
Communications on Pure and Applied Analysis

doi:10.3934/cpaa.2023071

ONSAGER CRITICAL SOLUTIONS OF THE FORCED

NAVIER-STOKES EQUATIONS

Elia Brué�∗1, Maria Colombo�∗2, Gianluca Crippa�∗3,

Camillo De Lellis�∗4 and Massimo Sorella�∗5
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Dedicated to Vladimir Šverak on occasion of his 65th birthday.

Abstract. We answer positively to [3]*Question 2.4 by building new examples
of solutions to the forced 3d-Navier-Stokes equations with vanishing viscosity,
which exhibit anomalous dissipation and which enjoy uniform bounds in the

space L3
tC

1/3−ε
x , for any fixed ε > 0. Our construction combines ideas of [3]

and [5].

1. Introduction. The forced Navier–Stokes equations on the 3-dimensional torus
T
3 ≃ R

3/Z3 are given by

∂tvν + vν · ∇vν +∇pν = ν∆vν + Fν (NS)

div vν = 0,

where vν : [0, T ]×T
3 → R

3 is the velocity field, pν : [0, T ]×T
3 → R is the pressure,

ν > 0 is the viscosity parameter and Fν : [0, T ] × T
3 → R

3 is a (divergence-free)
force that may depend on ν. When ν = 0 the Navier–Stokes equations (NS) reduce
to the forced Euler equations

∂tv0 + v0 · ∇v0 +∇p0 = F0 (E)

div v0 = 0.
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We consider both the Navier–Stokes equations (NS) and the Euler equations (E)
with a prescribed initial datum vin which is independent of the viscosity parameter
ν, namely

vν(0, ·) = vin . (1.1)

Following [3] we study smooth solutions of (NS) (namely uν and Fν are both C∞),
which enjoy uniform in ν bounds for vν and Fν in appropriate function spaces X
and Y . The purpose is to understand which spaces X and Y allow for uν to display
anomalous dissipation, more precisely whether

lim sup
ν↓0

ν

∫ T

0

∫

T3

|∇vν |
2 dx dt > 0 . (1.2)

We require that the space Y rules out anomalous dissipation for solutions of the
forced linear Stokes equations under the assumption supν ∥Fν∥Y < ∞, namely (1.2)
would not hold if we eliminate the nonlinear advective term vν ·∇vν from (NS) and
we have uniform bounds for the body forces in the space Y . As it is noticed in
[3]*Section 2 the assumption

sup
ν

∥Fν∥L1+σ([0,1];Cσ(T3)) < ∞ (1.3)

for any positive σ > 0 is in fact sufficient.
In [3] the first and fourth authors give examples of smooth solutions vν to (NS)

for which:

(i) (1.3) holds (in fact with the stronger bound supν ∥Fν∥L∞

t (C1−ε) < ∞ for any
given positive ε),

(ii) supν ∥vν∥L∞ < ∞,
(iii) and (1.2) is satisfied.

In [3]*Section 2 the authors ask whether this type of behavior is still possible if the
uniform L∞ bound (ii) is replaced by a uniform bound in some space X which is
close to be “Onsager critical”. The Onsager criticality refers to the famous remark
by Onsager [16] that if ∥v∥L∞(C1/3+ε) < ∞ and u solves (E) with F = 0, then such

solution u is energy conservative. After a first partial result by Eyink in [11], the
latter was rigorously proved by Constantin, E, and Titi in [6]. It is straightforward to
check that, using the arguments in [6], (1.3) and a uniform bound in ∥vν∥L3(C1/3+ε)

is in fact enough to rule out (1.2).

Onsager in [16] stated also that the regularity class L∞
t (C

1/3
x ) should in fact be

critical, in particular he conjectured the existence of solutions of (E) with F = 0

belonging to slightly lower regularity classes of L∞
t (C

1/3
x ) which do not conserve

the kinetic energy. After a decade of work in the area which started with [7, 8],
the Onsager conjecture was proved by Isett in [12] (cf. also [4]) using “convex
intgeration methods”.

While Onsager’s conjecture was motivated by the zero-th law of Kolmogorov’s
fully developed turbulence, which roughly speaking states that (1.2) should be a
“typical” phenomenon, it seems at the moment very hard to show that at least
some of the dissipative solutions of the unforced Euler equations found so far in the
literature can actually be approximated by a sequence of regular solutions to the
unforced Navier-Stokes. For this reason in [3] the authors suggested to consider the
forced versions of both equations. The main result of this paper is to show that
indeed (1.2) can be achieved for family of solutions {vν}ν which enjoy a uniform
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bound in a space which is just below the Onsager-critical L3
t (C

1/3
x ), while the corre-

sponding forces Fν also enjoy a bound like (1.3) which rules out (1.2) for solutions
of the linear Stokes equations.

Theorem 1.1 (Anomalous dissipation). Let T = 1. For any α < 1/3 there exist
σ > 0, a divergence-free initial datum vin ∈ C∞(T3;R3) with

∫

T3 vin = 0, and a

family of forces {Fν}ν>0 ⊂ C∞([0, 1]× T
3;R3) satisfying (1.3) such that:

• for each ν > 0 there is a unique solution to (NS) with vν(0, ·) = vin(·) which
satisfies

sup
ν∈[0,1]

(

∥vν∥L3([0,1];Cα(T3)) + ∥vν∥L∞([0,1]×T3)

)

< ∞ , (1.4)

• (1.2) holds.

Furthermore, we have that Fν → F0 in L1+σ((0, 1);Cσ(T3)) and vν → v0 in
L2((0, 1)× T

3) as ν → 0, and in particular (v0, p0, F0) is a solution of (E).

Remark 1.2. In our construction all the dissipation occurs at the time T = 1,
namely (1.2) fails at any T < 1. In a forthcoming paper [9] De Rosa and Isett point
out that this type of “instantaneous loss of energy” cannot occur at a time T ∈ (0, 1)
for solutions belonging to Lp([0, 1];C

1/3−(T3)) for any p > 3. In another forthcoming
paper [13] the authors exhibit a 4-dimensional example for which the loss of energy
is “diffused in time”. More precisely they prove the existence of unique solutions
{vν}ν>0 of the 4d forced Navier–Stokes equations with forces {Fν}ν>0 such that

• supν(∥uν∥L∞ + ∥Fν∥L∞

t (Cα
x )) < ∞ for some α > 0;

• for a suitable sequence νk ↓ 0 the dissipation µk(t) := νk
∫

T4 |∇vνk
(t, x)|2dx

converges weakly∗ to a measure µ which has non-trivial absolutely continuous
part.

