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Abstract We give an example of a bounded divergence free autonomous vector field in R
3 (and of a

nonautonomous bounded divergence free vector field in R
2) and of a smooth initial data for which the

Cauchy problem for the corresponding transport equation has 2 distinct solutions. We then show that both

solutions are limits of classical solutions of transport equations for appropriate smoothings of the vector

fields and of the initial data.

Nous donnons un exemple de champ vectoriel autonome, borné et à divergence nulle dans R3 (et d’un

champ vectoriel non autonome, borné et à divergence nulle dans R
2) et des données initiales lisses pour

lesquels le problème de Cauchy pour l’équation de transport correspondante a deux solutions distinctes.

Nous montrons ensuite que les deux solutions sont des limites des solutions classiques des équations de

transport pour des lissages appropriés des champs vectoriels et des données initiales.
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1 Introduction

In this note, we consider the classical Cauchy problem for a transport equation of type

{

∂tθ +(v ·∇x)θ = 0

θ(0,x) = θin(x)
(1)

on [0,T ]×R
d+1 (with d ≥ 2), where θ is the unknown, while v is a known vector field. The vector fields

considered will be divergence free and thus (1) can be rewritten as

∂tθ +div(vθ) = 0
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(which is usually called continuity equation). Therefore, as it is customary in the literature, when v and θ
are summable enough (i.e. v ∈ Lp and θ ∈ Lp′ for a pair of dual exponents p, p′) we understand solutions

in the distributional sense.

We will restrict our attention to initial data θin which are bounded, to solutions which are bounded

and to vector fields which are bounded. Under such assumptions (1) is classically well-posed if v is a

Lipschitz vector field. Moreover the solutions are stable for perturbations of the vector field v. The famous

seminal paper [15] established a similar well-posedness and stability theory when v ∈ L1([0,T ],W 1,p(Rn))
for any p ∈ [1,∞]: this is commonly called DiPerna-Lions theory and it has far-reaching applications to

very different problems. The DiPerna-Lions theory was extended by Ambrosio in [5] to L1([0,T ],BV (Rn))
and it was then showed that the result is essentially optimal: weak solutions for vector fields v ∈ W s,1 are

in general not unique for s < 1 (cf. [1,14]; nonetheless there are still several important open problems in

the area and very recent interesting developments, see for instance [6,3,4,7–10,12,13,17,18]).

The next natural question in this regard is then whether there is a meaningful selection principle among

these different weak solutions. For instance, do solutions of suitable regularizations have a unique limit? To

our knowledge this question is specifically raised for the first time in [11], where the authors give a partial

negative answer. The aim of this note is to show that, at least if we only require the regularizations to just

enjoy (in a uniform way) the same regularity estimates of the vector field, then the answer is negative. The

answer is negative even if we consider autonomous vector fields and if the initial data remains fixed, or

anyway they are regularized by convolution with a classical kernel. Our main theorem is the following:

Theorem 1 Let d ≥ 2. Then there exist

(i) an autonomous compactly supported divergence-free vector field v ∈ L∞(Rd+1;Rd+1),
(ii) a smooth initial data θin ∈C∞

c (R
d+1;R) with compact support,

(iii) two sequences of divergence-free vector fields {v′i}
∞
i=1,{ṽi}

∞
i=1 ⊂ C∞

c (R
d+1;Rd+1), such that v′i → v,

ṽi → v strongly in L1 as i → ∞ and ‖v′i‖L∞ ,‖ṽi‖L∞ ≤C for some constant C independent of i,

with the following properties. If θ ′
i and θ̃i are the unique solutions to the transport equation (1) with initial

data θin, then:

(*) θ ′
i ⇀ θ ′ and θ̃i ⇀ θ̃ weakly in L1, where θ ′ and θ̃ are 2 distinct solutions to (1) with field v and initial

data θin.

Moreover, the vector field v belongs to W s,p for every s < 1 and p < 1
s

and the regularized fields v′i, ṽi enjoy

uniform estimates in the corresponding spaces.

Previous work of [11] has shown this theorem for a suitable field v∈ Lp for p∈ [1, 4
3
], with a completely

different construction. If we drop the requirement that the field be autonomous, we can show the same

conclusion for 2-dimensional fields.

Theorem 2 There exist

(i) a compactly supported divergence-free vector field b ∈ L∞([0,2]×R
2;R2),

(ii) a smooth initial data ρin ∈C∞
c (R

2;R) with compact support,

(iii) two sequences of divergence-free vector fields {b′i}
∞
i=1,{b̃i}

∞
i=1 ⊂C∞

c ([0,T ]×R
2;R2), such that b′i → b,

b̃i → b strongly in L1([0,2]×R
2) as i → ∞ and ‖b′i‖L∞ ,‖b̃i‖L∞ ≤C,

with the following properties. If ρ ′
i and ρ̃i are the unique solutions to the transport equation (1) with fields

b′i and b̃i and initial data ρin, then:

(**) ρ ′
i ⇀ ρ ′ and ρ̃i ⇀ ρ̃ weakly in L1, where ρ ′ and ρ̃ are 2 distinct solutions to (1) with field b and initial

data ρin.

