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Abstract We give an example of a bounded divergence free autonomous vector field in R* (and of a
nonautonomous bounded divergence free vector field in R?) and of a smooth initial data for which the
Cauchy problem for the corresponding transport equation has 2 distinct solutions. We then show that both
solutions are limits of classical solutions of transport equations for appropriate smoothings of the vector
fields and of the initial data.

Nous donnons un exemple de champ vectoriel autonome, borné et a divergence nulle dans R? (et d’un
champ vectoriel non autonome, borné et a divergence nulle dans R?) et des données initiales lisses pour
lesquels le probleme de Cauchy pour 1’équation de transport correspondante a deux solutions distinctes.
Nous montrons ensuite que les deux solutions sont des limites des solutions classiques des équations de
transport pour des lissages appropriés des champs vectoriels et des données initiales.
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1 Introduction
In this note, we consider the classical Cauchy problem for a transport equation of type

{a,9+(v.vx)e:0 o

0(0,x) = 6;(x)

on [0,T] x R¥*! (with d > 2), where 8 is the unknown, while v is a known vector field. The vector fields
considered will be divergence free and thus (1) can be rewritten as

9,0 +div(v9) = 0
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(which is usually called continuity equation). Therefore, as it is customary in the literature, when v and 6
are summable enough (i.e. v€ L” and 0 € L” fora pair of dual exponents p, p’) we understand solutions
in the distributional sense.

We will restrict our attention to initial data 6, which are bounded, to solutions which are bounded
and to vector fields which are bounded. Under such assumptions (1) is classically well-posed if v is a
Lipschitz vector field. Moreover the solutions are stable for perturbations of the vector field v. The famous
seminal paper [15] established a similar well-posedness and stability theory when v € L' ([0, T],W!* (R"))
for any p € [1,00]: this is commonly called DiPerna-Lions theory and it has far-reaching applications to
very different problems. The DiPerna-Lions theory was extended by Ambrosio in [5] to L! ([0, T], BV (R"))
and it was then showed that the result is essentially optimal: weak solutions for vector fields v € W*! are
in general not unique for s < 1 (cf. [1, 14]; nonetheless there are still several important open problems in
the area and very recent interesting developments, see for instance [6,3,4,7-10,12,13,17,18]).

The next natural question in this regard is then whether there is a meaningful selection principle among
these different weak solutions. For instance, do solutions of suitable regularizations have a unique limit? To
our knowledge this question is specifically raised for the first time in [11], where the authors give a partial
negative answer. The aim of this note is to show that, at least if we only require the regularizations to just
enjoy (in a uniform way) the same regularity estimates of the vector field, then the answer is negative. The
answer is negative even if we consider autonomous vector fields and if the initial data remains fixed, or
anyway they are regularized by convolution with a classical kernel. Our main theorem is the following:

Theorem 1 Let d > 2. Then there exist

(i) an autonomous compactly supported divergence-free vector field v € L (R4+1; R4+! ),
(ii) a smooth initial data 6;, € C(RYT1;R) with compact support,
(iii) two sequences of divergence-free vector fields {v.}7,,{v:}72, C CZ (R R, such that v — v,
% — v strongly in L' as i — oo and |Vi|| =, ||¥]| 1= < C for some constant C independent of i,

with the following properties. If 0! and 6; are the unique solutions to the transport equation (1) with initial
data By, then:

(*) 6! — 0’ and 6; — 8 weakly in L', where 6’ and 0 are 2 distinct solutions to (1) with field v and initial
data 6;,.

Moreover, the vector field v belongs to W*P for every s < 1 and p < % and the regularized fields v}, v; enjoy
uniform estimates in the corresponding spaces.

Previous work of [11] has shown this theorem for a suitable field v € L? for p € [1, %], with a completely
different construction. If we drop the requirement that the field be autonomous, we can show the same
conclusion for 2-dimensional fields.

