Arch. Rational Mech. Anal.
Digital Object Identifier (DOI) https://doi.org/10.1007/s00205-021-01628-5

l‘)

Check for
updates

Positive Solutions of Transport Equations and
Classical Nonuniqueness of Characteristic
curves

ELIA BRUE®, MARIA CoLOMBO & CAMILLO DE LELLIS

Communicated by A. FIGALLI

Abstract

The seminal work of DiPerna and Lions (Invent Math 98(3):511-547, 1989)
guarantees the existence and uniqueness of regular Lagrangian flows for Sobolev
vector fields. The latter is a suitable selection of trajectories of the related ODE
satisfying additional compressibility/semigroup properties. A long-standing open
question is whether the uniqueness of the regular Lagrangian flow is a corollary of
the uniqueness of the trajectory of the ODE for a.e. initial datum. Using Ambrosio’s
superposition principle, we relate the latter to the uniqueness of positive solutions
of the continuity equation and we then provide a negative answer using tools in-
troduced by Modena and Székelyhidi in the recent groundbreaking work (Modena
and Székelyhidi in Ann PDE 4(2):38, 2018). On the opposite side, we introduce
a new class of asymmetric Lusin—Lipschitz inequalities and use them to prove the
uniqueness of positive solutions of the continuity equation in an integrability range
which goes beyond the DiPerna—Lions theory.

1. Introduction

In this paper we study positive solutions of the continuity equation
0o +div (up) =0 (D

and the related system of ordinary differential equations y (t) = u(¢, y (¢)). Toavoid
technicalities, we restrict our attention to periodic vector fields, i.e. u : I X T —
R4, where T¢ is the d-dimensional torus and / C R. In the sequel we use the
notation .#¢ for the Lebesgue measure on the whole space R? and on T?.

Definition 1.1. Let  : (0,7) x T¢ — R? be a Borel map. We say that y €
AC([0, T]: T?) is an integral curve of u starting at x if y(0) = x and y'(r) =
u(t,y(t)) forae.t €0, T].
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Note that in Definition 1.1 it matters how u is defined at every point: differ-
ent pointwise representatives for u might have different integral curves starting at
the same x. When u is smooth (Lipschitz) the trajectories are unique and, after
“bundling them” into a flow map X : (0,7) x T¢ — T9, solutions of (1) can
be recovered via Liouville’s classical theorem. This fact can be elegantly encoded
using measure theory in the formula (X (7, -))#(p(0, ).2%) = p(t, -).£“.! For less
regular vector fields it is customary, after the seminal paper [2,19], to introduce
the notion of regular Lagrangian flows. The latter consists, following one of its
equivalent formulations given in [2], of a measurable selection X of integral curves
of the ODE for which X (¢, -)4.2¢ < C.£“.

Definition 1.2. Let u : (0, T) x T¢ — R¥ be Borel. X : [0, T] x T¢ — T is a
regular Lagrangian flow of u if

() for Z%-ae.x € T4, X (-, x) € AC([0, T]; T?) is an integral curve of u starting
at x;
(ii) there exists a constant C = C (X) satisfying X (r, )#.2¢ < C.Z1.

The pointwise definition of u matters in Definition 1.2 as well. However, it is
an outcome of the DiPerna-Lions theory that, under suitable Sobolev regularity
assumptions on u, regular Lagrangian flows exist, satisfy a semigroup property, are
unique, stable under approximations, and independent of the pointwise represen-
tative chosen for u.

Such uniqueness and stability result is sometimes inappropriately regarded as
“almost everywhere uniqueness of integral curves”, even though it is well known
among the experts that the DiPerna-Lions theory does not imply the statement ““for
a.e. x there is a unique integral curve of u starting at x”. In fact whether such
“classical” uniqueness theorem holds for Sobolev vector fields is a long-standing
open question, see [19, p. 546], [2, p.231], [1, Section 2.3], [3, Open problems, sec-
tion 4]. This question has had a positive answer for specific vector fields, such as
suitable weak solutions of the Navier-Stokes system [26,27], based on estimates
of the dimension of the singular set originally due to [10]. Recently, in [11] the
authors use a suggestion of Jabin to prove almost everywhere uniqueness of the
trajectories when u € C([0, T, w14, R?)) for some r > d. One aim of this
paper is to show that in general, under the assumptions of the DiPerna-Lions theory,
the answer is negative.

Theorem 1.3. For every d > 2, r < d, s < oo and every T > 0 there is a
divergence-free vector field u € C([0, T1, W' (T?, RY) N L*) such that the fol-
lowing holds: for every Borel map v with u = v £ *'-a.e. there is a measurable

I The push-forward v = (X (¢, -))#u of a measure u is defined through the relation

/w(y)dV(y) = /QD(X(I,X)) dp(x)

for every test ¢ € Ce.
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A(v) € T¢ with positive Lebesgue measure such that for every x € A(v) there are
at least two integral curves of v starting at x.

Moreover, given v = w = u L% a.e., one has L4 (A(v)AA(w)) = 0, and
for any x € A(v) N A(w) there are at least two integral curves of v starting at x
that are also integral curves of w.

Given [11, Theorem 5.2], the above statement covers the optimal range, except
for the endpoint r = d. In fact an improvement of the argument in [11, Theorem
5.2] allows us to prove almost everywhere uniqueness of trajectories for a function
space which shares the same scaling properties of W !¢, namely when Du belongs
to the Lorentz space L% !, see Corollary 10.1 below.