Indeed, since there is a simple way to pass from a non-autonomous example to an autonomous one in

one dimension higher, we will mainly focus on how to build the example of Theorem 2. The construction

is similar to other ones present in the literature, starting from the work of DePauw [14]: the contribution

of this note is to show how it can be arranged so that the corresponding distinct solutions are limits of

solutions of appropriate regularizations.
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Remark 1 The vector field b constructed in Theorem 2 has the symmetry b(t,x) =−b(2− t,x). If we were

to dispense with the smoothness of the initial data and with the compactness of the supports of the various

objects, the corresponding two distinct solutions ρ̃ and ρ ′ behave in a way that can be described quite

accurately (cf. Sections 2.1-2.2). In this simplified setting, the corresponding solutions (denoted by ρ ′
∗ and

ρ̃∗ in Sections 2.2) agree for times t < 1 and as t converges to 1 they both converge (weakly⋆ in L∞) to

the constant function 1
2
, even though the initial data is not constant. What then distinguishes ρ̃∗ and ρ ′

∗ is

that for t ≥ 1 ρ̃∗ inherits the natural symmetry of the problem, i.e. satisfies ρ̃∗(t,x) = ρ̃∗(2− t,x), while the

solution ρ ′ on the contrary violates the symmetry, but remains constantly equal to 1
2
.

In the course of the proof of Theorem 2 we will see also the following corollary on Regular Lagrangian

Flows (cf. [5,13] for the definition).

Corollary 3 Let b,b′i, b̃i be as in Theorem 2 and let Φ ′
i ,Φ̃i be the unique Regular Lagrangian Flows cor-

responding to b′i, b̃i respectively with Φ ′
i (0,x) = Φ̃i(0,x) = x. Then:

(i) Φ̃i → Φ̃ strongly in L1([0,2]×R
2;R2) where Φ̃ is a Regular Lagrangian Flow corresponding to the

field b.

(ii) No subsequence of Φ ′
i converges strongly in L1

loc.

Even though a “closure” of classical solutions does not provide a selection mechanism to single out

one preferred solution to the final transport equation, our construction does not rule out the possibility that

some “canonical” regularization (like smoothing by convolution with some specific kernel) still selects only

one preferred solution in the limit. This seems however not likely. In fact in our construction any solution

would have to coincide with ρ̃ and ρ ′ up to the time t = 1, because the vector field is sufficiently smooth

on [0,1−σ ]×R
2 to apply the DiPerna-Lions theory. It then turns out that any canonical selection would

have to give up one of the following two principles:

– the solution inherits the natural symmetry of b;

– the solution propagates a constant initial data as a constant.

Moreover while alternative (i) in Corollary 3 might suggest that b̃i is a more reasonable regularization, we

caution the reader that it too has some drawbacks. In fact, while it is true that the symmetric solution ρ̃
would be recovered from the initial data at time t = 0 through the flow Φ̃ , the analogous property fails if

we regard ρ̃ as a solution of the Cauchy problem with initial data at time t = 1, cf. Remark 2

We finally comment on the possibility of lowering the dimension of Theorem 1 to d + 1 = 2. While

the problem of uniqueness of solutions to (1) for 2-dimensional autonomous dinvergence-free fields has

been completely solved by Alberti, Bianchini and Crippa in [2], [3], our construction sheds no light on

whether smoothing is a selection principle for 2-dimensional autonomous fields. As we recover Theorem

1 by trading time for one space dimension, in order to follow the same pattern we would need an analog of

Theorem 2 in one space dimension. This is however not possible: even dispensing with the divergence-free

condition (which in 1 space dimension would imply constancy of the field), the ordering of the real line,

which is preserved by the flow of any smooth 1-dimensional vector field, is an obvious obstruction.

2 Construction of the core nonautonomous example

In this section we detail the construction of vector fields and of initial data which exhibit the same behavior

as those in Theorem 1, but we will:

– drop the requirement that the vector fields (and the initial data) have compact support;

– drop the requirement that the initial data is smooth;

– postpone the estimates on their W s,p norms.

All three aspects are minor and will be addressed in the Section 3, where we also show how to pass to the

autonomous example in one dimension higher, i.e. how to prove Theorem 2.
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2.1 Step 1. Definition of b, ρin, ρ ′, and ρ̃ .

