmqpxq¨y

“ ´iλq`1Dt,`∇pk ¨ ξmqpxq ¨ ye´iλq`1∇pk¨ξmqpxq¨y,

Dt,`rpy ¨∇qn1am,kpx´ ryqs “ pv`pxq ´ v`px´ ryqq ¨∇ppy ¨∇qn1am,kpx´ ryqq

` pDt,`py ¨∇qn1am,kqpx´ ryq,

and

pDt,`e
iλq`1Zx,yprqq “ iλq`1pBt ` v`pxq ¨∇xqZx,yprqe

iλq`1Zx,yprq

“ iλq`1r

ż 1

0
p1´ sqy b y : pDt,`∇2pk ¨ ξmqqpx´ ryqdse

iλq`1Zx,yprq

` iλq`1r

ż 1

0
p1´ sqy b y : rpv`pxq ´ v`px´ yqq ¨∇s∇2pk ¨ ξmqpx´ ryqdse

iλq`1Zx,yprq
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For the last piece, we recall βn2rk ¨ ξms;

Dt,`βn2rk ¨ ξms “ Dt,`

»

–

n2
ÿ

l“1

piλq`1q
l
ÿ

ji

n2!

j1! ¨ ¨ ¨ jn2´l`1!

ˆ

Z 1x,yprq

1!

˙j1

¨ ¨ ¨

˜

Z
pn2´k`1q
x,y prq

pn2 ´ l ` 1q!

¸jn2´l`1
fi

fl .

First, using (5.14), we have on Im

}Dt,`∇pk ¨ ξmq}C0
x
À λqδ

1
2
q |k|

}Dt,`∇2pk ¨ ξmq}C0
x
ď |k|}∇Dt,`∇ξm}C0

x
` |k|}∇v}0}∇2ξm}C0

x
À λqδ

1
2
q µ

´1
q |k|,

which follows that for r P r0, 1s and t P Im,

}Dt,`e
´iλq`1py¨∇qpk¨ξmq}C0

x
À λq`1|y|λqδ

1
2
q |k|

}Dt,`e
iλq`1Zx,yprq}C0

x
À λq`1µ

´1
q λqδ

1
2
q |y|

2|k|p1` |y|`´1q.
(8.15)

Also, for any smooth function g, we can write

Dt,`py ¨∇qn1g “ py ¨∇qn1pDt,`gq ` rDt,`, py ¨∇qn1sg.

Since the commutator term rDt,`, py ¨∇qn1sg has a representation,

rDt,`, py ¨∇qn1sg “ rv` ¨∇, py ¨∇qn1sg “
ÿ

m1`m2“n1
1ďm1ďn1

Cm1,m2rpy ¨∇qm1v` ¨∇spy ¨∇qm2g,

we have

}rDt,`, py ¨∇qn1sg}0 À |y|
n1

ÿ

m1`m2“n1
1ďm1ďn1

}∇m1v`}0}∇m2`1g}0,

and hence

}Dt,`py ¨∇qn1g}0 Àn1 |y|
n1

»

—

–

}∇n1Dt,`g}0 `
ÿ

m1`m2“n1
1ďm1ďn1

}∇m1v`}0}∇m2`1g}0

fi

ffi

fl

. (8.16)

In particular, we have

}Dt,`py ¨∇qn1am,k}0 Àn1 λq`1δ
1
2
q`1|y|

n1µ´n1
q |

˝
ak| (8.17)

}Dt,`py ¨∇qn`2pk ¨ ξmq}C0pImˆR3q À |y|
n`2λqδ

1
2
q µ

´pn`1q
q |k|.

Here, the second inequality uses Dt,`ξm “ 0. This suggests that Z0 in (8.14) satisfies for r P r0, 1s
and t P Im

}Dt,`Z
pnq
0 }C0

x
ď

›

›

›

›

ż 1

0
p1´ sqp´sqnpDt,`qxrpy ¨∇qn`2pk ¨ ξmqpx´ rsyqsds

›

›

›

›

C0
x

À |k| sup
sPr0,1s

}v` ´ v`p¨ ´ rsyq}C0
x
}∇py ¨∇qn`2ξm}C0

x
` |k|}Dt,`py ¨∇qn`2ξm}C0

x

À |k||y|n`3}∇v}C0
x
}∇n`3ξm}C0

x
` |k|}Dt,`py ¨∇qn`2ξm}C0

x

À |y|n`1λqδ
1
2
q µ

´n
q p|y|2µ´2

q ` |y|µ´1
q q|k|.

Therefore, the advective derivative of Z
pnq
x,y with k ¨ ξm can be estimated as

}Dt,`Z
pnq}C0

x
À n}Dt,`Z

pn´1q
0 }C0

x
` r}Dt,`Z

pnq
0 }C0

x

À |y|n`1λqδ
1
2
q µ

´n
q p1` |y|µ´1

q ` |y|2µ´2
q q|k|,

(8.18)
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in the same range of r and t. Combining the estimates (8.15), (8.17), and (8.18), we can see that

Dt,` generates a factor whose value is bounded by λq`1δ
1
2
q`1|k|p1 ` pλq`1|y|q

3q. More precisely,

for any r P r0, 1s, if }F }C0pImˆR3q À bF , then }Dt,`F }C0pImˆR3q À λq`1δ
1
2
q`1|k|p1` pλq`1|y|q

3qbF ,

where the possible F are e´iλq`1py¨∇qpk¨ξmqpxq, py ¨ ∇qn1am,kpx ´ ryq, eiλq`1Zx,yprq, Zpnq, and
βn2rk ¨ ξms. As a result,

}
ÿ

k,m

Dt,`ε
λq`1
n0 pk ¨ ξm, am,kq}0 Àn0 λq`1δ

1
2
q`1

ÿ

kPZ3zt0u

|k|n0`2|
˝
ak|pλq`1µqq

´pn0`1q

À λq`1δ
1
2
q`1pλq`1µqq

´pn0`1qaF .

Step 3. The estimates for RF .
We first note several things; The parameters satisfy the additional relations

`λqδ
1
2
q ď δ

1
2
q`1, λ´1

q`1 ď δ
1
2
q`1, λ2

q`1pλq`1µqq
´pn0`1q À 1

by the choice of n0. Furthermore, for any b ą 1, we can find Λ0pbq such that for any λ0 ě Λ0pbq,
we have `´1λ´1

q`1 ď
3
64 . As a consequence of the decomposition (8.10), we have the frequency

localization of the remainder part of F ,

PÀλq`1F :“ F ´ PÁλq`1F “ ´
ÿ

k,m

ε
λq`1
n0 pk ¨ ξm, am,kqe

iλq`1k¨ξm . (8.19)

Lastly, using the assumptions on am,k and ξm, F “
ř

kPZ3zt0u

ř

mPZ am,ke
iλq`1k¨ξm satisfies

}F }N À λNq`1aF , }Dt,`F }N´1 À λNq`1δ
1
2
q`1aF , N “ 0, 1, 2.

Then, we recall the decomposition (8.10) of F and use the Bernstein inequality to get

}RF }N ď }RPÁλq`1F }N ` }R
ÿ

k,m

ε
λq`1
n0 pk ¨ ξm, am,kqe

iλq`1k¨ξm}N

À
1

λq`1
}F }N ` λ

N
q`1}

ÿ

k,m

ε
λq`1
n0 pk ¨ ξm, am,kq}0 Àn0 λ

N´1
q`1 aF

for N “ 0, 1, 2. Indeed, the second and third inequalities follows from a crude estimate }Rf}0 À
}f}0 and (8.12).

