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ABSTRACT. We answer positively to [3]*Question 2.4 by building new examples
of solutions to the forced 3d-Navier-Stokes equations with vanishing viscosity,
which exhibit anomalous dissipation and which enjoy uniform bounds in the

space L?C;/st, for any fixed € > 0. Our construction combines ideas of [3]
and [5].

1. Introduction. The forced Navier—Stokes equations on the 3-dimensional torus
T3 ~ R3/Z3 are given by

o, + v, - Vo, + Vp, = vAv, + F, (NS)

divw, =0,

where v, : [0,T] x T3 — R3 is the velocity field, p, : [0,T] x T3 — R is the pressure,
v > 0 is the viscosity parameter and F, : [0,T] x T? — R3 is a (divergence-free)
force that may depend on v. When v = 0 the Navier—Stokes equations (NS) reduce
to the forced Euler equations

Osvo + vg - Vg + Vpg = Fy (E)
div Vo = 0.
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We consider both the Navier—Stokes equations (NS) and the Euler equations (E)
with a prescribed initial datum v;, which is independent of the viscosity parameter
v, namely

v,(0,+) = vip . (1.1)

Following [3] we study smooth solutions of (NS) (namely u, and F, are both C*),
which enjoy uniform in v bounds for v, and F, in appropriate function spaces X
and Y. The purpose is to understand which spaces X and Y allow for u, to display
anomalous dissipation, more precisely whether

T
lim sup 1// / Vo, |2 dxdt > 0. (1.2)
v10 o Jrs

We require that the space Y rules out anomalous dissipation for solutions of the
forced linear Stokes equations under the assumption sup,, || Fy |y < oo, namely (1.2)
would not hold if we eliminate the nonlinear advective term v, - Vv, from (NS) and
we have uniform bounds for the body forces in the space Y. As it is noticed in
[3]*Section 2 the assumption

sup || Fy || pi+e([0,1]:00 (13)) < 00 (1.3)

for any positive o > 0 is in fact sufficient.
In [3] the first and fourth authors give examples of smooth solutions v, to (NS)
for which:

(i) (1.3) holds (in fact with the stronger bound sup,, ||F,|[zse(c1-<) < oo for any
given positive €),

(i) sup, [|vy [ < oo,

(iii) and (1.2) is satisfied.
In [3]*Section 2 the authors ask whether this type of behavior is still possible if the
uniform L* bound (ii) is replaced by a uniform bound in some space X which is
close to be “Onsager critical”. The Onsager criticality refers to the famous remark
by Onsager [16] that if ||v]| e (c1/s+) < 00 and u solves (E) with F' = 0, then such
solution w is energy conservative. After a first partial result by Eyink in [11], the
latter was rigorously proved by Constantin, E, and Titi in [6]. It is straightforward to
check that, using the arguments in [6], (1.3) and a uniform bound in [|v, || s (c1/s+<)
is in fact enough to rule out (1.2).

Onsager in [16] stated also that the regularity class L;’O(C;/ *) should in fact be
critical, in particular he conjectured the existence of solutions of (E) with F' =0
belonging to slightly lower regularity classes of Lfo(C;/ *) which do not conserve
the kinetic energy. After a decade of work in the area which started with [7, 8],
the Onsager conjecture was proved by Isett in [12] (cf. also [4]) using “convex
intgeration methods”.

While Onsager’s conjecture was motivated by the zero-th law of Kolmogorov’s
fully developed turbulence, which roughly speaking states that (1.2) should be a
“typical” phenomenon, it seems at the moment very hard to show that at least
some of the dissipative solutions of the unforced Euler equations found so far in the
literature can actually be approximated by a sequence of regular solutions to the
unforced Navier-Stokes. For this reason in [3] the authors suggested to consider the
forced versions of both equations. The main result of this paper is to show that
indeed (1.2) can be achieved for family of solutions {v,}, which enjoy a uniform
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bound in a space which is just below the Onsager-critical L?(C;/ %), while the corre-
sponding forces F), also enjoy a bound like (1.3) which rules out (1.2) for solutions
of the linear Stokes equations.

Theorem 1.1 (Anomalous dissipation). Let T = 1. For any a < 1/3 there exist
o > 0, a divergence-free initial datum v;, € C®(T3;R3) with fw Vin = 0, and a
family of forces {F,},~o0 C C®°([0,1] x T3;R3) satisfying (1.3) such that:
o for each v > 0 there is a unique solution to (NS) with v¥(0,-) = vin(-) which
satisfies
sup ([[vw s (o 1150 (19)) + llowll o o119 ) < 00, (1.4)

velo,1]
e (1.2) holds.

Furthermore, we have that F, — Fy in L'T7((0,1);C°(T?)) and v, — wvo in
L2((0,1) x T3) as v — 0, and in particular (vo, po, Fo) is a solution of (E).