The theorem above is a consequence of Ambrosio’s superposition principle
(see [3, Theorem 3.2]) and of the following nonuniqueness result at the PDE level,
which in turn will be proved using “convex integration type” techniques borrowed
from a groundbreaking work of Modena and Székelyhidi [24,25], improved later
by Modena and Sattig [23](we refer to [8,9,15,17,18,21] and the references therein
for the birth of this and related lines of research).

Theorem 1.4. Letd > 2, p € (1,00),r € [1, 00] be such that
1 n 1 4 1
— p— > _’
p r d

and denote by p’ the dual exponent of p, i.e. % + % = 1. Then for every T > 0

there exists a divergence-free vector field u € C([0, T1, Wb (T4, R4) N L”/) anda
nonconstant p € C ([0, T'1, LP(T%)) such that (1) holds with initial data p(0, -) = 1
and for which p > cq for some positive constant c.

Compared to the results in [24] and [23] the addition (crucial for our application)
is the positivity of the solution p. While it is relatively simple to modify the approach
of Modena and Székelyhidi in [24] in order to achieve Theorem 1.4 when % + % >

1+ ﬁ, we have not been able to do the same with the one in [23] to cover the range

1+ d+1 >14 % > 14 dl. Our proof is therefore relatively different from the one
of [23] and in fact less complicated and shorter. At the technical level we introduce
suitable space-time flows which compared to the basic building blocks of [23] are
more similar to Mikado flows: in a nutshell our flows are a perturbation of point
masses traveling on a space-time line. This approach makes a part of our argument
more similar to [24], but it has the technical drawback that we need to introduce a
suitable partition of unity to discretize the time velocities of the moving particles (a
similar idea was used first in [18]). One subtle part of our proof is a combinatorial
argument to ensure that the supports of the flows are disjoint in 2 space dimensions.
Since in 3 space dimensions and higher the latter can be completely omitted and the
proof is simpler we have decided to first present the full arguments for Theorem 1.4
when d > 3 and then show in Sect. 7 which modifications are necessary in the case
d=2.

Our interest in Theorem 1.4 was triggered by the gap between the DiPerna-
Lions theory, which guarantees uniqueness for % + % < 1, and the nonuniqueness
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results of [23-25]. In particular we are able to show that in some intermediate range
of exponents (strictly containing the DiPerna-Lions range, but not reaching the full
complement of the Modena-Sattig-Székelyhidi range) positive solutions are in fact
unique.

Theorem 1.5. Letd > 2, p € [1, +o0] and r € [1, +00] be such that
1 n 1 - 1 r—1
—+-< E— .
p r d—1 r

)

Letu € L'([0, T], W' (T?, R?)) be avector field satisfying div u € L. Then, for
p > 1, (1) admits a unique solution among all nonnegative, weakly continuous in
time densities p € L ([0, T1, L?(T4)) with p(0, -) = po. Whenp = 1 (i.e.r > d)
uniqueness holds in the class of nonnegative weakly-star continuous densities p €
L>([0, T1, 4 (T%)) with p(0, -) = po-L°. In particular, any such p is Lagrangian,
ie.

p(t, )L = X (1, )4(00L")  foreveryt € [0, T],
where X denotes the unique regular Lagrangian flow of Definition 1.2.

Remark 1.6. Observe that, under the above assumptions u € L! (10, T1, LP/). In-
deed, if r > d Morrey’s embedding guarantees u € L]([O, 1], L9) for every
q € [1,00] and if r < d Sobolev’s embedding guarantees u € LY([0,T], L)

for every g < dr—fr while (2) is equivalent to p’ < %.

Theorem 1.4 extends [11, Corollary 5.4], in which the case r > d has been
settled as a consequence of the .#¢-a.e. uniqueness result for trajectories mentioned
above. The proofs of the latter and of Theorem 1.5 employ all some suitable Lusin-
Lipschitz type estimates for u, an idea pioneered in [4] and [14] and which has
proved quite fruitful in different contexts (see for instance [5-7,13,16]). As it is
well known, for sufficiently regular domains 2 C R4 and when r € (1, 0], a
Borel map u belongs to W' (Q, R) if and only if there is a function g € L’ ()
such that

lu(x) —u(y)| = (g&x) +g(y)lx -yl forae.x,y. 3

In fact g can be taken to be the classical Hardy-Littlewood maximal function of
| Du|. It seems less known (but anyway classical) that for » > d the symmetry in
(3) can be broken to show

lu(x) —u(y)l = g)x — yl. “

Theorem 1.5 is based on the idea that an appropriate symmetry-breaking is still
possible for smaller exponents 7. More precisely, we have the following proposition,
which has its own independent interest:



Positive Solutions of Transport Equations...

Proposition 1.7. Let | < r < d be fixed. Foranyu € W' (T?) and any « € (0, 2
there exist a negligible set N C T and a nonnegative function g € L"(T¢)
satisfying the inequalities

leller < Cler )| Dulr,
@) = u()| = Ix =yl (800 + 8@ ()' ™) foranyx,y € RI\N. (5)

Moreover, we can assume N = () provided we choose an appropriate representative
ofu € WY (T9) and there is a continuous selection W'" > u +— g € L.

A simple corollary of the latter statement is an inequality of the form |u(x) —
u(y)| < (a(x) + b(y))|x — y| where one function, say b, can be taken more
integrable at the prize of giving up some integrability for the other. Theorem 1.5
follows from the extreme case where the integrability of » is maximized at the
expense of reducing the integrability of a to the bare minimum, namely L', cf.
Corollary 9.1. We moreover show that in this case the range of exponents for b
obtained in the latter is in fact optimal.