We first introduce the following two standard lattices on R
2, namely L 1 := Z

2 ⊂ R
2 and L 2 := Z

2 +
( 1

2
, 1

2
)⊂R

2. To both of them we can associate a corresponding subdivision of the plane into squares which

have vertices lying in the corresponding lattices, which we denote by S 1 and S 2. We then consider the

rescaled lattices L 1
i := 2−i

Z
2 and L 2

i := (2−i−1,2−i−1)+2−i
Z

2 and the corresponding square subdivision

of Z2, respectively S 1
i and S 2

i . Observe that

(D) The centers of the squares S 1
i are elements of L 2

i and viceversa.

We let ρin,∗(x) = ⌊x1⌋+ ⌊x2⌋ mod 2. This is a ‘chessboard’ pattern based on the standard lattice Z
2 ⊂ R

2:

if we index the squares of S 1 with (k, j), where (k+ 1
2
, j + 1

2
) ∈ L 2 is the center of the corresponding

square, then ρin,∗ vanishes on the squares for which k+ j is even, while it is identically equal to 1 on squares

for which k+ j is odd.

Fig. 1: Action of the flow from t = 0 to t = 1/2. The shaded region denotes the set {ρ = 1}

Next we define the following 2-dimensional vector field:

w(x) =











(0,4x1) , if 1/2 > |x1|> |x2|

(−4x2,0) , if 1/2 > |x2|> |x1|

(0,0) , otherwise.

Thus w is a weakly divergence free ‘vortex’. (c.f. Section 7 of [16]). Periodise w (as in Figure 1) by defining

Λ = {(y1,y2) ∈ Z
2 : y1 + y2 is even} and setting

u(x) = ∑
y∈Λ

w(x− y) .

Note that that w is supported in one square of S 2 and thus the periodization consists of filling half the

squares of S 2 with copies of w, while leaving the field identically equal to 0 in the remaining squares. The

“filled” and “empty” squares form likewise a chessboard pattern.

Even though u is irregular, it has locally bounded variation and it is piecewise linear. There is thus a

unique solution ρ of (TE) with vector field u and similarly the flux Φ of u is well-defined. Its relevant

property for our construction is that the map Φ(t, ·) is Lipschitz on each square S of S 2 and Φ( 1
2
, ·) is a

clockwise rotation of 90 degrees of the “filled” S, while it is the identity on the “empty ones”. Each S ∈S 2

is formed precisely by its intersection with 4 squares of S 1
1 : in the case of “filled” S the 4 squares are

permuted in a 4-cicle clockwise, while in the case of “empty” S the 4 squares are kept fixed. At any rate

Φ( 1
2
, ·) maps rigidly one square of S 1

1 onto another square of S 1
1 . Since for every j ≥ 2 every square in

S 1
j is contained in some square of S 1

1 , we obviously conclude the following

Lemma 1 For every j ≥ 1, Φ( 1
2
, ·) maps any element of S 1

j rigidly onto another element of S 1
j .

Using Lemma 1 it is therefore easy to see that

ρ( 1
2
,x) = 1−ρin,∗(2x) . (2)

Likewise it is simple to use Lemma 1 to prove
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Lemma 2 Let ρ be a solution of the transport equation (1) with an arbitrary bounded initial data ρ̄ and

the specific vector field u described above. Assume j ≥ 2 and α ∈R are constants such that ρ̄ has average

α on every S ∈ S 1
j . Then ρ( 1

2
, ·) has also average α on S ∈ S 1

j .

We now define b on R
2 × [0,2] in the following fashion. First of all b(t,x) = u(x) for 0 < t < 1

2
and

b(t,x) = u(2nx) for 1−2−n < t < 1−2−(n+1). For 1 < t < 2, we let b(t,x) =−b(2− t,x). Note that (1) has

a unique solution ρ on [0,1−2−n] because b is a function of bounded variation. In particular this yields a

unique solution on [0,1]. Moreover, using recursively the appropriately scaled version of (2) we can readily

check that ρ(1−2−2k,x) = ρin,∗(2
2kx) and ρ(1−2−(2k+1),x) = 1−ρin,∗(2

2k+1x). In particular

ρ(t, ·)⇀⋆ 1

2
in L∞ as t → 1. (3)

Moreover, considering that for times t ≥ 1 the flow of b is just a time-reversal of the flow for t ≤ 1, an

obvious rescaling of Lemma 2 gives the following conclusion, which will be useful in the sequel.

Lemma 3 Let ρ be a solution transport equation (1) with any bounded initial data and vector field b.

Assume i ∈N and α ∈R are such that ρ(1+ 1
2i , ·) has average α on every S ∈S 1

j for some j ≥ i+1. Then

ρ(1+ 1
2k , ·) has also average α on every S ∈ S 1

j and for all 0 ≤ k ≤ i.