Remark 1.3. If we only required that the forces {Fν}ν>0 were uniformly bounded
in L1((0, 1);L∞(T3)), then anomalous dissipation would be already possible for
solutions of the forced heat equation. Indeed, for any ν ∈ (0, 1) such that ν−1/2 ∈ N

we can consider ϑν : [0, 1]× T
3 → R defined as

ϑν(t, x) = (e−4π2t − 1) sin(2πν−1/2x),

and observe that it solves
{

∂tϑν − ν∆ϑν = −4π2 sin(2πν−1/2x) =: Fν

ϑν(0, ·) ≡ 0.
(1.5)

It is straightforward to check that ν
∫ 1

0

∫

T3 |∇ϑν(t, x)|
2dxdt ≥ 1/4 for every ν ∈

(0, 1) as above. The latter example can be easily modified to produce an analogous
one for the linear Stokes equations.

Note that the crucial point is in the oscillations introduced by the sequence Fν .
In particular, strong convergence in L1

tL
2
x of Fν would actually suffice to show that

the unique solutions of (1.5) satisfy ν
∫ 1

0

∫

T3 |∇ϑν(t, x)|
2dxdt → 0.

The following open question was also raised in [3] and at present the methods of
this work do not seem strong enough to address it.

Open Question 1.4. Can Theorem 1.1 be shown for Leray solutions but replacing
Fν with a ν-independent force in the space L1((0, 2);L∞(T3))?

In view of Remark 1.3 even producing one such example with a force Fν = F
which belongs to L1((0, 2);L2(T3)) seems interesting and highly nontrivial.
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1.1. Lack of selection principle and non-uniqueness. As in [5], a byprod-
uct of our techniques is the lack of a selection principle under vanishing viscos-
ity for bounded solutions of the three dimensional forced Euler equations, if the
force converges in the vanishing viscosity limit. We say that a weak solution
v ∈ L∞((0, T );L2(T3)) of the forced Euler equations (E) is admissible if

∫

T3

|v(x, t)|2dx ≤

∫

T3

|vin(x)|
2dx+ 2

∫

T3

F (x, t) · v(x, t)dx (1.6)

for a.e. t ∈ (0, T ).
We will show that the problem of uniqueness and vanishing viscosity selection in

the class of admissible solutions for (E) is related to having a solution in the space
L1
t (W

1,∞
x ) (this is essentially the threshold for classical “weak-strong” uniqueness

results, see e.g. [19, 10]). In particular uniqueness and selection both fail for
solutions in L1((0, T );Cα(T3)) for any α < 1.

Remark 1.5. The nonuniqueness of admissible solutions has been already shown
in the class Cβ((0, T )× T

3) for β < 1/3 for the unforced Euler equations using the
convex integration technique, cf. the aforementioned papers [7, 8, 12, 4].

Theorem 1.6 (Nonuniqueness and lack of selection I). Let T = 2 and let α′ ∈ [0, 1)
be given. Then there are:

(a) σ > 0 and a family of smooth body forces Fν satisfying (1.3),
(b) a limit F0 such that Fν → F0 in L1+σ((0, 2);Cσ(T3)),
(c) a divergence-free initial datum vin ∈ C∞(T3) with

∫

T2 vin = 0,
(d) and a family {vν}ν>0 of (unique) smooth solutions of (NS) and (1.1)

such that the following holds:

(i) supν∈[0,1] ∥vν∥L∞((0,2)×T3) ≤ 1;

(ii) {vν}ν>0 has at least two distinct limit points, as ν → 0, in the L∞ weak∗

topology, which are two distinct bounded admissible solutions vcs0 and vds0 of
(E) and (1.1);

(iii) furthermore, vcs0 ∈ L1((0, 2);Cα′

(T3))∩L∞ satisfies the following energy bal-
ance

∥vcs0 (t, ·)∥2L2 = ∥vin∥
2
L2 + 2

∫ t

0

∫

T3

F0 · v
cs
0 for a.e. t ∈ (0, 2), (1.7)

while vds0 ∈ L∞ exhibits the strict dissipation

∥vds0 (t, ·)∥2L2 <
∥vin∥

2
L2

2
+ 2

∫ t

0

∫

T3

F0 · v
ds
0 for any t ∈ [1, 2). (1.8)

If we give up the regularity of the conservative solution vcs0 it is possible to show
nonuniqueness and lack of selection for much smoother forces.

Theorem 1.7 (Nonuniqueness and lack of selection II). Let T = 2 and let α′ ∈ [0, 1)
be given. Then there are:

(a) a family {Fν}ν>0 of smooth forces and a limiting F0 such that Fν → F0 in

Cα′

((0, 2)× T
3),

(b) a divergence-free initial datum vin ∈ C∞(T3) with
∫

T3 vin = 0,
(c) and a family {vν}ν>0 of (unique) smooth solutions of (NS) and (1.1),

such that the following holds:

(i) supν∈[0,1] ∥vν∥L∞((0,2)×T3) ≤ 1;
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(ii) {vν} has at least two distinct limit points, as ν → 0, in the L∞ weak∗ topology,

which are two distinct bounded admissible solutions vcs0 and vds0 of (E) and
(1.1);

(iii) vcs0 satisfies (1.7) while vds0 satisfies (1.8).

Obviously the following are simple corollaries of the previous theorems.

Corollary 1.8 (Non uniqueness for the forced Euler equations I). Let α′ ∈ [0, 1) be
given. There exist σ > 0, a body force F0 ∈ L1+σ((0, 2);Cσ(T3)) and a divergence-
free initial datum vin ∈ C∞(T3) such that the 3d forced Euler equations (E)-(1.1)
admit at least two distinct admissible bounded solutions. Furthermore, one of which
belongs L1((0, 2);Cα′

(T3)).

Corollary 1.9 (Non uniqueness for the forced Euler equations II). Let α′ ∈ [0, 1)

be given. There exist a body force F0 ∈ Cα′

((0, 2) × T
3)) and a divergence-free

initial datum vin ∈ C∞(T3) such that the 3d forced Euler equations (E)-(1.1) admit
at least two distinct admissible bounded solutions.