To estimate
˚

DtRF , we use the decomposition
˚

DtRF “ RDt,`F ` rv` ¨∇,RsF ` ppvq ´ v`q ` wq ¨∇RF.

For the remaining part, we only consider N “ 1, 2. Since Dt,`F “
ř

k,mDt,`am,ke
iλq`1k¨ξm , the

first term can be estimated as above,

}RDt,`F }N´1 À
1

λq`1
}Dt,`F }N´1 ` λ

N´1
q`1 }

ÿ

m,k

ε
λq`1
n0 pk ¨ ξm, Dt,`am,kq}0 À λN´1

q`1 δ
1
2
q`1aF .

Also, we recall }w}N´1 ` }v ´ v`}N´1 À λN´1
q`1 δ

1
2
q`1, so that

}ppv ´ v`q ` wq ¨∇RF }N´1 À λN´1
q`1 δ

1
2
q`1aF .

Regarding to the commutator term, we plug the decomposition (8.10),

rv` ¨∇,RsF “ rv` ¨∇,RsPÁλq`1F ´ rv` ¨∇,Rs
ÿ

m,k

ε
λq`1
n0 pk ¨ ξm, am,kqe

iλq`1k¨ξm .
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Since v` and PÀλq`1F “ ε
λq`1
n0 pk ¨ ξm, am,kqe

iλq`1k¨ξm have frequencies localized to À λq`1,

}rv` ¨∇,RsPÀλq`1F }N´1 À λN´1
q`1 }rv` ¨∇,RsPÀλq`1F }0 À λN´1

q`1 }v`}0}∇PÀλq`1F }0

À λNq`1}
ÿ

m,k

ε
λq`1
n0 pk ¨ ξm, am,kq}0 À λN´1

q`1 δ
1
2
q`1aF .

Indeed, the second inequality follows from }Rg}0 À }g}0. To estimate the other commutator
term, we consider Fj “ P2jF for 2j ě 3

8λq`1,

´rv` ¨∇,RsFjpxq “
ÿ

k,ηPZ3

pF rRspkq ´F rRspηqqiη ¨F rv`spk ´ ηqF rFjspηqeik¨x

“
ÿ

k,ηPZ3

l0
ÿ

l“1

1

l!
rpk ´ ηq ¨∇slF rRspηqiη ¨F rv`spk ´ ηqF rFjspηqeik¨x (8.20)

`
1

l0!

ż 1

0
rpk ´ ηq ¨∇sl0`1F rRspη ` σpk ´ ηqqp1´ σql0dσiηF rv`spk ´ ηqF rFjspηqeik¨x,

(8.21)

where F rRf spkq “ F rRspkqF rf spkq and l0 ą 2 is an integer satisfying λ3
q`1p`λq`1q

´l0 ď 1.

The estimate for (8.20) follows from

}
ÿ

2jě 3
8
λq`1

(8.20)}N´1 ď

l0
ÿ

l“1

1

l!
}∇lv` : ∇RlPÁλq`1F }N´1

À
ÿ

N1`N2“N´1

l0
ÿ

l“1

1

l!
}∇lv`}N1}∇RlPÁλq`1F }N2

À
ÿ

N1`N2“N´1

`}∇v`}N1}F }N2 À λN´1
q`1 δ

1
2
q`1aF ,

where the operator Rl has a Fourier multiplier defined by F rRlgspηq “ ∇l
ηF rRspηqF rgspηq for

any η P Z3. To estimate (8.21), we use |k´ η| ď 2l´1 ď 3
32λq`1 ď

1
2 |η| and hence |k| À |η| to get

}∇N´1
ÿ

2jě 3
8
λq`1

(8.21)}0 À
ÿ

j

ÿ

k,η

|k|N´1 |k ´ η|
l0`1

|η|l0`1
|F rv`spk ´ ηq||F rFjspηq|

À
ÿ

j

ÿ

k,η

|k ´ η|l0 |F r∇v`spk ´ ηq||η|N´2´l0 |F rFjspηq|

À
ÿ

j

`´l0

p2jql0`1

ÿ

|k|À2j

}∇v}L2pT3q}∇N´1Fj}L2pT3q

À

ˆ

`´1

λq`1

˙l0

λ2
q`1}∇v}0}F }N´1 À λN´1

q`1 δ
1
2
q`1aF .

Indeed, the last inequality follows from the choice of l0. To summarize, we obtain

}rv` ¨∇,RsPÁλq`1F }N´1 À λN´1
q`1 δ

1
2
q`1aF , (8.22)

and combine with all other estimates to get the desired one }
˚

DtRF }N´1 À λN´1
q`1 δ

1
2
q`1aF for

N “ 1, 2.
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9. Estimates on the Reynolds stress

In this section, we obtain the relevant estimates for the new Reynolds stress and its new

advective derivative
˚

DtRq`1 “ BtRq`1` vq`1 ¨∇Rq`1, summarized in the following proposition.
For technical reasons it is however preferable to estimate rather Rq`1 ´

2
3%Id, as indeed the

estimates on the function %ptq are akin to those for the new current, which will be detailed in
the next section. For the remaining sections, we set } ¨ }N “ } ¨ }C0pr0,T s`τq ;CN pT3qq.

Proposition 9.1. There exists b̄pαq ą 1 with the following property. For any 1 ă b ă b̄pαq we
can find Λ0 “ Λ0pα, b,Mq such that the following estimates hold for every λ0 ě Λ0:

}Rq`1 ´
2
3%Id}N ď CMλ

N
q`1 ¨ λ

1
2
q λ
´ 1

2
q`1δ

1
4
q δ

3
4
q`1 ď λN´3γ

q`1 δq`2, @N “ 0, 1, 2

}
˚

DtpRq`1 ´
2
3%Idq}N´1 ď CMλ

N
q`1δ

1
2
q`1 ¨ λ

1
2
q λ
´ 1

2
q`1δ

1
4
q δ

3
4
q`1 ď λN´3γ

q`1 δ
1
2
q`1δq`2, @N “ 1, 2 .

(9.1)

where CM depends only upon the M ą 1 of Proposition 2.3 and Proposition 2.4.

Taking into account (4.1), we will just estimate the separate terms
˚

RT ,
˚

RN ,
˚

RO1,
˚

RO2 and
˚

RM . For the errors
˚

RO2 and
˚

RM , we use a direct estimate, while the other errors, including the
inverse divergence operator, are estimated by Corollary 8.2. In the following subsections, we fix

n0 “ r
2bp2`αq
pb´1qp1´αq s so that λ2

q`1pλq`1µqq
´pn0`1q À δ

1
2
q`1 for any q and allow the dependence on M

of the implicit constants in À. Also, we remark that

1

λq`1τq
`

δ
1
2
q`1

λq`1µq
ÀM λ

1
2
q λ
´ 1

2
q`1δ

1
4
q δ

1
4
q`1. (9.2)

For the convenience, we restrict the range of N as in (9.1) in this section, without mentioning
it further.

9.1. Transport stress error. Recall that

˚

RT “ R pDt,`wq .

