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Abstract

The seminal work of DiPerna and Lions (Invent Math 98(3):511–547, 1989)

guarantees the existence and uniqueness of regular Lagrangian flows for Sobolev

vector fields. The latter is a suitable selection of trajectories of the related ODE

satisfying additional compressibility/semigroup properties. A long-standing open

question is whether the uniqueness of the regular Lagrangian flow is a corollary of

the uniqueness of the trajectory of the ODE for a.e. initial datum. Using Ambrosio’s

superposition principle, we relate the latter to the uniqueness of positive solutions

of the continuity equation and we then provide a negative answer using tools in-

troduced by Modena and Székelyhidi in the recent groundbreaking work (Modena

and Székelyhidi in Ann PDE 4(2):38, 2018). On the opposite side, we introduce

a new class of asymmetric Lusin–Lipschitz inequalities and use them to prove the

uniqueness of positive solutions of the continuity equation in an integrability range

which goes beyond the DiPerna–Lions theory.

1. Introduction

In this paper we study positive solutions of the continuity equation

∂tρ + div (uρ) = 0 (1)

and the related system of ordinary differential equations γ̇ (t) = u(t, γ (t)). To avoid

technicalities, we restrict our attention to periodic vector fields, i.e. u : I × Td →
Rd , where Td is the d-dimensional torus and I ⊂ R. In the sequel we use the

notation L d for the Lebesgue measure on the whole space Rd and on Td .

Definition 1.1. Let u : (0, T ) × Td → Rd be a Borel map. We say that γ ∈
AC([0, T ]; Td) is an integral curve of u starting at x if γ (0) = x and γ ′(t) =
u(t, γ (t)) for a.e. t ∈ [0, T ].
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Note that in Definition 1.1 it matters how u is defined at every point: differ-

ent pointwise representatives for u might have different integral curves starting at

the same x . When u is smooth (Lipschitz) the trajectories are unique and, after

“bundling them” into a flow map X : (0, T ) × Td → Td , solutions of (1) can

be recovered via Liouville’s classical theorem. This fact can be elegantly encoded

using measure theory in the formula (X (t, ·))#(ρ(0, ·)L d) = ρ(t, ·)L d .1 For less

regular vector fields it is customary, after the seminal paper [2,19], to introduce

the notion of regular Lagrangian flows. The latter consists, following one of its

equivalent formulations given in [2], of a measurable selection X of integral curves

of the ODE for which X (t, ·)#L
d ≤ CL d .

Definition 1.2. Let u : (0, T ) × Td → Rd be Borel. X : [0, T ] × Td → Td is a

regular Lagrangian flow of u if

(i) for L d -a.e. x ∈ Td , X (·, x) ∈ AC([0, T ]; Td) is an integral curve of u starting

at x ;

(ii) there exists a constant C = C(X) satisfying X (t, ·)#L
d ≤ CL d .

The pointwise definition of u matters in Definition 1.2 as well. However, it is

an outcome of the DiPerna-Lions theory that, under suitable Sobolev regularity

assumptions on u, regular Lagrangian flows exist, satisfy a semigroup property, are

unique, stable under approximations, and independent of the pointwise represen-

tative chosen for u.

Such uniqueness and stability result is sometimes inappropriately regarded as

“almost everywhere uniqueness of integral curves”, even though it is well known

among the experts that the DiPerna-Lions theory does not imply the statement “for

a.e. x there is a unique integral curve of u starting at x”. In fact whether such

“classical” uniqueness theorem holds for Sobolev vector fields is a long-standing

open question, see [19, p. 546], [2, p.231], [1, Section 2.3], [3, Open problems, sec-

tion 4]. This question has had a positive answer for specific vector fields, such as

suitable weak solutions of the Navier-Stokes system [26,27], based on estimates

of the dimension of the singular set originally due to [10]. Recently, in [11] the

authors use a suggestion of Jabin to prove almost everywhere uniqueness of the

trajectories when u ∈ C([0, T ], W 1,r (Td , Rd)) for some r > d. One aim of this

paper is to show that in general, under the assumptions of the DiPerna-Lions theory,

the answer is negative.

Theorem 1.3. For every d ≥ 2, r < d, s < ∞ and every T > 0 there is a

divergence-free vector field u ∈ C([0, T ], W 1,r (Td , Rd) ∩ Ls) such that the fol-

lowing holds: for every Borel map v with u = v L d+1-a.e. there is a measurable

1 The push-forward ν = (X (t, ·))#μ of a measure μ is defined through the relation

∫

ϕ(y) dν(y) =
∫

ϕ(X (t, x)) dμ(x)

for every test ϕ ∈ Cc.
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A(v) ⊆ Td with positive Lebesgue measure such that for every x ∈ A(v) there are

at least two integral curves of v starting at x.

Moreover, given v = w = u L d+1-a.e., one has L d(A(v)�A(w)) = 0, and

for any x ∈ A(v) ∩ A(w) there are at least two integral curves of v starting at x

that are also integral curves of w.

Given [11, Theorem 5.2], the above statement covers the optimal range, except

for the endpoint r = d. In fact an improvement of the argument in [11, Theorem

5.2] allows us to prove almost everywhere uniqueness of trajectories for a function

space which shares the same scaling properties of W 1,d , namely when Du belongs

to the Lorentz space Ld,1, see Corollary 10.1 below.

The theorem above is a consequence of Ambrosio’s superposition principle

(see [3, Theorem 3.2]) and of the following nonuniqueness result at the PDE level,

which in turn will be proved using “convex integration type” techniques borrowed

from a groundbreaking work of Modena and Székelyhidi [24,25], improved later

by Modena and Sattig [23](we refer to [8,9,15,17,18,21] and the references therein

for the birth of this and related lines of research).

Theorem 1.4. Let d ≥ 2, p ∈ (1,∞), r ∈ [1,∞] be such that

1

p
+

1

r
> 1 +

1

d
,

and denote by p′ the dual exponent of p, i.e. 1
p

+ 1
p′ = 1. Then for every T > 0

there exists a divergence-free vector field u ∈ C([0, T ], W 1,r (Td , Rd)∩ L p′
) and a

nonconstant ρ ∈ C([0, T ], L p(Td)) such that (1) holds with initial data ρ(0, ·) = 1

and for which ρ ≥ c0 for some positive constant c0.

Compared to the results in [24] and [23] the addition (crucial for our application)

is the positivity of the solution ρ. While it is relatively simple to modify the approach

of Modena and Székelyhidi in [24] in order to achieve Theorem 1.4 when 1
p

+ 1
r

>

1+ 1
d−1

, we have not been able to do the same with the one in [23] to cover the range

1 + 1
d−1

≥ 1
p

+ 1
r

> 1 + 1
d

. Our proof is therefore relatively different from the one

of [23] and in fact less complicated and shorter. At the technical level we introduce

suitable space-time flows which compared to the basic building blocks of [23] are

more similar to Mikado flows: in a nutshell our flows are a perturbation of point

masses traveling on a space-time line. This approach makes a part of our argument

more similar to [24], but it has the technical drawback that we need to introduce a

suitable partition of unity to discretize the time velocities of the moving particles (a

similar idea was used first in [18]). One subtle part of our proof is a combinatorial

argument to ensure that the supports of the flows are disjoint in 2 space dimensions.

Since in 3 space dimensions and higher the latter can be completely omitted and the

proof is simpler we have decided to first present the full arguments for Theorem 1.4

when d ≥ 3 and then show in Sect. 7 which modifications are necessary in the case

d = 2.

Our interest in Theorem 1.4 was triggered by the gap between the DiPerna-

Lions theory, which guarantees uniqueness for 1
p

+ 1
r

≤ 1, and the nonuniqueness
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results of [23–25]. In particular we are able to show that in some intermediate range

of exponents (strictly containing the DiPerna-Lions range, but not reaching the full

complement of the Modena-Sattig-Székelyhidi range) positive solutions are in fact

unique.

Theorem 1.5. Let d ≥ 2, p ∈ [1,+∞] and r ∈ [1,+∞] be such that

1

p
+

1

r
< 1 +

1

d − 1

r − 1

r
. (2)

Let u ∈ L1([0, T ], W 1,r (Td , Rd)) be a vector field satisfying div u ∈ L∞. Then, for

p > 1, (1) admits a unique solution among all nonnegative, weakly continuous in

time densities ρ ∈ L∞([0, T ], L p(Td)) with ρ(0, ·) = ρ0. When p = 1 (i.e. r > d)

uniqueness holds in the class of nonnegative weakly-star continuous densities ρ ∈
L∞([0, T ],M (Td)) with ρ(0, ·) = ρ0L

d . In particular, any such ρ is Lagrangian,

i.e.

ρ(t, ·)L d = X (t, ·)#(ρ0L
d) for every t ∈ [0, T ],

where X denotes the unique regular Lagrangian flow of Definition 1.2.

Remark 1.6. Observe that, under the above assumptions u ∈ L1([0, T ], L p′
). In-

deed, if r > d Morrey’s embedding guarantees u ∈ L1([0, 1], Lq) for every

q ∈ [1,∞] and if r ≤ d Sobolev’s embedding guarantees u ∈ L1([0, T ], Lq)

for every q < rd
d−r

while (2) is equivalent to p′ <
r(d−1)

d−r
.

Theorem 1.4 extends [11, Corollary 5.4], in which the case r > d has been

settled as a consequence of the L d -a.e. uniqueness result for trajectories mentioned

above. The proofs of the latter and of Theorem 1.5 employ all some suitable Lusin-

Lipschitz type estimates for u, an idea pioneered in [4] and [14] and which has

proved quite fruitful in different contexts (see for instance [5–7,13,16]). As it is

well known, for sufficiently regular domains � ⊂ Rd and when r ∈ (1,∞], a

Borel map u belongs to W 1,r (�, R) if and only if there is a function g ∈ Lr (�)

such that

|u(x) − u(y)| ≤ (g(x) + g(y))|x − y| for a.e. x, y. (3)

In fact g can be taken to be the classical Hardy-Littlewood maximal function of

|Du|. It seems less known (but anyway classical) that for r > d the symmetry in

(3) can be broken to show

|u(x) − u(y)| ≤ g(x)|x − y| . (4)

Theorem 1.5 is based on the idea that an appropriate symmetry-breaking is still

possible for smaller exponents r . More precisely, we have the following proposition,

which has its own independent interest:
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Proposition 1.7. Let 1 < r ≤ d be fixed. For any u ∈ W 1,r (Td) and any α ∈ (0, r
d
)

there exist a negligible set N ⊂ Td and a nonnegative function g ∈ Lr (Td)

satisfying the inequalities

‖g‖Lr ≤ C(α, r, d)‖Du‖Lr ,

|u(x) − u(y)| ≤ |x − y|
(

g(x) + g(x)αg(y)1−α
)

for any x, y ∈ Rd\N . (5)

Moreover, we can assume N = ∅ provided we choose an appropriate representative

of u ∈ W 1,r (Td) and there is a continuous selection W 1,r ∋ u �→ g ∈ Lr .

A simple corollary of the latter statement is an inequality of the form |u(x) −
u(y)| ≤ (a(x) + b(y))|x − y| where one function, say b, can be taken more

integrable at the prize of giving up some integrability for the other. Theorem 1.5

follows from the extreme case where the integrability of b is maximized at the

expense of reducing the integrability of a to the bare minimum, namely L1, cf.

Corollary 9.1. We moreover show that in this case the range of exponents for b

obtained in the latter is in fact optimal.