Remark 1.2. In our construction all the dissipation occurs at the time 7" = 1,
namely (1.2) fails at any 7' < 1. In a forthcoming paper [9] De Rosa and Isett point
out that this type of “instantaneous loss of energy” cannot occur at a time T" € (0, 1)
for solutions belonging to L?([0, 1]; C*/*~(T?3)) for any p > 3. In another forthcoming
paper [13] the authors exhibit a 4-dimensional example for which the loss of energy
is “diffused in time”. More precisely they prove the existence of unique solutions
{v, }u>0 of the 4d forced Navier—Stokes equations with forces {F, },~¢ such that
e sup, (|[uyl[ze + [ Fyl Lo (cay) < oo for some o > 0;
e for a suitable sequence vy | 0 the dissipation px(t) := vi [14 |V, (8, 2)|?dx
converges weakly* to a measure p which has non-trivial absolutely continuous
part.

Remark 1.3. If we only required that the forces {F, },~¢ were uniformly bounded
in LY((0,1); L>°(T?)), then anomalous dissipation would be already possible for
solutions of the forced heat equation. Indeed, for any v € (0, 1) such that v1/2eN
we can consider 9, : [0,1] x T3 — R defined as

9, (t,x) = (6_4”2t — 1) sin(27v~122),
and observe that it solves

o, — vAY, = —4An? sin(27r1/’1/2x) = F, (15)
9,(0,+) = 0. '
It is straightforward to check that Vfol Jps IV, (¢, @) [Pdzdt > 1/4 for every v €
(0,1) as above. The latter example can be easily modified to produce an analogous

one for the linear Stokes equations.
Note that the crucial point is in the oscillations introduced by the sequence F,,.
In particular, strong convergence in L} L2 of F,, would actually suffice to show that

the unique solutions of (1.5) satisfy l/fol Jps IV, (8, @) |Pdedt — 0.

The following open question was also raised in [3] and at present the methods of
this work do not seem strong enough to address it.

Open Question 1.4. Can Theorem 1.1 be shown for Leray solutions but replacing
F, with a v-independent force in the space L'((0,2); L>(T?))?

In view of Remark 1.3 even producing one such example with a force F,, = F
which belongs to L!((0,2); L?(T?)) seems interesting and highly nontrivial.
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1.1. Lack of selection principle and non-uniqueness. As in [5], a byprod-
uct of our techniques is the lack of a selection principle under vanishing viscos-
ity for bounded solutions of the three dimensional forced Euler equations, if the
force converges in the vanishing viscosity limit. We say that a weak solution
v € L*((0,T); L?(T?)) of the forced Euler equations (E) is admissible if

(z,t)|?dx < /TS [vin () |2d + 2/11‘ F(z,t) - v(z, t)dx (1.6)

|v
T3 3
for a.e. t € (0,T).

We will show that the problem of uniqueness and vanishing viscosity selection in
the class of admissible solutions for (E) is related to having a solution in the space
L} (W) (this is essentially the threshold for classical “weak-strong” uniqueness
results, see e.g. [19, 10]). In particular uniqueness and selection both fail for
solutions in L!((0,T); C*(T?)) for any a < 1.

Remark 1.5. The nonuniqueness of admissible solutions has been already shown
in the class C?((0,T) x T?) for 8 < 1/3 for the unforced Euler equations using the
convex integration technique, cf. the aforementioned papers [7, 8, 12, 4].

Theorem 1.6 (Nonuniqueness and lack of selection I). Let T = 2 and let o/ € [0,1)
be given. Then there are:

(a) o >0 and a family of smooth body forces F, satisfying (1.3),
(b) a limit Fy such that F,, — Fy in L*T7((0,2); C°(T?)),
(¢) a divergence-free initial datum vy, € C*°(T?) with [, vin = 0,
(d) and a family {v,},>0 of (unique) smooth solutions of (NS) and (1.1)
such that the following holds:
(i) SUP,e(0,1] lvull Loe ((0,2)xT3) < 15
(#i) {v,}us0 has at least two distinct limit points, as v — 0, in the L™ weak®
topology, which are two distinct bounded admissible solutions v§® and vgls of
(E) and (1.1);
(iii) furthermore, v§5 € LY((0,2); C* (T3))N L satisfies the following energy bal-
ance

t
1€t )22 = llomllZe +2 / / Fo-uf®  forae te(0,2), (L)
0 T3

while v(()is € L* exhibits the strict dissipation

oS¢, )2 lomllie (o [* [ g ods 1,2 1
”0(")HL2<T+ ) 0 Vg for any t € [1,2). (1.8)

If we give up the regularity of the conservative solution v§® it is possible to show
nonuniqueness and lack of selection for much smoother forces.

Theorem 1.7 (Nonuniqueness and lack of selection IT). Let T = 2 and let o/ € [0,1)
be given. Then there are:
(a) a family {F,},>0 of smooth forces and a limiting Fy such that F,, — Fy in
C'((0,2) x T3),
(b) a divergence-free initial datum vy, € C>(T3) with fT3 Vin = 0,
(¢) and a family {v,}>0 of (unique) smooth solutions of (NS) and (1.1),
such that the following holds:

(i) SUPyeo,1] lvullLoe ((0,2)xT3) < 15
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(ii) {v,} has at least two distinct limit points, as v — 0, in the L weak® topology,

which are two distinct bounded admissible solutions vES and v@ of (E) and
(11);
(iii) vS8 satisfies (1.7) while v satisfies (1.8).

Obviously the following are simple corollaries of the previous theorems.