We remark that, with a totally different method, Vishik in [17, 18] has produced
nonuniqueness examples for the incompressible Euler equations in R

2 in vorticity
formulation when the solutions have vorticity in C([0, T ], L∞∩Lp) for any fixed p <
∞, while the curl of the body force belongs to L1+σ([0, T ], Lp) (cf. the lecture notes
[2]). In particular, using classical Calderon-Zygmund estimates, one can easily see

that the velocities of these solutions belong to C([0, T ],W 1,p
loc ), while the body forces

belong to L1+σ([0, T ],W 1,p
loc ). In fact Vishik’s techniques have been successfully

transposed to even show nonuniqueness of Leray solutions of the forced Navier-
Stokes equations at a fixed positive viscosity ν > 0, see [1].

While the nature of the nonuniqueness results in [17, 18, 2, 1] is quite different
from the constructions of this paper, they also strongly suggest that all the results
of this section are likely to hold for body forces {Fν} enjoying uniform bounds in
L1([0, T ],W 1,p) and solutions of (NS) enjoying uniform bounds in L∞([0, T ],W 1,p).
They also suggest that the following question has likely a positive answer.

Open Question 1.10. Can the lack of selection of Theorems 1.6 and 1.7 be shown
with a ν-independent force F ∈ L1((0, 2);L∞(T3)) replacing the family {Fν}ν>0

(and {vν}ν>0 a family of Leray solutions of (NS)-(1.1))?

2. Strategy of the proof. We use the same strategy as in [3, 14, 15] and consider
a 2+ 1/2-dimensional Navier-Stokes solution, for which the evolution decouples into
a forced 2d-Navier-Stokes system and a scalar advection-diffusion equation. The
solution vν of the forced 2d-Navier-Stokes system is a suitable regularization of the
two-dimensional velocity field u : [0, 2] × T

2 → R
2 constructed in [5]*Section 4,

which is an alternating shear flow, that is, for every t ∈ (0, 1) we have either
u(t, x1, x2) = (W (t, x2), 0) or u(t, x1, x2) = (0,W (t, x1)). The third component of
the 3d-Navier-Stokes solution solves an advection-diffusion equation and will exhibit
anomalous dissipation.

More precisely, we define the solution of the forced 3d-Navier-Stokes system and
the initial condition as

vν =

(

uν

ϑ̃ν

)

, vin =

(

0
ϑin

)

,
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where uν is a suitable regularization of u (to be defined in Section 4) and ϑ̃ν solves
the advection-diffusion equation with velocity field uν and initial datum ϑin, i.e.

{

∂tϑ̃ν + uν · ∇ϑ̃ν = ν∆ϑ̃ν ,

ϑ̃ν(0, ·) = ϑin(·) .

Since uν is also an alternating shear flow (see Section 4, the nonlinear term uν ·∇uν

vanishes identically and therefore the velocity field vν solves the forced 3d-Navier-
Stokes system with force

Fν =

(

∂tuν − ν∆uν

0

)

.

By suitably setting the parameters in the construction of u, we will verify that

vν ∈ L3((0, 1);Cα(T3)) , Fν ∈ L1+σ((0, 1);Cσ(T3)) uniformly in ν, (2.1)

for some σ > 0, where α < 1/3 is arbitrary. In order to show that vν exhibits
anomalous dissipation, hence concluding the proof of Theorem 1.1, we employ
[5]*Theorem A to get

lim sup
ν↓0

2 ν

∫ 1

0

∫

T3

|∇vν(s, x)|
2 dx ds ≥ lim sup

ν↓0
2 ν

∫ 1

0

∫

T3

|∇ϑ̃ν(s, x)|
2 dx ds > 1/2 .

(2.2)
To prove that the vanishing viscosity limit does not select a unique solution in

the setting of Theorem 1.6 and Theorem 1.7 we use the corresponding statement
in [5]*Theorem B which proves lack of selection for solutions of the advection-
diffusion equations with velocity field u. More precisely, we prove that the first
two components of vν (namely uν) strongly converge in L2((0, 2)×T

3) to a unique

limit whereas the last component of vν (namely ϑ̃ν) for a suitable choice of a se-
quence of viscosity parameters {ν̃q}q∈N exhibits anomalous dissipation (2.2) and
for another suitable choice of a sequence of viscosity parameters {νq}q∈N converges
strongly in L2((0, 2) × T

3) to a conservative solution (i.e. the limit satisfies the
energy balance (1.7) with the first two components of the velocity field).

3. Construction and main properties of the 2d velocity field. In this section
we recall the main properties of the velocity field u : [0, 1] × T

2 → R
2 constructed

in [5] and of the corresponding solution ϑν : [0, 1] × T
2 → R of the advection-

diffusion equation with velocity field u. This velocity field will be used as a building
block for the construction of solutions to the forced 3d-Navier-Stokes equations in
Theorems 1.1, 1.6 and 1.7.

3.1. Choice of the parameters. Let α ∈ (0, 1) and β ∈ [0, 1/3) such that α+2β <
1. We consider parameters ϵ, δ ∈ (0, 1/4) sufficiently small such that

1−
2β(1 + 3ϵ(1 + δ))(1 + δ)

1− δ
− α(1 + ϵδ)(1 + δ)−

δ

8
> 0 , (3.1a)

3β(1 + 3ϵ(1 + δ))(1 + δ)

1− δ
+

δ

8
< 1 , (3.1b)

ϵ ≤
δ3

50
. (3.1c)

Furthermore we introduce the parameter γ > 0 as

γ =
3β(1 + 3ϵ(1 + δ))(1 + δ)

1− δ
+

δ

8
< 1 . (3.2)
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Given a0 ∈ (0, 1) such that

aϵδ
2

0 + a
ϵδ/8
0 ≤

1

20
, (3.3)

we define

aq+1 = a1+δ
q , λq =

1

2aq
. (3.4)

3.2. Construction of the velocity field. Let us begin by introducing some no-
tation. For any f : [0, 2] × T

2 → R
2 we denote by suppT (f) the temporal support

of the function f , namely the projection on the time interval [0, 2] of the support
of f . The precise definition is

suppT (f) := {t ∈ [0, 2] : there exists x ∈ T2 such that f(t, x) ̸= 0} .

Given {Tq}q∈N∪{−1}, a decreasing sequence of non-negative numbers such that
T−1 = 1 and Tq ↓ 0 as q → ∞, we define the time intervals

Iq = [1− Tq, 1− Tq+1] , Jq = [1 + Tq+1, 1 + Tq] , for any q ∈ N ∪ {−1} .

The results below are taken from [5].