We can thus continue ρ for t ∈ [1,2] in two fashions, namely we set

ρ ′
∗(t,x) =

{

ρ(t,x), for 0 < t < 1
1
2
, for 1 < t < 2

ρ̃∗(t,x) =

{

ρ(t,x), for 0 < t < 1

ρ(2− t,x), for 1 < t < 2
.

This is because we can ‘glue’ weak solutions of (1) to get another weak solution. More precisely

Lemma 4 If ρ1 and ρ2 are two bounded weak solutions of (1) with vector field b defined for 0 < t < 1 and

1 < t < 2 respectively, and if both ρ1(t, ·) and ρ2(t, ·) converge weakly⋆ to the same limit as t → 1, then

ρ(t,x) :=

{

ρ1(t,x), for 0 < t < 1

ρ2(t,x), for 1 < t < 2

is also a weak solution of (1) with vector field b.

While the argument is a standard exercise in functional analysis, we give the proof for the reader’s

convenience.

Proof Indeed, as b is weakly divergence-free, for any φ ∈ C∞
c (R×R

d) with spt(φ) ⊂ {t < 2}×R
2 and

0 < β < 1 we have
∣

∣

∣

∣

∫ 2

0

∫

Rd
ρ(t,x)(∂tφ +(b ·∇)φ)dxdt +

∫

Rd
ρin,∗(x)φ(0,x)dx

∣

∣

∣

∣

(4)

≤

∣

∣

∣

∣

∫ 1−β

0

∫

Rd
ρ1(t,x)(∂tφ +(b ·∇)φ)dxdt (5)

+
∫ 2

1+β

∫

Rd
ρ2(t,x)(∂tφ +(b ·∇)φ)dxdt +

∫

Rd
ρin,∗(x)φ(0,x)dx

∣

∣

∣

∣

(6)

+2β‖Dφ‖L∞‖b‖L∞‖ρ‖L1 (7)

≤

∣

∣

∣

∣

−
∫

Rd
ρin,∗(x)φ(0,x)dx+

∫

Rd
ρ1(1−β ,x)φ(1−β ,x)dx (8)

−
∫

Rd
ρ2(1+β ,x)φ(1+β ,x)dx+

∫

Rd
ρin,∗(x)φ(0,x)dx

∣

∣

∣

∣

+2β‖Dφ‖L∞‖b‖L∞‖ρ‖L1 (9)

≤

∣

∣

∣

∣

∫

Rd
ρ1(1−β ,x)φ(1−β ,x)dx−

∫

Rd
ρ2(1+β ,x)φ(1−β ,x)dx

∣

∣

∣

∣

(10)

+2β‖∂tφ‖L∞‖ρ2(1+β , ·)‖L1 +2β‖Dφ‖L∞‖b‖L∞‖ρ‖L1 (11)
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0

1−2−2i

1+2−2i

2

0

1−2−2i

1+2−2i+2

2

Fig. 2: Schematic representations of the 2 flows where time is shown on the vertical axis. The shaded region

corresponds to the times where the vector field is trivial.

Thus, as β → 0 and since both ρ1(t, ·) and ρ2(t, ·) weakly tend to the same limit as t → 1, we get that ρ is

a weak solution of (1).

2.2 Step 2. Truncations.

We next construct two sequences of BV vector fields converging to b. Both are simple and they are given

by

b1
i (t,x) =











b(t,x), for 0 < t < 1−2−2i,

0, for 1−1/22i < t < 1+2−2i+2,

b(t,x), for 1+2−2i+2 < t < 2

b2
i (t,x) =











b(t,x), for 0 < t < 1−2−2i,

0, for 1−1/22i < t < 1+2−2i,

b(t,x), for 1+2−2i < t < 2

Let now ρ1
i and ρ2

i be the corresponding unique weak solutions of (1) with initial data ρin. By construction

both ρ1 and ρ2 coincide with ρ = ρ ′
∗ = ρ̃∗ on the time interval [0,1−2−2i]. Moreover for both we have

ρ1
i (1+2−2i,x) = ρ(1−2−2i,x) = ρin,∗(2

2ix)

ρ2
i (1+2−2i,x) = ρ(1−2−2i,x) = ρin,∗(2

2ix) .

Now, b2
i (t,x) = b(t,x) for t ≥ 1+2−2i. Since ρ2

i (1+2−2i,x) = ρin,∗(2
2ix) = ρ̃∗(1+2−2i,x), we conclude

that ρ2
i (t,x) = ρ̃∗(t,x) for t ≥ 1+2−2i. In particular we infer

ρ2
i ⇀⋆ ρ̃∗ in L∞. (12)

We claim next that

ρ1
i ⇀⋆ ρ ′

∗ in L∞. (13)

The overall intuition is illustrated schematically in Figure 2. The shadowed region on the left diagram

is the time-region where b2
i vanishes identically. Since we have b2

i (t, ·) =−b2
i (2− t, ·) on the complement,

we see a complete reversal of the flow when t ≥ 1+ 2−2i, restoring the initial condition at the final time

t = 2. On the other hand, the diagram on the right highlights the time-region where the field b1
i vanishes.