Theorem 2 There exist

(i) a compactly supported divergence-free vector field b € L*([0,2] x R?;R?),
(ii) a smooth initial data p;, € C>(R*;R) with compact support,
(iii) two sequences of divergence-free vector fields {b\}7 |, {b;}.; C C2([0,T] x R*;R?), such that b, — b,
b; — b strongly in L'(0,2] x R?) as i — oo and ||b]| =, ||bi||1~ < C,

with the following properties. If p! and p; are the unique solutions to the transport equation (1) with fields
bl and b; and initial data p;y, then:

(¥*) p! — p" and p; — p weakly in L', where p' and p are 2 distinct solutions to (1) with field b and initial
data piy.

Indeed, since there is a simple way to pass from a non-autonomous example to an autonomous one in
one dimension higher, we will mainly focus on how to build the example of Theorem 2. The construction
is similar to other ones present in the literature, starting from the work of DePauw [14]: the contribution
of this note is to show how it can be arranged so that the corresponding distinct solutions are limits of
solutions of appropriate regularizations.
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Remark I The vector field b constructed in Theorem 2 has the symmetry b(t,x) = —b(2 —¢,x). If we were
to dispense with the smoothness of the initial data and with the compactness of the supports of the various
objects, the corresponding two distinct solutions p and p’ behave in a way that can be described quite
accurately (cf. Sections 2.1-2.2). In this simplified setting, the corresponding solutions (denoted by p., and
P+« in Sections 2.2) agree for times ¢ < 1 and as ¢ converges to 1 they both converge (weakly* in L) to
the constant function % even though the initial data is not constant. What then distinguishes p, and p; is
that for r > 1 p, inherits the natural symmetry of the problem, i.e. satisfies p. (¢,x) = p.(2 —t,x), while the
solution p’ on the contrary violates the symmetry, but remains constantly equal to %

In the course of the proof of Theorem 2 we will see also the following corollary on Regular Lagrangian
Flows (cf. [5, 13] for the definition).

Corollary 3 Let b, b, b be as in Theorem 2 and let P!, ®; be the unique Regular Lagrangian Flows cor-

responding to b', b; respectively with ®/(0,x) = &;(0,x) = x. Then:

(i) &; — D strongly in L'([0,2] x R?;R?) where ® is a Regular Lagrangian Flow corresponding to the
field b.
(ii) No subsequence of P! converges strongly in L}OC.

Even though a “closure” of classical solutions does not provide a selection mechanism to single out
one preferred solution to the final transport equation, our construction does not rule out the possibility that
some “canonical” regularization (like smoothing by convolution with some specific kernel) still selects only
one preferred solution in the limit. This seems however not likely. In fact in our construction any solution
would have to coincide with p and p’ up to the time ¢ = 1, because the vector field is sufficiently smooth
on [0,1 — o] x R? to apply the DiPerna-Lions theory. It then turns out that any canonical selection would
have to give up one of the following two principles:

— the solution inherits the natural symmetry of b;
— the solution propagates a constant initial data as a constant.

Moreover while alternative (i) in Corollary 3 might suggest that b; is a more reasonable regularization, we
caution the reader that it too has some drawbacks. In fact, while it is true that the symmetric solution p
would be recovered from the initial data at time t = 0 through the flow @, the analogous property fails if
we regard p as a solution of the Cauchy problem with initial data at time # = 1, cf. Remark 2

We finally comment on the possibility of lowering the dimension of Theorem 1 to d + 1 = 2. While
the problem of uniqueness of solutions to (1) for 2-dimensional autonomous dinvergence-free fields has
been completely solved by Alberti, Bianchini and Crippa in [2], [3], our construction sheds no light on
whether smoothing is a selection principle for 2-dimensional autonomous fields. As we recover Theorem
1 by trading time for one space dimension, in order to follow the same pattern we would need an analog of
Theorem 2 in one space dimension. This is however not possible: even dispensing with the divergence-free
condition (which in 1 space dimension would imply constancy of the field), the ordering of the real line,
which is preserved by the flow of any smooth 1-dimensional vector field, is an obvious obstruction.

2 Construction of the core nonautonomous example

In this section we detail the construction of vector fields and of initial data which exhibit the same behavior
as those in Theorem 1, but we will:

— drop the requirement that the vector fields (and the initial data) have compact support;
— drop the requirement that the initial data is smooth;
— postpone the estimates on their W*¥” norms.