Clearly, itis tempting to advance the conjecture that, for positive solutions of the
continuity equations, well-posedness holds in the range 1 + }7 > % + %, namely the
complement of the the closure of the range of Theorem 1.4. An even more daring
conjecture is that the latter statement holds for any solution. However nothing is
known without assuming that the density is nonnegative or, as is the case of [11],
some technical property of trajectories of the ODEs. Recently, it was proved in
[12] that the complement of the Di Perna Lions range, namely 1 > Ly } can be
reached at the price of diminishing the integrability in time of both the solution
and the vector field to L. This leaves open the question in our setting, or in the
intermediate setting in which the density is L* in time (a natural assumption in
applications) while the gradient of the vector field is only L' (a natural assumption
in the theory of the continuity equation, where positive existence results require the
spacetime integral of |p||Du| to be finite).

2. Iteration and Continuity-Reynolds System
As in [24] we consider the following system of equations in [0, T'] x Td

0rpg +div (pguy) = —div R,
(6)

divuy =0.

We then fix three parameters ag, b > 0 and 8 > 0, to be chosen later only in terms
of d, p, r, and for any choice of a > ap we define

A =a, Agrl = AZ and §,; = A;zﬁ.
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The next proposition builds a converging sequence of functions with the inductive
estimates

mtax Rg (2, g1 < 8g+1 (N

max (110 ¢, et + 19:2g 1, co + gt )y pr + g &, My + loriug @, 1)
o
<2, (8)
where « is yet another positive parameter which will be specified later.

Proposition 2.1. There exist o, b, ap, M > 5,0 < 8 < (2b)_l such that for every
a = ao, if (pg, ugq, Ry) solves (6) and enjoys the estimates (7), (8), then there exist
(0g+1- Ug+1, Ryy1) which solves (6), enjoys the estimates (7), (8) with q replaced
by g + 1 and also the following properties:

(@) max,[[|(0g+1—pg) (1, N p I Ggr1—ug) (X, 1, +1 g+1—ug) (@, -)Ilip/] <
Msy 11

(b) inf(pg 41 — pg) = =8,

(c) if for some ty > 0 we have that p,(t,-) =1, Ry(t,-) = 0and uy(t,-) = 0 for
every t € [0, to], then pg41(t,-) = 1, Ry11(t, -) and ug1(t, ) = 0 for every
t€[0,10— ;']

Compared to [24] we are using a slightly different notation and a more specific
choice of the parameters. None of that is however substantial: the really relevant
differences are in estimate (b) and in the range of exponents, which is the same
as the one in [23]. In the same range of exponents of [24] the positivity could be
achieved by a slight tweak in the approach of [24]. However we have not been able
to find a similar modification of the arguments of [23]. For this reason our proof
of Proposition 2.1 differs from both that of [24] and that of [23]. However we still
make use of some crucial discoveries in [24] and we will refer to that paper for the
proofs of some relevant lemmas. From now on, in order to simplify our notation,
for any function space X and any map f which depends on ¢ and x, we will write
II.flx meaning max; || f(z, )|l x-

3. Preliminary Lemmas

3.1. Geometric Lemma

We start with an elementary geometric fact, namely that every vector in R¢ can
be written as a “positive” linear combination of elements in a suitably chosen finite
subset A of (@d M d By. This is reminiscent of the geometric lemma in [18]. In both
[24] and [23] the positivity of the coefficients is not needed and hence the authors
can choose A as the standard basis of R?.

Lemma 3.1. There exists a finite set {E}ecp € 0B N Q? and smooth nonnegative
coefficients ag (R) such that for every R € 9B

R=>a:(R)E.

EeA
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Proof. For each vector v consider a collection A(v) = {&1(v), ..., & (v)} C 0B
of linearly independent unit vectors in Q¢ with the property that the d-dimensional
open symplex X (v) with vertices 0, 2§1(v), ..., 2§, (v) contains v. Since {X(v) :
v € 0By} is an open cover of d By, we consider a finite subcover and the corre-
sponding collections A; = A(vy), ..., A(vy), each one consisting of the d unit
vectors {£ 1, ...6j,4}. We set

N
AZUAJZ{Ej,i:ISjSN,lfigd}.
j=l1

For each fixed j each vector R € RY can be written in a unique way as linear
combination of the vectors §; 1, ...&; 4. If we denote by b; ; (R) the corresponding
coefficients (which obviously depend linearly on R), then the latter are all strictly
positive if R belongs to X (v;). We consider a partition of unity x; on the unit
sphere d By associated to the cover {X(v;)} and for every §;; = & € A we set

ag(R) = Xj(R)bj,i(R)~
The coefficients ag are then smooth nonnegative functions of R. O

Remark 3.2. With Lemma 3.1 at hand, it is easy to generate a finite number of
disjoint families AV, ..., A®) where each one enjoys the property of Lemma 3.1:
it is enough to take suitable rational rotations of one fixed set A.