Very much like b2
i , the field b1

i ‘mixes’ the initial data up to the fine scale ‘2−2i’ at the time t = 1− 2−2i.

Then the flow is trivial in the shaded region, which goes two dyadic scales more than the shaded region

of the dyagram on the left. Thus ρ1
i is still ‘finely mixed’ at t = 1+2−2i+2. At that point, when the vector

field b1
i starts acting again, its flow will however only affect coarser scales (i.e. dyadic scales larger than

2−2i+2). Therefore the solution remains ‘finely mixed’ at t = 2.
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In order to make such intuition rigorous, observe first that, since b(t,x) = 0 for t ∈ [1+2−2i,1+2−2i+2],
we indeed have ρ1

i (1+2−2i+2,x) = ρin,∗(2
2ix). We see that ρ1

i (1+2−2i+2,x) has average 1
2

on every square

of S 1
2i−1. We can now use Lemma 3 to conclude that

1

|S|

∫

ρ1
i (1+2− j,x)dx =

1

2
∀S ∈ S

1
2i−1 and ∀ j ≤ 2i−2 . (14)

In particular we conclude the same for j = 0. It is easy to see ρ1
i (2, ·)⇀

⋆ 1
2

because of (14). Indeed having

fixed ϕ ∈Cc(R
2), we can write

∫

ϕ(x)ρ1
i (2,x)dx = ∑

S∈S 1
2i−1:S∩spt(ϕ)6= /0

∫

S
ϕ(x)ρ1

i (2,x)dx

and hence estimate

∣

∣

∣

∣

∫

ϕ(x)ρ1
i (2,x)dx−

1

2

∫

ϕ(x)dx

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∑
S∈S 1

2i−1:S∩spt(ϕ)6= /0

∫

S
ϕ(x)

(

ρ1
i (2,x)−

1

|S|

∫

S
ρ1

i (2,y)dy

)

dx

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∑
S∈S 1

2i−1:S∩spt(ϕ)6= /0

∫

S
(ϕ(x)−ϕ(xS))

(

ρ1
i (2,x)−

1

|S|

∫

S
ρ1

i (2,y)dy

)

dx

∣

∣

∣

∣

∣

∣

≤ ∑
S∈S 1

2i−1:S∩spt(ϕ) 6= /0

‖Dϕ‖C02−2i+12−2(2i−1) ≤CR2‖Dϕ‖C02−2i+1 ,

(15)

where xS denotes the center of the square S, R is a fixed radius such that spt(ϕ) ⊂ B(0,R) and C is a

geometric constant. Now since for any ε > 0 any f ∈ L1 can be written as ϕ + h with ϕ ∈ C1
c , spt(ϕ) ⊂

B(0,R) for some R, and ‖h‖L1 < ε , we get that

∣

∣

∣

∣

∫

f (x)ρ1
i (2,x)dx−

1

2

∫

f (x)dx

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

ϕ(x)ρ1
i (2,x)dx−

1

2

∫

ϕ(x)dx

∣

∣

∣

∣

+

∣

∣

∣

∣

∫

h(x)ρ1
i (2,x)dx−

1

2

∫

h(x)dx

∣

∣

∣

∣

≤CR2‖Dϕ‖C0 2−2i+1 +‖ρ1
i (2,x)−

1
2
‖L∞‖h‖L1

≤CR2‖Dϕ‖C02−2i+1 + ε

(16)

Thus, as ε was arbitrary, we see that ρ1
i (2, ·)⇀

⋆ 1
2
. So, any weak⋆ limit of a convergent subsequence of ρ1

i

converges to a (backward) solution of the transport equation which is identically equal to 1
2

at time 2. We

can now use the backward uniqueness for the transport equation with vector field b on intervals [1+σ ,2]
for σ > 0 (such uniqueness is guaranteed by the fact that the vector field b is BV on [1+σ ,2]×R

2), to

conclude that such weak⋆ limit is identically equal to 1
2

on [1+σ ,2]. In particular we conclude that ρ1
i

converges weakly⋆ to ρ ′
∗.

2.3 Step 3. Regularization of vector fields.

We now extend the vector fields b2
i and b1

i to times t 6∈ [0,2] by setting them identically 0. We fix i and a

space-time compactly supported convolution kernel ϕ and regularize both b1
i and b2

i to b1
i, j and b2

i, j setting

bk
i, j := bk

i ∗ϕ2− j . Since each vector field bk
i belongs to L∞([0,2],BV ∩ L∞(R2)), we can use Ambrosio’s

extension of the DiPerna-Lions theory to conclude that, for each fixed i and k, the corresponding solutions
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ρk
i, j of the transport equations with vector fields bk

i, j and initial data ρin,∗ converge strongly in L1
loc to ρk

i . In

particular we can select j(i) such that

2

∑
k=1

‖ρk
i, j(i)−ρk

i ‖L1([0,2]×[−2i,2i]2) ≤ 2−i .