Clearly, it is tempting to advance the conjecture that, for positive solutions of the

continuity equations, well-posedness holds in the range 1+ 1
d

> 1
p
+ 1

r
, namely the

complement of the the closure of the range of Theorem 1.4. An even more daring

conjecture is that the latter statement holds for any solution. However nothing is

known without assuming that the density is nonnegative or, as is the case of [11],

some technical property of trajectories of the ODEs. Recently, it was proved in

[12] that the complement of the Di Perna Lions range, namely 1 > 1
p

+ 1
r

can be

reached at the price of diminishing the integrability in time of both the solution

and the vector field to L1. This leaves open the question in our setting, or in the

intermediate setting in which the density is L∞ in time (a natural assumption in

applications) while the gradient of the vector field is only L1 (a natural assumption

in the theory of the continuity equation, where positive existence results require the

spacetime integral of |ρ||Du| to be finite).

2. Iteration and Continuity-Reynolds System

As in [24] we consider the following system of equations in [0, T ] × Td

⎧

⎪

⎨

⎪

⎩

∂tρq + div (ρquq) = −div Rq

div uq = 0.

(6)

We then fix three parameters a0, b > 0 and β > 0, to be chosen later only in terms

of d, p, r , and for any choice of a > a0 we define

λ0 = a, λq+1 = λb
q and δq = λ−2β

q .
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The next proposition builds a converging sequence of functions with the inductive
estimates

max
t

‖Rq (t, ·)‖L1 ≤ δq+1 (7)

max
t

(

‖ρq (t, ·)‖C1 + ‖∂tρq (t, ·)‖C0 + ‖uq (t, ·)‖
W 1,p′ + ‖uq (t, ·)‖W 2,r + ‖∂t uq (t, ·)‖L1

)

≤ λα
q , (8)

where α is yet another positive parameter which will be specified later.

Proposition 2.1. There exist α, b, a0, M > 5, 0 < β < (2b)−1 such that for every

a ≥ a0, if (ρq , uq , Rq) solves (6) and enjoys the estimates (7), (8), then there exist

(ρq+1, uq+1, Rq+1) which solves (6), enjoys the estimates (7), (8) with q replaced

by q + 1 and also the following properties:

(a) maxt [‖(ρq+1−ρq)(t, ·)‖p
L p+‖(uq+1−uq)(t, ·)‖r

W 1,r +‖(uq+1−uq)(t, ·)‖p′

L p′ ] ≤
Mδq+1

(b) inf(ρq+1 − ρq) ≥ −δ
1/p
q+1

(c) if for some t0 > 0 we have that ρq(t, ·) = 1, Rq(t, ·) = 0 and uq(t, ·) = 0 for

every t ∈ [0, t0], then ρq+1(t, ·) = 1, Rq+1(t, ·) and uq+1(t, ·) = 0 for every

t ∈ [0, t0 − λ−1−α
q ].

Compared to [24] we are using a slightly different notation and a more specific

choice of the parameters. None of that is however substantial: the really relevant

differences are in estimate (b) and in the range of exponents, which is the same

as the one in [23]. In the same range of exponents of [24] the positivity could be

achieved by a slight tweak in the approach of [24]. However we have not been able

to find a similar modification of the arguments of [23]. For this reason our proof

of Proposition 2.1 differs from both that of [24] and that of [23]. However we still

make use of some crucial discoveries in [24] and we will refer to that paper for the

proofs of some relevant lemmas. From now on, in order to simplify our notation,

for any function space X and any map f which depends on t and x , we will write

‖ f ‖X meaning maxt ‖ f (t, ·)‖X .

3. Preliminary Lemmas

3.1. Geometric Lemma

We start with an elementary geometric fact, namely that every vector in Rd can

be written as a “positive” linear combination of elements in a suitably chosen finite

subset 
 of Qd ∩ ∂ B1. This is reminiscent of the geometric lemma in [18]. In both

[24] and [23] the positivity of the coefficients is not needed and hence the authors

can choose 
 as the standard basis of Rd .

Lemma 3.1. There exists a finite set {ξ}ξ∈
 ⊆ ∂ B1 ∩ Qd and smooth nonnegative

coefficients aξ (R) such that for every R ∈ ∂ B1

R =
∑

ξ∈


aξ (R)ξ .
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Proof. For each vector v consider a collection 
(v) = {ξ1(v), . . . , ξd(v)} ⊂ ∂ B1

of linearly independent unit vectors in Qd with the property that the d-dimensional

open symplex �(v) with vertices 0, 2ξ1(v), . . . , 2ξd(v) contains v. Since {�(v) :
v ∈ ∂ B1} is an open cover of ∂ B1, we consider a finite subcover and the corre-

sponding collections 
1 = 
(v1), . . . , 
(vN ), each one consisting of the d unit

vectors {ξ j,1, ...ξ j,d}. We set


 =
N

⋃

j=1


 j =
{

ξ j,i : 1 ≤ j ≤ N , 1 ≤ i ≤ d
}

.

For each fixed j each vector R ∈ Rd can be written in a unique way as linear

combination of the vectors ξ j,1, . . . ξ j,d . If we denote by b j,i (R) the corresponding

coefficients (which obviously depend linearly on R), then the latter are all strictly

positive if R belongs to �(v j ). We consider a partition of unity χ j on the unit

sphere ∂ B1 associated to the cover {�(v j )} and for every ξ j,i = ξ ∈ 
 we set

aξ (R) := χ j (R)b j,i (R).

The coefficients aξ are then smooth nonnegative functions of R.

Remark 3.2. With Lemma 3.1 at hand, it is easy to generate a finite number of

disjoint families 
(1), ..., 
(k) where each one enjoys the property of Lemma 3.1:

it is enough to take suitable rational rotations of one fixed set 
.

3.2. Antidivergences

We recall that the operator ∇�−1 is an antidivergence when applied to smooth

vector fields of 0 mean. As shown in [24, Lemma 2.3] and [23, Lemma 3.5],

however, the following lemma introduces an improved antidivergence operator, for

functions with a particular structure:

Lemma 3.3. (Cp. with [23, Lemma 3.5]) Let λ ∈ N and f, g : Td → R be

smooth functions, and gλ = g(λx). Assume that
∫

g = 0. Then if we set R( f gλ) =
f ∇�−1gλ − ∇�−1(∇ f · ∇�−1gλ +

∫

f gλ), we have that div R( f gλ) = f gλ −
∫

f gλ and, for some C := C(k, p),

‖Dk
R( f gλ)‖L p ≤ Cλk−1‖ f ‖Ck+1‖g‖W k,p for every k ∈ N, p ∈ [1,∞]. (9)

Proof. It is enough to combine [23, Lemma 3.5] and the remark in [23, page 12].

3.3. Slow and Fast Variables

Finally we recall the following improved Hölder inequality, stated as in [24,

Lemma 2.6] (see also [9, Lemma 3.7]): if λ ∈ N and f, g : Td → R are smooth

functions, then we have

‖ f (x)g(λx)‖L p ≤ ‖ f ‖L p‖g‖L p +
C(p)

√
d‖ f ‖C1‖g‖L p

λ1/p
(10)
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and
∣

∣

∣

∫

f (x)g(λx) dx

∣

∣

∣
≤

∣

∣

∣

∫

f (x)
(

g(λx) −
∫

g
)

dx

∣

∣

∣
+

∣

∣

∣

∫

f

∣

∣

∣
·
∣

∣

∣

∫

g

∣

∣

∣

≤
√

d‖ f ‖C1‖g‖L1

λ
+

∣

∣

∣

∫

f

∣

∣

∣
·
∣

∣

∣

∫

g

∣

∣

∣
. (11)

4. Building Blocks

Let 0 < ρ < 1
4

be a constant . We consider ϕ ∈ C∞
c (Bρ) and ψ ∈ C∞

c (B2ρ)

which satisfy
∫

ϕ = 1, ϕ ≥ 0, ψ ≡ 1 on Bρ .

Given 1 ≪ μ we define the 1-periodic functions

ϕ̄μ(x) :=
∑

k∈Zd

μd/pϕ(μ(x + k))

ψ̄μ(x) :=
∑

k∈Zd

μd/p′
ψ(μ(x + k)) .

Let ω : Rd → R be a smooth 1-periodic function such that ω(x) = x · ξ ′ on

B2ρ(0).

Given 
 as in Lemma 3.1, for any ξ ∈ 
 we chose ξ ′ ∈ ∂ B1 such that ξ ·ξ ′ = 0

and we define

�
μ
ξ (x) := μ−1ω(μ x)(ξ ⊗ ξ ′ − ξ ′ ⊗ ξ).

Notice that div �
μ
ξ is divergence free since �

μ
ξ is skew-symmetric and div �

μ
ξ = ξ

on supp(ψ̄μ) and supp(ϕ̄μ).

For σ > 0 we set

W̃ξ,μ,σ (t, x) := σ 1/p′
div

[

(�
μ
ξ ψ̄μ)(x − μd/p′

σ 1/p′
tξ)

]

�̃ξ,μ,σ (t, x) := σ 1/pϕ̄μ(x − μd/p′
σ 1/p′

tξ) .

Notice that W̃ξ,μ,σ is divergence free since it is also the divergence of the skew-

symmetric matrix �
μ
ξ ψ̄μ. By construction we have

W̃ξ,μ,σ (t, x) = σ 1/p′ [

ψ̄μξ + �
μ
ξ · ∇ψ̄μ

]

(x − μd/p′
σ 1/p′

tξ),

hence the following properties are easily verified:

Lemma 4.1. We have

∂t�̃ξ,μ,σ + div (W̃ξ,μ,σ �̃ξ,μ,σ ) = 0,

div W̃ξ,μ,σ = 0, (12)
∫

W̃ξ,μ,σ = 0, (13)
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W̃ξ,μ,σ �̃ξ,μ,σ (t, x) = σμd/p′
ϕ̄μ(x − μd/p′

σ 1/p′
tξ)ξ , in particular,

∫

W̃ξ,μ,σ �̃ξ,μ,σ = σξ

∫

ϕ = σξ. (14)

For any k ∈ N and any s ∈ [1,∞] one has

‖Dk�̃ξ,μ,σ ‖Ls ≤ C(d, k, s)σ 1/pμk+d(1/p−1/s),

‖∂k
t �̃ξ,μ,σ ‖Ls ≤ C(d, k, s)σ

1+ k−1
p′ μ

k+d( k−1
p′ +1− 1

s
)

(15)

‖Dk W̃ξ,μ,σ ‖Ls ≤ C(d, k, s)σ 1/p′
μk+d(1/p′−1/s),

‖∂k
t W̃ξ,μ,σ ‖Ls ≤ C(d, k, s)σ

k+1
p′ μ

k+d( k+1
p′ − 1

s
)
. (16)

Finally, supp�ξ,μ,σ ∪ suppWξ,μ,σ ⊆ {(x, t) : x − μd/p′
σ 1/p′

tξ ∈ B2ρμ−1 + Zd}
and the support in space is contained in a periodized cylinder

{

x : W̃ξ,μ,σ (x, t) �= 0 or �̃ξ,μ,σ (x, t) �= 0 for some t ≥ 0
}

⊆ B2ρμ−1 + Rξ + Zd . (17)

In our construction ξ will take values in a finite set of ξ ’s, which will be fixed

throughout the iteration, i.e. it is independent of the step q in Proposition 2.1.

The parameter σ will also vary in a finite set, but the cardinality of the latter will

depend (and in fact diverge to infinity) on the iteration step q. In dimension d ≥ 3

we consider suitable translations of W̃ξ,μ,σ and �̃ξ,μ,σ which guarantee that, as ξ

varies in these fixed set of directions, pairs of (W̃ , �̃) with distinct ξ ’s have disjoint

supports. The precise statement is given in the following lemma:

Lemma 4.2. Let d ≥ 3 and 
 ⊆ Sd−1 ∩ Q be a finite number of vectors. Then

there exists μ0 := μ0(d,
) > 0 and a family of vectors {vξ }ξ∈
 ⊆ Rd such that

the periodized cylinders vξ + B2ρμ−1 + Rξ + Zd are disjoint as ξ varies in 
,

provided μ ≥ μ0.