3.2. Antidivergences

We recall that the operator VA ™! is an antidivergence when applied to smooth
vector fields of 0 mean. As shown in [24, Lemma 2.3] and [23, Lemma 3.5],
however, the following lemma introduces an improved antidivergence operator, for
functions with a particular structure:

Lemma 3.3. (Cp. with [23, Lemma 3.5]) Let A € N and f, g : T — R be
smooth functions, and g = g(Ax). Assume that [ g = 0. Then if we set R(fg)) =
fVA~lg — VAN (V.- VA g + [ f81), we have that divR(fg)) = fgr —
[ fg» and, for some C := C(k, p),

ID*R(fegllier < CA NI fllcksliglyer  foreveryk €N, p € [1,00]. (9)

Proof. It is enough to combine [23, Lemma 3.5] and the remark in [23, page 12].
O

3.3. Slow and Fast Variables

Finally we recall the following improved Holder inequality, stated as in [24,
Lemma 2.6] (see also [9, Lemma 3.7]): if . € Nand f, g : T4 — R are smooth
functions, then we have

C(p)Vdllflicrligler

. (10)

If g Lr < I fllerligllzr +




E. BRUE ET AL.

and

[ rwsomas| <[ [ (et - [o)ax|+| [1]|[¢]

- ﬂ||f||§1||g||p N ’/f‘ _ ‘/g‘ (1

4. Building Blocks
Let0 < p < JT be a constant . We consider ¢ € C°(B,) and Y € C2°(B2,)
which satisfy
/<P=1, ¢ >0, Y =1onB,.

Given 1 <« p we define the 1-periodic functions

Gux) = > uPe(u(x + k)
keZd

Pux) = > nP oy (ulx + k).

kezd

Let w : RY — R be a smooth 1-periodic function such that w(x) = x - & on

B>, (0).
Given A asinLemma 3.1, forany & € A we chose £’ € dB; suchthaté &' =0
and we define

Q) =plopNERE ~§ ®6).

Notice that div €2 is divergence free since ;' is skew-symmetric and div ;' = &

on supp(yr,,) and supp(@,,).
For o > 0 we set

Wg,u,a(t, X) = o7 div I:(lepu)(x — ,Uvd/p/O'l/p/tE)]
Ot ot x) 1= 0P g (x — pu/P' o sty

Notice that W ;o is divergence free since it is also the divergence of the skew-
symmetric matrix Qg Y. By construction we have

Wegort.2) = a7 [6 + @ - Vi | (= w76 17's6),
hence the following properties are easily verified:
Lemma 4.1. We have
3O¢ o +div(We 1.oOs o) =0,
divWe yo =0, (12)

/VVE,M,U =0, (13)
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Wg,u’gég,ﬂ,g (t,x) = G,ud/plgbu(x - ud/plol/p,té)é, in particular,

/Wg,ﬂ,gég,u,a = 0";‘/(p = 0&. (14)
For any k € N and any s € [1, 0o] one has

ID¥® ol < Cd. k. s)o /P pktd/p=1/5),

k—1 k—1 1
1+7Mk+d(7+1—;)

”81,{@%',}1/,0”[‘5 < C(d, k, S)G (15)
1D We oo llze < C(d, k, ) /P 1 leHd/p'=179),

y kel gkl 1
185 We, ol < Cld. k. s)o # T 72, (16)

Finally, supp®¢ ;o UsuppWe ;.o € {(x,1) : x — pd/P' g \p' g € Byt + 74
and the support in space is contained in a periodized cylinder

{x : Wg’u,g(x, t) #0or @)g,ﬂ,g(x, t) # 0 for some t > 0}
C By, +Re + 2% (17)

In our construction & will take values in a finite set of &’s, which will be fixed
throughout the iteration, i.e. it is independent of the step ¢ in Proposition 2.1.
The parameter o will also vary in a finite set, but the cardinality of the latter will
depend (and in fact diverge to infinity) on the iteration step ¢. In dimension d > 3
we consider suitable translations of WS, w0 and (:)g, w,o Which guarantee that, as &
varies in these fixed set of directions, pairs of (W, @) with distinct £’s have disjoint
supports. The precise statement is given in the following lemma:

Lemmad.2. Letd > 3and A € S 1 N Q be a finite number of vectors. Then
there exists o := po(d, A) > 0 and a family of vectors {ve}sen C R? such that
the periodized cylinders ve + B,,,-1 + R§ + 74 are disjoint as & varies in A,
provided . > 1.

Proof. Set £(v, &) := v + R¢ + Z4. It is enough to find {vg}een C R? such
that £(vg, £) N L(ver, &') = ¥ whenever & # £'. This claim follows from a simple
induction argument along with the observation that

YR\ eRY: e, &) NeEw, E)=0}) =0
foranyv € R? and any &, &' e ST nQY, £ £ &, (18)

To verify (18) we notice that £(v, &) N £V, &) = @ if and only if for every
s,t € R, k € Z% the inequality v' — v # t& — s&' + k holds. In particular any
vV =v+4af + BE +y& witha, B € R, y € R\Q and £’ € Q?\{0} orthogonal
to & and &’, has this property. Indeed, if we assume by contradiction the existence
of s,1,k,a, B,y,&" as above such that @& + BE' + y&” = t& — s&' + k we get
vIE")?> = k - £’ € Q that contradicts y € R\Q and &” € Q%\{0}. O
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By the previous lemma and by (17) we notice that, if we consider the translations
of

Wé,u,a(t» x) = WE,[L,G’(ty X — UE), (:)S,u,a(ta x) = @E,/L,a(ta X — vé)

for £ in a suitable finite set of directions, these functions satisfy the same properties
as in Lemma 4.1 (with the exception of the description of the support, which is now
translated) and moreover they have disjoint support for u sufficiently large and for
every o. Notice finally that in fact both i and o could vary for different £ and the
supports would still remain disjoint, as long as @ (§) is larger than pg for every &.
The latter approach is clearly not feasible in dimension d = 2. In that case
we will need to take advantage of the discreteness in the parameter o as well.
As already mentioned this is more delicate, since the set of values taken by o
depends on the step g. At each step g we need to choose rather carefully the set
of parameters o which enter the construction: for distinct values of o we need to
ensure that their ratio is not too close to 1, compared to the size of ,u_l . The relevant
statements depend thus on how the building blocks enter in the definition of the
maps (Ug+1, Pg+1, Ry+1). For this reason we detail next the definition of the maps
when d > 3 and show first how to prove Proposition 2.1 in that case. We then give
a detailed description on how to modify the arguments to handle the case d = 2.