All three aspects are minor and will be addressed in the Section 3, where we also show how to pass to the
autonomous example in one dimension higher, i.e. how to prove Theorem 2.
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2.1 Step 1. Definition of b, p;,, p’, and p.

We first introduce the following two standard lattices on R2, namely % V=72 c R? and £? := 7%+
(%, %) C R2. To both of them we can associate a corresponding subdivision of the plane into squares which
have vertices lying in the corresponding lattices, which we denote by .! and .#%2. We then consider the
rescaled lattices .Zf :=27'7% and .,iﬂiz := (277=1,2711) 427172 and the corresponding square subdivision
of Z2, respectively .#/! and .#?. Observe that

(D) The centers of the squares %1 are elements of 0%2 and viceversa.

We let piy«(x) = |x1 | + |x2| mod 2. This is a ‘chessboard’ pattern based on the standard lattice Z*> C R?:
if we index the squares of ! with (k, j), where (k + %, Jj+ %) € £ is the center of the corresponding
square, then p;, » vanishes on the squares for which k+ j is even, while it is identically equal to 1 on squares
for which k4 j is odd.

Fig. 1: Action of the flow from # = 0 to ¢t = 1/2. The shaded region denotes the set {p =1}

Next we define the following 2-dimensional vector field:

(0,4x1) ,if 1/2 > |x1] > |x2]
w(x) =< (—4x,0) ,if 1/2 > |xa| > |x1]
(0,0) , otherwise.

Thus w is a weakly divergence free ‘vortex’. (c.f. Section 7 of [16]). Periodise w (as in Figure 1) by defining
A ={(y1,y2) € Z*: y; +y, is even} and setting

u(x) = Z w(x—y).

YEA

Note that that w is supported in one square of . and thus the periodization consists of filling half the
squares of .#% with copies of w, while leaving the field identically equal to 0 in the remaining squares. The
“filled” and “empty” squares form likewise a chessboard pattern.

Even though u is irregular, it has locally bounded variation and it is piecewise linear. There is thus a
unique solution p of (TE) with vector field # and similarly the flux @ of u is well-defined. Its relevant
property for our construction is that the map ®(t,-) is Lipschitz on each square S of .#? and (D(%, Jisa
clockwise rotation of 90 degrees of the “filled” S, while it is the identity on the “empty ones”. Each § € .72
is formed precisely by its intersection with 4 squares of yllz in the case of “filled” S the 4 squares are
permuted in a 4-cicle clockwise, while in the case of “empty” S the 4 squares are kept fixed. At any rate
(15(%, -) maps rigidly one square of Yll onto another square of 5”11. Since for every j > 2 every square in

5”1.1 is contained in some square of 5”11, we obviously conclude the following

Lemma 1 For every j > 1, dﬁ(%, -) maps any element of 49]-1 rigidly onto another element of 5”]-1.
Using Lemma 1 it is therefore easy to see that
P(3,%) =1—pins(2x). 2)

Likewise it is simple to use Lemma 1 to prove
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Lemma 2 Let p be a solution of the transport equation (1) with an arbitrary bounded initial data p and
the specific vector field u described above. Assume j > 2 and o € R are constants such that p has average
o onevery S € 5’]»1. Then p(},-) has also average a on S € ,le.

We now define b on R? x [0,2] in the following fashion. First of all b(¢,x) = u(x) for 0 < ¢ < J and
b(t,x) =u(2"x) for 1 —27" <t < 12"+ For 1 < <2, we let b(t,x) = —b(2 —t,x). Note that (1) has
a unique solution p on [0,1 —27"] because b is a function of bounded variation. In particular this yields a

unique solution on [0, 1]. Moreover, using recursively the appropriately scaled version of (2) we can readily
check that p (1 —272 x) = p;, . (2%x) and p(1 — 271 x) =1 — p;, . (2%*1x). In particular

1
p(t,)— 3 inL”ast— 1. 3)
Moreover, considering that for times ¢ > 1 the flow of b is just a time-reversal of the flow for t < 1, an
obvious rescaling of Lemma 2 gives the following conclusion, which will be useful in the sequel.
Lemma 3 Let p be a solution transport equation (1) with any bounded initial data and vector field b.