Proof. Set ℓ(v, ξ) := v + Rξ + Zd . It is enough to find {vξ }ξ∈
 ⊂ Rd such

that ℓ(vξ , ξ) ∩ ℓ(vξ ′ , ξ ′) = ∅ whenever ξ �= ξ ′. This claim follows from a simple

induction argument along with the observation that

L
d(Rd\{v′ ∈ Rd : ℓ(v, ξ) ∩ ℓ(v′, ξ ′) = ∅}) = 0

for any v ∈ Rd and any ξ, ξ ′ ∈ Sd−1 ∩ Qd , ξ �= ξ ′. (18)

To verify (18) we notice that ℓ(v, ξ) ∩ ℓ(v′, ξ ′) = ∅ if and only if for every

s, t ∈ R, k ∈ Zd the inequality v′ − v �= tξ − sξ ′ + k holds. In particular any

v′ = v + αξ + βξ ′ + γ ξ ′′ with α, β ∈ R, γ ∈ R\Q and ξ ′′ ∈ Qd\{0} orthogonal

to ξ and ξ ′, has this property. Indeed, if we assume by contradiction the existence

of s, t, k, α, β, γ, ξ ′′ as above such that αξ + βξ ′ + γ ξ ′′ = tξ − sξ ′ + k we get

γ |ξ ′′|2 = k · ξ ′′ ∈ Q that contradicts γ ∈ R\Q and ξ ′′ ∈ Qd\{0}.
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By the previous lemma and by (17) we notice that, if we consider the translations

of

Wξ,μ,σ (t, x) = W̃ξ,μ,σ (t, x − vξ ), �̃ξ,μ,σ (t, x) = �̃ξ,μ,σ (t, x − vξ )

for ξ in a suitable finite set of directions, these functions satisfy the same properties

as in Lemma 4.1 (with the exception of the description of the support, which is now

translated) and moreover they have disjoint support for μ sufficiently large and for

every σ . Notice finally that in fact both μ and σ could vary for different ξ and the

supports would still remain disjoint, as long as μ(ξ) is larger than μ0 for every ξ .

The latter approach is clearly not feasible in dimension d = 2. In that case

we will need to take advantage of the discreteness in the parameter σ as well.

As already mentioned this is more delicate, since the set of values taken by σ

depends on the step q. At each step q we need to choose rather carefully the set

of parameters σ which enter the construction: for distinct values of σ we need to

ensure that their ratio is not too close to 1, compared to the size of μ−1. The relevant

statements depend thus on how the building blocks enter in the definition of the

maps (uq+1, ρq+1, Rq+1). For this reason we detail next the definition of the maps

when d ≥ 3 and show first how to prove Proposition 2.1 in that case. We then give

a detailed description on how to modify the arguments to handle the case d = 2.

5. Iteration Scheme

5.1. Choice of the Parameters

We define first the constant

γ :=
(

1 +
1

p

)

(

min
{ d

p
,

d

p′ ,−1 − d
( 1

p′ −
1

r

)}

)−1

> 0,

where we have used, crucially, that

−1 − d
( 1

p′ −
1

r

)

= d

(

1

p
+

1

r
− 1 −

1

d

)

> 0 .

Notice that, up to enlarging r , we can assume that the quantity in the previous line

is less than 1/2, namely that γ > 2. Hence we set α := 4 + γ (d + 1),

b := max{p, p′}(3(1 + α)(d + 2) + 2),

and

β :=
1

2b
min

{

p, p′, r,
1

b + 1

}

=
1

2b(b + 1)
. (19)

Finally, we choose a0 and M sufficiently large (possibly depending on all previously

fixed parameters) to absorb numerical constants in the inequalities. We set

ℓ := λ−1−α
q , (20)

μq+1 := λ
γ

q+1. (21)
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5.2. Convolution

We first perform a convolution of ρq and uq to have estimates on more than

one derivative of these objects and of the corresponding error. Let φ ∈ C∞
c (B1) be

a standard convolution kernel in space-time, ℓ as in (20) and define

ρℓ := ρq ∗ φℓ, uℓ := uq ∗ φℓ, Rℓ := Rq ∗ φℓ, (ρquq)ℓ := (ρquq) ∗ φℓ.

We observe that (ρℓ, uℓ, Rℓ + (ρquq)ℓ − ρℓuℓ) solves system (6) and by (7), (19)

enjoys the following estimates:

‖Rℓ‖L1 ≤ δq+1,

‖ρℓ − ρq‖L p ≤ Cℓ‖ρq‖C1 ≤ Cℓλα
q C ≤ Cδ

1/p
q+1,

‖uℓ − uq‖
L p′ ≤ Cℓλα

q ≤ Cδ
1/p′

q+1 ,

‖uℓ − uq‖W 1,r ≤ Cℓλα
q ≤ Cδ

1/r
q+1 . (22)

Indeed note that by (19)

ℓλα
q = λ−1

q = δ
1

2bβ

q+1 ≤ δ
max{1/p,1/p′,1/r}
q+1 .

Next observe that

‖∂ N
t ρℓ‖C0 + ‖ρℓ‖C N + ‖uℓ‖W 1+N ,r + ‖∂ N

t uℓ‖W 1,r

≤ C(N )ℓ−N+1(‖ρq‖C1 + ‖uq‖W 2,r )

≤ C(N )ℓ−N+1λα
q

for every N ∈ N\{0}. Using the Sobolev embedding W d,r ⊂ W d,1 ⊂C0 we then

conclude

‖∂ N
t uℓ‖C0 + ‖uℓ‖C N ≤ C(N )ℓ−N−d+2λα

q .

By Young’s inequality we estimate the higher derivatives of Rℓ in terms of ‖Rq‖L1

to get

‖Rℓ‖C N + ‖∂ N
t Rℓ‖C0 ≤ ‖DN ρℓ‖L∞‖Rq‖L1 ≤ C(N )ℓ−N−d

≤ C(N )λ(1+α)(d+N )
q (23)

for every N ∈ N. Finally, for the last part of the error we show below that

‖(ρquq)ℓ − ρℓuℓ‖L1 ≤ Cℓ2λ2α
q ≤

1

4
δq+2, (24)

(where we have assumed that a is sufficiently large). The claim follows a well-

known bilinear trick used often and originating (at least in the context of fluid

dynamics) from the proof of Constantin, E and Titi of the positive part of the

Onsager conjecture. We include a proof for the reader’s convenience.
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Lemma 5.1. Consider a mollification kernel φ compactly supported in time and

space. Then there is a constant C = C(φ) such that for every smooth functions u

and ρ depending on time and space

‖(uρ) ∗ φℓ − u ∗ φℓ ρ ∗ φℓ‖L1

≤ Cℓ2
(

‖∂t u‖L1 + ‖Du‖L1

) (

‖Dρ‖C0 + ‖∂tρ‖C0

)

.

Proof. To simplify our notation we introduce the variable z = (x, t) and set � :=
(uρ)∗φℓ−u∗φℓ ρ∗φℓ. Assume without loss of generality that supp(φ) ⊂ Bd+1

1 ⊆
Rd+1. Simple computations lead to the formula

�(z) :=
1

2

∫ ∫

(u(z − z′) − u(z − z′′))(ρ(z − z′) − ρ(z − z′′))φℓ(z
′)φℓ(z

′′) dz′ dz′′ ,

which in turn implies that

|�(z)| ≤ Cℓ−2d−1‖Dzρ‖C0

∫

Bd+1
ℓ

∫

Bd+1
ℓ

|u(z − z′) − u(z − z′′)| dz′ dz′′ .

Using |u(z − z′) − u(z − z′′)| ≤ |u(z − z′) − u(z)| + |u(z) − u(z − z′′)| and

integrating in the space variable x we reach

‖�(t, ·)‖L1 ≤ Cℓ−d‖Dzρ‖C0

∫

Bd+1
ℓ

∫

|u(t − t ′, x − x ′) − u(t, x)| dx dt ′ dx ′ .(25)

We then use |u(t − t ′, x − x ′)−u(t, x)| ≤ |u(t − t ′, x − x ′)−u(t − t ′, x)|+ |u(t −
t ′, x) − u(t, x)| and estimate separately

∫

Bd+1
ℓ

∫

|u(t − t ′, x − x ′) − u(t − t ′, x)| dx dt ′ dx ′ ≤ Cℓd+2‖Du‖L1

and

∫

Bd+1
ℓ

∫

|u(t − t ′, x) − u(t, x)| dx dt ′ dx ′ ≤ Cℓd+2‖∂t u‖L1

Combining these last estimates with (25) we infer the desired conclusion.

5.3. Definition of the Perturbations

Let μq+1 > 0 be as in (21) and let χ ∈ C∞
c (− 3

4
, 3

4
) such that

∑

n∈Z
χ(τ −n) =

1 for every τ ∈ R. Let χ̄ ∈ C∞
c (− 4

5
, 4

5
) be a nonnegative function satisfying χ̄ = 1

on [− 3
4
, 3

4
]. Notice that

∑

n∈Z
χ̄ (τ − n) ∈ [1, 2] and χ · χ̄ = χ .

Fix a parameter κ = 20
δq+2

and consider two disjoint sets 
1, 
2 as in Lemma 3.1.

Next, define [i] to be 1 or 2 depending on the congruence class of i . Finally, consider

the building blocks introduced in Sect. 4 in such a way that, for ξ ∈ ∪2
i=1


i , their
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spatial supports are disjoint. We define the new density and vector field by adding

to ρℓ and uℓ a principal term and a smaller corrector, namely we set

ρq+1 := ρℓ + θ
(p)
q+1 + θ

(c)
q+1 ,

uq+1 := uℓ + w
(p)
q+1 + w

(c)
q+1 .

The principal perturbations are given, respectively, by

w
(p)
q+1(t, x) =

∑

n≥12

χ̄(κ|Rℓ(t, x)| − n)
∑

ξ∈
[n]

Wξ,μq+1,n/κ(λq+1t, λq+1x),

θ
(p)
q+1(t, x) =

∑

n≥12

χ(κ|Rℓ(t, x)| − n)

∑

ξ∈
[n]

aξ

(

Rℓ(t, x)

|Rℓ(t, x)|

)

�ξ,μq+1,n/κ(λq+1t, λq+1x) ,

where we understand that the terms in the second sum are all 0 at points where Rℓ

vanishes. In the definition of w(p) and θ (p) the first sum runs for n in the range

12 ≤ n ≤ 10Cℓ−dδ−1
q+2 ≤ Cλd(1+α)+2βb2

q ≤ Cλd(1+α)+1
q . (26)

Indeed χ(κ|Rℓ(t, x)| − n) = 0 if n ≥ 20δ−1
q+2‖Rℓ‖C0 + 1 and by (23) we obtain

an upper bound for n.

The aim of the corrector term for the density is to ensure that the overall addition

has zero average:

θ
(c)
q+1 := −

∫

θ
(p)
q+1(t, x) dx .

The aim of the corrector term for the vector field is to ensure that the overall

perturbation has zero divergence. Thanks to (13), we can apply Lemma 3.3 to

define

w
(c)
q+1 := −

∑

n≥12

∑

ξ∈
[n]

R
[

∇χ̄ (κ|Rℓ(t, x)| − n) · Wξ,μq+1,n/κ(λq+1t, λq+1x)
]

.

Moreover, since Wξ,μq+1,n/κ is divergence-free, the argument insideRhas 0 average

for every t ≥ 0.

Notice finally that the perturbation equals 0 on every time slice where Rℓ van-

ishes identically.

6. Proof of the Proposition 2.1 in the Case d ≥ 3

Before coming to the main arguments, we record some straightforward esti-

mates for the “slowly varying coefficients”.