5. Iteration Scheme

5.1. Choice of the Parameters

We define first the constant

—1
y = (1—}—%) (min{%, %,—l —d(% — %)}) > 0,

where we have used, crucially, that

1 1 1 1 1
—1—d(———)=d - —1--)>o0.
pr p r d
Notice that, up to enlarging r, we can assume that the quantity in the previous line
is less than 1/2, namely that y > 2. Hence we set« :=4 + y(d + 1),

b :=max{p, p'}3( + a)(d +2) + 2),

and
1 }_ 1
b+1) 26+ 1)

Finally, we choose ag and M sufficiently large (possibly depending on all previously
fixed parameters) to absorb numerical constants in the inequalities. We set

19)

1
B = ﬁmin ip,p’,r,

=217 (20)
Hg+1 = )‘Z+1' (21)
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5.2. Convolution

We first perform a convolution of p; and u, to have estimates on more than
one derivative of these objects and of the corresponding error. Let ¢ € C2°(Bj) be
a standard convolution kernel in space-time, £ as in (20) and define

pe = pg * P, Uy = Ug * Py, Ry := Ry * ¢y, (pgitg)e == (pquq) * do.

We observe that (og, u¢, Re + (pgttg)e — pette) solves system (6) and by (7), (19)
enjoys the following estimates:

| Rellpr < 8g+1,

1
loe = pglle < Cllipgller < CLALC < €80,

l ’
lue — ugll,y < COE < C8/1,
lue — ugllwrr < CLAZE < C8., (22)
Indeed note that by (19)
1
_ a1 _ (7P max{1/p.1/p’.1/r}
Z)‘Z - )‘q - 8q+1 = 8q+1 :

Next observe that

1Y pellco + lpellen + luellyren.r + 13N uellyrr
< CNEN  pgller + llug llwar)
< C(N)K*N“/\g

for every N € N\{0}. Using the Sobolev embedding W?" ¢ W4 ! cC we then
conclude

10N uellco + luelen < CNYEN =42

By Young’s inequality we estimate the higher derivatives of Ry in terms of || Ry || .1
to get

IRelen + 13 Rellco < IDN pellellRyll 1 < C(NyeN =4

for every N e N. Finally, for the last part of the error we show below that

1
IGpgug)e = peuclipr < CEAG" < 28442, 24)

(where we have assumed that a is sufficiently large). The claim follows a well-
known bilinear trick used often and originating (at least in the context of fluid
dynamics) from the proof of Constantin, E and Titi of the positive part of the
Onsager conjecture. We include a proof for the reader’s convenience.



E. BRUE ET AL.

Lemma 5.1. Consider a mollification kernel ¢ compactly supported in time and
space. Then there is a constant C = C(¢) such that for every smooth functions u
and p depending on time and space

(o) * pe — u * ¢ p * pell
< C (19ullpr + I1Dull) (IDpllco + 13 pll o) -

Proof. To simplify our notation we introduce the variable z = (x, #) and set ¥ :=
(up) x g —uxd¢ p*pe. Assume without loss of generality that supp(¢) C Bf“ C
R4+1. Simple computations lead to the formula

1
2(z) = 5//(u(z - —uz =" —72) = plz—2")Npe (e (z")dZ dZ",

which in turn implies that
—2d—1 N - rg
%) = Ce ”DZ'O”CO/B}HI/BZHW(Z ) —u(z—2z)ldz dz".

Using |u(z — 2') —u(z — 2| = |u(z — 2) —u(@)| + [u(z) — u(z — z)| and
integrating in the space variable x we reach

1=, ) < CE_dHDZpHCo/ d+1/|u(l —t',x —x") —u(t, x)| dx dt’ dx(25)
BZ

We thenuse |u(t —t',x —x") —u(t,x)| < |u(t—t',x —x")—u(@ —t', x)|+ |u(t —
', x) — u(t, x)| and estimate separately

f Hl/lu(l — 1/ x —x') —u(t — 1, x)|dxdt’ dx' < C¢¥*?| Du||
BZ
and
/ Hl/lu(t —t/,x) —u(t,x)|dxdt' dx’ < C€d+2||8tu||L1
By

Combining these last estimates with (25) we infer the desired conclusion. O

5.3. Definition of the Perturbations

Let pg4+1 > Obeasin(21)andlet x € Cfo(—%, %) suchthat )", , x(t—n) =
1foreveryt e R.Let x € Cfo(—%, ‘5—‘) be a nonnegative function satisfying x = 1
on[—3, 3]. Notice that 3", ., ¥ (t —n) € [1,2]and x - X = x.

Fix aparameterx = 55% and consider two disjoint sets A, A% asin Lemma3.1.

Next, define [/] to be 1 or 2 depending on the congruence class of i. Finally, consider
the building blocks introduced in Sect. 4 in such a way that, for & € U%:lA’, their
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spatial supports are disjoint. We define the new density and vector field by adding
to p¢ and uy a principal term and a smaller corrector, namely we set
Pg+1 = pe + 9;i)1 + 9521 ;
Ug+l = Uy + w((]'j_)l + w;a)_l .