Corollary 1.8 (Non uniqueness for the forced Euler equations I). Let o’ € [0,1) be
given. There exist o > 0, a body force Fy € L'*9((0,2); C°(T?)) and a divergence-
free initial datum vy, € C°°(T3) such that the 3d forced Euler equations (E)-(1.1)
admit at least two distinct admissible bounded solutions. Furthermore, one of which
belongs L((0,2); C* (T3)).

Corollary 1.9 (Non uniqueness for the forced Euler equations II). Let o/ € [0,1)
be given. There exist a body force Fy € Co‘l((O,Q) x T?)) and a divergence-free
initial datum vi, € C*°(T?) such that the 3d forced Euler equations (E)-(1.1) admit
at least two distinct admissible bounded solutions.

We remark that, with a totally different method, Vishik in [17, 18] has produced
nonuniqueness examples for the incompressible Euler equations in R? in vorticity
formulation when the solutions have vorticity in C([0, T], LN LP) for any fixed p <
o0, while the curl of the body force belongs to L7 ([0, T], LP) (cf. the lecture notes
[2]). In particular, using classical Calderon-Zygmund estimates, one can easily see
that the velocities of these solutions belong to C([0, T7, I/Vll’p ), while the body forces

ocC
belong to L't7([0,T],WLP). In fact Vishik’s techniques have been successfully
transposed to even show nonuniqueness of Leray solutions of the forced Navier-
Stokes equations at a fized positive viscosity v > 0, see [1].

While the nature of the nonuniqueness results in [17, 18, 2, 1] is quite different
from the constructions of this paper, they also strongly suggest that all the results
of this section are likely to hold for body forces {F,} enjoying uniform bounds in
LY([0,T], WbP) and solutions of (NS) enjoying uniform bounds in L ([0, T, W1»).
They also suggest that the following question has likely a positive answer.

Open Question 1.10. Can the lack of selection of Theorems 1.6 and 1.7 be shown
with a v-independent force F' € L((0,2); L>°(T?3)) replacing the family {F,},~o
(and {v, },>0 a family of Leray solutions of (NS)-(1.1))?

2. Strategy of the proof. We use the same strategy as in [3, 14, 15] and consider
a 2+ 1/2-dimensional Navier-Stokes solution, for which the evolution decouples into
a forced 2d-Navier-Stokes system and a scalar advection-diffusion equation. The
solution v, of the forced 2d-Navier-Stokes system is a suitable regularization of the
two-dimensional velocity field u : [0,2] x T? — R? constructed in [5]*Section 4,
which is an alternating shear flow, that is, for every ¢t € (0,1) we have either
u(t,x1,22) = (W(t,z2),0) or u(t,z1,22) = (0, W(t,21)). The third component of
the 3d-Navier-Stokes solution solves an advection-diffusion equation and will exhibit
anomalous dissipation.

More precisely, we define the solution of the forced 3d-Navier-Stokes system and

the initial condition as
v, = [ Vig = 0
v — "9V ) m — 19111 b
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where u,, is a suitable regularization of u (to be defined in Section 4) and 9, solves
the advection-diffusion equation with velocity field u, and initial datum ¥, i.e.

0,9, +u, - VU, = I/Aﬁ,,,
3,(0,-) = O ().

Since u, is also an alternating shear flow (see Section 4, the nonlinear term w,, - Vu,
vanishes identically and therefore the velocity field v, solves the forced 3d-Navier-

Stokes system with force
P, = (atuu - Z/Auy> .
0
By suitably setting the parameters in the construction of u, we will verify that

v, € L*((0,1); C*(T?)), F, € L'™7((0,1);C7(T?))  uniformly in v, (2.1)

for some o > 0, where a < 1/3 is arbitrary. In order to show that v, exhibits
anomalous dissipation, hence concluding the proof of Theorem 1.1, we employ
[5]*Theorem A to get

1 1
limsup21// / Vv, (s, 2)|? dz ds > limsup21// / VO, (s, )| dzds > 1/2
0 T3 0 T3

v]0 v]0 .
(2.2)
To prove that the vanishing viscosity limit does not select a unique solution in
the setting of Theorem 1.6 and Theorem 1.7 we use the corresponding statement
in [5]*Theorem B which proves lack of selection for solutions of the advection-
diffusion equations with velocity field u. More precisely, we prove that the first
two components of v, (namely u,) strongly converge in L?((0,2) x T?) to a unique
limit whereas the last component of v, (namely 51,) for a suitable choice of a se-
quence of viscosity parameters {7;}qen exhibits anomalous dissipation (2.2) and
for another suitable choice of a sequence of viscosity parameters {v,}4en converges
strongly in L2((0,2) x T?) to a conservative solution (i.e. the limit satisfies the
energy balance (1.7) with the first two components of the velocity field).

3. Construction and main properties of the 2d velocity field. In this section
we recall the main properties of the velocity field u : [0,1] x T? — R? constructed
in [5] and of the corresponding solution ¥, : [0,1] x T2 — R of the advection-
diffusion equation with velocity field u. This velocity field will be used as a building
block for the construction of solutions to the forced 3d-Navier-Stokes equations in
Theorems 1.1, 1.6 and 1.7.