E. Brué et al.

Lemma 6.1. For m ∈ N, N ∈ N\{0} and n ≥ 2 we have

‖∂m
t χ(κ|Rℓ| − n)‖C N + ‖∂m

t χ̄ (κ|Rℓ| − n)‖C N

≤ C(m, N )δ
−2(N+m)
q+2 ℓ−(N+m)(1+d) ≤ C(m, N )λ(N+m)(d+2)(1+α)

q

‖∂m
t (aξ (

Rℓ

|Rℓ| ))‖C N

≤ C(m, N )δ−N−m
q+2 ℓ−(N+m)(1+d) ≤ C(m, N )λ(N+m)(d+2)(1+α)

q

on {χ(κ|Rℓ| − n) > 0}.

6.1. Estimate on ‖θq+1‖L p and on infTd θq+1

We apply the improved Hölder inequality of (10), Lemma 6.1 and (26) to get

‖θ (p)
q+1‖L p ≤

∑

n≥12

∑

ξ∈
[n]

‖χ(κ|Rℓ(t, x)| − n)aξ

(

Rℓ(t,x)
|Rℓ(t,x)|

)

‖L p

‖�ξ,μq+1,n/κ(λq+1t, λq+1x)‖L p

+
1

λ
1/p
q+1

∑

n≥12

∑

ξ∈
[n]

‖χ(κ|Rℓ(t, x)| − n)aξ

(

Rℓ(t,x)
|Rℓ(t,x)|

)

‖C1

‖�ξ,μq+1,n/κ(λq+1t, λq+1x)‖L p

≤ C
∑

n≥12

‖(n/k)1/pχ(κ|Rℓ(t, x)| − n)‖L p

+ Cλ
−1/p
q+1 δ

1/p
q+2λ

(d+2)(1+α)+(1+1/p)((d(1+α)+1))
q

≤ C‖Rℓ‖1/p

L1 + Cλ
−1/p
q+1 δ

1/p
q+2λ

3(d+2)(1+α)
q

≤ Cδ
1/p
q+1,

(27)

provided that in the second last inequality we use (d +2)(1+α)+(1+1/p)((d(1+
α) + 1)) ≤ 3(1 + α)(d + 2) and in the last inequality we use (22).

Next, by means of (11) applied to the λ−1
q+1-periodic function (�ξ,μq+1,n/κ

(λq+1t, λq+1x), by (15) (precisely ‖�ξ,μq+1,n/κ‖L1 ≤ ( n
κ
)1/pμ

−d/p′

q+1 ), Lemma 6.1

and (26), we estimate

|θ (c)
q+1(t)| ≤ Cλ−1

q+1

∑

n≥12

∑

ξ∈
[n]

‖χ(κ|Rℓ| − n)aξ

(

Rℓ

|Rℓ|

)

‖C1‖�ξ,μq+1,n/κ‖L1

+
∑

n≥12

∑

ξ∈
[n]

‖χ(κ|Rℓ| − n)aξ

(

Rℓ

|Rℓ|

)

‖L1‖�ξ,μq+1,n/κ‖L1

≤ Cλ−1
q+1μ

−d/p′

q+1 λ3(1+α)(d+2)
q

+ Cμ
−d/p′

q+1

∑

n≥12

‖χ((n/κ)1/pκ|Rℓ| − n)aξ

(

Rℓ

|Rℓ|

)

‖L1

≤
1

2
δ

1/p
q+1 + μ

−d/p′

q+1 ‖Rℓ‖1/p

L1 ≤ δ
1/p
q+1.
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From the latter inequality, since θ
(p)
q+1 is nonnegative, we also deduce that

inf
Td

θq+1(t) ≥ −θ
(c)
q+1(t) ≥ −δ

1/p
q+1 ,

namely Statement (b) of Proposition 2.1.

6.2. Estimate on ‖wq+1‖L p′ and on ‖Dwq+1‖Lr

Exactly with the same computation as in (27), replacing p with p′, we have

that

‖w(p)
q+1‖L p′ ≤ C‖Rℓ‖1/p′

L1 + Cλ
−1/p′

q+1 δ
1/p′

q+2λ3(d+2)(1+α)
q ≤ Cδ

1/p′

q+1 .

Concerning the corrector term w
(c)
q+1, we use (16) (precisely ‖Wξ,μq+1,n/κ‖

L p′ ≤
( n
κ
)1/p′ ≤ λ

(d+2)(1+α)
q ) Lemma 3.3 and (26) to get

‖w(c)
q+1‖L p′ ≤

1

λq+1

∑

n≥12

∑

ξ∈
[n]

‖χ̄ (κ|Rℓ| − n)‖C2‖Wξ,μq+1,n/κ‖
L p′

≤ Cλ−1
q+1

∑

n≥12

λ2(d+2)(1+α)
q (n/κ)1/p′

≤ Cλ−1
q+1δ

1/p′

q+2λ4(d+2)(1+α)
q ≤ δ

1/p′

q+2 ≤ δ
1/p′

q+1 .

(28)

Computing the gradient of w
(p)
q+1 and combining Lemma 6.1 with (16) we have

‖Dw
(p)
q+1‖Lr ≤

∑

n≥12

∑

ξ∈
[n]

‖χ̄ (κ|Rℓ| − n)‖C1‖Wξ,μq+1,n/κ‖Lr

+
∑

n≥12

∑

ξ∈
[n]

λq+1‖DWξ,μq+1,n/κ‖Lr

≤ Cδ
1/p′

q+2λ
3(1+α)(d+2)+2+bγ d(1/p′−1/r)
q

+ Cδ
1/p′

q+2λ
b+3(1+α)(d+2)+bγ (1+d(1/p′−1/r))
q

≤ δ
1/p′

q+2 ≤ δ
1/r
q+1.

Concerning the corrector, by Lemma 3.3 and computations similar to those above,

‖Dw
(c)
q+1‖Lr ≤ C

∑

n≥12

∑

ξ∈
[n]

‖χ̄ (κ|Rℓ| − n)‖C3‖Wξ,μq+1,n/κ‖Lr

≤ Cδ
1/p′

q+2λ5(1+α)(d+2)
q μ

d( 1
r
− 1

p′ )

q+1 ≤ δ
1/p′

q+2λ
5(1+α)(d+2)−b(1+1/p)
q

≤ δ
1/r
q+1.
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6.3. New Error Rq+1

By definition the new error Rq+1 must satisfy

−div Rq+1 = ∂tρq+1 + div (ρq+1uq+1)

= div (θ
(p)
q+1w

(p)
q+1 − Rℓ) + ∂tθ

(p)
q+1 + ∂tθ

(c)
q+1

+ div (θ
(p)
q+1uℓ + ρℓwq+1 + θ

(p)
q+1w

(c)
q+1) + div ((ρquq)ℓ − ρℓuℓ)

(29)

In the second equality above we have used that (ρℓ, uℓ, Rℓ+(ρquq)ℓ−ρℓuℓ) solves

(6), that div uℓ = div wq+1 = 0, and that θ
(c)
q+1 is constant in space.

Let us write

∂tθ
(p)
q+1 =

∑

n≥12

∑

ξ∈
[n]

χ(κ|Rℓ| − n)aξ

(

Rℓ

|Rℓ|

)

∂t

[

�ξ,μq+1,n/κ(λq+1t, λq+1x)
]

+
∑

n≥12

∑

ξ∈
[n]

∂t

[

χ(κ|Rℓ| − n)aξ

(

Rℓ

|Rℓ|

)]

�ξ,μq+1,n/κ(λq+1t, λq+1x)

=: (∂tθ
(p)
q+1)1 + (∂tθ

(p)
q+1)2,

by using that �ξ,μq+1,n/κ and Wξ,μq+1,n/κ solve the transport equation (12) and

Lemma 3.1 we get the cancellation of the error Rℓ up to lower order terms

div (θ
(p)
q+1w

(p)
q+1) + (∂tθ

(p)
q+1)1 − div Rℓ

=
∑

n≥12

∑

ξ∈
[n]

∇
[

χ(κ|Rℓ| − n)aξ

(

Rℓ

|Rℓ|

)]

× (�ξ,μq+1,n/κ Wξ,μq+1,n/κ)(λq+1t, λq+1x) − div Rℓ

+
∑

n≥12

∑

ξ∈
[n]

χ(κ|Rℓ| − n)aξ

(

Rℓ

|Rℓ|

)

λq+1

×
[

∂t�ξ,μq+1,n/κ + div (�ξ,μq+1,n/κ Wξ,μq+1,n/κ)
]

(λq+1t, λq+1x)

=
∑

n≥12

∑

ξ∈
[n]

∇
[

χ(κ|Rℓ| − n)aξ

(

Rℓ

|Rℓ|

)]

×
[

(�ξ,μq+1,n/κ Wξ,μq+1,n/κ)(λq+1t, λq+1x) −
n

κ
ξ
]

+
∑

n≥12

∑

ξ∈
[n]

∇
[

χ(κ|Rℓ| − n)aξ

(

Rℓ

|Rℓ|

)] n

κ
ξ − div Rℓ

=
∑

n≥12

∑

ξ∈
[n]

∇
[

χ(κ|Rℓ| − n)aξ

(

Rℓ

|Rℓ|

)]

×
[

(�ξ,μq+1,n/κ Wξ,μq+1,n/κ)(λq+1t, λq+1x) −
n

κ
ξ
]

+ div (R̃ℓ − Rℓ), (30)

where

R̃ℓ :=
∑

n≥12

χ(κ|Rℓ| − n)
Rℓ

|Rℓ|
n

k
.
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We have

|Rℓ − R̃ℓ| ≤
∣

∣

∣

11
∑

n=−1

χ(κ|Rℓ| − n)Rℓ

∣

∣

∣
+

∣

∣

∣

∑

n≥12

χ(κ|Rℓ| − n)

(

Rℓ

|Rℓ|
n

k
− Rℓ

)

∣

∣

∣

≤
13

κ
+

∑

n≥12

χ(κ|Rℓ| − n)

∣

∣

∣
|Rℓ| −

n

κ

∣

∣

∣

≤
13

20
δq+2 +

3

40
δq+2 ≤

15

20
δq+2. (31)

We can now define Rq+1 which satisfies (29) as

−Rq+1 :=Rquadr + (R̃ℓ − Rℓ) + Rtime + θ
(p)
q+1uℓ + ρℓwq+1 + θ

(p)
q+1w

(c)
q+1

+ [(ρquq)ℓ − ρℓuℓ],

where

Rquadr :=
∑

n≥12

∑

ξ∈
[n]

R

[

∇
(

χ(κ|Rℓ| − n)aξ

(

Rℓ

|Rℓ|

))

·
(

(�ξ,μq+1,n/κ Wξ,μq+1,n/κ)(λq+1t, λq+1x) −
n

κ
ξ
)]

,

Rtime := ∇�−1((∂tθ
(p)
q+1)2 + ∂tθ

(c)
q+1 + m),

m :=
∑

n≥12

∑

ξ∈
[n]

∫

∇
[

χ(κ|Rℓ| − n)aξ

(

Rℓ

|Rℓ|

)]

×
[

(�ξ,μq+1,n/κ Wξ,μq+1,n/κ)(λq+1t, λq+1x) −
n

κ
ξ
]

dx .

Notice that Rquadr is well defined since by (14) the function

(�ξ,μq+1,n/κ Wξ,μq+1,n/κ)(λq+1t, λq+1x)− n
κ
ξ has 0 mean. We now estimate in L1

each term in the definition of Rq+1. From the second equality in (29) and since

the average of (∂tθ
(p)
q+1)2 is m by integration by parts, we deduce that (∂tθ

(p)
q+1)2 +

∂tθ
(c)
q+1 + m has 0 mean, so that Rtime is well defined. Recall that the estimate on

‖(ρquq)ℓ − ρℓuℓ‖L1 has been already established in (24).