Proposition 3.1. Let α, β, γ, ϵ, δ, and {aq}q∈N as above. Then there exist a
decreasing sequence of times {Tq}q∈N∪{−1} satisfying T−1 = 1 and Tq ↓ 0 as q → ∞,

an initial datum ϑin ∈ C∞(T2) with
∫

T2 ϑin = 0, and a divergence-free velocity field

u ∈ C∞
loc(((0, 2) \ {1})× T

2;R2), such that the following hold:

1. (Reflection and shear flow) For any t ∈ (0, 2), u(t, ·) coincides either with an
horizontal shear flow, or with a vertical one. Moreover u(t, x) = −u(2− t, x)
for any t ∈ (1, 2) and x ∈ T

2.
2. (Time intervals) For any q ∈ N we have |Tq − Tq+1| ≤ 4aγ−γδ

q , and

suppT (u) ∩ (I−1 ∪ J−1) = ∅ , (3.5)

|suppT (u) ∩ (Iq ∪ Jq)| ≤ 6aγq . (3.6)

Moreover, u(t, ·) ≡ 0 for any t in a neighborhood of 1− Tq and 1 + Tq.
3. (Regularity of the velocity field) For any k ∈ N and ℓ ∈ N there exists a

constant C > 0 such that

∥∂ℓ
t∇

ku∥L∞((Iq∪Jq)×T2) ≤ Ca1−γ
q a

−k(1+ϵδ)
q+1 a−ℓγ

q , (3.7)

for any q ∈ N.
4. (Regularity of the solution) For any ν > 0 there exists a unique bounded

solution ϑν : [0, 2]× T
2 → R of the advection-diffusion equation

∂tϑν + u · ∇ϑν = ν∆ϑν (3.8)

with initial datum ϑin. For ν = 0, the advection equation (i.e., (3.8) with
ν = 0) with velocity field u and initial datum ϑin has a unique bounded solution
with the symmetry ϑ0(t, x) = ϑ0(2 − t, x) for any t ∈ (1, 2) and x ∈ T

2. The
family of solutions {ϑν}ν∈[0,1] satisfies

sup
ν∈[0,1]

∥∇ϑν∥L∞(Iq×T2) ≤ ∥∇ϑin∥L∞a
−1−3ϵ(1+δ)
q+1 , for any q ∈ N.
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5. (Anomalous dissipation) For any q ∈ N we set

ν̃q = a
2− γ

1+δ+4ϵ
q . (3.9)

There exists m ∈ N such that the sequence {ϑν̃q
}q∈N satisfies

2 ν̃q

∫ 1−Tq+tq

0

∫

T2

|∇ϑν̃q
|2 dx dt >

1

2
for any q ∈ mN, (3.10)

where t̄q ∈ (Tq+1, Tq) is a suitable intermediate time such that suppT (u)∩(1−
Tq, 1− Tq + t̄q) = ∅.

Proof. The velocity field with all the above properties is obtained from the one
constructed in [5]*Section 4 choosing p = p◦ = 1/3. Properties (1) and (2) are
a direct consequence of the construction in [5]*Section 4. Property (3) is given
in [5]*Remark 4.2. Property (4) has been proved in [5]*Section 8. Property (5) has
been proved in [5]*Section 7 and it is stated in [5]*Theorem A.

4. Solution of the forced 3d-Navier-Stokes and Euler equations. Let α,
β, γ, ϵ, δ, and {aq}q∈N be as in Section 3.1. We employ the velocity field u and
the initial condition ϑin built in Proposition 3.1 to produce (vν , pν , Fν) a smooth
solution to the forced 3d-Navier-Stokes equations (NS)-(1.1).

For any q ∈ N, we introduce the closed set Kq = [0, 1−Tq]∪ [1+Tq, 2] and define

uq(t, x) = u(t, x)✶Kq
(t) . (4.1)

We observe that uq is smooth for any q ∈ N.
We consider the family of viscosity parameters ν̃q defined in (3.9). For any

ν ∈ (0, a20) there exists q ∈ N such that ν ∈ (ν̃q+1, ν̃q]. Let ϑ̃ν : [0, 2] × T
3 → R be

the unique smooth solution to the advection-diffusion equation (3.8) with diffusion
parameter ν, initial datum ϑin, and velocity field uq(t, x), i.e.

∂tϑ̃ν + uq · ∇ϑ̃ν = ν∆ϑ̃ν .

We define smooth functions Fν , vν : [0, 2]× T
3 → R

3 and pν : [0, 2]× T
3 → R as

Fν(t, x) =

(

∂tuq(t, x)− ν∆uq(t, x)
0

)

vν(t, x) =

(

uq(t, x)

ϑ̃ν(t, x)

)

pν = 0 .

Finally, we set

vin =

(

0
ϑin

)

. (4.2)

Given Proposition 3.1, the following lemma is immediately checked.

Lemma 4.1. For any ν ∈ (0, a20), given Fν as above, (vν , pν) is the unique smooth
solution to (NS) with initial datum vin. Moreover, at any time t ∈ (0, 2) the velocity
field vν is an alternating shear flow on the first two components, i.e.

vν(t, x) =





w1
ν(t, x2)
0
∗



 or vν(t, x) =





0
w2

ν(t, x1)
∗





for suitable one-dimensional functions wi
ν : [0, 2]× T → R, for i = 1, 2.
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At least formally, we expect (vν , pν , Fν) to converge to a solution of the forced
3d-Euler equations (E)-(1.1) when ν ↓ 0. We will prove in the next sections that
this is the case under suitable assumptions and that

F0(t, x) =

(

∂tu(t, x)
0

)

(4.3)

p0 = 0 . (4.4)

The following lemma immediately follows from the regularity of u in (0, 1)× T
2 in

Proposition 3.1.

Lemma 4.2. Let u, ϑ0 be as in Proposition 3.1, and let F0 be as in (4.3). We have
that

F0 ∈ C∞((0, 1)× T
3) . (4.5)

Moreover,

v0(t, x) :=

(

u(t, x)
ϑ0(t, x)

)

, t ∈ (0, 1), x ∈ T
3 , (4.6)

is the unique smooth solution to (E)-(1.1) in (0, 1)× T
3 with initial datum (4.2).

Remark 4.3. We will see in the next sections that uniqueness for (E)-(1.1) may
fail past time t = 1, where the singularity of F0 appears.