We then set b′i = b1
i, j(i), b̃i = b2

i, j(i), ρ ′
i,∗ = ρ1

i, j(i) and ρ̃i,∗ = ρ2
i, j(i). Clearly, ρ̃i,∗ ⇀ ρ̃∗ and ρ ′

i,∗ ⇀ ρ ′
∗ in

L1([0,T ]×U) for every bounded open set U .

3 Proofs of Theorem 1, Theorem 2, and Corollary 3

3.1 Step 4. Compact supports.

Thus far the vector fields, the initial data and the solutions do not have compact support. However, in

order to make them have compact supports we just proceed as follows. We modify ρin,∗ to ρin,∗1QN
, where

QN = [−N,N]2 for some large natural number N. In order to truncate appropriately b we need to act more

carefully. For t ∈ [1−2−i,1−2−i−1] we substitute b(t,x) with b(t,x)1Q
N+2−i−1

(x). Observe that the choice

of the sidelength of the square is made so to guarantee that the vector field remains divergence-free. We then

keep the symmetric structure b(t,x) = b(2− t,x) for the truncated field and we follow the same procedures

of the previous steps. Note that the new regularized fields coincide with the old (nontruncated) ones in,

say, [0,2]×QN/2 and the initial data coincide with the old (nontruncated) ones in QN/2. Moreover the L∞

norm of all the fields is bounded uniformly by an absolute constant independent of N. In particular, for

N sufficiently large, the solutions of the transport equations with the truncated fields with truncated initial

data coincide with the ones for the nontruncated fields and nontruncated initial data. We thus infer the same

conclusions.

3.2 Step 5. Regularization of initial data

We let ρin be a smooth approximation of ρin,∗ such that

‖ρin −ρin,∗‖L1(R2) ≤ c‖ρ̃∗−ρ ′
∗‖L1([0,2]×R2) =: cA ,

where c is a very small absolute constant to be determined later. Let ρ ′
i , ρ̃i be the unique solutions of (1)

with initial data ρin and vector fields b′i, b̃i respectively. Since, b′i, b̃i ∈ C∞([0,2]×R
2), the flow generated

by them preserves the L1 norm of the initial data. Thus, we have that

‖ρ ′
i −ρ ′

i,∗‖L1
t,x
≤ 2‖ρ ′

i −ρ ′
i,∗‖L∞

t (L
1
x)
= 2‖ρin −ρin,∗‖L1(R2) ≤ 2cA (17)

‖ρ̃i − ρ̃i,∗‖L1
t,x
≤ 2‖ρ̃i − ρ̃i,∗‖L∞

t (L
1
x)
= 2‖ρin −ρin,∗‖L1(R2) ≤ 2cA (18)

Since, ρ̃∗ 6= ρ ′
∗, we can choose a compactly supported g(t,x) ∈ L∞ such that

∣

∣

∣

∣

∫

(ρ̃∗−ρ ′
∗)g

∣

∣

∣

∣

≥ 1 .

Now let ρ ′, ρ̃ be any L1-weak limits of the sequences {ρ ′
i}

∞
i=1,{ρ̃i}

∞
i=1, respectively (which exist as the

sequences are bounded). Then
∫

(ρ̃ −ρ ′)g = lim
i

∫

(ρ̃i −ρ ′
i )g

But now,
∣

∣

∣

∣

∫

(ρ̃i −ρ ′
i )g

∣

∣

∣

∣

≥

∣

∣

∣

∣

∫

(ρ̃i,∗−ρ ′
i,∗)g

∣

∣

∣

∣

−‖ρ ′
i −ρ ′

i,∗‖L1‖g‖L∞ −‖ρ̃i − ρ̃i,∗‖L1‖g‖L∞

≥

∣

∣

∣

∣

∫

(ρ̃i,∗−ρ ′
i,∗)g

∣

∣

∣

∣

−4cA‖g‖L∞ . (19)

(20)
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Choosing c ≤ (8A‖g‖L∞)−1 and sending i → infinity we conclude

∣

∣

∣

∣

∫

(ρ ′−ρ∗)g

∣

∣

∣

∣

≥

∣

∣

∣

∣

∫

(ρ̃∗−ρ ′
∗)g

∣

∣

∣

∣

−
1

2
≥

1

2
,

which implies that ρ̃ and ρ ′ are distinct.