By the property (9) of the antidivergence operator R, Lemma 6.1 and (26) we

have

‖Rquadr‖L1 ≤
C

λq+1

∑

n≥12

∑

ξ∈
[n]

‖χ(κ|Rℓ| − n)aξ

(

Rℓ

|Rℓ|

)

‖C2

× ‖�ξ,μq+1,n/κ Wξ,μq+1,n/κ‖L1

≤ Cδq+2

λ
4(1+α)(d+2)+2
q

λq+1
≤

δq+2

20
.

To estimate the terms which are linear with respect to the fast variables, we take

advantage of the concentration parameter μq+1. First of all, by Calderon-Zygmund
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estimates we get

‖Rtime‖L1 ≤ C‖(∂tθ
(p)
q+1)2 + ∂tθ

(c)
q+1 − m‖L1 ≤ ‖(∂tθ

(p)
q+1)2‖L1 + |∂tθ

(c)
q+1| + |m|.

Next, notice that

‖(∂tθ
(p)
q+1)2‖L1 ≤ C

∑

n≥12

∑

ξ∈
[n]

‖∂t

[

χ(κ|Rℓ| − n)aξ

(

Rℓ

|Rℓ|

)

]

‖C0‖�ξ,μq+1,n/κ‖L1

≤ Cδ
1/p
q+2λ

3(1+α)(d+2)
q μ

−d/p′

q+1 ≤
δq+2

20
. (32)

From (32), (12) and (11) we get

|∂tθ
(c)
q+1| + |m|

≤ ‖(∂tθ
(p)
q+1)2‖L1

+

∣

∣

∣

∣

∣

∣

∑

n≥12

∑

ξ∈
[n]

∫

χ(κ|Rℓ| − n)aξ

(

Rℓ

|Rℓ|

)

∂t

[

�ξ,μq+1,n/κ(λq+1t, λq+1x)
]

dx

∣

∣

∣

∣

∣

∣

+ |m|

≤
δq+2

20

+

∣

∣

∣

∣

∣

∣

∑

n≥12

∑

ξ∈
[n]

∫

χ(κ|Rℓ| − n)aξ

(

Rℓ

|Rℓ|

)

div

×
[

(�ξ,μq+1,n/κ Wξ,μq+1,n/κ)(λq+1t, λq+1x)
]

dx
∣

∣ + |m|

=
δq+2

20
+ 2

∣

∣

∣

∣

∣

∣

∑

n≥12

∑

ξ∈
[n]

∫

∇
[

χ(κ|Rℓ| − n)aξ

(

Rℓ

|Rℓ|

)]

·
[

(�ξ,μq+1,n/κ Wξ,μq+1,n/κ)(λq+1t, λq+1x) −
n

k
ξ
]

dx

∣

∣

∣

≤
δq+2

20
+

2
√

d

λq+1

∑

n≥12

∑

ξ∈
[n]

‖χ(κ|Rℓ| − n)aξ

(

Rℓ

|Rℓ|

)

‖C2

‖�ξ,μq+1,n/κ Wξ,μq+1,n/κ‖L1

≤
δq+2

20
+ Cλ−1

q+1δq+2λ
4(1+α)(d+2)
q ≤

1

10
δq+2.

Similarly, we have that

‖θ (p)
q+1uℓ + ρℓw

(p)
q+1‖L1 ≤ ‖θ (p)

q+1‖L1‖uℓ‖L∞ + ‖ρℓ‖L∞‖w(p)
q+1‖L1

≤
∑

n≥10

∑

ξ∈
[n]

‖χ(κ|Rℓ| − n)aξ

(

Rℓ

|Rℓ|

)

‖L∞‖�ξ,μq+1,n/κ‖L1‖uℓ‖L∞

+ ‖ρℓ‖L∞‖χ̄ (κ|Rℓ| − n)‖L∞‖Wξ,μq+1,n/κ‖L1

≤ Cδ
1/p
q+2λ

2(1+α)(d+2)
q μ

−d/p′

q+1 + Cδ
1/p′

q+2λ2(1+α)(d+2)
q μ

−d/p
q+1 ≤

δq+2

20
.
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In the last inequality we used 2βb2 ≤ 1, the definition of γ , and b(1 + 1/p) ≥
2(1 + α)(d + 2) + 1.

Finally, from (27) and (28)

‖(ρℓ + θ
(p)
q+1)w

(c)
q+1‖L1 ≤ (‖ρℓ‖C1 + ‖θ (p)

q+1‖L p )‖w(c)
q+1‖L p′

≤ Cλ4(1+α)(d+2)+α
q λ−1

q+1 ≤
1

20
δq+2.

6.4. Estimates on Higher Derivatives

By the choice of α, since in particular α ≥ 2 + γ (d + 1), we have that

‖ρq+1‖C1 ≤ ‖ρℓ‖C1 + ‖θq+1‖C1

≤ ‖ρq‖C1 +
∑

n≥10

∑

ξ∈
[n]

‖χ(κ|Rℓ| − n)aξ

(

Rℓ

|Rℓ|

)

‖C1

‖�ξ,μq+1,n/κ(λq+1x)‖C1

≤ Cλα
q + Cλ3(1+α)(d+2)

q λq+1μ
1+d/p
q+1 ≤ λα

q+1.

An entirely similar estimate is valid for ‖∂tρq+1‖C0 and the one for ‖uℓ+w
(p)
q+1‖W 2,r

is analogous. Concerning w
(c)
q+1, we use Lemma 3.3 and (26)

‖w(c)
q+1‖W 2,r ≤

∑

n≥12

∑

ξ∈
[n]

λq+1‖χ̄ (κ|Rℓ| − n)‖C4‖Wξ,μq+1,n/κ‖W 2,r

≤ Cλ6(1+α)(d+2)
q λ2

q+1μ
2+d(1/p′−1/r)
q+1 ≤ λα

q+1.

It remains just to estimate

‖∂t uq‖L1 ≤ ‖∂t uℓ‖L1 + ‖∂tw
(p)
q+1‖L1 + ‖∂tw

(c)
q+1‖L1 .

From (16) and Lemma 6.1

‖∂tw
(p)
q+1‖L1 ≤

∑

n≥12

∑

ξ∈
[n]

λq+1‖∂t Wξ,μq+1,n/κ‖L1

+ ‖∂t χ̄ (κ|Rℓ| − n)‖L∞‖Wξ,μq+1,κ/n‖L1

≤ Cδ
2/p′

q+2λ
(1+2/p′)(d(1+α)+1)
q λq+1μ

1+γ (1+d(2/p′−1))

q+1

≤ λ
2+γ (d+1)

q+1 ≤ λα
q+1.

A similar computation is valid for ‖∂tw
(c)
q+1‖L1 .
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7. The Building Blocks and the Iterative Scheme in Dimension d = 2

We describe in this section how the proof of Proposition 2.1, concluded above in

dimension d ≥ 3, should be modified to cover the case d = 2. The main obstruction

in this regard is that the building blocks in Sect. 4 cannot be translated, as we did in

dimension d ≥ 3 in Lemma 4.2, to make sure that their support is disjoint in space.

In dimension d = 2, we need to make them disjoint in space-time, observing that

they are described by a small ball which translates at constant speed according to

a translating vector field which is supported on a slightly larger ball.

7.1. Iteration Scheme and Definition of the Perturbations

We choose the parameters as in Sect. 5.1 and we perform the convolution step

as in Sect. 5.2. Similarly, the cutoffs χ ∈ C∞
c (− 3

4
, 3

4
) and χ̄ ∈ C∞

c (− 4
5
, 4

5
) are

chosen as in Sect. 5.3, as well as κ = 20
δq+2

and the sets 
1, 
2.

Starting from the building blocks introduced in Sect. 4 we will choose positive

real numbers vn (which will satisfy |vn −n| ≤ 1) and real numbers aξ,n and define

Wξ,μq+1,vn/κ(t, x) := W̃ξ,μq+1,vn/κ(t, x − aξ,nξ),

�ξ,μq+1,vn/κ(t, x) := �̃ξ,μq+1,vn/κ(t, x − aξ,nξ)

for any n ≥ 1 and ξ ∈ 
[n]. The difficult part will be to choose vn and aξ,n so that

Wξ,μq+1,vn/κ · �ξ ′,μq+1,vm/κ(t, x) = 0 for any (x, t) ∈ T2 × R+, (33)

whenever ξ �= ξ ′, |n − m| ≤ 1 and n, m ≤ Cλ
d(1+α)+1
q .

Assuming for the moment that this can be done, we define the new density

and vector field as we did in Sect. 5.3 up to replacing all functions �ξ,μq+1,n/κ and

Wξ,μq+1,n/κ with �ξ,μq+1,vn/κ and Wξ,μq+1,vn/κ . The proof of the proposition would

then follow the same arguments: we only need to modify sligthly the definition of

Rq+1 . Most of this section will be devoted to choose vn and aξ,n so that (33) holds.

Once we have achieved the latter, we will then show how to change the definition

of Rq+1.

7.2. Geometric Arrangement

The main geometric construction is given by the following proposition. 
1∪
2

is the set of possible space directions for the building blocks, while the sequence

{wn} is in fact the set of values μ
d/p′

q+1

(

n
κ

)1/p′
. Observe that ,when wn

wn−1
is a rational

number, the relative position of the space supports of the building blocks is time-

periodic. If each space support were merely a point we could easily make them

always disjoint and in fact we could identify their minimum distance. If we write
wn

wn−1
= 1 + A(n)

N (n)
with A(n) and N (n), intuitively such minimum distance should

be made comparable to 1
N (n)

.
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Proposition 7.1. Consider two disjoint sets 
1,
2 ⊂ R2 as in Lemma 3.1. Let

{wn}n∈N\{0} ⊂ R satisfy

wn

wn−1
= 1 +

A(n)

N (n)
< 10 for every n ≥ 2,

where N (n) ≤ C̄n, for a given C̄ > 0.

Then there exists a constant c0 := c0(C̄,
1,
2) > 0 with the following

property. For every ξ ∈ 
k and n ∈ N there exists aξ,n ∈ [0, 1] such that the family

of curves

xξ,n(t) := (wn t + aξ,n)ξ with ξ ∈ 
k, n ≡ k mod 2 and k ∈ {1, 2}

satisfies

dT2(xξ,n(t), xξ ′,m(t)) ≥
c0

n
for every t ≥ 0, when |n − m| ≤ 1 and ξ �= ξ ′.

The proof of the proposition is based on the following elementary lemma:

Lemma 7.2. Fix two different vectors ξ, ξ ′ ∈ S1 ∩Q2 and a number w = 1+ A
N

<

10, with A and N positive integers and coprime. Then there exists C = C(ξ, ξ ′)
such that

(i) L 1([0, 1]\{s : dT2(tξ, (t + s)ξ ′) ≥ ε ∀ t ≥ 0}) < Cε;

(ii) L 1([0, 1]\{s : dT2(tξ, (tw + s)ξ ′) ≥ εN−1 ∀ t ≥ 0}) < Cε.

Proof. Set Tint := {(t, t ′) : ξ t = ξ ′t ′ on T2} and observe that Tint ⊂ Q2 since the

matrix with columns ξ and ξ ′ is invertible with rational coefficients. Moreover Tint

is an additive discrete subgroup of R2, hence it is a free group of rank k ∈ {0, 1, 2}.
Denoting by T and T ′ the period of, respectively, t → ξ t and t → ξ ′t one has that

(T, 0), (0, T ′) ∈ Tint . This implies that the rank of Tint is two, hence we can find

two generators (t1, t ′1), (t2, t ′2) ∈ Tint .

Let us finally introduce A := {ξ t ∈ T2 : (t, s) ∈ Tint for some s ∈ R} to

denote the set of points in T2 where the supports of the curves t → tξ and t → tξ ′

intersect.