Since Dt,`ξI “ 0, we have

Dt,`w “ Dt,`

¨

˝

ÿ

mPZ

ÿ

kPZ3zt0u

δ
1
2
q`1pbm,k ` pλq`1µqq

´1em,kqe
iλq`1k¨ξI

˛

‚

“
ÿ

m

ÿ

k

δ
1
2
q`1Dt,`pbm,k ` pλq`1µqq

´1em,kqe
iλq`1k¨ξI .

Since bm,k and em,k satisfy supppbm,kq, supppem,kq Ă ptm ´
1
2τq, tm `

3
2τqq ˆ R3 and

}Dt,`pbm,k ` pλq`1µqq
´1em,kq}N̄ ` pλq`1δ

1
2
q`1q

´1}D2
t,`pbm,k ` pλq`1µqq

´1em,kq}N̄

ÀN̄,M µ´N̄q
|
˝

bI,k|

τq
,

for any N̄ ě 0 by (7.5) and (7.8), we can apply Corollary 8.2 to get

}
˚

RT }N À λNq`1

δ
1
2
q`1

λq`1τq
, }

˚

Dt

˚

RT }N´1 À λNq`1δ
1
2
q`1

δ
1
2
q`1

λq`1τq
. (9.3)
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9.2. Nash stress error. Set
˚

RN “ R ppw ¨∇qv`q and observe that

pw ¨∇qv` “
ÿ

m

ÿ

kPZ3zt0u

δ
1
2
q`1ppbm,k ` pλq`1µqq

´1em,kq ¨∇qv`eiλq`1k¨ξI .

Since bm,k and em,k satisfy supppbm,kq, supppem,kq Ă ptm ´
1
2τq, tm `

3
2τqq ˆ R3 and

}pbm,k ` pλq`1µqq
´1em,kq ¨∇qv`}N̄ ÀN̄ µ´N̄q |

˝

bI,k|λqδ
1
2
q

}Dt,`rpbm,k ` pλq`1µqq
´1em,kq ¨∇qv`s}N̄ ÀN̄ λq`1δ

1
2
q`1µ

´N̄
q |

˝

bI,k|λqδ
1
2
q

for any N̄ ě 0 by (2.4), (5.12), (7.5), and (7.8), we apply Corollary 8.2 and obtain

}
˚

RN}N À λNq`1

δ
1
2
q`1

λq`1τq
, }

˚

Dt

˚

RN}N´1 À λNq`1δ
1
2
q`1

δ
1
2
q`1

λq`1τq
. (9.4)

9.2.1. Oscillation stress error. Recall that
˚

RO “
˚

RO1 `
˚

RO2 where
˚

RO1 “ R p∇ ¨ pwo b wo `R`qq
˚

RO2 “ wo b wc ` wc b wo ` wc b wc.

We compute

∇ ¨ pwo b wo `R`q “ ∇ ¨ pwo b wo ´ δq`1Id`R`q “ div

»

—

—

–

ÿ

mPZ
kPZ3zt0u

δq`1cm,ke
iλq`1k¨ξI

fi

ffi

ffi

fl

“
ÿ

m,k

δq`1 divpcm,kqe
iλq`1k¨ξI ,

because of
˝
cI,kpfI ¨ kq “ 0. Also, since we have

Dt,` div cm,k “ divpDt,`cm,kq ´ p∇vqijBipcm,kqjl,

it follows from (7.6) that }div cm,k}N̄ ` pλq`1δ
1
2
q`1q

´1}Dt,` div cm,k}N̄ ÀN̄,M µ´N̄q
|
˝
cI,k|
µq

for any

N̄ ě 0. Finally using supppcm,kq Ă ptm ´
1
2τq, tm `

3
2τqq ˆ R3, we apply Corollary 8.2 to get

}
˚

RO1}N À λNq`1 ¨
δq`1

λq`1µq
, }

˚

Dt

˚

RO1}N´1 À λNq`1δ
1
2
q`1 ¨

δq`1

λq`1µq
. (9.5)

On the other hand, we use (7.1), (7.2), (7.3), and (5.3) to estimate
˚

RO2 as follows,

}
˚

RO2}N À
ÿ

N1`N2“N

}wo}N1}wc}N2 `
ÿ

N1`N2“N

}wc}N1}wc}N2 À λNq`1 ¨
δq`1

λq`1µq
,

}
˚

Dt

˚

RO2}N´1 ď }Dt,`

˚

RO2}N´1 ` }pw ` v ´ v`q ¨∇
˚

RO2}N´1

À
ÿ

N1`N2“N´1

}Dt,`wo}N1}wc}N2 ` }wo}N1}Dt,`wc}N2 ` }Dt,`wc}N1}wc}N2

`
ÿ

N1`N2“N´1

p}w}N1 ` }v ´ v`}N1q}
˚

RO2}N2`1 À λNq`1δ
1
2
q`1 ¨

δq`1

λq`1µq
.

Therefore, we have

}
˚

RO}N À λNq`1

δq`1

λq`1µq
, }

˚

Dt

˚

RO}N´1 À λq`1δ
1
2
q`1 ¨ λ

N
q`1

δq`1

λq`1µq
. (9.6)
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9.3. Mediation stress error. Recall that
˚

RM “ R´R` ` pv ´ v`q b w ` w b pv ´ v`q.

Using (5.5), (5.3), and (7.3), we have

}
˚

RM}N À }R´R`}N `
ÿ

N1`N2“N

}v ´ v`}N1}w}N2

À λNq`1 ¨ pλ
1
2
q λ
´ 1

2
q`1δ

1
4
q δ

3
4
q`1 ` p`λqq

2δ
1
2
q δ

1
2
q`1q À λNq`1 ¨ λ

1
2
q λ
´ 1

2
q`1δ

1
4
q δ

3
4
q`1.

To estimate
˚

Dt

˚

RM , we additionally use the decomposition
˚

Dt

˚

RM “ Dt,`

˚

RM`ppv´v`q`wq¨∇
˚

RM
to obtain

}
˚

Dt

˚

RM}N´1 À }
˚

DtpR´R`q}N´1 `
ÿ

N1`N2“N´1

}
˚

Dtpv ´ v`q}N1}w}N2 ` }v ´ v`}N1}
˚

Dtw}N2

À λNq`1δ
1
2
q`1 ¨ λ

1
2
q λ
´ 1

2
q`1δ

1
4
q δ

3
4
q`1.

To summarize, we obtain

}
˚

RM}N À λNq`1λ
1
2
q λ
´ 1

2
q`1δ

1
4
q δ

3
4
q`1, }

˚

Dt

˚

RM}N´1 À λNq`1δ
1
2
q`1λ

1
2
q λ
´ 1

2
q`1δ

1
4
q δ

3
4
q`1. (9.7)

Finally, Proposition 9.1 follows from (9.3)-(9.7) and (9.2).

10. Estimates for the new current

In this section, we obtain the last needed estimates, on the new unsolved current ϕq`1 and on
the remaining part of the Reynolds stress 2

3%Id, which we summarize in the following proposition.