5. Proof of Theorem 1.1 and Theorem 1.6. Let α ∈ [0, 1/3) be fixed as in
Theorem 1.1 and α′ ∈ [0, 1) be fixed as in Theorem 1.6. Without loss of generality
and up to increasing α or α′, we can assume α′ = 3α. We fix β = α and choose the
parameters ϵ, δ, and {aq}q∈N as in Section 3.1. The parameter γ is then determined
by (3.2). The viscosity parameter ν̃q has been chosen in (3.9). Let (vν , pν , Fν) be
the solution to (NS), with initial datum as in (4.2), built in Section 4.

In order to prove Theorem 1.1 and Theorem 1.6 we need to show the following
facts:

(i) There exists σ > 0 such that

sup
ν∈(0,a2

0
)

∥vν∥L3([0,1];Cα(T3)) + ∥vν∥L∞([0,2]×T3) + ∥Fν∥L1+σ([0,2];Cσ(T3)) < ∞ . (5.1)

Moreover, Fν → F0 in L1+σ([0, 2];Cσ(T3)).
(ii) Let v0 be as in Lemma 4.2. We have that vν → v0 in L2((0, 1)×T

3) as ν → 0.
(iii) There exist vds0 ∈ L∞([0, 2]×T

3) solution to (E) with initial datum (4.2) and
a sequence qk → ∞, such that vν̃qk

→ vds0 weakly in L2([0, 2]×T
3). Moreover,

2 ν̃qk

∫ 1

0

∫

T3

|∇vν̃qk
|2 dx dt > 1/2 for any k ∈ N. (5.2)

In particular vds0 is an admissible dissipative solution of (E).

(iv) Set νq = a2−γ+δ+8ϵ
q . There exists vcs0 ∈ L1((0, 2);Cα′

(T3)), a conservative
(admissible) solution to (E) with initial datum (4.2), such that vνq

→ vcs0
strongly in L2((0, 2)× T

3) as q → ∞.

Proof of (i). From (3.7) and the maximum principle for the advection-diffusion
equation (using that the initial datum is bounded), we deduce that

sup
ν∈(0,a2

0
)

∥vν∥L∞([0,2]×T3) < ∞ .
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Let us now check that

sup
ν∈(0,a2

0
)

∥vν∥L3([0,1];Cα(T3)) < ∞ . (5.3)

This is a consequence of

u ∈ L3((0, 1);Cα(T3)) and sup
ν∈(0,a2

0
)

∥ϑν∥L3((0,1);Cα(T2)) < ∞ (5.4)

that we now prove. Indeed, ϑ̃ν ≡ ϑν in [0, 1−Tq]×T
3 since uq ≡ u in [0, 1−Tq]×T

3,

while ϑ̃ν(t, ·) solves the heat equation for t ∈ [1 − Tq, 1], and the Hölder norm is
nonincreasing for solutions of the heat equation.

Let us begin by proving the first property in (5.4). By (3.5) and (3.7) and by
interpolation we have

∥u∥3L3((0,1);Cα) =

∞
∑

q=0

∫

Iq

∥u(s, ·)∥3Cα(T2)ds

≤
∞
∑

q=0

∫

Iq

∥u(s, ·)∥
3(1−α)
L∞(T2)∥u(s, ·)∥

3α
W 1,∞(T2)ds

≤ C

∞
∑

q=0

aγqa
−3(1−α)(γ−1)
q a−3α(γ−1)

q a
−3α(1+ϵδ)
q+1

and the sum is finite if and only if
γ

3
+ 1− γ − α(1 + ϵδ)(1 + δ) > 0 ,

which holds thanks to the choice (3.2) and the condition (3.1a).
Let us show the second property in (5.4). Fix ν ∈ (0, a20) and correspondingly

let q ∈ N such that ν ∈ (ν̃q+1, ν̃q]. Thanks to property (4) of Proposition 3.1 and
using α = β, we get

∥ϑν∥
3
L3((0,1);Cα) =

∞
∑

q=0

∫

Iq

∥ϑν(s, ·)∥
3
Cβds ≤ C

∞
∑

q=0

aγ−γδ
q a

−3(β+3βϵ(1+δ))
q+1

= C

∞
∑

q=0

aγ−γδ−3(β+3βϵ(1+δ))(1+δ)
q

and the sum is finite and independent of ν since as a consequence of (3.2) we have

−γ(1− δ) + 3(β + 3βϵ(1 + δ))(1 + δ) < 0 .

We finally prove that

Fν ∈ L1+σ((0, 2);Cσ(T3)) , uniformly in ν ∈ (0, a20) , (5.5)

for some σ > 0, and Fν → F0 in L1+σ((0, 2);Cσ(T3)) as ν → 0. To this aim, it is
enough to show that there exists C > 0 such that for any ν ∈ (ν̃q+1, ν̃q] we have

∥∂tu∥L1+σ((0,2);Cσ(T3)) ≤ C and ∥ν∆u∥L1+σ((Kq ;Cσ(T3)) ≤ Caϵq . (5.6)

and that
∥∂tu∥L1+σ(Kc

q ;C
σ(T3)) → 0 as q → ∞. (5.7)

For the first property in (5.6), thanks to (3.7) we have

∥∂tu∥
1+σ
L1+σ((0,2);Cσ(T3)) ≤

∞
∑

j=0

∫

Ij∪Jj

(

∥∂tu(s, ·)∥
(1−σ)
L∞(T3)∥∂tu(s, ·)∥

σ
W 1,∞(T3)

)1+σ

ds
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≤ C

∞
∑

j=0

∫

Ij∪Jj

(

a1−2γ
j a

−σ(1+ϵδ)
j+1

)1+σ

ds

≤ 4C

∞
∑

j=0

aγj a
(1+σ)(1−2γ−σ(1+δ)(1+ϵδ))
j < ∞

where we used that 1 − γ > 0, and we choose σ > 0 sufficiently small such that
γ + (1 + σ)(1− 2γ − σ(1 + δ)(1 + ϵδ)) > 0. Property (5.7) follows by noticing that

∥∂tu∥
1+σ
L1+σ(Kc

q ;C
σ(T3)) ≤

∞
∑

j=q

∫

Ij∪Jj

(

∥∂tu(s, ·)∥
(1−σ)
L∞(T3)∥∂tu(s, ·)∥

σ
C1(T3)

)1+σ

ds → 0

as q → ∞.
For the second property in (5.6), thanks to (3.7), we have

∥ν∆u∥1+σ
L1+σ(Kq ;Cσ(T3))

≤ ν̃q

q−1
∑

j=0

∫

Ij∪Jj

(

∥∆u(s, ·)∥1−σ
L∞(T3)∥∆u(s, ·)∥σW 1,∞(T3)