3.3 Step 6. W s,p estimates.

We now show that our vector field b of the previous section is in W
s,1
loc ([0,T ]×R

2) for every s < 1. We’ll

make all our estimates on B := [−1/2,1/2]2 and Ω := [0,2]×B. Recall b(t,x) = ±u(2i+1x) on Ii :=
(1−2−i,1−2−(i+1))∪ (1+2−(i+1),1+2−i) and is identically 0 elsewhere. Thus as,

‖u(2i+1·)‖BV (B) . 2di‖w(2i+1·)‖BV (B) = 2di(‖w(2i+1·)‖L1(B)+‖Dw(2i+1·)‖TV (B))

= 2di(2−di‖w‖L1(B)+2−(d−1)i‖Dw‖TV (B))

≤ 2di2−(d−1)i‖w‖BV (B) = 2i‖w‖BV (B)

(21)

The first inequality follows because there are approximately 2di ‘little’ vortices in B. Now,

‖bχIi
‖BV (Ω) ≤C+

∫

Ii

‖u(2i+1x)‖BV (B)dt . 1 (22)

The constant C comes from the ‘horizontal’ jump part of the measure at ∂Ii. Note this constant is indeed

independent of i. By Gagliardo-Nirenberg we get for 0 < s < 1,

‖bχIi
‖W s,1(Ω) . ‖bχIi

‖1−s

L1(Ω)
‖bχIi

‖s
BV (Ω) . 2−i(1−s) (23)

Thus,

‖b‖W s,1(Ω) =

∥

∥

∥

∥

∥

∞

∑
i=1

bχIi

∥

∥

∥

∥

∥

W s,1(Ω)

.
∞

∑
i=1

2−i(1−s) <+∞ . (24)

We leave to the reader the obvious modifications to deal with the truncation of b.

3.4 Step 7. Making the field autonomous.

For any a(t,x) ∈ L∞(Rt ×R
2;R2), we can define

f (a)(y) = (1,a(y0,y1,y2)), f (a) ∈ L∞(R3;R3) (25)

If we apply this transformation to the nonautonomous field defined in Step 1 of the previous section, we

reach an autonomous field v = f (b) and an initial density

θin(y0,y1,y2) =

{

ρin(y1,y2) , for −1 ≤ y0 ≤ 0

0 , otherwise
(26)

Note that we again get 2 solutions for (1), namely:

i. θ ′(t,y) such that θ ′(t,y) = 1/2 for 2 < t < 3 and 2 < y0 < t

ii. θ̃(t,y) such that θ̃(t,y) = ρin(y1,y2) for 2 < t < 3 and 2 < y0 < t
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We then apply the same procedure to all the nonautonomous fields constructed in the previous section to get

an example which satisfies the requirements of Theorem 1 with d = 2. The extension to higher dimension

is simple: in R
d+1 = R

3 ×R
d−2 we just set the components v j with j ≥ 3 identically equal to 0, while

the remaining three components are made constant in the directions y3, . . . ,yd . Similarly the initial data is

assumed constant along the directions y3, . . . ,yd . This then gives a noncompactly supported example: to

pass to a compactly supported proceed as in the previous section. We can have the initial data be smooth

by arguing similarly as in Step 5.

The estimates obtained in Step 6 imply that v∈W s,1 for every s< 1. Fix now s< 1 and select σ ∈ (s,1).
By interpolation we have

‖v‖
W s,p(s,σ) ≤C‖v‖

1− s
σ

L∞ ‖v‖
s
σ

W σ ,1

for 1
p(s,σ) =

s
σ . Since we can take σ arbitrarily close to 1 we conclude that v ∈W s,p for every p < 1

s
.

Observe next that, the vector fields b1
i and b2

i enjoy similar estimates, uniformly in i. Since the ṽi and

v′i are obtained from the latter through convolution with standard kernels and an application of f , the same

uniform estimates are inherited by them.

3.5 Proof of Corollary 3

First of all, let Φ1
i and Φ2

i be the unique regular Lagrangian flows of the truncated versions of the vector

fields b1
i and b2

i (as outlined in Section 3.1. Since b2
i = −b2

i (2− t,x), Φ2
i (2,x) = x. Recall that for every

σ > 0 b ∈ L∞([0,1 − σ ]∪ [1 + σ ,2],BV (R2)). In particular there is a unique regular Lagrangian flow

Φ
f

σ : [0,1−σ ]×R
2 →R

2 with Φ
f

σ (0,x)= x and a unique regular Lagrangian flow Φb
σ : [1+σ ,2]×R

2 →R
2

with Φb
σ (2,x) = x. Moreover Φ

f
σ (t,x) = Φ

f
s (t,x) for every t ≤ 1 − σ ≤ 1 − s and likewise Φb

σ (t,x) =
Φb

s (t,x) for every t ≥ 1+σ ≥ 1+ s. We then identify a regular Lagrangian flow Φ̃(t,x) for b by setting