Assume i € Nand o € R are such that p(1+ 7, -) has average o on every S € (yjl for some j > i+ 1. Then

p(1+ 2A ,+) has also average o on every S € 5’11 and for all 0 <k <.
We can thus continue p for # € [1,2] in two fashions, namely we set

t,x),forO<r<1
pLt,x) = ﬁ)( ) for0 <t <
3. for 1 <t <2

p(2—t,x),forl <t <2
This is because we can ‘glue’ weak solutions of (1) to get another weak solution. More precisely

N t,x),forO <t <1
p*(tax){p( )

Lemma 4 If p| and p; are two bounded weak solutions of (1) with vector field b defined for 0 <t < 1 and
1 <t < 2 respectively, and if both pi(t,-) and p;(t,-) converge weakly* to the same limit as t — 1, then

p1(t,x), for0 <t < 1
p(t,3) = { 1)

p2(t,x), for L <t <2
is also a weak solution of (1) with vector field b.

While the argument is a standard exercise in functional analysis, we give the proof for the reader’s
convenience.

Proof Indeed, as b is weakly divergence-free, for any ¢ € C°(R x R?) with spt(¢) C {t < 2} x R? and
0 < B < 1 we have

/ p(t,x)(d¢+(b-V)p dxdt+/ Pin«(x)9(0,x)dx 4
-B

1 (1) (309 + (b-V)9)dxdi )

/ / p2(t.X)(09 +(b-V)9)dxd + | i (3)9(0.x)dx ©)

1+ 2B1D6 = 16l ol ™

‘ / Pm* Oxdx+/ P] 1—[3 )(p(l—ﬁ,x)dx ®)

= [, p2(14B00(1+B)dxt [ i (x)6(0.0)dx| +2B1DGl Bl ~lIp i (©)

< ‘/del(lﬁ,x)‘i)(lﬁ,x)dx/dez(l+B7x)¢(1lg,x)dx (10)

+2B1[0: 9= llp2(1+ B, )l + 2B (D] = [[D1] =l (11
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2 2

) 1+ 272i+2
1+27%

1— 2721' 1— 2721

0 0

Fig. 2: Schematic representations of the 2 flows where time is shown on the vertical axis. The shaded region
corresponds to the times where the vector field is trivial.

Thus, as § — 0 and since both p(z,-) and pa(¢,-) weakly tend to the same limit as # — 1, we get that p is
a weak solution of (1).

2.2 Step 2. Truncations.

We next construct two sequences of BV vector fields converging to b. Both are simple and they are given
by
b(t,x), for0 <r<1—27%,
bil(tax) =<0, for 1 —1/2% <t <1427%+2,
b(t,x), for 1 +27242 <t <2

b(t,x), for0 <t <1—-272
bH(t,x) = {0, for 1 —1/2% <t < 14+27%
b(t,x), for 1 +27% <t <2

Let now pl-1 and pi2 be the corresponding unique weak solutions of (1) with initial data p;,. By construction
both p! and p? coincide with p = p/ = g, on the time interval [0, 1 —272]. Moreover for both we have

pil (1 +272i7x) =p(l- 272"7)6) = Pin,x (22ix)
pr (1427 ,x) = p(1-27% %) = p;n(2%x).

Now, b2(t,x) = b(t,x) fort > 1+27%. Since p?(1 +27%,x) = Pin..(2%x) = x(1+27% x), we conclude
1,x) =

I .
that p?2(t, P (t,x) for t > 14272 In particular we infer
p? —=*p,  inL> (12)
We claim next that
pi —=*p.  inL™. (13)