3.1. Choice of the parameters. Let a € (0,1) and 5 € [0,1/3) such that a+28 <
1. We consider parameters €, € (0,1/4) sufficiently small such that

280+ 3651:55))(1 +9) _ o1+ ed)(1+6) — g >0, (3.1a)
36(1+3€§1j56)>(1+6) +g <1, (3.1b)

53
€< = (3.1c)

Furthermore we introduce the parameter v > 0 as
3(1+3e(1+6)(1+6 )
L3843 O)(1+0) b

T <L (3.2)
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Given ag € (0,1) such that

. 1
o (3.3)

€82
4 T S 5h

we define

1
Qg4+1 = aé-’_é, )\q = g (34)
q

3.2. Construction of the velocity field. Let us begin by introducing some no-
tation. For any f : [0,2] x T? — R? we denote by supps(f) the temporal support
of the function f, namely the projection on the time interval [0, 2] of the support
of f. The precise definition is

suppp(f) :={t € [0,2] : there exists z € T? such that f(¢,x) # 0}.

Given {T,}q4enu{-1}, a decreasing sequence of non-negative numbers such that
T_1=1and T; | 0 as ¢ — oo, we define the time intervals

I, =[1-T,1—Ty], Jo=1+Ty+1,1+T,], foranyqgeNU{-1}.
The results below are taken from [5].

Proposition 3.1. Let a, 5, v, €, 0, and {ag}qen as above. Then there exist a
decreasing sequence of times {1y} qenu—1y satisfying Ty =1 and T, | 0 as ¢ — oo,
an initial datum Yy, € C>(T?) with sz Yin = 0, and a divergence-free velocity field
u € C.(((0,2) \ {1}) x T?;R?), such that the following hold:

loc

1. (Reflection and shear flow) For any t € (0,2), u(t,-) coincides either with an
horizontal shear flow, or with a vertical one. Moreover u(t,z) = —u(2 — t, z)
for any t € (1,2) and x € T2

2. (Time intervals) For any ¢ € N we have [Ty — Tgy1| < 4aq7_75, and

suppp(u) N (Z_1UT-1) =10, (3.5)
|suppr(w) N (Z, U J,)| < 6a; .

Moreover, u(t,-) =0 for any t in a neighborhood of 1 — T, and 1+ Tj,.
3. (Regularity of the wvelocity field) For any k € N and £ € N there exists a
constant C' > 0 such that

c —~ —k €d) —
185 % ul| oo (2,07, x12) < CalVa TP a o, (3.7)

for any q € N.
4. (Regularity of the solution) For any v > 0 there exists a unique bounded
solution 9, : [0,2] x T2 — R of the advection-diffusion equation

09, +u- VI, = vAD, (3.8)

with initial datum 9y,. For v = 0, the advection equation (i.e., (3.8) with
v = 0) with velocity field u and initial datum ¥y, has a unique bounded solution
with the symmetry Yo(t,x) = 9o(2 — t,x) for any t € (1,2) and x € T%. The
family of solutions {0, },c[0,1] satisfies

—1-3¢(14+6
sup ||V19DHL00(IQ><T2) < |\V19m||Looaq+1 e+ ), for any g € N.

veo,1]
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5. (Anomalous dissipation) For any q € N we set

.
Dy =ar (3.9)

There exists m € N such that the sequence {Uz, }qen satisfies

lquJrzq 1
217,1/0 /[r? V95, |2 dx dt > B for any ¢ € mN, (3.10)

where ty € (Ty41,Ty) is a suitable intermediate time such that suppy(u)N(1—

T, 1—T,+1,) =0.
Proof. The velocity field with all the above properties is obtained from the one
constructed in [5]*Section 4 choosing p = p° = 1/3. Properties (1) and (2) are
a direct consequence of the construction in [5]*Section 4. Property (3) is given
in [5]*Remark 4.2. Property (4) has been proved in [5]*Section 8. Property (5) has
been proved in [5]*Section 7 and it is stated in [5]*Theorem A. O

4. Solution of the forced 3d-Navier-Stokes and Euler equations. Let «,
B, 7, € 0, and {aq}sen be as in Section 3.1. We employ the velocity field u and
the initial condition ¢, built in Proposition 3.1 to produce (v,,p,, F,) a smooth
solution to the forced 3d-Navier-Stokes equations (NS)-(1.1).

For any ¢ € N, we introduce the closed set K, = [0,1—T,]U[1+ Ty, 2] and define

ug(t, ) = u(t,z)lg, (). (4.1)
We observe that u, is smooth for any ¢ € N.
We consider the family of viscosity parameters 7, defined in (3.9). For any
v € (0,a2) there exists ¢ € N such that v € (Fg41,7,]. Let 9, : [0,2] x T3 = R be
the unique smooth solution to the advection-diffusion equation (3.8) with diffusion
parameter v, initial datum 9;,, and velocity field u4(¢, z), i.e.

99, +uy - VI, = vAD,, .
We define smooth functions Fy,,v, : [0,2] x T?> — R? and p, : [0,2] x T?> - R as
Fy(tz) = <8tuq(t,x) - VAuq(t,x)>

0
it = (5707
p, =0.