The principal perturbations are given, respectively, by

w (. x) = Y REIR(E ] = 1) Y We gy nficCrg 1ty Ag 1),

n>12 gcAln
0L (t.x) =Y x(k|Re(t, )| —n)
n>12
Ry(t, x)
as | ——— | © Ag+1t, Ag+1X) ,
Z S <|Rg(t,x)| E,/Lq+],n/K( q+1 q+1 )
el

where we understand that the terms in the second sum are all 0 at points where Ry
vanishes. In the definition of w?) and #P) the first sum runs for  in the range

—do—1 d(1+a)+28b% d(14a)+1
12<n<10ce™s, |, < CAJHeT20" < cpdirertt, (26)

Indeed x (k|R¢(t,x)| —n) =0ifn > 208q_i2||Rg||Co + 1 and by (23) we obtain
an upper bound for 7.

The aim of the corrector term for the density is to ensure that the overall addition
has zero average:

0, = —f@;ﬂ?l(t,x)dx.

The aim of the corrector term for the vector field is to ensure that the overall
perturbation has zero divergence. Thanks to (13), we can apply Lemma 3.3 to
define

wi == 3 Y R[VAKIRE. ) = 1) - We gy nj Cgiat Ag1x)]
n=12 g plnl

Moreover, since W ., . 1 ,n/ is divergence-free, the argumentinside R has 0 average
for every t > 0.

Notice finally that the perturbation equals 0 on every time slice where R, van-
ishes identically.

6. Proof of the Proposition 2.1 in the Case d > 3

Before coming to the main arguments, we record some straightforward esti-
mates for the “slowly varying coefficients”.
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Lemma 6.1. Form € N, N € N\{0} and n > 2 we have

107" x (| Rel — m)llev + 110" X (k[ Re| — m) [l on

< C(m, N)a(]_féN+m)K*(N+m)(]+d) < C(m’ N))L((IN+m)(d+2)(1+0t)

R
107" (@ (R oo
< C(m, N)aq—_i]_\/z—mz—(N-l-m)(l-i-d) < C(m, N)A2N+m)(d+2)(l+a)

on{x(k|R¢| —n) > 0}.

6.1. Estimate on ||0y1||Lr and on infpa 6441

We apply the improved Holder inequality of (10), Lemma 6.1 and (26) to get
1657 0r = D0 3 X IR 0] = ma (R e

n>12 geplnl

1Ok, uq“ njc Mgty Agr12) |l Lr
l/p Y IR 01 = ma (FES e

q+l n>12 geAlnl

1Og 0y 1.n/k g1, Agr1X) e (27)
<C Y N@m/P x| Re(t, ) =)o

n>12

+Ca “Upgl/p X(d+2)(1+<X)+(1+1/[7)((d(1+0t)+1))

q+1 “g+274

< C”R(”l/p + Cx I/P(SI/P )\.3<d+2)(1+a)

q+1

1/p
< C8q+1,

provided that in the second last inequality we use (d +2)(1 +«)+(1+1/p)((d(1+
a) + 1)) <3(1 + a)(d + 2) and in the last inequality we use (22).
Next, by means of (11) applied to the A il-periodic function (Og 11, .n/x

(Ag+1t, Ag41x), by (15) (precisely Oy, nyicll 1 < (2 )l/qu d/p) Lemma 6.1
and (26), we estimate

651 1 = Cagly 30 3 kIRl = mas (155 )t 1@ gl

n>12 geAlnl
+ 20 2 I IR = mag (155 )1 19 gl
n>12 ge Al
<Ca +1'“q+/p )\3(1+a)(d+2)
+ gt Y /i) 7 Rel = mhag ({5 )l

n>12

L o1/p —d/p’ Yp _ sl/p
= E(Sq—H + Hg41 ”RZ” q+l
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From the latter inequality, since Q;ﬁ)l is nonnegative, we also deduce that

: (c) 1/p
inf 6,1(1) = =0, = =3,/f;

namely Statement (b) of Proposition 2.1.

6.2. Estimate on ||wg+1|l,, and on || Dwg41|| L

Exactly with the same computation as in (27), replacing p with p’, we have
that

1 —1/p o1 1
lwiill = CIRAY + Cag 1P 8,533 < co /1.

Concerning the corrector term wﬁl, we use (16) (precisely ||We, g1k I <

(P < AFDATD) [ emma 3.3 and (26) to get

(c)

||wq+1 ”Lp’

D7D IR GIRe = m) 2N We iy rnficll

I+ =12 gepln

< C)‘;-H )»é(dﬁ)(lw)(”/")l/p (28)
n>12
=1 1/p"y 4d+2)(1+a) 1/1’ 1/p'
= Chyii8g2ty V=8 =84

Computing the gradient of u)(p ) and combining Lemma 6.1 with (16) we have

1Dw = Y S IX KR = m)ler IWe il
n>12 geAlnl

+ 30 At DWe gy il

n>12 geAlnl
< CS;QIJQ)L3(1+a)(d+2)+2+hyd(1/p —1/r)
+ C(S;ipz)Lb+3(l+a)(d+2)+by(l+d(l/p —1/r))

1/p 1/r
= 8q+2 - 8q+1

Concerning the corrector, by Lemma 3.3 and computations similar to those above,

1Dw e < €3 Y IR Gl Rel = )3 | We iy y.ngic e
nZ]ZéeAlnl

, d(l L)
1/p"y 5(14a)(d+2) oy 1/p"y 5(1+a)(d+2)—b(141/p)
= C6q+2)”q p‘q-&—l = 5q+2)‘
1/r

= 8q+1
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6.3. New Error Ry 11
By definition the new error R, 41 must satisfy

—div Rg 41 = 0:pg+1 + div (pg+1ug+1)