)1+σ

ds

≤ Ca
2− γ

1+δ+4ϵ
q

q−1
∑

j=0

∫

Ij∪Jj

(

a1−γ
j a

−2(1+ϵδ)(1−σ)
j+1 a

−3(1+ϵδ)σ
j+1

)1+σ

ds

≤ Ca
2− γ

1+δ+2ϵ
q

q−1
∑

j=0

aγj

(

a−1−2δ−γ
j a

−σ(1+ϵδ)(1+δ)
j

)1+σ

≤ Cqa2ϵq a2+2δ−γ
q−1 aγq−1a

−(1+σ)(1+2δ+γ+σ(1+ϵδ)(1+δ))
q−1 ≤ Caϵq,

where we used that qaϵq ≤ 1, aj+1 = a1+δ
j , 1−γ > 0 and we choose σ > 0 sufficiently

small to guarantee that 2 + 2δ − (1 + σ)(1 + 2δ + γ + σ(1 + ϵδ)(1 + δ)) > 0.

Proof of (ii). Recalling (4.1), it suffices to prove that ϑ̃ν → ϑ0 in L2((0, 1)× T
3),

as ν → 0. Fix ν ∈ (0, a20), and let q ∈ N such that ν ∈ (ν̃q+1, ν̃q]. We employ a
standard vanishing viscosity estimate. For any 0 ≤ t ≤ 1−Tq, we have that uq = u,
hence

∂t(ϑ̃ν − ϑ0) + u · ∇(ϑ̃ν − ϑ0) = ν∆ϑ̃ν for any 0 ≤ t ≤ 1− Tq.

We multiply the above equation by ϑ̃ν − ϑ0 and integrate in space-time to get

∥ϑ̃ν(t, ·)− ϑ0(t, ·)∥
2
L2(T3)

≤ ν

∣

∣

∣

∣

∫ t

0

∫

T3

∇ϑ̃ν(s, x) · ∇ϑ0(s, x)dxds

∣

∣

∣

∣

≤

(

ν

∫ t

0

∫

T3

∣

∣

∣∇ϑ̃ν(s, x)
∣

∣

∣

2

dxds

)1/2(

ν

∫ t

0

∫

T3

|∇ϑ0(s, x)|
2
dxds

)1/2

.

We observe that by the energy equality

ν

∫ t

0

∫

T3

∣

∣

∣
∇ϑ̃ν(s, x)

∣

∣

∣

2

dxds ≤ 1 for any t ∈ [0, 1] . (5.8)

Let us define t(ν) := 1 − Tk(q) ≤ 1 − Tq, where k(q) is the largest natural number
satisfying

a
2− γ

1+δ
q exp

(

a2−2γ
k(q) a−2−2ϵδ

k(q)+1

)

≤ 1 .
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We claim that

ν

∫ t(ν)

0

∫

T3

|∇ϑ0(s, x)|
2
dxds → 0 and t(ν) → 1 as ν → 0 . (5.9)

This follows by Grönwall inequality and (3.7), since

ν

∫ t(ν)

0

∥∇ϑ0(s, ·)∥
2
L∞(T3)ds ≤ ν∥∇ϑin(·)∥

2
L∞(T3) exp

(

∫ t(ν)

0

∥∇u(s, ·)∥2L∞

)

ds

≤ Ca
2− γ

1+δ+4ϵ
q a−2−2ϵδ

0 exp
(

a2−2γ
k(q) a−2−2ϵδ

k(q)+1

)

≤ Ca4ϵq a−2−2ϵδ
0 → 0

as q → ∞. Finally, t(ν) → 1 as ν → 0 follows by the fact that k(q) → ∞ as q → ∞.

Building upon (5.8), (5.9), and the fact that ϑ̃ν and ϑ0 are uniformly bounded
by 1, we deduce

∥ϑ̃ν − ϑ0∥
2
L2((0,1)×T3) ≤ ν

∫ t(ν)

0

∥∇ϑ0(s, ·)∥
2
L∞(T3)ds+ C(1− t(ν)) → 0 (5.10)

as q → ∞.
Proof of (iii). We observe that the sequence of solutions ϑν̃q

of the advection-
diffusion equation with diffusion parameter ν̃q, velocity field u, and initial datum
ϑin satisfies

2 ν̃q

∫ 1−Tq+t̄q

0

∥∇ϑν̃q
(s, ·)∥2L2 ds >

1

2
for any q ∈ mN, (5.11)

as a direct consequence of (5) in Proposition 3.1. Therefore ϑ̃ν̃q , the third compo-

nent of vν̃q , satisfies (5.11) as well since ϑν̃q = ϑ̃ν̃q in [0, 1− Tq + t̄q].

The first two components of vν strongly converge to u in L∞((0, 2) × T
3) since

∥u∥L∞(Kc
q×T3) ≤ 2a1−γ

q → 0 as q → ∞. It is simple to see that {ϑ̃ν̃q
}q∈N admits

limit points in the weak topology of L2((0, 2) × T
2) and that any such limit point

solves the transport equation with velocity field u and initial datum ϑin. Let us
fix a limit point and denote it by ϑds. It follows by (5.11) that ϑds is a dissipative
solution of the transport equation. We define

vds0 (t, x) :=

(

u(t, x)
ϑds(t, x)

)

, t ∈ (0, 2), x ∈ T
3 , (5.12)

and check that (vds0 , p0, F0) with p0 = 0 solves (E). Indeed, since the first two
components of vν̃q

strongly converge to u in L∞((0, 2)×T
3) and the last component

converges weakly to ϑds, the quadratic term vν̃q
· ∇vν̃q

converges in the sense of

distributions to vds0 · ∇vds0 . It is straightforward to check that all the other terms
in the distributional formulation of (E) pass to the limit as ν̃q → 0. Finally the
admissibility condition (1.6) of vds0 follows from the fact that it is a weak* limit in L∞

of admissible solutions vν with force Fν and the forces Fν are strongly converging
to F0 in L1.
Proof of (iv). Let νq = a2−γ+δ+8ϵ

q ∈ (ν̃q+1, ν̃q]. As before we have

vνq
(t, x) =

(

u(t, x)✶Kq (t)

ϑ̃νq
(t, x)

)

.

Recalling the proof of (iii), we only need to prove that the last component of vνq

strongly converges in L2((0, 2) × T
3) to a velocity field vcs0 ∈ L1((0, 2);Cα′

(T3))
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that conserves in time the spatial L2 norm and the admissibility condition (1.6)
will directly follow from the conservative property.