Let us now prove (i). Let s ∈ [0, 1] be such that there exists t ≥ 0 satisfying

dT2(tξ, (t + s)ξ ′) < ε. There exists q ∈ A such that dT2(tξ, q) ≤ c̄ε, where

c̄ = c̄(ξ, ξ ′) > 1, hence up to modifying t we can assume that tξ =: q ∈ A and

dT2(q, (t + s)ξ ′) ≤ 2c̄ε. Since tξ ∈ A there exists t ′ such that (t, t ′) ∈ Tint and,

exploiting the fact that (t1, t ′1), (t2, t ′2) ∈ Tint are generators, we can find k1, k2 ∈ Z

such that t = k1t1 + k2t2 and t ′ = k1t ′1 + k2t ′2. The following identity holds on T2

(t + s)ξ ′ = (k1t1 + k2t2)ξ
′ + sξ ′ = (k1(t1 − t ′1) + k2(t2 − t ′2))ξ

′ + q + sξ ′,

therefore dT2((k1(t1 − t ′1) + k2(t2 − t ′2) + s)ξ ′, 0) ≤ 2c̄ε. This implies −s ∈
B2c̄ε(k1(t1−t ′1)+k2(t2−t ′2))+ZT ′. Notice that the set E := {k1(t1−t ′1)+k2(t2−t ′2) :



E. Brué et al.

k1, k2 ∈ Z} is discrete since t1−t ′1, t2−t ′2 are rational numbers. Any two consecutive

points in E have a fixed distance c = c(ξ, ξ ′) > 0 and E +ZT ′ = E . In particular

L
1([0, 1]\{s : dT2(tξ, (t + s)ξ ′) ≥ ε ∀ t ≥ 0})

≤ L
1

(

[−1, 1] ∩
⋃

r∈E

B2c̄ε(r)

)

≤
4c̄

c
ε.

Let us now pass to the proof of (ii). Let s ∈ [0, 1] be such that dT2(tξ, (t +
s)wξ ′) < ε

N
for some t ≥ 0. Arguing as above we can assume that tξ = q ∈ A,

dT2(q, (tw + s)ξ ′) ≤ 10c̄εN−1 and we can find t ′ ∈ R and k1, k2 ∈ Z such that

(t, t ′) ∈ Tint and k1t1 + k2t2 = t , k1t ′1 + k2t ′2 = t ′. We have the following identity

on T2:

(tw + s)ξ ′ = tξ ′ + (t (w − 1) + s)ξ ′ = (k1t1 + k2t2)ξ
′ + (t (w − 1) + s)ξ ′

= q + (k1(t1 − t ′1) + k2(t2 − t ′2) + t (w − 1) + s)ξ ′

= q + (k1(wt1 − t ′1) + k2(wt2 − t ′2) + s)ξ ′.

Thus, arguing as above we deduce −s ∈ B10c̄εN−1((k1(wt1 − t ′1)+k2(wt2 − t ′2)))+
ZT ′.

Notice now that the set E := {k1(wt1 − t ′1) + k2(wt2 − t ′2) : k1, k2 ∈ Z} is

discrete, any two consecutive points in E have a fixed distance c ≥ c′(ξ, ξ ′)N−1 >

0 and E + ZT ′ = E . In particular,

L
1([0, 1]\{s : dT2(tξ, (tw + s)ξ ′) ≥ ε ∀ t ≥ 0})

≤ L
1

(

[0, 1] ∩
⋃

r∈E

B10c̄εN−1(r)

)

≤
2

c′(ξ, ξ ′)N−1
10c̄εN−1 ≤

20c̄

c′(ξ, ξ ′)
ε.

Proof of Proposition 7.1. Let us write


k = {ξm,k : m = 1, ..., m0} for k = 1, 2 .

The key ingredient is Lemma 7.2 and indeed the constant c0 is chosen such that

2CC̄c0m0 < 1 , (34)

where C is the constant appearing in Lemma 7.2(i)&(ii).

Notice that we are interested in pairs (ξm,k, n) such that k ≡ n mod 2. Without

loss of generality we can thus assume that k is a function of n and takes the values

1 or 2 depending on the congruence class of n modulo 2. In particular we will use

the shorthand notation am,n for the point aξm,k ,n . We will find am,n inductively, after

endowing the set {1, . . . , m0}×N\{0} with the lexicographic order. More precisely

we write (m, n) ≤ (m′, n′) if

• either n < n′
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• or n = n′ and m < m′.

At the starting point of the induction we set a1,1 = 0. For the inductive step, we fix

(m′, n′) and assume that am,n has been already defined for any (m, n) ≤ (m′, n′).
If m′ < m0 we need to define am′+1,n′ , otherwise we have m′ = m0 and we need

to define a1,n′+1. We explain how to proceed just in the case m′ < m0, since the

other case follows from the same argument. To fix ideas, let us assume that the

congruence class of n′ is 1, so that the congruence class of n′ − 1 is 2. We look for

am′+1,n′ ∈ [0, 1] such that

dT2((twn′ + am′+1,n′)ξm′+1,1, xn′
ξm,1

(t)) ≥ c0 ≥
c0

n′

for every t > 0, when 1 ≤ m < m′ + 1

and

dT2((twn′ + am′+1,n′)ξm′+1,1, xn′−1
ξm,2

(t)) ≥
c0

n′

for every t > 0, when 1 ≤ m ≤ m0

(we interpret the latter condition as empty when n′ = 1). Define the sets G1
m, G2

m ⊆
[0, 1] as

G1
m := {a : dT2(twn′ξm′+1,1 + aξm′+1,n′ , xn′

ξm,1
(t)) ≥ c0 for every t > 0}

G2
m := {a : dT2(twn′ξm′+1,1 + aξm′+1,n′ , xn′−1

ξm,2
(t)) ≥

c0

n′ for every t > 0} .

Finally, let G := G1
1 ∩ . . . ∩ G1

m′ ∩ G2
1 ∩ . . . ∩ G2

m0
be their intersection. Note that

the existence of am′+1,n′ is equivalent to the fact that G is not empty. According to

Lemma 7.2(i) L 1([0, 1]\G1
m) ≤ Cc0 for every m ∈ {1, . . . , m′}, while according

to Lemma 7.2(ii) L 1([0, 1]\G2
m) ≤ CC̄c0 for every m ∈ {1, . . . , m0}. In partic-

ular, by our choice of c0 in (34) we have L 1([0, 1]\G) ≤ C(C̄m0 + m′)c0 ≤
2CC̄m0c0 < 1, which in turn implies that G is not empty and completes the proof.

7.3. Suitable Discretized Speeds

Clearly we cannot apply the geometric arrangement of the previous section if we

choose vn = n for the values of the parameter σ since the rations of μ
d/p′

q+1

(

n
κ

)1/p′

are not even guaranteed to be rational. The aim of the next lemma is to show that

it suffices to perturb {n}n∈N\{0} slightly to a new sequence {vn}n∈N\{0} in order to

achieve that the
wn+1

wn
are rational numbers with a denominator which is not too

large (in fact comparable to n).

Lemma 7.3. Fix 1 ≤ p′ < ∞. Then there exist C̄ > 0, N̄ ∈ N depending only on

p′, functions A : N\{0, 1} → {0, N̄ }, N : N\{0, 1} → N\{0} and v : N\{0} → R+

such that, for every n ≥ 1 the following holds:

(i) |vn − n| ≤ 1;
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(ii)
(

vn

vn−1

)1/p′

= 1 + An

Nn
;

(iii) Nn < C̄n.

Proof of Proposition 7.1. We prove the statement by induction on n. For n = 1

and n = 2 we set v1 = v2 = 1, A2 = 0, N2 = 1, and the statement is satisfied.

Suppose now that the claim is verified for n̄. If vn̄ ≥ n̄, we set vn̄+1 = vn̄ , An̄+1 = 0,

Nn̄+1 = Nn̄ and the claim is verified. Hence we can assume that vn̄ < n̄. We claim

that we can choose An̄+1 = N̄ , vn̄+1 and Nn̄+1 with

vn̄+1 ∈ [n̄ + 1, n̄ + 2] and Nn̄+1 = N̄
[(vn̄+1

vn̄

)1/p′

− 1
]−1

∈ N. (35)

Indeed, considering the continuous, decreasing function

f (t) = N̄
[( t

vn̄

)1/p′

− 1
]−1

,

it is enough to show that

1 ≤ f (n̄ + 1) − f (n̄ + 2)

= N̄v
1/p′

n̄

(n̄ + 2)1/p′−1/p′

n̄+1

((n̄ + 1)1/p′ − v
1/p′

n̄ )((n̄ + 2)1/p′ − v
1/p′

n̄ )
=: N̄ g(n̄, vn̄)

to find t ∈ [n̄ + 1, n̄ + 2] such that f (t) ∈ N. Since the function g(n̄, vn̄) is

increasing with respect to the variable vn̄ ,

N̄ g(n̄, vn̄) ≥ N̄ g(n̄, n̄ − 1)

= N̄
[((

1 +
2

n̄ − 1

)1/p′

− 1
)−1

−
((

1 +
3

n̄ − 1

)1/p′

− 1
)−1]

.

We finally choose N̄ := N̄ (p′) in such a way that inf n̄≥2 g(n̄, n̄ − 1) ≥ N̄−1; we

notice that this infimum is positive since the function g(n̄, n̄ − 1) is positive for

every n̄ ≥ 2 and, by a simple Taylor expansion, it grows linearly as n̄ → ∞. This

proves the claim (35).

With this choice of vn̄+1 and Nn̄+1, recalling also that vn̄ < n̄, we get that the

statement (iii) is satisfied:

Nn̄+1 ≤ N̄
[(

1 +
1

n̄

)1/p′

− 1
]−1

≤ C̄n̄.
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7.4. Disjointness of the Supports

Set wn := μ
d/p′

q+1

(

vn

κ

)1/p′
where {vn}n≥1 is given by Lemma 7.3. We apply

Proposition 7.1 to 
1, 
2 and {wn}n≥1 (notice that the assumptions are satisfied in

view of Lemma 7.3) obtaining the family {aξ,n : ξ ∈ 
[n]}. Finally, starting from

the building blocks introduced in Sect. 4 we define

Wξ,μq+1,vn/κ(t, x) := W̃ξ,μq+1,vn/κ(t, x − aξ,nξ),

�ξ,μq+1,vn/κ(t, x) := �̃ξ,μq+1,vn/κ(t, x − aξ,nξ)

for any n ≥ 1 and ξ ∈ 
[n], as already explained.

We therefore now show (33), namely that

Wξ,μq+1,vn/κ · �ξ ′,μq+1,vm/κ(t, x) = 0 for any (x, t) ∈ T2 × R+,

whenever ξ �= ξ ′, |n − m| ≤ 1 and n, m ≤ Cλ
d(1+α)+1
q .

Indeed for any fixed t ≥ 0 one has the inclusions

suppWξ,μq+1,vn/κ(t, ·) ⊂ B
2ρμ−1

q+1
(twnξ + aξ,nξ),

supp�ξ ′,μq+1,vm/κ(t, ·) ⊂ B
ρμ−1

q+1
(twmξ ′ + aξ ′,mξ ′),

hence we just need to check that B
2ρμ−1

q+1
(twnξ+aξ,nξ)∩B

ρμ−1
q+1

(twmξ ′+aξ ′,mξ ′) =
∅. Proposition 7.1 guarantees

dT2(twnξ + aξ,nξ, twmξ ′ + aξ ′,mξ ′) ≥
c0

n
,

hence the claim is proven provided that

3

4
μ−1

q+1 ≤
c0

Cλ
d(1+α)+1
q

. (36)

The proof of (36) follows from the choice of μq+1 = λ
bγ
q , and since γ > 1,

b > d(1 + α) + 1.