Proposition 10.1. There exists b̄pαq ą 1 with the following property. For any 1 ă b ă b̄pαq
there is Λ0 “ Λ0pα, b,Mq such that the following estimates hold for λ0 ě Λ0:

}ϕq`1}N ď λN´3γ
q`1 δ

3
2
q`2, @N “ 0, 1, 2,

}
˚

Dtϕq`1}N´1 ď λN´3γ
q`1 δ

1
2
q`1δ

3
2
q`2, @N “ 1, 2 ,

(10.1)

}%}0 ` }%
1}0 ď λ´3γ

q`1δ
3
2
q`2 . (10.2)

Without mentioning, we assume that N is in the range above and allow the dependence on M
of the implicit constants in À in this section. For convenience, we single out the following fact,
which will be repeatedly used: note that there exists b̄pαq ą 1 such that for any 1 ă b ă b̄pαq
and a constant CM depending only on M , we can find Λ0 “ Λ0pα, b,Mq which gives

CM

»

–

δq`1

λq`1τq
`

δ
3
2
q`1

λq`1µq
`

λ
1
2
q

λ
1
2
q`1

δ
1
4
q δ

5
4
q`1

fi

fl ď λ´3γ
q`1δ

3
2
q`2,

for any λ0 ě Λ0. This is possible because α ă 1
7 .

Another important remark which will be used in this section is that

Rpgpt, ¨q ` hptqq “ Rpgpt, ¨qq (10.3)

for every smooth periodic time-dependent vector field g and for every h which depends only on
time.
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10.1. High frequency current error. We start by observing that
˚
ϕH1 is

˚
ϕH1 “ R ppdivPď`´1R`Qpvq, vqqq ¨ wq (10.4)

by (10.3). We thus can apply Corollary 8.2 to

pdivPď`´1Rq `Qpvq, vqqq ¨ w

“
ÿ

m,k

pdivPď`´1Rq `Qpvq, vqqqδ
1
2
q`1pbm,k ` pλq`1µqq

´1em,kqe
iλq`1k¨ξI .

Indeed, using (2.6), (5.11), (7.5), (7.8), we obtain

}
˚
ϕH1}N À λN´1

q`1 δ
1
2
q`1pλ

1´3γ
q δq`1 ` p`λqqλqδqq À λNq`1

λ1´3γ
q

λq`1
δ

3
2
q`1.

Furthemore, (2.4), (2.6), (5.3), and (A.3) imply

}Dt,` divPď`´1Rq}N´1 ď }divPď`´1Dt,`Rq}N´1 ` } divrv` ¨∇, Pď`´1sRq}N´1

` }p∇v`qkiBkPďl´1pRqqij}N´1

À λN´1
q`1 p}Dt,`Rq}1 ` }rv` ¨∇, Pď`´1sRq}1 ` }∇vq}0}∇Rq}0q

À λNq`1δ
1
2
q`1λ

1´3γ
q δq`1.

Then, it follows that

}
˚

DtϕH1}N´1 À λNq`1δ
1
2
q`1 ¨

λ1´3γ
q

λq`1
δ

3
2
q`1.

In order to deal with
˚
ϕH2, we use the definition of Rq`1 to get

w b w ´ δq`1Id`Rq ´Rq`1

“ pwo b wo ´ δq`1Id`R`q ´
˚

RO1 ´
˚

RT ´
˚

RN ´
˚

RM2 ´
2
3%Id .

(10.5)

Using Id : ∇vJ` “ ∇ ¨ v` “ 0 and (10.3), we can then write

˚
ϕH2 “ R

`

pw b w ´ δq`1I `Rq ´Rq`1 ` pv ´ v`q b w ` w b pv ´ v`qq : ∇vJ`
˘

(10.6)

“ R
´

ppwo b wo ´ δq`1Id`R`q ´
˚

RO1 ´
˚

RT ´
˚

RN q : ∇vJ`
¯

.

Apply Corollary 8.2 with (3.27), (7.6), and (2.4), we have

}R
`

pwo b wo ´ δq`1Id`R`q : ∇vJ`
˘

}N À λNq`1λqδ
1
2
q
δq`1

λq`1
,

}
˚

DtR
`

pwo b wo ´ δq`1Id`R`q : ∇vJ`
˘

}N´1 À λNq`1δ
1
2
q`1λqδ

1
2
q
δq`1

λq`1
.

By (8.10) and (8.19), recall that the Reynolds stress errors
˚

R4, which represents either
˚

RO1,
˚

RT , or
˚

RN , can be written as
˚

R4 “ RG4 satisfying

}G4}N À λNq`1

¨

˝

δq`1

µq
`
δ

1
2
q`1

τq

˛

‚, }Dt,`G4}N´1 À λNq`1δ
1
2
q`1

¨

˝

δq`1

µq
`
δ

1
2
q`1

τq

˛

‚, (10.7)

Furthermore, such G4 has the form
ř

m,k g
m,k
4 eiλq`1k¨ξI and has a decomposition

G4 “ PÁλq`1G4 ` PÀλq`1G4 ,
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as in (8.10) and (8.19), where PÀλq`1G4 satisfies

}PÀλq`1G4}0 À λ´2
q`1δ

1
2
q`1

¨

˝

δq`1

µq
`
δ

1
2
q`1

τq

˛

‚, }Dt,`PÀλq`1G4}0 À λ´1
q`1δq`1

¨

˝

δq`1

µq
`
δ

1
2
q`1

τq

˛

‚.

(10.8)

Indeed, they follow from (8.12) and (8.13). Since ∇v` has the frequency localized to À `´1

and `´1 ď 1
64λq`1 for sufficiently large λ0, RPÁλq`1G4 : p∇v`qJ has the frequency localized to

Á λ´1
q`1 and

}R
`

RPÁλq`1G4 : p∇v`qJ
˘

}N À
1

λq`1
}RPÁλq`1G4 : p∇v`qJ}N

À
1

λ2
q`1

ÿ

N1`N2“N

}G4}N1}∇v`}N2

On the other hand, RPÀλq`1G4 : p∇v`qJ has the frequency localized to À λ´1
q`1, so that

}R
`

RPÀλq`1G4 : p∇v`qJ
˘

}N À λNq`1}R
`

RPÀλq`1G4 : p∇v`qJ
˘

}0 À λNq`1}PÀλq`1G4}0}∇v}0.

Therefore, using (10.7) and (10.8), we obtain

}Rp
˚

RO1 : p∇v`qJq}N ` }Rp
˚

RT : p∇v`qJq}N ` }Rp
˚

RN : p∇v`qJq}N

À λNq`1

¨

˝

δ
1
2
q`1

λq`1τq
`

δq`1

λq`1µq

˛

‚

λqδ
1
2
q

λq`1
.

To estimate their advective derivatives, we use the decomposition
˚

DtR
´

˚

R4 : p∇v`qJ
¯

“ Dt,`R
´

˚

R4 : p∇v`qJ
¯

` pw ` pvq ´ v`qq ¨∇p
˚

R4 : p∇v`qJq.

We can easily see that

}pw ` pv ´ v`qq ¨∇Rp
˚

R4 : p∇v`qJq}N´1 À λNq`1δ
1
2
q`1

¨

˝

δ
1
2
q`1

λq`1τq
`

δq`1

λq`1µq

˛

‚

λqδ
1
2
q

λq`1
.

For the estimate of the first term, we use again the decomposition
˚

R4 “ RPÁλq`1G4 `

RPÀλq`1G4 and

}Dt,`Rp
˚

R4 : p∇v`qJq}N´1 ď }Dt,`RpRPÁλq`1G4 : p∇v`qJq}N´1

` }Dt,`RpRPÀλq`1G4 : p∇v`qJq}N´1.