The overall intuition is illustrated schematically in Figure 2. The shadowed region on the left diagram
is the time-region where b? vanishes identically. Since we have b?(t,-) = —b?(2 —1,-) on the complement,
we see a complete reversal of the flow when ¢ > 14272 restoring the initial condition at the final time
t = 2. On the other hand, the diagram on the right highlights the time-region where the field bi1 vanishes.
Very much like b?, the field b} ‘mixes’ the initial data up to the fine scale 272" at the time t = 1 — 272,
Then the flow is trivial in the shaded region, which goes two dyadic scales more than the shaded region
of the dyagram on the left. Thus pi1 is still ‘finely mixed” at # = 1 +272*2, At that point, when the vector
field bi1 starts acting again, its flow will however only affect coarser scales (i.e. dyadic scales larger than
27242 Therefore the solution remains “finely mixed” at # = 2.
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In order to make such intuition rigorous, observe first that, since b(¢,x) =0 fort € [1 +272 14+272+2],
we indeed have p! (14+27%%2 x) = p;, . (2%x). We see that p/ (1+272"2 x) has average  on every square
of y21i—1' We can now use Lemma 3 to conclude that

1 ; 1
m/pi1(1+2_17x)dx:§ VSe .S and Vj<2i—2. (14)

In particular we conclude the same for j = 0. It is easy to see pi1 (2,) =* % because of (14). Indeed having
fixed ¢ € C.(R?), we can write

[owp!@xdr= / o(1)p! (2,%)d

SeYzll Sﬂspt

and hence estimate

/<P()p, (2,x) xﬁ/w

- X few(plem - g ety ) i

SEYZLI :SNspt (@) #0

(15)
1
- (0() — 9(5)) (p 20— [ pl (2,y>dy) ix
S€<V£i1:§spt(¢)¢0é |S| /S

Y IDgle2 12700 < CR|Dgllo2
Sey,_1:SNspt(@)£0

IN

where xg denotes the center of the square S, R is a fixed radius such that spt(¢) C B(O,R) and C is a
geometric constant. Now since for any € > 0 any f € L! can be written as ¢ + /& with ¢ € Cl, spt(p) C

B(0,R) for some R, and ||||,;1 < €, we get that
= | [owptunas— [ piryas

[rwpt a1 [ reas
+ ’ / hp! (2,3)dx— 5 / h(x)dx

< CR D02 " +[|p} (2.2) = Ll ]
< CR|Dg o2 te

(16)

Thus, as € was arbitrary, we see that pi1 (2,) =* % So, any weak* limit of a convergent subsequence of pl-1
converges to a (backward) solution of the transport equation which is identically equal to % at time 2. We
can now use the backward uniqueness for the transport equation with vector field b on intervals [1 + 7,2]
for 6 > 0 (such uniqueness is guaranteed by the fact that the vector field b is BV on [1 + ¢,2] x R?), to
conclude that such weak* limit is identically equal to % on [1 4 6,2]. In particular we conclude that p;
converges weakly* to p..

2.3 Step 3. Regularization of vector fields.

We now extend the vector fields bi2 and bi1 to times 7 ¢ [0,2] by setting them identically 0. We fix i and a
space-time compactly supported convolution kernel ¢ and regularize both bi1 and b2 to b1 and b2 setting
bf-fj := b¥ % @, ;. Since each vector field b* belongs to L*([0,2], BV N L*(IR?)), we can use Ambrosw S
extension of the DiPerna-Lions theory to conclude that, for each fixed i and k, the corresponding solutions
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1
loc

plk ; of the transport equations with vector fields bﬁ ; and initial data pj, . converge strongly in ;. to pl-k .In

particular we can select j(i) such that

2
Y lef ) = PEllr oy i) <277
k=1
We then set b} = bil,j(i)’ bi = bl%j(l.), pl. = pi{j(i) and p;. = pfj(l.). Clearly, pi. — p. and p/, — p. in
L'([0,T] x U) for every bounded open set U.

3 Proofs of Theorem 1, Theorem 2, and Corollary 3
3.1 Step 4. Compact supports.

Thus far the vector fields, the initial data and the solutions do not have compact support. However, in
order to make them have compact supports we just proceed as follows. We modify p;, « to pjn «1¢, , where
QOn = [~N,N]? for some large natural number N. In order to truncate appropriately » we need to act more
carefully. For t € [1 —271 1 —27""1] we substitute b(t,x) with b(t’x)lQN+2—i—1 (x). Observe that the choice
of the sidelength of the square is made so to guarantee that the vector field remains divergence-free. We then
keep the symmetric structure b(¢,x) = b(2 —t,x) for the truncated field and we follow the same procedures
of the previous steps. Note that the new regularized fields coincide with the old (nontruncated) ones in,
say, [0,2] X Oy /2 and the initial data coincide with the old (nontruncated) ones in Qy/>. Moreover the L*
norm of all the fields is bounded uniformly by an absolute constant independent of N. In particular, for
N sufficiently large, the solutions of the transport equations with the truncated fields with truncated initial
data coincide with the ones for the nontruncated fields and nontruncated initial data. We thus infer the same
conclusions.