Φ̃(t,x) = Φ
f

t (t,x) for t < 1 and Φ̃(t,x) = Φb
t−1(t,x) for t > 1. It is obvious that Φ2

i (t,x) = Φ(t,x) for

every t ≤ 1 − 2−2i and every t ≥ 1 + 2−2i, while Φ2
i (t,x) = Φ(1 − 2−2i,x) = Φ(1 + 2−2i,x) for every

1− 22i ≤ t ≤ 1+ 2−2i. The strong L1
loc convergence of Φ2

i to Φ is thus obvious. As for the truncation

procedure applied in Section 3.1 observe that the flows of the corresponding fields is given by Φ2
i for

x∈ [−N,N]2, while it is the identity for any x outside the box at any time t. A simple analogous modification

of Φ yields the desired limit. With a slight abuse of notation we keep denoting the fields by b2
i and the flows

by Φ2
i and we denote Φ̃ the limit. Note that the truncation procedure implies now the strong L1 convergence

on [0,2]×R
2 (i.e. without need of localizing).

For each fixed i consider now the regularization b2
i, j of Section 2.3 and let Φ2

i, j be the correspond-

ing regular Lagrangian flows. Using the DiPerna-Lions theory, for j sufficiently large we have ‖Φ2
i, j −

Φ2
i ‖L1([0,2]×R2) ≤ (i+1)−1. In particular, by possibly choosing j(i) even larger than in Section 2.3, we can

ensure that Φ2
i, j(i) converges strongly to Φ̃ .

Consider next the flows Ψi for the vector fields b′i = bi, j(i), as produced in Section 2.3, after the trunction

of Section 3.1. Recall that
∫

ϕ(Ψi(t,x))ρin,∗(x)dx =
∫

ϕ(x)ρ ′
i,∗(t,x)dx .

In particular we conclude

lim
i→∞

∫ ∫

ϕ(t,Ψi(t,x))ρin,∗(x)dxdt =
1

2

∫ ∫

ϕ(t,x)dxdt

for every continuous test function ϕ ∈Cc((1,2)×B(0,1)) (assuming the integer N in Section 3.1 is chosen

so that [−N
2
, N

2
]2 ⊃ B(0,1)). If a subsequence of Ψi were to converge strongly to some Ψ , we would then

have
∫ ∫

ϕ(t,Ψ(t,x))ρin,∗(x)dxdt =
1

2

∫ ∫

ϕ(t,x)dxdt

for every such test function. It is easy to see that such a map Ψ cannot exist.



Smoothing does not give a selection principle for transport equations with bounded autonomous fields 11

Remark 2 Corollary 3 seems to suggest that from the point of view of flows the approximation b2
i is more

reasonable. Note however that, while the function ρ̃(1, ·) is identically equal to 1
2

on [−N
2
, N

2
]2, for any

time t ∈ [0,1)∪ (1,2] it takes in fact the values 1 and 0 a.e. on [−N
2
, N

2
]2. In particular it is easy to see

that there is no regular Lagrangian flow Λ of b with Λ(1,x) = x for which we would have the identity

ρ̃(t,Λ(t,x)) = ρ̃(1,x) for a.e. (t,x).

Acknowledgements The authors would like to thank the anonymous referee for their valuable comments that have much improved

this paper.

References

1. M. Aizenman. On vector fields as generators of flows: a counterexample to Nelson’s conjecture. Ann. of Math. (2), 107(2):287–

296, 1978.

2. G. Alberti, S. Bianchini, and G. Crippa. Structure of level sets and Sard-type properties of Lipschitz maps. Ann. Scuola Norm.

Sup. Pisa Cl. Sci. (5), 12(4):863–902, 2013.

3. G. Alberti, S. Bianchini, and G. Crippa. A uniqueness result for the continuity equation in two dimensions. J. Eur. Math. Soc.

(JEMS), 16(2):201–234, 2014.

4. G. Alberti, G. Crippa, and A. L. Mazzucato. Exponential self-similar mixing by incompressible flows. J. Amer. Math. Soc.,

32(2):445–490, 2019.

5. L. Ambrosio. Transport equation and cauchy problem for bv vector fields. Invent. math., 158:227–260, 2004.

6. L. Ambrosio, M. Colombo, and A. Figalli. Existence and uniqueness of maximal regular flows for non-smooth vector fields.

Arch. Ration. Mech. Anal., 218(2):1043–1081, 2015.

7. S. Bianchini and P. Bonicatto. A uniqueness result for the decomposition of vector fields in R
d . Invent. Math., 220(1):255–393,

2020.
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17. S. Modena and L. Székelyhidi, Jr. Non-uniqueness for the transport equation with Sobolev vector fields. Ann. PDE, 4(2):Paper

No. 18, 38, 2018.
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