Vi = ( 79?11) . (4.2)

Given Proposition 3.1, the following lemma is immediately checked.

Finally, we set

Lemma 4.1. For any v € (0,a3), given F, as above, (v,,p,) is the unique smooth
solution to (NS) with initial datum vin. Moreover, at any time t € (0,2) the velocity
field v, is an alternating shear flow on the first two components, i.e.

wl(t, z2) 0
v, (t,x) = 0 or v, (t, ) = | wi(t,z1)
* *

for suitable one-dimensional functions w? : [0,2] x T — R, fori=1,2.



ANOMALOUS DISSIPATION FOR ONSAGER’S SOLUTIONS 9

At least formally, we expect (v,,p,, F,) to converge to a solution of the forced
3d-Euler equations (E)-(1.1) when v | 0. We will prove in the next sections that
this is the case under suitable assumptions and that

Fo(t,z) = <8f“(0t’”’)) (4.3)
po=0. (4.4)

The following lemma immediately follows from the regularity of u in (0,1) x T? in
Proposition 3.1.

Lemma 4.2. Let u, 99 be as in Proposition 5.1, and let Fy be as in (4.3). We have
that

Fy € C=((0,1) x T?). (4.5)
Moreover,
vo(t, ) := (1;2((2’7?)) , t€(0,1), z€T?, (4.6)

is the unique smooth solution to (E)-(1.1) in (0,1) x T? with initial datum (4.2).

Remark 4.3. We will see in the next sections that uniqueness for (E)-(1.1) may
fail past time ¢ = 1, where the singularity of F appears.

5. Proof of Theorem 1.1 and Theorem 1.6. Let a € [0,1/3) be fixed as in
Theorem 1.1 and o’ € [0,1) be fixed as in Theorem 1.6. Without loss of generality
and up to increasing « or o/, we can assume o’ = 3a. We fix § = a and choose the
parameters €, ¢, and {aq }4en as in Section 3.1. The parameter + is then determined
by (3.2). The viscosity parameter 7, has been chosen in (3.9). Let (v,,p., F),) be
the solution to (NS), with initial datum as in (4.2), built in Section 4.

In order to prove Theorem 1.1 and Theorem 1.6 we need to show the following
facts:

(i) There exists o > 0 such that

s lovllzaqosen o + ol oz + IFllise oareem < oo (5:1)
ve(0,ag
Moreover, F, — Fy in L**9([0, 2]; C7(T3)).
(ii) Let vg be as in Lemma 4.2. We have that v,, — vy in L2((0,1) x T3) as v — 0.
(iii) There exist v§® € L>([0,2] x T?) solution to (E) with initial datum (4.2) and
a sequence g — 00, such that vy, — v$® weakly in L2([0, 2] x T3). Moreover,

1
27, / / Vg, |*dedt >1/2  for any k € N. (5.2)
0 T3

In particular v§® is an admissible dissipative solution of (E).

(iv) Set vy = a2~ 70T There exists vf® € L'((0,2); C*(T?)), a conservative
(admissible) solution to (E) with initial datum (4.2), such that v,, — v§®
strongly in L?((0,2) x T3) as ¢ — oo.

Proof of (i). From (3.7) and the maximum principle for the advection-diffusion
equation (using that the initial datum is bounded), we deduce that

sup vy [l Lee (j0,2)x12) < 00
VG(O,ag)
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Let us now check that

sup vy |23 (0,130 (13)) < 00 (5.3)
ve(0,a)
This is a consequence of
u € L3((0,1); C*(T?)) and sup [0 [la(0.1y:co(r2)) <00 (54)
v€(0,a8)

that we now prove. Indeed, ¥, = ¥, in [0,1—T,] x T3 since uy, = u in [0,1—T,] x T3,
while @V(t, -) solves the heat equation for ¢ € [1 — Ty, 1], and the Holder norm is
nonincreasing for solutions of the heat equation.

Let us begin by proving the first property in (5.4). By (3.5) and (3.7) and by
interpolation we have

lals oo = 3 / (s, ) gy s
q=0""a

3(1— o
<30 [l VG o sy
q=0""q

<C Z agaq_g(l_a)(7_1)(1;3“(7_1)@;31)‘(1*65)
q=0
and the sum is finite if and only if

%+1—77a(1+65)(1+5)>0,

which holds thanks to the choice (3.2) and the condition (3.1a).

Let us show the second property in (5.4). Fix v € (0,a3) and correspondingly
let ¢ € N such that v € (D411, 7). Thanks to property (4) of Proposition 3.1 and
using a = 3, we get

3Be(14+6
190135 ((0.1y:0) —Z / 19, (s ||Cﬁds<czcﬂ Way oo

q=0
=C Z ag—75—3(,8+3/36(1+5))(1+5)
q=0
and the sum is finite and independent of v since as a consequence of (3.2) we have
—y(1=0)+3(8+3Be(1+9))(1+) <0.
We finally prove that
F, € L'™7((0,2); C°(T?)), uniformly in v € (0,a3), (5.5)

for some o > 0, and F,, — Fy in L'79((0,2); C?(T?)) as v — 0. To this aim, it is
enough to show that there exists C' > 0 such that for any v € (¥441, 74| we have

||8tuHL1+o((0)2);00@3)) <C and ||VAUHL1+(7((KLI;CO'(’]I‘3)) < Ca; . (5.6)

and that
[0vul| L1+a (reeico (13)) — 0 as ¢ — 0. (5.7)