We show that ϑ̃νq
→ ϑ0 in L2((0, 2) × T

3), where ϑ0 is the symmetric solution
to the transport equation in Proposition 3.1(4). To this aim, it is enough to show

that ∥ϑ̃νq (t, ·) − ϑq(t, ·)∥L2(T2) → 0 as q → ∞ for any t ∈ (0, 2), where ϑq is the
unique solution of the transport equation with velocity field uq and initial datum
ϑin. Indeed, this will entail

∥ϑ̃νq − ϑ0∥L2([0,2]×T2) ≤ ∥ϑ̃νq − ϑq∥L2([0,2]×T2) + ∥ϑq − ϑ0∥L2([0,2]×T2) → 0

as q → ∞, where the second term ∥ϑq − ϑ0∥L2((0,2)×T3) → 0 as q → ∞, thanks to
ϑq(t, ·) = ϑ0(t, ·) for any t ∈ [1− Tq, 1 + Tq]

c, and the L∞ bound

∥ϑ0∥L∞((0,2)×T2) + ∥ϑq∥L∞((0,2)×T2) ≤ 2 .

For any t ∈ (0, 2), using a standard energy estimate with the regularity bound (4)
and the symmetry property (1) from Proposition 3.1, we estimate

∥ϑ̃νq (t, ·)− ϑq(t, ·)∥
2
L2(T2)

≤ 2νq

∣

∣

∣

∣

∫ t

0

∫

T2

∇ϑ̃νq
(s, x) · ∇ϑq(s, x)dxds

∣

∣

∣

∣

≤ 2

(

νq

∫ t

0

∫

T2

|∇ϑq(s, x)|
2dxds

)1/2

= 2



νq

∞
∑

j=q

∫

Ij∪Jj

∫

T2

|∇ϑq(s, x)|
2dxds+ νq

q−1
∑

j=0

∫

Ij∪Jj

∫

T2

|∇ϑq(s, x)|
2dxds





1/2

≤ C



a2−γ+δ+8ϵ
q aγqa

−2(1+3ϵ(1+δ))
q + a2−γ+δ+8ϵ

q

q−1
∑

j=0

aγj a
−2(1+3ϵ(1+δ))
j+1





1/2

≤ Ca
1− γ

2
+ δ

2
+4ϵ

q a
γ/2
q−1a

−1−3ϵ(1+δ)
q ≤ Ca

δ
2
− δγ

2
q → 0 ,

as q → ∞, where we used γ < 1, aq = a1+δ
q−1, and δ ∈ (0, 1/8).

We finally show that vcs0 ∈ L1((0, 2);Cα′

(T3)). Using (3.5) and (3.7) we deduce

∥u∥L1((0,2);Cα′ ) = 2

∞
∑

q=1

∫

Iq

∥u(s, ·)∥Cα′ (T2)ds

≤ 2

∞
∑

q=1

∫

Iq

∥u(s, ·)∥1−α′

L∞(T2)∥u(s, ·)∥
α′

W 1,∞(T2)ds

≤ C

∞
∑

q=0

aγqa
1−γ
q a

−α′(1+ϵδ)
q+1 = C

∞
∑

q=0

a1−α′(1+ϵδ)(1+δ)
q < ∞

recalling that α′ = 3α and α = β, and the last inequality holds thanks to the
condition (3.1a), which implies 1 − 3α(1 + ϵδ)(1 + δ) > 0. For the last component
of vcs0 , namely ϑ0, we recall that

ϑ0(t, x) = ϑ0(2− t, x) for any x ∈ T
3 and t ∈ (1, 2] ,

and that it solves the transport equation (namely (3.8) with ν = 0) with velocity
field u. Therefore, it is sufficient to estimate ϑ0 in [0, 1]×T

2. Using (4) in Proposition
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3.1 we have

∥ϑ0∥L1((0,1);Cα′ ) =

∞
∑

q=0

∫

Iq

∥ϑ0(s, ·)∥Cα′ds ≤ 4∥∇ϑin∥L∞

∞
∑

q=0

aγ−γδ
q a

−α′(1+3ϵ(1+δ))
q+1

= 4∥∇ϑin∥L∞

∞
∑

q=0

aγ−γδ−α′(1+3α′ϵ(1+δ))(1+δ)
q < ∞

where the last estimate holds thanks to α = α′/3, (3.1a), (3.2), and ϵ < δ
16(1+δ)2 (a

consequence of (3.1c)).

6. Proof of Theorem 1.7. Let α′ ∈ [0, 1) be as in Theorem 1.7. We fix α = α′

and β = 0 and we choose the parameters δ, ϵ, γ, and {aq}q∈N as in Section 3.1. The
parameters satisfy (3.1), (3.2), (3.3), and the further condition

1− α′(1 + ϵδ)(1 + δ)−
δ

4
> 0 (6.1)

which is compatible with all the other conditions. Let (vν , pν , Fν) be the solution
to (NS), with initial datum as in (4.2), built in Section 4.

In order to prove Theorem 1.7 we need to show the following facts:

(i) There holds

sup
ν∈(0,a2

0
)

∥vν∥L∞([0,2]×T3) + ∥Fν∥Cα′ ((0,2)×T3) < ∞ .

Moreover, Fν → F0 in Cα′

((0, 2)× T
3).

(ii) There exist vds0 ∈ L∞([0, 2]×T
3) solution to (E) with initial datum (4.2) and

a sequence qk → ∞, such that vν̃qk
⇀ vds0 weakly in L2([0, 2]×T

3). Moreover,

2 ν̃qk

∫ 1

0

∫

T3

|∇vν̃qk
|2 dx dt ≥ 1/2 for any qk. (6.2)

In particular vds0 is an admissible dissipative solution of (E).
(iii) Set νq = a2+3ϵ

q . There exists vcs0 ∈ L∞((0, 2) × T
3), an (admissible) con-

servative solution to (E) with initiald datum (4.2), such that vνq → vcs0 in

L2((0, 2)× T
3).

Proof of (i). Since u is bounded, more precisely ∥u(t, ·)∥L∞((0,2)×T3) ≤ 2a1−γ
0 ≤ 1

and ∥ϑ̃ν∥L∞((0,2)×T3) ≤ ∥ϑin∥L∞(T3) = 1 by the maximum principle, we have

∥vν∥L∞((0,2)×T3) ≤ 1 .