3.2 Step 5. Regularization of initial data

We let p;,, be a smooth approximation of p;, . such that

[1Pin = Pins [l 11 (m2) < €llPs — Pl o 2 x2) = €A,

where ¢ is a very small absolute constant to be determined later. Let p!,pi be the unique solutions of (1)
with initial data p;, and vector fields b}, b; respectively. Since, b.,b; € C*([0,2] x R?), the flow generated

i
by them preserves the L! norm of the initial data. Thus, we have that

o7 = piiullzy, < 217 = pilullie ity = 2MPin — Pinsll 1 (g2) < 2¢A an
19i _ﬁi.*”L}J <2||pi - ﬁi,*| Lo = 2[|pin _pin,*”Ll (R2) <2cA (18)

Since, p. # p., we can choose a compactly supported g(¢,x) € L™ such that
‘/(ﬁ*—pi)g’ >

Now let p’,p be any L'-weak limits of the sequences {p/}7 |, {p;}% ;. respectively (which exist as the
sequences are bounded). Then

[p—pg=1tim [ (5~ pi)e

But now,
\ / (ﬁi—png‘ > ‘ 600l
)

> ‘/(ﬁl,* *Pll* 8

g\ 0! = pLl gl — 15— Pl el
\ —deA g~ 19

(20)
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Choosing ¢ < (8A||g||z~)~" and sending i — infinity we conclude
[ =pg 2| [~ p008| -5 25
P —P«)g| = Psx —Py)8 =7

which implies that p and p’ are distinct.

3.3 Step 6. W*P estimates.
We now show that our vector field b of the previous section is in Wlfnl ([0,T] x R?) for every s < 1. We’ll

make all our estimates on B := [—1/2,1/2]> and Q := [0,2] x B. Recall b(t,x) = +u(2"*'x) on .7 :=
(1—2771—=2-0+0)y (1 4270+D 1 4277) and is identically 0 elsewhere. Thus as,

@ v S 27w ) v = 27 (W)l s + 1D ) I7v(s)
= 2927wl 1 gy + 2V Dwll 7y () 1)

< 292 gy gy = 27wl s

The first inequality follows because there are approximately 2¢/ “little’ vortices in B. Now,
Ibx.71lBv(2) < C+ /% w2 x) || gy g)dt S 1 (22)

The constant C comes from the ‘horizontal’ jump part of the measure at d.;. Note this constant is indeed
independent of i. By Gagliardo-Nirenberg we get for 0 < s < 1,

1625 w1 (@) S 102701 g 102 Ny () S 270 (23)

Thus,

S
W“(.Q) 1

271079 < foo, (24)

oF

[6llws1 (@) =

Y bxs
i=1

1

We leave to the reader the obvious modifications to deal with the truncation of b.

3.4 Step 7. Making the field autonomous.

For any a(t,x) € L*(R; x R?;R?), we can define

f(a@)(y) = (Lalyo,y1,2)), f(a) € L™ (R%;R?) (25)

If we apply this transformation to the nonautonomous field defined in Step 1 of the previous section, we
reach an autonomous field v = f(b) and an initial density

Pin(y1,y2) ,for —1 <y <0

. (26)
0, otherwise

0in(Y0,y1,2) = {

Note that we again get 2 solutions for (1), namely:

i. 0'(t,y) such that 8'(r,y) =1/2for2 <r<3and2 <yy <t
ii. 6(z,y) such that 6(¢,y) = pin(y1,y2) for2 <t <3and2 < yy <t
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We then apply the same procedure to all the nonautonomous fields constructed in the previous section to get
an example which satisfies the requirements of Theorem 1 with d = 2. The extension to higher dimension
is simple: in R4t = R3 x R?~2 we just set the components v ; with j > 3 identically equal to 0, while
the remaining three components are made constant in the directions ys3,...,y,. Similarly the initial data is
assumed constant along the directions ys,...,ys. This then gives a noncompactly supported example: to
pass to a compactly supported proceed as in the previous section. We can have the initial data be smooth
by arguing similarly as in Step 5.