For the first property in (5.6), thanks to (3.7) we have

1—o - 140
||8tUHL1+a((02 :Co(T3)) = Z/ Hatu )Héoo(’]rs)natu( )||W1v°°(T3)) ds
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<C§ : 1 2 —U(1+66) 1+Ud
J @j+1 $
z; uJJ

<4CZCLFY (1+0)(1=2y=0(1458)(1+€d)) _

7=0

< o0

where we used that 1 — v > 0, and we choose ¢ > 0 sufficiently small such that
Y+ A +0)(1—-2y—0(1+5)(1+€d)) > 0. Property (5.7) follows by noticing that

- 1—o - 1+o
18l 1% (s oy < Z / (1w, VI I9ruls, My ) ds = 0
as g — oo.

For the second property in (5.6), thanks to (3.7), we have

v AulFs (i oo o)

. 140
(12u(s, Lo A0S, Mgy ) s

q
2— g5 +Hae 1y —2(14e8)(1-0) —3(1+es)o It+o
< Caq aj Qi 4j+1 ds
;UJ;

q
2— s +2¢ C1-26—~ —o(14es)(146)\ 1T
< 0TS g (a1 o100

J J J
7=0
—(1 1426 14+€d) (146
< Cqaea?TP7q)_ ay G+ ke ()40 ¢ e

where we used that gag <1, aj11 = aj'*"s7 1—7 > 0 and we choose ¢ > 0 sufficiently

small to guarantee that 2+25 — (1+0)(1+20+v+o(1+€d)(1+6)) >0

Proof of (ii). Recalling (4.1), it suffices to prove that 9, — o in L2((0,1) x T?),
as v — 0. Fix v € (0,a3), and let ¢ € N such that v € (7411,7,]. We employ a
standard vanishing viscosity estimate. For any 0 <t < 1—T,, we have that u, = u,
hence

8t(1§y—190)+u-V(1§,,—190):VA@V forany 0 <t <1-1T,.
We multiply the above equation by 9, — 9y and integrate in space-time to get
[0, (£, -) — olt, L2 sy

t
/ Vi, (s,z) - Vo (s, z)dxds
T3

< <y/0t /T <y/0t N |V190(s,x)|2dxd3)

We observe that by the energy equality
~ 2
Vﬁy(s,x)’ dxds < 1 for any ¢ € [0,1]. (5.8)

L

Let us define t(v) := 1 — Tj(q) < 1 — Ty, where k(q) is the largest natural number
satisfying

<v

1/2 1/2

- 2
VI, (s, m)‘ dxds)

2- 135
vy —2—2€d
g exp (ak(q) ak(q):l ) <1.
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We claim that
t(v) )
1// / [VIo(s,z)|" deds — 0 and t(v) =1 asv—0. (5.9)
0 T3

This follows by Grénwall inequality and (3.7), since
t(v

t(v) )
V/o V90 (s, ) Tee (rsyds < VIIVin()lI70e (79 exp (/O Vu(s, -)II%oo> ds

2— L tde _o_ 292~ _9_
< Caa T aoz 2¢8 v -2 255)

eXp (auq) O(g)+1
< Casﬁaazf%é -0

as ¢ — oo. Finally, t(v) — 1 as v — 0 follows by the fact that k(q) — oo as ¢ — oc.
Building upon (5.8), (5.9), and the fact that ¢, and ¥y are uniformly bounded
by 1, we deduce

_ t(v)
19y = DollZ2((0,1) ) < V/O V9o (s, )L sy ds + C(1 = t(v)) = 0 (5.10)

as q — oo.

Proof of (iii). We observe that the sequence of solutions 95, of the advection-
diffusion equation with diffusion parameter 7, velocity field u, and initial datum
Yin satisfies

1=Ty+E, 1
2Dq/ V95, (s, )72 ds > 3 for any ¢ € mN, (5.11)
0

as a direct consequence of (5) in Proposition 3.1. Therefore @gq, the third compo-
nent of vy, satisfies (5.11) as well since 95, = 19,;q in [0,1 — T, + t4].

The first two components of v, strongly converge to u in L°((0,2) x T3) since
[ull oo (rexs) < 20,77 — 0 as ¢ — oo. It is simple to see that {@;,q }qen admits
limit points in the weak topology of L?((0,2) x T?) and that any such limit point
solves the transport equation with velocity field v and initial datum ¢;,. Let us
fix a limit point and denote it by ¥95. Tt follows by (5.11) that 9% is a dissipative
solution of the transport equation. We define

v (t, x) = (Jféif%) , t€(0,2),ze€T?, (5.12)

and check that (v§®,po, Fy) with po = 0 solves (E). Indeed, since the first two
components of vy, strongly converge to u in L°°((0,2) x T%) and the last component
converges weakly to 9%, the quadratic term vy, + Vg, converges in the sense of
distributions to v§® - Vuds. Tt is straightforward to check that all the other terms
in the distributional formulation of (E) pass to the limit as 7, — 0. Finally the
admissibility condition (1.6) of v$® follows from the fact that it is a weak™ limit in L>°
of admissible solutions v, with force F,, and the forces F), are strongly converging
to Fy in L.