In order to estimate the right hand side, consider the decomposition

Dt,`RPÁλq`1H “ RPÁλq`1Dt,`H `Rrv` ¨∇, PÁλq`1sH ` rv` ¨∇,RsPÁλq`1H,

for any smooth function H and Littlewood-Paley operator PÁλq`1 projecting to the frequency
Á λq`1. Similar to the proof of Lemma A.4, we have

}rv` ¨∇, PÁλq`1sH}N´1 À λN´2
q`1 }∇v`}0}∇H}0

Also, similar to (8.22), we obtain

}rv` ¨∇,RsPÁλq`1H}N´1 À
ÿ

N1`N2“N´1

`}∇v`}N1}H}N2 . (10.9)
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Since PÁλq`1Dt,`H and rv` ¨∇, PÁλq`1sH have frequencies localized to Á λq`1, it follows that

}Dt,`RPÁλq`1H}N´1

À }RPÁλq`1Dt,`H}N´1 ` }Rrv` ¨∇, PÁλq`1sH}N´1 ` }rv` ¨∇,RsPÁλq`1H}N´1

À
1

λq`1
}PÁλq`1Dt,`H}N´1 `

1

λq`1
}rv` ¨∇, PÁλq`1sH}N´1 ` }rv` ¨∇,RsPÁλq`1H}N´1

À
1

λq`1
}Dt,`H}N´1 ` λ

N´3
q`1 }∇v}0}∇H}0 `

ÿ

N1`N2“N´1

`}∇v`}N1}H}N2 .

(10.10)

Now, we apply it to H “ RPÁλq`1G4 : p∇v`qJ. For such H, we have H “ Pě 1
8
λq`1

H for

sufficiently large λ0, so that

}Dt,`RpRPÁλq`1G4 : p∇v`qJq}N´1

À
1

λq`1
}Dt,`pRPÁλq`1G4 : p∇v`qJq}N´1 ` λ

N´3
q`1 }∇v`}0}RPÁλq`1G4 : p∇v`qJ}1

`
ÿ

N1`N2“N´1

`}∇v`}N1}RPÁλq`1G4 : p∇v`qJ}N2

À λN´2
q`1 δ

1
2
q`1

¨

˝

δq`1

µq
`
δ

1
2
q`1

τq

˛

‚λqδ
1
2
q .

Indeed, the second inequality can be obtained by applying (10.10) again to H “ G4,

}Dt,`pRPÁλq`1G4 : ∇v`q}N´1

À
ÿ

N1`N2“N´1

}Dt,`RPÁλq`1G4}N1}∇v`}N2 ` }RPÁλq`1G4}N1}Dt,`∇v`}N2

À
ÿ

N1`N2“N´1

ˆ

1

λq`1
}Dt,`G4}N1 ` λ

N1´2
q`1 }∇v}0}∇G4}0

˙

}∇v`}N2

`
ÿ

N11`N12“N1
N1`N2“N´1

`}∇v`}N11}G4}N12}∇v`}N2 `
ÿ

N1`N2“N´1

}G4}N1

λq`1
}Dt,`∇v`}N2

À λN´1
q`1 δ

1
2
q`1

¨

˝

δq`1

µq
`
δ

1
2
q`1

τq

˛

‚λqδ
1
2
q ,

and

}RPÁλq`1G4 : p∇v`qJ}N´1 À
ÿ

N1`N2“N´1

}RPÁλq`1G4}N1}∇v`}N2

À λN´2
q`1

¨

˝

δq`1

µq
`
δ

1
2
q`1

τq

˛

‚λqδ
1
2
q .

To estimate the remaining term }Dt,`RpRPÀλq`1G4 : p∇v`qJq}N´1, we observe that the fre-

quency of Dt,`RpRPÀλq`1G4 : p∇v`qJq is localized to À λq`1, so that

}Dt,`RpRPÀλq`1G4 : p∇v`qJq}N´1 À λN´1
q`1 }Dt,`RpRPÀλq`1G4 : p∇v`qJq}0.
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Then, we control the right hand side as

}Dt,`RpRPÀλq`1G4 : p∇v`qJq}0
À }RDt,`pRPÀλq`1G4 : p∇v`qJq}0 ` }rv` ¨∇,RspRPÀλq`1G4 : p∇v`qJq}0
À }Dt,`RPÀλq`1G4}0}∇v`}0 ` }PÀλq`1G4}0}Dt,`∇v`}0

` }v`}0}∇pRPÀλq`1G4 : p∇v`qJq}0
À p}Dt,`PÀλq`1G4}0 ` }rv` ¨∇,RsPÀλq`1G4}0q}∇v`}0
` }PÀλq`1G4}0}Dt,`∇v`}0 ` λq`1}PÀλq`1G4}0}∇v`}0

À λqδ
1
2
q p}Dt,`PÀλq`1G4}0 ` λq`1}PÀλq`1G4}0q À λ´1

q`1δ
1
2
q`1

¨

˝

δ
1
2
q`1

τq
`
δq`1

µq

˛

‚λqδ
1
2
q .

Here, we used }Rg}0 À }g}0. As a result, we obtain

}Dt,`Rp
˚

R4 : p∇v`qJq}N´1 À λNq`1δ
1
2
q`1

¨

˝

δ
1
2
q`1

λq`1τq
`

δq`1

λq`1µq

˛

‚

λqδ
1
2
q

λq`1
,

and

}
˚

DtRp
˚

R4 : p∇v`qJq}N´1 À λNq`1δ
1
2
q`1

¨

˝

δ
1
2
q`1

λq`1τq
`

δq`1

λq`1µq

˛

‚

λqδ
1
2
q

λq`1
.

Therefore, the estimates for
˚
ϕH2 follow,

}
˚
ϕH2}N À λNq`1λqδ

1
2
q
δq`1

λq`1
, }

˚

Dt
˚
ϕH2}N´1 À λNq`1δ

1
2
q`1λqδ

1
2
q
δq`1

λq`1
.

To summarize, we get

}
˚
ϕH}N ď

1

5
λN´3γ
q`1 δ

3
2
q`2, }

˚

Dt
˚
ϕH}N´1 ď

1

5
λN´3γ
q`1 δ

1
2
q`1δ

3
2
q`2 .

10.2. Estimates on %1 and %2. We will in fact show the stronger estimate

}%11}0 ď
1

5pT ` τ0q
λ´3γ
q`1δ

3
2
q`2 (10.11)

}%12}0 ď
1

5pT ` τ0q
λ´3γ
q`1δ

3
2
q`2 (10.12)

from which the estimates follow by integration

}%1}0 ď
1

5
λ´3γ
q`1δ

3
2
q`2 (10.13)

}%2}0 ď
1

5
λ´3γ
q`1δ

3
2
q`2 . (10.14)

Observe that, if we denote G1 and G2, respectively, the arguments of R in the formulas (10.4)
and (10.6) we just have

%1iptq “

ż

T3

Gipt, xq dx .