Let us now show the uniform-in-viscosity regularity of Fν . If suffices to prove that
there exists C > 0 such that for any ν ∈ (ν̃q+1, ν̃q] we have

∥∂tu∥Cα′ ((0,2)×T3) ≤ C and ∥ν∆u∥Cα(Kq×T3) ≤ Caϵq . (6.3)

We estimate the first term. Thanks to (3.7) and the interpolation inequality, we
have

∥∂tu∥Cα′ ((0,2)×T3) ≤ sup
j∈N

∥∂tu∥L∞(Ij ;Cα′ (T3)) + sup
j∈N

∥∂tu∥L∞(T3;W 1,∞(Ij))

≤C

(

sup
j∈N

∥∂tu∥
1−α′

L∞(Ij ;L∞(T3))∥∂tu∥
α′

L∞(Ij ;W 1,∞(T3)) + sup
j∈N

a1−2γ
j

)

≤C sup
j∈N

a1−2γ
j a

−α′(1+ϵδ)
j+1 + 1 < ∞
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where we used (6.1) and γ = δ/8 < 1/2. This proves the first property in (6.3).
In order to show the second property in (6.3), we exploit (3.7) and tha fact that
ν ∈ (ν̃q+1, ν̃q] to obtain

∥ν∆u∥Cα′ ((0,1−Tq)×T3))

≤ ν̃q sup
j≤q−1

∥∆u∥Cα′ (Ij×T3)

≤ Ca
2− γ

1+δ+4ϵ
q sup

j≤q−1
(a1−γ

j a−2−2ϵδ
j+1 a

−α′(1+ϵδ)
j+1 + a1−γ

j a−2−2ϵδ
j+1 a−γ

j )

≤ Caϵqa
1−2γ−α′(1+ϵδ)(1+δ)
q−1 ≤ Caϵq ,

where we also used a2ϵq a−2ϵδ
q ≤ 1, (3.1a), and (6.1).

The convergence Fν → F0 in Cα′

((0, 2)×T
3) can be shown along the same lines,

by observing that ∥∂tu∥Cα′ (Kc
q×T2) → 0 as q → ∞.

Proof of (ii). We argue exactly as in the proof of (iii) in Section 5. We first notice
that

2 ν̃q

∫ 1−Tq+t̄q

0

∥∇ϑ̃ν̃q
(s, ·)∥2L2 ds = 2 ν̃q

∫ 1−Tq+t̄q

0

∥∇ϑν̃q
(s, ·)∥2L2 ds >

1

2

for any q ∈ mN, as a direct consequence of (5) in Proposition 3.1. The first two

components of vν strongly converge to u in L∞((0, 2)× T
3) while {ϑ̃ν̃q}q∈N admits

a limit point ϑds in the weak topology of L2((0, 2)×T
2) which solves the transport

equation with velocity field u and initial datum ϑin. Setting

vds0 (t, x) :=

(

u(t, x)
ϑds(t, x)

)

, t ∈ (0, 2), x ∈ T
3 , (6.4)

we can verify that (vds0 , p0, F0) with p0 = 0 solves (E) and vds0 is an admissible
solution by arguing exactly as in the proof of (iii) in Section 5.
Proof of (iii). The first two components of vνq strongly converge to u in L∞((0, 2)×

T
3). We claim that ϑ̃νq

, the last component of vνq
, strongly converges in L2((0, 2)×

T
2) to ϑ0 (defined as in (4) of Proposition 3.1). Setting

vcs0 (t, x) :=

(

u(t, x)
ϑ0(t, x)

)

, t ∈ (0, 2), x ∈ T
3 (6.5)

and observing that ∥ϑ0(t, ·)∥L2 = ∥ϑin∥L2 for any t ∈ (0, 2) \ {1}, Fνq → F0 in

Cα′

((0, 2)×T
3), and uq → u in L2((0, 2)×T

3), the claimed convergence suffices to
conclude that vcs0 is an (admissible) conservative solution to (E).

We argue as in the proof of (iv) in Section 5. Denoting by ϑq : (0, 2)×T
2 → R the

unique solution to the transport equation with velocity field uq and initial datum
ϑin, we have

∥ϑ̃νq − ϑ0∥L2([0,2]×T2) ≤ ∥ϑ̃νq − ϑq∥L2([0,2]×T2) + ∥ϑq − ϑ0∥L2([0,2]×T2) . (6.6)

We notice that ∥ϑq − ϑ0∥L2((0,2)×T3) → 0 as q → ∞, thanks to ϑq(t, x) = ϑ0(t, x)

for any t ∈ Kq and any x ∈ T
3 (because of the symmetry of the velocity field

u as in property (1) of Proposition 3.1) and to the bound ∥ϑ0∥L∞((0,2)×T2) +
∥ϑq∥L∞((0,2)×T2) ≤ 2. For any t ∈ (0, 2), we estimate the first term in (6.6) relying
on the regularity bound (4) and the symmetry property (1) in Proposition 3.1. We
have

∥ϑ̃νq (t, ·)− ϑq(t, ·)∥
2
L2(T2)
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≤2νq

∣

∣

∣

∣

∫ t

0

∫

T2

∇ϑ̃νq (s, x) · ∇ϑq(s, x)dxds

∣

∣

∣

∣

≤2

(

νq

∫ t

0

∫

T2

|∇ϑq(s, x)|
2dxds

)1/2

=2



νq

∞
∑

j=q

∫

Ij∪Jj

∫

T2

|∇ϑq(s, x)|
2dxds+ νq

q−1
∑

j=0

∫

Ij∪Jj

∫

T2

|∇ϑq(s, x)|
2dxds





1/2

≤C



a2+3ϵ
q aγqa

−2(1+3ϵ(1+δ))
q + a2+3ϵ

q

q−1
∑

j=0

aγj a
−2(1+3ϵ(1+δ))
j+1





1/2

≤C
(

a2+3ϵ
q aγq−1a

−2(1+3ϵ(1+δ))
q

)1/2

≤Cqa
1+ 3ϵ

2
q aγq−1a

−1−6ϵ
q ≤ Cqa

δ
32

− 9ϵ
2

q → 0

as q → ∞, where we used γ = δ/8, aq+1 = a1+δ
q , δ ∈ (0, 1/8), qa

δ/32
q ≤ 1,

∑

j≥q a
γ
j ≤

2aγq , and δ/8 > 9ϵ/2. Therefore, vcs0 satisfies (1.7).
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