= div (9;{’3] w;’jr)] — Ry + 8;9;’21 + ateq“j] (29)

+div (0,7 e + pewg1 + 0,7, w') ) + div (pgitg)e — pene)

In the second equality above we have used that (¢, u¢, Re+(pq1g)e— pette) solves

(6), that div uy = div wy 1 = 0, and that 9;21 is constant in space.
Let us write

0057 = 2 2 xKIRel = mas (1) [Oc. iy Cogit, 2g1)]
nz]deA[ﬂ]

30 iRl = mag (55)] Oegrinss it Ag41)

nlegeA[n]
=1 (3071 + 3,67,

by using that ¢ ;.\ n/c and We ;. n/c solve the transport equation (12) and
Lemma 3.1 we get the cancellation of the error R, up to lower order terms

div (0,7, wi"))) + @,6,7)1 — div R,
=3 5 9 [etelRl - mac ()]
n>12 ge Aln]

X (®§,p.q+1,n//( WS,;,Lq+1,n/K)()\'q+lta )\q-HX) —div Ry

+ 30 D xwlRel = mag (1R )rge

n>12 %‘eA["J

X [0 O, g 1n /e + AV (Ot iy njk We,g1n )] g1ty Ag1X)

=3 > VxRl —mas ()]

n>12 geAlnl

n
X |:(®§,Mq+1,n/KWS,uq+|,n/K)()‘q+ltv )Lq—i-lx) - ;E:I

+y > V[X(K|Rg|—n)a§ (‘%)]gs—divl?e

n>12 geplnl

=3 2 VxRl = mas ()]

n>12 ge Al
n -
%[Oty sron/i Wesigsrnfi) Gt hg1) = =€ |+ div (Re = Re), (30)

where

~ Ry n
Ry = X (| Re| — n)———.
2 %
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We have
3 Ry n
IR — Rql 5) Z XKIR] = mRe| +] 3 xCelRe = m) ap R |
n>12 ¢
<243 xRl =) 1R = 2|
s ke
13 3 15,
31
= 0%+ ¥ 4g%2 = g0 D

We can now define R, which satisfies (29) as
—_R ._unadr I’é — R Rtime 9(1’) 9(1’) (c)
g+1 = + (Re — Re) + + 0, e+ pewg 1 + 0,7 w, 1y
+ [(ogutg)e — peuel,

where

Rauadr ._ Z Z R[V (x(KIReI — n)ag (%))

n>12 geplnl

n
: <(®§,Mq+1,n//( Wé,uqﬂ,n//()()‘q-i-lt, )\q-Hx) - ;é)] ,

R™M = VAN (@02 + 8,0))) +m),

mi=3Y Z/ [l Rel = mag ()]

n>12 geplnl
n
X I:(®E,[Lq+],n/l( Ws,uqﬂ,n/x)()\q-i-lt’ Aq+1x) - ;S] dx

Notice that R7444" is well defined since by (14) the function
(®g,ﬂq+1 /K Wg,uqﬂ,n/,()()»qﬂt, Ag1X) — %E has 0 mean. We now estimate in L!
each term in the definition of R, 1. From the second equality in (29) and since

the average of (3,6, o )1)2 is m by integration by parts, we deduce that (8,0”’ )1)2 +

8,9(321 + m has 0 mean, so that R""¢ is well defined. Recall that the estimate on
l(ogttg)e — peuell 1 has been already established in (24).

By the property (9) of the antidivergence operator R, Lemma 6.1 and (26) we
have

C
IR < 5 30D el Rel = mya ()l

a+ n>12 geAlnl

X ||®E,uq+1,n//< WE,,uqH,n/K Il
A4(1+a) (d+2)+2

8q+2
< Cysn q <%

Ag+1 - 20

To estimate the terms which are linear with respect to the fast variables, we take
advantage of the concentration parameter ji,1. First of all, by Calderon-Zygmund
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estimates we get

IR ™| 1 < CI@0,T D2 + 06050 — mlln < 1@0 D2l + 18,601 + Im.

Next, notice that
@07 D2l <€ Y > g, X(KlRel—n)a§< )]lel@suqﬂ niellp
n>12 geAlnl

1/p y30+a)@d+2), —d/p _ Sa+2
< C8q+2kq ¢ Pgti = 20 (32)
From (32), (12) and (11) we get

18,0011 + Im|

< 1@67 2l

HE X [x iR = ma (1) [Ocsyrnis Guit. )] d

n>12 geAlnl
+ [m]

<dar2
- 20

Z Z /x(K|Rg| n)ag(m‘)dlv
n>12 geAlnl
X [(®S,uq+1,I‘I/KWE,/,L,1+1,H/K)()"(]+1I7 )\q+1x)] dx| + |m|

q+2 +2 Z Z / X (| Re| — n)a5<\R5|>]

n>12 geAlnl

n
: [(®S,uq+1,n//( WS,;},qH,n/K)()”q—i-lts )\q+1x) - %5] dx‘

VE S S el Rel — e ()l

1)
S %
n>12 geAlnl

)Lq+1
||®§,uq+1,n//< WE,,uqH,n/K ||L1

) 1 s0tayd+2) _ L
= 20 +C)\q+16 )\«q SE(S(]J,_Z.