7.5. Proof of the Proposition 2.1 in the Case d=2

The estimates up to Sect. 6.2 are done in the same exact way, up to observing

that vn/κ is comparable to n/κ up to a factor 2. In Sect. 6.3, we compute in (30)

the product of θ
(p)
q+1 and w

(p)
q+1 in order to see the cancellation of the old error Rℓ;

now it has the expression

θ
(p)
q+1w

(p)
q+1 =

∑

n≥12

∑

ξ∈
[n]

χ(κ|Rℓ| − n)aξ

(

Rℓ

|Rℓ|

)

�ξ,μq+1,vn/κ Wξ,μq+1,vn/κ(λq+1t, λq+1x),
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as a consequence of (33), (26), the fact that χ · χ̄ = χ and χ(κ|Rℓ|−n) ·χ(κ|Rℓ|−
n) = 0 when |n − m| > 1.

Since the average of �ξ,μq+1,n/κ Wξ,μq+1,n/κ which appears from the forth line

of formula (30), in the definition of Rquadr and in m is now vn/κξ rather than n/κξ ,

the definition of R̃ℓ should now be replaced by

R̃ℓ :=
∑

n≥12

χ(κ|Rℓ| − n)
Rℓ

|Rℓ|
vn

κ
,

and the obvious modification takes place for the definition of Rquadr and m. The

estimate (31) now works analogously to give |Rℓ − R̃ℓ| ≤ 17
20

δq+2. The rest of the

estimates work as in Sects. 6.3 and 6.4.

8. Proof of the Ill-Posedness Theorems

8.1. Proof of Theorem 1.4

Without loss of generality we assume T = 1. Let α, b, a0, M > 5, β > 0 be

fixed as in Proposition 2.1. Let a ≥ a0 be chosen such that

∞
∑

q=0

δ
1/p
q+1 ≤

1

32M
.

Let χ0 be a smooth time cutoff which equals 1 in [0, 1/3] and 0 in [2/3, 1],
We set λ = 20a and define the starting triple (ρ0, u0, R0) of the iteration as

follows:

ρ0 = χ0(t) +
(

1 +
sin(λx1)

4

)

(1 − χ0(t)), u0 = 0,

R0 = −∂tχ0
cos(λx1)

4λ
e1 .

Simple computations show that the tripe enjoys (6) with q = 0. Moreover ‖R0‖L1 ≤
Cλ−1 = Cλ−1

0 and thus (7) is satisfied because 2β < 1 (again we need to assume

a0 sufficiently large to absorb the constant). Next ‖∂tρ0‖C0 +‖ρ0‖C1 ≤ Cλ ≤ Cλ0.

Since u0 ≡ 0 and α > 1, we conclude that (8) is satisfied as well.

Next use Proposition 2.1 to build inductively (ρq , uq , Rq) for every q ≥ 1. The

sequence {ρq}q∈N is Cauchy in C(L p) and we denote by ρ ∈ C([0, 1], L p) its

limit. Similarly the sequence of divergence-free vector fields {uq}q∈N is Cauchy in

C([0, 1], L p′
) and C([0, 1], W 1,r ); hence, we define u ∈ C0([0, 1], L p′ ∩ W 1,r )

as its (divergence-free) limit.

Clearly ρ and u solve the continuity equation and ρ is nonnegative on Td by

inf
Td

ρ ≥ inf ρ0 +
∞
∑

q=0

inf(ρq+1 − ρq) ≥
3

4
−

∞
∑

q=0

δ
1/p
q+1 ≥

1

4
.
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Moreover, ρ does not coincide with the solution which is constantly 1, because

‖ρ − 1‖L p ≥ ‖1 − ρ0‖L p −
∞
∑

q=0

‖ρq+1 − ρq‖L p ≥
1

16
− M

∞
∑

q=0

δq+1 > 0.

Finally, since ρ0(t, ·) ≡ 1 for t ∈ [0, 1/3], point (c) in Proposition 2.1 ensures that

ρ(t, ·) ≡ 1 for every t sufficiently close to 0.

8.2. Proof of Theorem 1.3

Let u ∈ C([0, T ], W 1,r (Td , Rd) ∩ L p′
) and ρ ∈ C([0, T ], L p(Td)) for some

p′ ≥ s be given by Theorem 1.4. Since ρ is nonnegative we are in position to

apply Ambrosio’s superposition principle (see e.g. [3, Theorem 3.2]) that provides

a probability measure η on AC([0, T ], Td), supported on the integral curves of the

vector field u in the sense of Definition 1.1, such that ρ(t, ·)L d = (et )#η for any

t ∈ [0, T ]. Above it is not necessary to specify a pointwise representative of u,

indeed given two Borel maps v, w such that v = w = u L d+1-a.e. it holds that

∫ (∫ T

0

|v(γ (s)) − w(γ (s))| ds

)

dη(γ )

=
∫ T

0

(∫

Td

|v(y) − w(y)|ρ(s, y) dL
d(y)

)

ds = 0,

hence η is concentrated on integral curves of v if and only if it is concentrated on

integral curves of w.
Let us now consider the disintegration {ηx }x∈Td of η with respect to the map

e0, which is L d -a.e. well defined, and a pointwise defined regular lagrangian flow
X (t, x) associated to u. Given v, a representative of u, we set

A(v) := {x ∈ Td | t → X (t, x) is an integral curve of v and ηx is not a Dirac delta on t → X (t, x)}.

Notice that, for any x ∈ A(v) there exist at least two integral curves of v starting

at x and

L
d(A(v)�A(w)) = 0 whenever v = w = u L

d+1-a.e.,

since t → X (t, x) is an integral curve of both v and w for L d -a.e. x ∈ Td .

We need to prove that L d(A(v)) > 0. Assume by contradiction that A(v) is

negligible. Then one has the identities

ρ(t, ·)L
d = (et )#η = X (t, ·)#L

d = L
d ,

which lead to a sought contradiction being ρ non constant.
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9. Asymmetric Lusin–Lipschitz Estimates

9.1. Proof of Proposition 1.7

We will prove the inequality up to constants and we assume α ≥ 1/d, since for

any α ∈ (0, 1/d) a simple application of the Young inequality gives

g(x) + g(x)
1
d g(y)1− 1

d = g(x) + g(x)
1−αd

(1−α)d

(

g(x)
α(d−1)
(1−α)d g(y)

d−1
d

)

≤ C(α, d)(g(x) + g(x)αg(y)1−α).

We next introduce the following localized Hardy Littlewood maximal function:

regarding any integrable function f : Td → R as a periodic function on Rd , we

set

M f (x) := sup
0≤R≤3

1

Rd

∫

BR(x)

| f |(z) dz .

We will show below that the conclusion of the proposition holds for

g(x) := (M |Du|q)1/q(x),

where q = αd. In particular the map Lr ∋ Du �→ g ∈ Lr is continuous.

Note first that it suffices to prove the estimate for x, y ∈ {g < ∞} ⊂ {M |Du| <

∞}. On {g = ∞} we can arbitrarily define u to be 0: this will not matter for our

purposes because when one of the two points x, y belong to {g = ∞} the right hand

side of (5) is infinite, making the inequality trivial. On {g < ∞} we wish instead to

define u everywhere in a sensible way. We fix thus a smooth convolution kernel ϕ

supported in the ball of radius 1, assume x ∈ {g < ∞} and consider uk := u ∗ϕ2−k .

Recalling the Poincaré inequality

1

2kd

∫

B
2−k (x)

|u(z) − uk(x)| dz ≤ C2−k M |Du(x)| ≤ C2−k g(x)

(where the constant depends on ϕ), we infer |uk+1(x) − uk(x)| ≤ C2−k g(x). This

implies that {uk(x)}k is a Cauchy sequence and has a limit: we define then u(x) to

be such limit.

We next fix x, y ∈ {g < ∞}, regard u as a periodic function defined on the

whole Rd and set R := |x − y|. W.l.o.g. R ≤ 1. Moreover we recall the classical

inequality

|u(x) − u(y)| ≤ C(d)

(∫

BR(x)

|Du(z)|
|x − z|d−1

dz +
∫

BR(y)

|Du(z)|
|x − z|d−1

dz

)

. (37)

When u ∈ C1 we refer the reader to [22, Lemma 3.1] for a proof. Otherwise,

the inequality can be validated passing to the limit on the respective ones for the

approximating functions uk’s (using that limk uk(x) = u(x), limk uk(y) = u(y)
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and standard facts about convolutions). Then a classical telescoping argument gives

that

∫

BR(x)

|Du(z)|
|x − z|d−1

dz =
+∞
∑

k=0

∫

B
2−k R

(x)\B
2−k−1 R

(x)

|Du(z)|
|x − z|d−1

dz

≤ C(d)RM |Du|(x) . (38)

Recall that α ∈ (1/d, r/d) and fix ε ∈ (0, 1] to be chosen later. We write

∫

BR(y)

|Du(z)|
|y − z|d−1

dz =
∫

BR(y)\BεR(y)

|Du(z)|
|y − z|d−1

dz

+
∫

BεR(y)

|Du(z)|
|y − z|d−1

dz := I + I I.

Let us study I and I I separately. Using the Hölder inequality, we get

I ≤
(∫

BR(y)

|Du(z)|q dz

)1/q (

C(d)

∫ R

εR

1

s(d−1)q ′−d+1
ds

)1/q ′

≤ C(d, q)Rd/q

(

1

Rd

∫

B3R(x)

|Du(z)|q dz

)1/q
1

(Rε)d−1−d/q ′

≤ C(d, q)Rg(x)εd/q ′−d+1 = C(d, q)Rg(x)ε−d/q+1,

where 1
q ′ = 1 − 1

q
and q = αd. For what concerns I I , we argue as in (38) getting

I I ≤ C(d)RεM |Du|(y) ≤ C(d)Rεg(y).

Putting the two estimates together and choosing

ε =

⎧

⎨

⎩

(

g(x)
g(y)

)q/d

for g(y) ≥ g(x)

1 otherwise,

we obtain

∫

BR(y)

|Du(z)|
|y − z|d−1

dz ≤ C(d, α)R(g(x) + g(x)αg(y)1−α),

which, along with (38), gives the desired conclusion.

9.2. A Second Version of the Asymmetric Lusin–Lipschiz Estimate

A simple application of the Young inequality gives the following linear version

of (5):
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Corollary 9.1. Let u ∈ W 1,r (Td) for some 1 < r ≤ d. Then, for any q ∈ [r, r d−1
d−r

)

there exist a positive constant C := C(r, d, q) and nonnegative functions a ∈ L1

and b ∈ Lq satisfying

‖a‖L1 ≤ C‖Du‖Lr and ‖b‖Lq ≤ C‖Du‖Lr , (39)

together with

|u(x) − u(y)| ≤ |x − y|(a(x) + b(y)) for any x, y ∈ Rd\N .

Moreover, we can take N = ∅ provided we choose a suitable representative of u,

a and b and the latter can be selected so that the respective map W 1,r ∋ u →
(a, b) ∈ L1 × Lq is continuous.

Proof of Proposition 7.1. Assume without loss of generality ‖Du‖Lr = 1 and

q > r . Given q ∈ (r, r d−1
d−r

) we consider α ∈ (0, r/d) such that q = r−α
1−α

. Let g be

as in Proposition 1.7. We apply Young’s inequality with exponents (r/α, r/(r −α))

to get

|u(x) − u(y)| ≤ |x − y|(g(x) + g(x)αg(y)1−α)

≤ |x − y|(g(x) + g(x)rα/r + g(y)r 1−α
r−α (1 − α/r)) .

Setting

a(x) := g(x) + g(x)rα/r, b(x) := g(x)r 1−α
r−α (1 − α/r) = g(x)r/q(1 − α/r),

one can easily check that ‖a‖L1 ≤ C(r, d, q) and ‖b‖Lq ≤ C(r, d, q).

We will now show that the range of exponents above is optimal. First of all we

prove the following simple proposition:

Proposition 9.2. Let d ≥ 2, 0 < β < d and q > 1. If there exist g ∈ L1(B1) and

h ∈ Lq(B1) such that
∣

∣

∣

∣

1

|x |β
−

1

|y|β

∣

∣

∣

∣

≤ |x − y|(g(x) + h(y)) ∀x, y ∈ B1 ⊂ Rd , (40)

then q ≤ d−1
β

.