We can then argue as we did in the previous section to estimate }
˚

RHi}0 “ }RpGiq}0, taking
advantage of Lemma A.2 and the representations (3.26)-(3.29).
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10.3. Transport current error. We use the definition of
˚
ϕT and recall its splitting into

˚
ϕT1`

˚
ϕT2. Since we have }eiλq`1k¨ξI }N À λNq`1|k|

2 for any k P Z3zt0u, Dt,`e
iλq`1k¨ξI “ 0, and almost

disjoint support of cm,k, (3.27) and (7.6) imply

}wo b wo ´ δq`1I `R`}N À
ÿ

kPZ3zt0u

}
ÿ

mPZ
δq`1cm,ke

iλq`1k¨ξI }N À λNq`1δq`1, (10.15)

}
˚

Dtpwo b wo ´ δq`1I `R`q}N´1 À
ÿ

kPZ3zt0u

}
ÿ

mPZ
δq`1pDt,`cm,kqe

iλq`1k¨ξI }N´1

` }pw ` pv ´ v`q ¨∇qpwo b wo ´ δq`1I `R`q}N´1

À λNq`1δ
1
2
q`1 ¨ δq`1.

(10.16)

We then can use (9.1), (7.3), (10.15), (10.16), (5.3), and κq`1 “
1
2 trpRq`1q to estimate

}
˚
ϕT1}N À

ÿ

N1`N2“N

}Rq`1 ´
2
3%Id}N1}w}N2 `

ÿ

N1`N2“N

}wo b wo ´ δq`1I `R`}N1}pvq ´ v`q}N2

À λNq`1

ˆ

λ
1
2
q λ
´ 1

2
q`1δ

1
4
q δ

1
4
q`1 ` `

2λ2
qδ

1
2
q

˙

δq`1 À λNq`1λ
1
2
q λ
´ 1

2
q`1δ

1
4
q δ

5
4
q`1,

}
˚

DtϕT1}N´1 À
ÿ

N1`N2“N´1

}
˚

DtpRq`1 ´
2
3%Idq}N1}w}N2 ` }Rq`1 ´

2
3%Id}N1}

˚

Dtw}N2

`
ÿ

N1`N2“N´1

}
˚

Dtpwo b wo ´ δq`1I `R`q}N1}vq ´ v`}N2

`
ÿ

N1`N2“N´1

}wo b wo ´ δq`1I `R`}N1}
˚

Dtpvq ´ v`q}N2

À λNq`1δ
1
2
q`1λ

1
2
q λ
´ 1

2
q`1δ

1
4
q δ

5
4
q`1.

As for
˚
ϕT2, by (3.27),

˚
ϕT2 “

1
2R

´

ř

m

ř

kPZ3zt0u δq`1 trpDt,`cm,kqe
iλq`1k¨ξI

¯

and estimate it using

Corollary 8.2 with (7.6) as follows

}
˚
ϕT2}N À λNq`1 ¨

δq`1

λq`1τq
, }

˚

Dt
˚
ϕT2}N´1 À λNq`1δ

1
2
q`1 ¨

δq`1

λq`1τq
.

To summarize, we have

}
˚
ϕT }N ď

1

5
λN´3γ
q`1 δ

3
2
q`2, }

˚

Dt
˚
ϕT }N´1 ď

1

5
λN´3γ
q`1 δ

1
2
q`1δ

3
2
q`2.

by a suitable choice of b and λ0.

10.4. Estimates on %0. We next observe that we have

p2πq3%10 “

ż

ÿ

m

ÿ

kPZ3zt0u

δq`1

2
trpDt,`cm,kqe

iλq`1k¨ξI dx

and it thus suffices to use Lemma A.2 to estimate

}%10}0 ď
1

5pT ` τ0q
λ´3γ
q`1δ

3
2
q`2 .

The estimate for }%0}0 follows thus from integrating the latter in time.
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10.5. Oscillation current error. Recall that
˚
ϕO1 “ R

`

div
`

1
2 |wo|

2wo ` ϕ`
˘˘

. We remark that
(3.29) gives

div

ˆ

1

2
|wo|

2wo ` ϕ`

˙

“ div

¨

˝

ÿ

mPZ

ÿ

kPZ3zt0u

δ
3
2
q`1dm,ke

iλq`1k¨ξI

˛

‚“
ÿ

m,k

δ
3
2
q`1 divpdm,kqe

iλq`1k¨ξI ,

because of
˝

dI,kpfI ¨ kq “ 0. Also, we have

}Dt,` div dm,k}N̄ À }Dt,`dm,k}N̄`1 ` }p∇vlqJ : ∇dm,k}N̄ÀM,N̄ λN̄q`1

λq`1δ
1
2
q`1

µq
, @N̄ ě 0.

Therefore, using supppdm,kq Ă ptm´
1
2τq, tm`

3
2τqqˆR3, it follows from Corollary 8.2 with (7.7)

that

}
˚
ϕO1}N À λNq`1 ¨

δ
3
2
q`1

λq`1µq
, }

˚

Dt
˚
ϕO1}N´1 À λNq`1δ

1
2
q`1 ¨

δ
3
2
q`1

λq`1µq
.

Next recall that
˚
ϕO2 “

1
2p|w|

2w ´ |wo|
2woq. Then, (7.1)-(7.3) imply

}
˚
ϕO2}N À }pw ¨ wcqw}N ` }|wc|

2w}N ` }|wo|
2wc}N À λNq`1 ¨

δ
3
2
q`1

λq`1µq

}
˚

Dt
˚
ϕO2}N À }

˚

Dtp|wo|
2wcq}N ` }

˚

Dtrp2wo ¨ wc ` |wc|
2qws}N À λNq`1δ

1
2
q`1 ¨

δ
3
2
q`1

λq`1µq
.

Therefore, combining the estimates, we get

}
˚
ϕO}N ď

1

5
λN´3γ
q`1 δ

3
2
q`2, }

˚

Dt
˚
ϕO}N´1 ď

1

5
λN´3γ
q`1 δ

1
2
q`1δ

3
2
q`2,

for sufficiently small b´ 1 ą 0 and large λ0.

10.6. Reynolds current error. Recall that
˚
ϕR “ pRq`1´

2
3%Idqw. Similar to the estimate for

κq`1w in
˚
ϕT1, we have

}
˚
ϕR}N À λNq`1λ

1
2
q λ
´ 1

2
q`1δ

1
4
q δ

5
4
q`1 ď

1

5
λN´3γ
q`1 δ

3
2
q`2,

}
˚

Dt
˚
ϕR}N´1 À λNq`1δ

1
2
q`1λ

1
2
q λ
´ 1

2
q`1δ

1
4
q δ

5
4
q`1 ď

1

5
λN´3γ
q`1 δ

1
2
q`1δ

3
2
q`2

for sufficiently small b´ 1 ą 0 and large λ0.

10.6.1. Mediation current error. Recall that

˚
ϕM “

ˆ

1

2
|vq ´ v`|

2 ` ppq ´ p`q

˙

w ` pϕq ´ ϕ`q

` pw b w ´ δq`1Id`Rq ´Rq`1 `
2
3%Idqpvq ´ v`q.