Proof of (iv). Let v, = a2~ 78 € (7,41, 7). As before we have

~(ult,z)1g, (1)
et = (G0 ")
Recalling the proof of (iii), we only need to prove that the last component of v,
strongly converges in L2((0,2) x T?) to a velocity field v§® € L'((0,2); C* (T?))
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that conserves in time the spatial L? norm and the admissibility condition (1.6)
will directly follow from the conservative property.

We show that 9, — ¥ in L?((0,2) x T3), where ¥ is the symmetric solution
to the transport equation in Proposition 3.1(4). To this aim, it is enough to show
that |9, (t,) — 94(t,-)||L2(r2) — 0 as ¢ — oo for any t € (0,2), where ¥, is the
unique solution of the transport equation with velocity field u, and initial datum
%in. Indeed, this will entail

19y, — Vollr2o.21xm2) < 100, — VgllL2(o.21xm2) + [19g — Poll £2(j0,2x72) — O
as ¢ — 0o, where the second term [[¥, — Yol 2((0,2)x13) — 0 as ¢ — oo, thanks to
Vq(t,-) = Jo(t,-) for any t € [1 — Ty, 1 + T,]°, and the L> bound
190l o= ((0.2)xT2) + 19/l ((0,2)xT2) < 2.

For any ¢ € (0,2), using a standard energy estimate with the regularity bound (4)
and the symmetry property (1) from Proposition 3.1, we estimate

100, (£, ) = Dq(t, 17212

¢
/ V@Dq(s,x) - Viq(s, x)dzds
0 J12

t 1/2
<2 (Vq/ / |V19q(s7x)2dacds>
0 J12

=2 qu/

7,07,

<2y,

1/2

|V19 (s,2)| da:ds—!—VqZ/ ‘Vﬂq(s,x)‘dedS
7,07,
1/2
2 +5+8¢ —2(1+3e(146 2—y+35+8¢ —2(1+3¢(1+9))
< 0 [ rensaga a0y gorsnseS o
7=0

)

I+3+4e 4/2 _ s
<C 2 eagila 1=83e(149) < 02”2 =0,

2

as ¢ — 0o, where we used ’y <1l,a4= a;f‘ls, and § € (0,1/8).

We finally show that v$* € L1((0,2); C* (T?)). Using (3.5) and (3.7) we deduce

el s 0.2y = 22 / (5, Ml s

<2Z / (s, 5=, G ey

< CZaVal waqfl(ueé) Czatllfa'(lJreé)(lJr&) < %
q=0

recalling that o/ = 3a and a = 8, and the last inequality holds thanks to the

condition (3.1a), which implies 1 — 3a(1 + €d)(1 + ) > 0. For the last component

of v§®, namely ¥y, we recall that
Jo(t, ) = 9o(2 — t,x) for any x € T and t € (1,2],

and that it solves the transport equation (namely (3.8) with v = 0) with velocity
field u. Therefore, it is sufficient to estimate ¥ in [0, 1]xT?. Using (4) in Proposition
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3.1 we have

oo o0
_ —a’ (14+3e(1+6
190ll 11 (01yscey = D / 190(s, )| or ds < 4[| Vin | poe > a2 Pa, HH)
q=0"~"a

q=0
oo
= 4|V || Lo~ Z ag—"/ls—a (143a"e(146))(148) o
q=0

where the last estimate holds thanks to a = o/ /3, (3.1a), (3.2), and € < W (a
consequence of (3.1c)).

6. Proof of Theorem 1.7. Let o € [0,1) be as in Theorem 1.7. We fix a = o/
and 8 = 0 and we choose the parameters 9, ¢, v, and {aq}4en as in Section 3.1. The
parameters satisfy (3.1), (3.2), (3.3), and the further condition

1*0/(1+65)(1+5)*§>0 (6.1)

which is compatible with all the other conditions. Let (v,,p,, F,) be the solution
to (NS), with initial datum as in (4.2), built in Section 4.
In order to prove Theorem 1.7 we need to show the following facts:

(i) There holds
sup  [[vy [l (0,2xT3) + ||FV||CC*/((0,2)><’JT3) <oo.
ve(0,a)
Moreover, F,, — Fy in C*((0,2) x T3).
(ii) There exist v§® € L>(]0,2] x T?) solution to (E) with initial datum (4.2) and
a sequence gj — 00, such that vy, — v weakly in L2([0,2] x T3). Moreover,

1
20, / / Vg, 1> dxdt > 1/2 for any q. (6.2)
o Jrs

In particular v§® is an admissible dissipative solution of (E).

(iii) Set vy, = a2t There exists v§® € L>((0,2) x T?), an (admissible) con-
servative solution to (E) with initiald datum (4.2), such that v,, — v§® in
L2((0,2) x T3).

Proof of (i). Since u is bounded, more precisely [|u(t,-)| Lo ((0,2)xT3) < 2007 <1
and ||1§V||Loo((0’2)><']1‘3) < ||Yinl| o (r3y = 1 by the maximum principle, we have

lvu | Lo ((0,2)xT3y < 1.