Proof of Proposition 7.1. Fix α > 0. Plugging y = |x |αx in (40), dividing by

|x |(1 − |x |α) and integrating in B1/2(0), we get

∫

B1/2(0)

1 − |x |βα

1 − |x |α
1

|x |β(α+1)+1
dx ≤

∫

B1/2(0)

g(x) dx

+
∫

B1/2(0)

h(x |x |α) dx .

By changing variables in the last integral, according to y = x |x |α , we end up with
∫

B1/2(0)

1

|x |β(α+1)+1
dx ≤ C

∫

B1/2(0)

g(x) dx + C

∫

B1(0)

h(y)
1

|y|d
α

α+1

dy. (41)

By Hölder’s inequality, the last integral in (41) is finite for any α < q −1; therefore,

(41) implies β(α + 1) < d − 1 for any α < q − 1. This easily gives q ≤ d−1
β

.
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Let us now fix 1 ≤ r < d. For any β < d/r − 1 consider the function

u(x) := |x |−β ∈ W
1,r
loc (Rd) and cut it off with a smooth cut-off function so that it is

compactly supported in (−1/2, 1/2)d . Extend then the function by periodicity and

regard it as a function in W 1,r (Td). Proposition 9.2 ensures that the exponent q in

Corollary 9.1, associated to u, must satisfy q ≤ d−1
β

and therefore q ≤ r d−1
d−r

+ ε

with ε → 0 when β → d/r − 1.

9.3. The Critical Case p = d

We discuss here possible improvements of (5) in the critical case p = d. First

of all observe that, in general, we cannot expect (4) to hold for u ∈ W 1,d(Td)

since it would in turn imply u ∈ L∞. However, following closely the proof of

Proposition 1.7, one can show that

|u(x) − u(y)| ≤ C(d)|x − y|
(

1 + M |Du|(x)

(

1 + log
(

M |Du|d(y)
)

d−1
d

))

for any x, y ∈ Rd\N , (42)

where N ⊂ Rd is negligible. We do not give the details since (42) does not play

any role in the sequel. We instead show a generalization of (5) for maps with Du in

the Lorentz space Ld,1; as a corollary we get the L d -a.e. uniqueness of trajectories

of vector fields enjoying such regularity.

For the reader’s convenience we recall that the Lorentz spaces are defined for

r ∈ [1,∞), q ∈ [1,∞] in the following way. For every measurable function

f : Td → R we set

‖ f ‖Lr,q := r1/q
∥

∥λL
d({| f | ≥ λ})1/r‖

Lq ((0,∞), dλ
λ

)

(see e.g. [20]) and hence we define Lr,q as the space of functions f such that ‖ f ‖Lr,q

is finite.2 Notice that L p,p = L p, that the inclusion Lq(Td) ⊂ Ld,1(Td) ⊂ Ld(Td)

holds for any q > d and that the Hölder inequality (for Lorentz spaces) implies

in particular that ‖ f g‖L1 ≤ C(d)‖ f ‖Ld,1‖|g‖
L

d
d−1

,∞ . We recall finally that the

assumption Du ∈ Ld,1 in Proposition 9.3 below implies, by a result of Stein, the

continuity of u.

Proposition 9.3. Assume u ∈ W 1,1(Td) satisfy Du ∈ Ld,1. Then there exists

g ∈ Ld,∞ such that

‖g‖Ld,∞ ≤ C(d)‖Du‖Ld,1 ,

|u(x) − u(y)| ≤ (C(d)M |Du|(x) + g(x))|x − y| for any x, y ∈ Rd\N (43)

2 Note that, in spite of the notation, ‖ · ‖Lr,q is in general not a norm. Indeed it can be
shown that for (r, q) �= (1,∞) the topological vector space Lr,q is locally convex and
there exists a norm ||| · |||r,q which is equivalent to ‖ · ‖Lr,q in the sense that the inequality

C−1||| f |||r,q ≤ ‖ f ‖Lr,q ≤ C ||| f |||r,q holds for every f . On the other hand L1,∞ is not
locally convex.
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for some negligible set N . The latter can be assumed to be empty if u is appropriately

defined pointwise and moreover there is a continuous selection map Ld,1 ∋ Du �→
g ∈ Ld,∞.

Proof of Proposition 7.1. Fix x, y ∈ Rd with |x − y| ≤ 3/2 and set R := 2|x − y|
and argue as in the proof of Proposition 1.7. Our conclusion will follow from (37)

and (38) provided we show that
∫

BR(y)

|Du(z)|
|y − z|d−1

dz ≤ R g(x)

for some g ∈ Ld,∞(Rd) satisfying (43).

The Hölder inequality for Lorentz spaces gives
∫

BR(y)

|Du(z)|
|y − z|d−1

dz ≤ C(d)‖|Du|1BR(y)‖Ld,1‖|x − ·|1−d‖
L

d
d−1

,∞

= C(d)‖|Du|1BR(y)‖Ld,1 .

Observe that

‖|Du|1BR(y)‖Ld,1 ≤ ‖|Du|1B3R(x)‖Ld,1 ≤ 3R sup
0<t<9

t−1‖|Du|1Bt (x)‖Ld,1 .

Let us set g(x) := sup0<t<9 t−1‖|Du|1Bt (x)‖Ld,1 and check (43). First, notice that

g(x) = sup
0<t<9

t−1‖|Du|1Bt (x)‖Ld,1

= sup
0<t<9

∫ ∞

0

(

1

td
L

d({|Du| > λ} ∩ Bt (x))

)1/d

dλ

≤C(d)

∫ ∞

0

[

M(1|Du|>λ)(x)
]1/d

dλ,

where in the latter estimates we regard |Du| as a function on the torus.

Now we argue by duality. Fix h ∈ L
d

d−1 ,1. Recall that ‖gd‖L1,∞ = ‖g‖d
Ld,∞ for

any nonnegative g ∈ Ld,∞. Hence, using the weak (1, 1) estimate for the maximal

function, we get
∫

Td

g(x)h(x) dx ≤C(d)

∫ ∞

0

∫

Td

[

M(1|Du|>λ)(x)
]1/d

h(x) dx dλ

≤C(d)

∫ ∞

0

‖
[

M(1|Du|>λ)
]1/d ‖Ld,∞‖h‖

L
d

d−1
,1

dλ

=C(d)

∫ ∞

0

‖M(1|Du|>λ)‖1/d

L1,∞ dλ ‖h‖
L

d
d−1

,1

≤C(d)

∫ ∞

0

L
d({|Du| > λ})1/d dλ ‖h‖

L
d

d−1
,1

=C(d)‖Du‖Ld,1‖h‖
L

d
d−1

,1
.

Since h ∈ L
d

d−1 ,1 is arbitrary, by duality we get the desired estimate (see e.g. [20,

Theorem 1.4.17]).
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10. Well Posedness Theorems

First of all we observe that, arguing as in [11, Corollary 5.4], Proposition 9.3

implies the following result:

Corollary 10.1. Let u ∈ L1([0, T ], W 1,1(Td)) satisfy |Du| ∈ L1([0, T ], Ld,1(Td))

and div u ∈ L1([0, T ], L∞(Td)). For L d -a.e. x ∈ Td there exists a unique trajec-

tory of u starting at x at time t = 0.

Proof of Proposition 7.1. Let X be the regular Lagrangian flow associated to u,

which exists by the DiPerna-Lions theory. We wish to show that for a.e. x the curve

t → X (t, x) is in fact the unique trajectory of the ODE. Consider the function

h(t, x) := M |Du|(t, x) + g(t, x), where g(t, ·) is the map given by Proposi-

tion 9.3 when applied to u(t, ·) (we choose u �→ g continuously in order to avoid

measurability issues). Observe that, by the usual change of coordinates formula,

∫

Td

∫ T

0

h(t, X (t, x)) dt dx ≤ C

∫ T

0

∫

Td

h(t, x) dx dt < ∞ .

In particular, for a.e. x , we have that that t �→ γ (t) := X (t, x) is an absolutely

continuous trajectory solving γ̇ (t) = u(t, γ (t)) and that a(t) := h(t, γ (t)) =
M |Du|(t, γ (t)) + g(t, γ (t)) ∈ L1((0, T )). Fix such an x and assume γ̄ is another

absolutely continuous trajectory solving ˙̄γ (t) = u(t, γ̄ (t)) and γ̄ (0) = x . It then

follows that f (t) := |γ (t) − γ̄ (t)| is absolutely continuous and that

f ′(t) ≤ |u(t, γ (t)) − u(t, γ̄ (t))| ≤ C(M |Du|(t, γ (t)) + g(t, γ (t))) f (t)

= Ca(t) f (t) .

Since f (0) = 0 and a ∈ L1, it follows from Gronwall’s Lemma that f ≡ 0 on

[0, T ].

Proof of Theorem 1.5. By Ambrosio’s superposition principle (see [3, Theorem 3.2])

there exists a family of probability measures {ηx }x∈Rd ⊂ Pr(AC([0, T ], Td)) con-

centrated on integral curves of u, starting from x ∈ Td at time t = 0, such that

∫

Rd

φ(x)ρ(t, x)dx =
∫

Rd

(∫

φ(γ (t)) dηx (γ )

)

ρ0(x) dx

for any φ ∈ Cc(R
d). (44)

Let us also recall that under our assumptions on u there exists a unique regular

Lagrangian flow X associated to it (see [19]). The desired conclusion follows from

the following claim: for ρ0L
d -a.e. x ∈ Rd , ηx is concentrated on the curve t →

X (t, x).

We prove the claim just in the case 1 < r ≤ d. The case r > d follows from

the fact that we have classical uniqueness of the trajectories for a.e. initial data,

as observed by [11, Corollary 5.2] (we can of course use Corollary 10.1 as well,

since L p ⊂ Ld,1 for every p > d). For any t ∈ [0, T ] we consider a representative

of u(t, ·) ∈ W 1,r (Td , Rd) such that Corollary 9.1 holds with N = ∅ for some
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at ∈ L1
loc and bt ∈ L p′

satisfying (39) (note that (2) guarantees p′ ∈ (r, r d−1
d−r

)).

Note that by the last statement of Corollary 9.1 we can ignore any measurability

issue in the variable t .

For any γ ∈ AC([0, T ], Rd) integral curve of u, and any x ∈ Rd one has

d

dt
|X (t, x) − γ (t)| ≤ |u(t, X (t, x)) − u(t, γ (t))|

≤ |X (t, x) − γ (t)|(at (X (t, x)) + bt (γ (t)))

for a.e. t ∈ [0, T ]. Therefore Gronwall’s lemma guarantees X (·, x) = γ , provided

that

γ (0) = x and

∫ T

0

(at (X (t, x)) + bt (γ (t))) dt < ∞.

Therefore our claim follows from
∫ T

0

at (X (t, x)) dt < ∞ and

∫ t

0

bt (γ (t)) dt < ∞ for ηx -a.e. γ (45)

for ρ0L
d -a.e. x ∈ Td .

The first one is a consequence of

∫

Td

(∫ T

0

at (X (t, x))dt

)

dx ≤ C

∫ T

0

∫

Td

at (x) dx dt ≤ C

∫ T

0

‖Dut‖Lr dt < ∞,

where the constant C > 0 depends on the compressibility constant in Definition 1.2.

Here we have used (39). The second inequality in (45) follows from

∫

Td

(∫ ∫ T

0

bt (γ (t)) dtdηx (γ )

)

ρ0(x) dx =
∫ T

0

∫

Td

bt (x)ρ(t, x) dx dt

≤
(∫ T

0

‖bt‖L p′ dt

)

‖ρ‖L∞(L p)

≤C‖Du‖L1(Lr )‖ρ‖L∞(L p) < ∞,

where we have used (44) and (39).
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