Then we recall that

w b w ´ δq`1Id`Rq ´Rq`1 `
2
3%Id “ pwo b wo ´ δq`1Id`R`q ´

˚

RO1 ´
˚

RT ´
˚

RN ´
˚

RM2,
(10.17)

so that it can be controlled in a similar way with
˚
ϕT1,

}pw b w ´ δq`1Id`Rq ´Rq`1 `
2
3%Idqpvq ´ v`q}N ď λNq`1λ

1
2
q λ
´ 1

2
q`1δ

1
4
q δ

5
4
q`1,

}
˚

Dtrpw b w ´ δq`1Id`Rq ´Rq`1 `
2
3%Idqpvq ´ v`qs}N´1 ďM λNq`1δ

1
2
q`1λ

1
2
q λ
´ 1

2
q`1δ

1
4
q δ

5
4
q`1
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For the remaining terms, we use (5.3), (5.4), (5.6), and (7.3) to get

}
˚
ϕM}N ď

1

5
λN´3γ
q`1 δ

3
2
q`2, }

˚

Dt
˚
ϕM}N´1 ď

1

5
λN´3γ
q`1 δ

1
2
q`1δ

3
2
q`2.

11. Proofs of the key inductive propositions

11.1. Proof of Proposition 2.3. For a given dissipative Euler-Reynolds flow pvq, pq, Rq, ϕqq on
the time interval r0, T s` τq´1, we recall the construction of the corrected one: vq`1 “ vq `wq`1

and pq`1 “ pq `
˝
qq`1, where wq`1 is defined by (3.33) and

˝
qq`1 “ 0 on r0, T s` τq. Furthermore,

we find a new Reynolds stress Rq`1 and an unsolved flux current ϕq`1 which solve (2.1) together
with vq`1, pq`1, and satisfy (9.1), (10.1) and (10.2) for sufficiently small b´ 1 ą 0 and large λ0.
In other words, pvq`1, pq`1, Rq`1, ϕq`1q is a dissipative Euler-Reynolds flow for the energy loss
E and the error pRq`1, ϕq`1q satisfies (2.6)-(2.7) for q ` 1 as desired. Now, denote the absolute
implicit constant in the estimate (7.4) for w by M0 and define M “ 2M0. Then, one can easily
see that

}vq`1 ´ vq}0 `
1

λq`1
}vq`1 ´ vq}1 “ }wq`1}0 `

1

λq`1
}wq`1}1 ď 2M0δ

1
2
q`1 “Mδ

1
2
q`1.

Also, using (2.4) and (7.3), we have

}vq`1}0 ď }vq}0 ` }wq`1}0 ď 1´ δ
1
2
q `M0δ

1
2
q`1 ď 1´ δ

1
2
q`1,

}vq`1}N ď }vq}N ` }wq`1}N ďMλNq δ
1
2
q `

1

2
MλNq`1δ

1
2
q`1 ďMλNq`1δ

1
2
q`1,

}pq`1}N ď }pq}N ` }
˝
qq`1}N “ }pq}N ď λNq δq ď λNq`1δq`1,

}pBt ` vq`1 ¨∇qpq`1}N´1 ď }pBt ` vq ¨∇qpq}N1 ` }w ¨∇pq}N´1

ď δ
3
2
q λ

N
q `Mδ

1
2
q`1λ

N´1
q`1 δqλq ď δ

3
2
q`1λ

N
q`1,

for N “ 1, 2, provided that λ0 is sufficiently large. Therefore, we construct a desired corrected
flow pvq`1, pq`1, Rq`1, ϕq`1q.

11.2. Proof of Proposition 2.4. Consider a given time interval I Ă p0, T q with |I| ě 3τq.
Then, we can always find m0 such that supppθm0pτ

´1
q ¨qq Ă I. Now, if I “ pm0, n, fq belongs to

SR, we replace γI in wq`1 by γ̃I “ ´γI . In other words, we replace ΓI by Γ̃I “ ´ΓI . Otherwise,

we keep the same γI . Note that Γ̃I still solves (3.21) and hence γ̃I satisfies (3.20). Also, we
set p̃q`1 “ pq`1. Since the replacement does not change the estimates for ΓI used in the proof

of Lemma 7.2, the corresponding coefficients b̃m,k, c̃m,k, d̃m,k, and ẽm,k satisfy (7.5)-(7.8), and
w̃ “ w̃o, w̃c, and w̃q`1, generated by them, also fullfill (7.1)-(7.3). As a result, the corrected

dissipative Euler-Reynolds flow pṽq`1, p̃q`1, R̃q`1, ϕ̃q`1q satisfies (2.4)-(2.7) for q ` 1 and (2.9)
as desired. On the other hand, by the construction, the correction w̃q`1 differs from wq`1 on
the support of θm0pτ

´1
q ¨q. Therefore, we can easily see

supptpvq`1 ´ ṽq`1q “ supptpwq`1 ´ w̃q`1q Ă I.
Furthermore, by (3.20) and (3.21), we have

ÿ

IPIR

γ2
I |p∇ξIq´1fI |

2 “ tr

¨

˝p∇ξIq´1
ÿ

fPFI,R

γ2
I fI b fIrp∇ξIq´1sJ

˛

‚

“ trpδq`1Id´ pRqql ´ ĂMq

where ĂM “
ř

m1,n1 θ
2
I 1χ

2
I 1pξI 1q

ř

f 1PIϕ
γ2
I 1

`

´´´
ş

T3 ψ
2
I 1dx

˘

p∇ξI 1q´1f 1 b p∇ξI 1q´1f 1. In particular

}ĂM}0 À λ´2γ
q δq`1
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(see the proof in section 3.4.2). In this proof, } ¨ }N denotes } ¨ }Cpr0,T s;CN pT3qq. Then, it follows
that

|wo ´ w̃o|
2 “

ÿ

IPIR:mI“m0

4θ2
I ptqχ

2
IpξIqγ

2
I |p∇ξIq´1fI |

2p1` pψ2
I pλq`1ξIq ´ 1qq

“
ÿ

IPIR:mI“m0

4θ2
Iχ

2
IpξIqp3δq`1 ´ trpR`q ´ trpĂMqq

`
ÿ

kPZ3zt0u

ÿ

IPIR:mI“m0

4θ2
Iχ

2
IpξIqγ

2
I |p∇ξIq´1fI |

2 ˝cI,ke
iλq`1k¨ξI

“ 4θ6
m0
pτ´1
q tqp3δq`1 ´ trR` ´ tr ĂMq `

ÿ

kPZ3zt0u

4δq`1 trpc̃Rm0,kqe
iλq`1k¨ξI ,

where

trpc̃Rm0,kq “
ÿ

IPIR:mI“m0

θ2
I ptqχ

2
IpξIqδ

´1
q`1γ

2
I
˝
cI,k|p∇ξIq´1fI |

2.

Since we can obtain } trpc̃Rm0,k
q}N À µ´Nq |

˝
cI,k| for N “ 0, 1, 2 in the same way used to get the

estimate (7.6) for cm0,k, we conclude

}wo ´ w̃o}
2
C0pr0,T s;L2pT3qq ě 4p2πq3p3δq`1 ´ }R`}0 ´ } trpĂMq}0q

´
ÿ

kPZ3

4

ˇ

ˇ

ˇ

ˇ

δq`1

ż

trpc̃Rm0,kqe
iλq`1k¨ξIdx

ˇ

ˇ

ˇ

ˇ

ě 12δq`1 ´ Cδq`1pλ
´3γ
q ` λ´2γ

q ` pλq`1µqq
´2q

ě 4δq`1

for sufficiently large λ0. Indeed, in the second inequality, we used Lemma A.2 to get

ÿ

k

ˇ

ˇ

ˇ

ˇ

ż

trpc̃Rm0,kqe
λq`1k¨ξIdx

ˇ

ˇ

ˇ

ˇ

À
ÿ

k

} trpc̃Rm0,k
q}2 ` } trpc̃Rm0,k

q}0}∇ξI}C0prtm0´
1
2
τq ,tm0`

3
2
τqs;C2pT3qq

λ2
q`1|k|

2

À pλq`1µqq
´2

ÿ

k

|
˝
cI,k|

|k|2
À pλq`1µqq

´2

˜

ÿ

k

|
˝
cI,k|

2

¸
1
2
˜

ÿ

k

1

|k|4

¸
1
2

.