The estimates obtained in Step 6 imply that v € W*! for every s < 1. Fix now s < 1 and select 6 € (s, 1).
By interpolation we have

1—S s
IVlwspso) < ClVIlze T IVI o

(S o = = 5. Since we can take o arbitrarily close to 1 we conclude that v € W*? for every p < %

Observe next that, the vector fields b} and b? enjoy similar estimates, uniformly in i. Since the #; and
v} are obtained from the latter through convolution with standard kernels and an application of f, the same
uniform estimates are inherited by them.

for

3.5 Proof of Corollary 3

First of all, let @Di‘ and GD,-Z be the unique regular Lagrangian flows of the truncated versions of the vector
fields b} and b? (as outlined in Section 3.1. Since b? = —b?(2 —t,x), ®?(2,x) = x. Recall that for every
6 >0bcL(0,1 -0c]U[l+0,2],BV(R?)). In particular there is a unique regular Lagrangian flow
L [0,1— 0] xR? — R? with CPf(O x) = x and a unique regular Lagrangian flow ®% : [1+0,2] x R? — R?
with ®%(2,x) = x. Moreover &L (1,x) = ®! (1,x) for every t < 1 — 0 < 1 —s and likewise @b (t,x) =
@b (t,x) for every t > 1+ 0 > 1 +s. We then identify a regular Lagrangian flow &@(¢,x) for b by setting
®(1,x) = @/ (1,x) for t < 1 and B(t,x) = ®° | (t,x) for 1 > 1. It is obvious that D2 (z,x) = P(z,x) for
every t < 1—27% and every t > 1+ 2%, while ®?(t,x) = ®(1 —27% x) = &(1 +27% x) for every
1-22<§r<1+22% The strong L}OC convergence of (1512 to @ is thus obvious. As for the truncation
procedure applied in Section 3.1 observe that the flows of the corresponding fields is given by @®? for
€ [~N,N]?, while it is the identity for any x outside the box at any time . A simple analogous modification

of @ yields the desired limit. With a slight abuse of notation we keep denoting the fields by b,-2 and the flows
by d5i2 and we denote @ the limit. Note that the truncation procedure implies now the strong L' convergence
on [0,2] x R? (i.e. without need of localizing).

For each fixed i consider now the regularization b2 of Section 2.3 and let 472 be the correspond—
ing regular Lagrangian flows. Using the DiPerna- L10ns theory, for j sufficiently large we have ||®?
2| L(o2xr2) < (I+1)7 ! In particular, by possibly choosing (i) even larger than in Section 2.3, we can
ensure that @fl(l) converges strongly to .

Consider next the flows ¥; for the vector fields b; = b; j(i)» as produced in Section 2.3, after the trunction
of Section 3.1. Recall that

[0t 0)pu. ) dr= [ 9lx)pL,(1.x)dx

In particular we conclude

hm//got‘l’tx Pin«(x)dxdt = //(ptxdxdt
[—oo

for every continuous test function @ € C.((1,2) x B(0,1)) (assuming the integer N in Section 3.1 is chosen
so that [—%, %1% D B(0,1)). If a subsequence of ¥ were to converge strongly to some ¥, we would then

have
//(p(t,lp(t,x))Pin,*(X)dxdt: %//(p(t,x)dxdt

for every such test function. It is easy to see that such a map ¥ cannot exist.
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Remark 2 Corollary 3 seems to suggest that from the point of view of flows the approximation bi2 is more

reasonable. Note however that, while the function 5(1,-) is identically equal to § on [—5, 5%, for any
time ¢ € [0,1) U(1,2] it takes in fact the values 1 and O a.e. on [—%, %]2 In particular it is easy to see

that there is no regular Lagrangian flow A of b with A(1,x) = x for which we would have the identity
p(t,A(t,x)) =p(l,x) for a.e. (t,x).
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this paper.
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