Let us now show the uniform-in-viscosity regularity of F,. If suffices to prove that
there exists C' > 0 such that for any v € (¥441, 7] we have

[0sullcor ((0,2)xm2) < C and lvAullgax,xT3y < Cag . (6.3)
We estimate the first term. Thanks to (3.7) and the interpolation inequality, we

have

||3tu||0a’((o,2)x1r3) <sup ||3tu||Loo(zj;Ca’(1r3)) +sup [0l Loo (w100 (2, ))
JEN JEN

1—a/ 4 1-25
<C (sup ||8tu||LwDEIj;Loe(T3))||atuH%°°(Ij;W1v°°('ﬂ‘3)) +supa; )
JeEN jJEN
<C'sup a;727a;f1(1+56) +1<o00
JjeN
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where we used (6.1) and v = 9/8 < 1/2. This proves the first property in (6.3).
In order to show the second property in (6.3), we exploit (3.7) and tha fact that
v € (Ug41, 4] to obtain

HVAU||CQ/((0,1—Tq)xT3))

< ¥y sup HA“”Ca’(Iij)
j<q—1

7i+46 1— o 7 S _ o _

e v —2—-2e5 —a'(14€d) 1—y —2—-2e6 —7

}i“Pl(aj Qjp1~ Qg +a; a5 )

J<q—

2
< Caq

e 1-2y—a’(1+€8)(1+6) €
<Caga, i < Caj,

where we also used ageaq_%‘S <1, (3.1a), and (6.1).

The convergence F,, — Fy in C*'((0,2) x T3) can be shown along the same lines,
by observing that [|0;ul| e’ (e xr2) — 0 as ¢ — oo
Proof of (ii). We argue exactly as in the proof of (iii) in Section 5. We first notice
that

1-Tyq+%, B 1-Ty+tq 1
25, [ I M ds =20, [ 190 ds >
for any ¢ € mN, as a direct consequence of (5) in Proposition 3.1. The first two
components of v, strongly converge to u in L>((0,2) x T?) while {ﬁgq}qu admits
a limit point ¥9° in the weak topology of L?((0,2) x T?) which solves the transport
equation with velocity field v and initial datum ;. Setting

v (t, x) = (1913212;?62)) , t€(0,2),ze€T?, (6.4)

we can verify that (v§®,pg, Fy) with pg = 0 solves (E) and v$® is an admissible
solution by arguing exactly as in the proof of (iii) in Section 5.

Proof of (iii). The first two components of v, strongly converge to v in L>°((0,2) x
T3). We claim that ﬁyq, the last component of v, , strongly converges in L?((0,2) x
T?) to ¥y (defined as in (4) of Proposition 3.1). Setting

vg®(t, x) == (1;2(379;)0 , te(0,2), z€T? (6.5)

and observing that ||0o(t,-)||z> = [[Yinl|z> for any t € (0,2) \ {1}, F,, — Fp in
C((0,2) x T3), and u, — u in L*((0,2) x T?), the claimed convergence suffices to
conclude that v§® is an (admissible) conservative solution to (E).

We argue as in the proof of (iv) in Section 5. Denoting by 9, : (0,2) x T? — R the
unique solution to the transport equation with velocity field u, and initial datum
%n, we have

192, = Yollz2(j0,21x12) < [P0, — Fqllz2(j0,21xT2) + [0 — Pollz2((0,2)x12) - (6.6)
We notice that [[J; — Jol/2((0,2)x3) — 0 as ¢ — oo, thanks to ¥,(t,xz) = Jo(t,x)
for any ¢t € K, and any x € T3 (because of the symmetry of the velocity field
u as in property (1) of Proposition 3.1) and to the bound |[Ug|Le((0,2)xT2) +
19gl o= ((0,2)xT2) < 2. For any t € (0,2), we estimate the first term in (6.6) relying
on the regularity bound (4) and the symmetry property (1) in Proposition 3.1. We
have

[0, (£, ) = Dq(t, |72 (72
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<2y,

<9 <yq// V9, (s, )] dxds)

=2 qu/

<

C a2+36
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t
/ Vﬂ,,q (s,x) - VU,(s,z)dzds

/2

1/2

/]1‘2 |VI4(s, z)| dzds+1/q2/

/ |V, (s, x)|2dxds
Z;u7; JT2

Z;UJ;

qg—1
—2(1+3e(1+6)) +a 2+3€ a7 o 2(1+3e(149))

Y
aq 3 Aj+1

q
Jj=0

<C (a3+36a;/71aq—2(1+36(1+5))> 1/2

b _ 9e
3 2

14 3¢ i
SC’qaq+ 2q7 a, 1=6¢ < Cqa? -0

qg—1

5
as ¢ — 0o, where we used v =98, agy1 = al™, 6 € (0,1/8), qaq/32 <1, 005500 <

2a],

[1]
2]
(3]
[4]
(5]
[6]
7]
(8]
9
[10]
(11]

[12]
(13]

14]
(15]
(16]
(17]

(18]

and 9/s > 9¢/2. Therefore, v§® satisfies (1.7).
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