Therefore, we obtain

}vq`1 ´ ṽq`1}C0pr0,T s;L2pT3qq “ }wq`1 ´ w̃q`1}C0pr0,T s;L2pT3qq

ě }wo ´ w̃o}C0pr0,T s;L2pT3qq ´ p2πq
3
2 p}wc}0 ` }w̃c}0q

ě 2δ
1
2
q`1 ´

p2πq
3
2 2M0

λq`1µq
δ

1
2
q`1 ě δ

1
2
q`1

for sufficiently large λ0.
Lastly, we suppose that a dissipative Euler-Reynolds flow pṽq, p̃q, R̃q, ϕ̃qq satisfies (2.4)-(2.7)

and

supptpvq ´ ṽq, pq ´ p̃q, Rq ´ R̃q, ϕq ´ ϕ̃qq Ă J
for some time interval J . Proceed to construct the regularized flow, R̃` and ϕ̃` as we did

for R` and ϕ` and note that they differ only in J ` lt Ă J ` pλqδ
1
2
q q
´1. Consequently, wq`1

differ from w̃q`1 only in J ` pλqδ
1
2
q q
´1 and hence the corrected dissipative Euler-Reynolds flows

pvq`1, pq`1, Rq`1, ϕq`1q and pṽq`1, p̃q`1, R̃q`1, ϕ̃q`1q satisfy

supptpvq`1 ´ ṽq`1, pq`1 ´ p̃q`1, Rq`1 ´ R̃q`1, ϕq`1 ´ ϕ̃q`1q Ă J ` pλqδ
1
2
q q
´1.
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Appendix A. Some technical lemmas

The proof of the following two lemmas can be found in [6, Appendix].

Lemma A.1 (Hölder norm of compositions). Suppose F : Ω Ñ R and Ψ : Rn Ñ Ω are smooth
functions for some Ω Ă Rm. Then, for each N P N, we have

}∇N pF ˝Ψq}0 À }∇F }0}∇Ψ}N´1 ` }∇F }N´1}Ψ}
N´1
0 }Ψ}N

}∇N pF ˝Ψq}0 À }∇F }0}∇Ψ}N´1 ` }∇F }N´1}∇Ψ}N0 , (A.1)

where the implicit constant in the inequalities depends only on n, m, and N .

Lemma A.2. Let N ě 1. Suppose that a P C8pT3q and ξ P C8pT3;R3q satisfies

1

C
ď |∇ξ| ď C

for some constant C ą 1. Then, we have
ˇ

ˇ

ˇ

ˇ

ż

T3

apxqeik¨ξdx

ˇ

ˇ

ˇ

ˇ

À
}a}N ` }a}0}∇ξ}N

|k|N
,

where the implicit constant in the inequality is depending on C and N , but independent of k.

Lemma A.3 (Commutator estimate). Let f and g be in C8pr0, T s ˆ T3q and set f` “ Pď`´1f ,
g` “ Pď`´1g and pfgq` “ Pď`´1pfgq. Then, for each N ě 0, the following holds,

}f`g` ´ pfgq`}N ÀN `2´N}f}1}g}1. (A.2)

Proof. Since the expression that we need to estimate is localized in frequency, by Bernstein’s
inequality it suffices to prove the case N “ 0. Recall now the function m used to define the
Littlewood-Paley operators and the number J , which is the maximal natural number such that
2J ď `´1. Denoting by qm the inverse Fourier transform and by qm` the function qm`pxq “
23J

qmp2Jxq, a simple computation (see for instance [9]) gives

pf`g` ´ pfgq`qpxq “
1

2

ż ż

pfpxq ´ fpx´ yqqpgpxq ´ gpx´ zqqqm`pyqqm`pzq dy dz

and the claim easily follows. �

Lemma A.4. For any N ě 0, we have

}rv` ¨∇, Pď`´1sF }N À `1´N}∇v}0}∇F }0 (A.3)

}rv` ¨∇, Pą`´1sF }N À `1´N}∇v}0}∇F }0. (A.4)

Proof. First, we observe that

rv` ¨∇, Pą`´1sF pxq “ v` ¨∇pPą`´1F ´ F q ` pv` ¨∇F q ´ Pą`´1pv` ¨∇F q
“ ´v` ¨∇Pď`´1F ` Pď`´1pv` ¨∇F q “ ´rv` ¨∇, Pď`´1sF.

First of all it suffices to consider the case N “ 0, as the expression that we want to estimate
is localized in frequency. Next, using the functions qm` introduced in the proof of the previous
lemma, we can compute at once

|rv` ¨∇, Pď`´1sF pxq| ď

ż

R3

|v`pxq ´ v`pyq||qm`px´ yq||∇F pyq|dy

ď }|x||qm`|}L1}∇v`}0}∇F }0 À `}∇v}0}∇F }0 .
Observe now that

}|x||qm`|}L1 “ 2´J
ż

|x|qmpxq dx ď C`

to conclude the proof. �
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[6] T. Buckmaster, C. De Lellis, L. Székelyhidi Jr., and V. Vicol. Onsager’s conjecture for admissible weak

solutions. Communications on Pure and Applied Mathematics, 72(2):229–274, 2020/05/19 2019.
[7] L. Caffarelli, R. Kohn, and L. Nirenberg. Partial regularity of suitable weak solutions of the Navier-Stokes

equations. Comm. Pure Appl. Math., 35(6):771–831, 1982.
[8] M. Colombo and L. De Rosa. Regularity in time of Hölder solutions of Euler and hypodissipative Navier-
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[14] C. De Lellis and L. Székelyhidi, Jr. Dissipative Euler flows and Onsager’s conjecture. J. Eur. Math. Soc.

(JEMS), 16(7):1467–1505, 2014.
[15] P. Isett. Holder continuous Euler flows with compact support in time. ProQuest LLC, Ann Arbor, MI, 2013.

Thesis (Ph.D.)–Princeton University.
[16] P. Isett. Regularity in time along the coarse scale flow for the incompressible Euler equations. ArXiv e-prints,

July 2013.
[17] P. Isett. Nonuniqueness and existence of continuous, globally dissipative Euler flows. arXiv:1710.11186, 2017.
[18] P. Isett. A proof of Onsager’s conjecture. Annals of Mathematics, 188(3):871–963, 2018.
[19] P. Isett and S.-J. Oh. On nonperiodic Euler flows with Hölder regularity. Archive for Rational Mechanics
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1 Einstein Dr., Princeton NJ 08540, USA
E-mail address: camillo.delellis@ias.edu

Hyunju Kwon
School of Mathematics, Institute for Advanced Study
1 Einstein Dr., Princeton NJ 08540, USA
E-mail address: hkwon@ias.edu

52