Similarly, we have that
9< P < 9<
16, 11e 4 pewy L < 116,705l lluellzee + lpell oo llw} +1||L1

= 2 Y IR = ma () 11Oy el oo

n>10 geAlnl

+ llpellzoellx (| Rel = m)ll oo I We gy nsic L1

1/p 2(1+a)(d+2) d/p 1/p 2(1+a)(d+2) —d/p _ Bq+2
§C8q+2Aq +C6 22 Kyyi = 20
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In the last inequality we used 28b> < 1, the definition of y, and b(1 + 1/p) >
20 +a)d+2)+ 1.
Finally, from (27) and (28)

ICoe +60,720w 0 I < Ulpeller + 10 o) w1

1
4(1+a)(d+2)+aq —1
< Ciy, Ay = %5%2-

6.4. Estimates on Higher Derivatives

By the choice of «, since in particular « > 2 + y(d + 1), we have that

log+tllct = llpellct + 160g+1llct

= logler+ 2 D2 IxelRel = mas (1) e

n>10 SeA["]
||®§,;Lq+1,n//(()“q+1x)|lcl
< CAZ + CRYHO@ D, L < e

An entirely similar estimate is valid for [|9; o4+ 1 || co and the one for [lu+ w;i) s

(c)

is analogous. Concerning w PSP

we use Lemma 3.3 and (26)

i lwzr < D73 Ay IRl Rel = 1)l | We grg y il
VLZ]ZEGA["J

6(1+a)(d+2),2  2+d(1/p'=1/r) «
= C)‘q )‘q+lﬂq+1 = )‘q+1'
It remains just to estimate

10puglipr < 19ueellr + 18w lon + 18wl

From (16) and Lemma 6.1

0wl < 7 37 At 18 We g il
nlegeA[n]

+ 10 x (| Rel = m) |l oo I We g1/ ll 1

2/p’, (142/p")(d(14a)+1) I+y(1+d2/p'—1))
= C8.Hhg Ag+1lg
2+y(d+1)

S )\q+1

o
= )‘q—H'

A similar computation is valid for |3, ), || ..
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7. The Building Blocks and the Iterative Scheme in Dimension d = 2

We describe in this section how the proof of Proposition 2.1, concluded above in
dimension d > 3, should be modified to cover the case d = 2. The main obstruction
in this regard is that the building blocks in Sect. 4 cannot be translated, as we did in
dimension d > 3 in Lemma 4.2, to make sure that their support is disjoint in space.
In dimension d = 2, we need to make them disjoint in space-time, observing that
they are described by a small ball which translates at constant speed according to
a translating vector field which is supported on a slightly larger ball.

7.1. Iteration Scheme and Definition of the Perturbations

We choose the parameters as in Sect. 5.1 and we perform the convolution step
as in Sect. 5.2. Similarly, the cutoffs x € Cfo(—%, %) and y € Cf?o(—%‘, %) are
chosen as in Sect. 5.3, as well as k = % and the sets AL, A2,

Starting from the building blocks introduced in Sect. 4 we will choose positive
real numbers v, (which will satisfy |v, —n| < 1) and real numbers a¢ , and define

We gt vafuc (1, %) 1= Wé,uqﬂ,vn/lc(tvx — ag.n§),
®‘§slqu-¢—1>vn/'C (t’ x) = éfsliq+|,vn//( (t’ X = aéan)

forany n > 1 and & € A", The difficult part will be to choose v,, and ag p SO that

We g ironfic " O giromyc (. X) =0 forany (x,1) € T> x RY,  (33)
whenever £ #&',|n—m| <landn,m < de(l+a)+1
Assuming for the moment that this can be done, we define the new density
and vector field as we did in Sect. 5.3 up to replacing all functions ©¢ ;| n/x and
We girnsc With Og oy o, /i and We 1 o, /ic. The proof of the proposition would
then follow the same arguments: we only need to modify sligthly the definition of
R4+1 - Most of this section will be devoted to choose v, and ag ,, so that (33) holds.
Once we have achieved the latter, we will then show how to change the definition
of Rq+1 .

7.2. Geometric Arrangement

The main geometric construction is given by the following proposition. AjUA»
is the set of possible space directions for the building blocks, while the sequence

1
{w,} is in fact the set of values Hgﬂ (%) /P Observe that ,when oo is a rational

number, the relative position of the space supports of the building blocks is time-
periodic. If each space support were merely a point we could easily make them
always disjoint and in fact we could identify their minimum distance. If we write

=1+ ;\\,EZ)) with A(n) and N (n), intuitively such minimum distance should

wn 1
be made comparable to ﬁ
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Proposition 7.1. Consider two disjoint sets A', A*> C R? as in Lemma 3.1. Let
{wnlremy(oy C R satisfy

wy, A(n)
=14+ —= <10 foreveryn > 2,
Wy—1 N(n)

where N (n) < Cn, for a given C > 0.

Then there exists a constant co ‘= co(C, AL, A%) > 0 with the following
property. For every € € A¥ andn € N there exists ag n € [0, 1] such that the family
of curves

Xen(t) i= (Wut +ag )&  withé € A¥, n = kmod?2andk € {1,2}

satisfies
dp2 (xg 0 (1), Xg7 (1)) > « foreveryt >0, when|n —m| < land& # &',
n
The proof of the proposition is based on the following elementary lemma:

Lemma 7.2. Fix two different vectors &, &' € S' NQ? and a number w = 1+ % <
10, with A and N positive integers and coprime. Then there exists C = C(&,&')
such that

(i) L0, 1\{s : dp(t&, (t +5)&") > e VYVt >0}) < Ce;
(it) 210, 1\{s : dp2(t&, (tw + $)&') > eN~! Vi >0}) < Ce.

Proof. Set Tj,, := {(r, 1) : &t = &'t' on T2} and observe that T;,; C Q? since the
matrix with columns & and &’ is invertible with rational coefficients. Moreover Tj,,,
is an additive discrete subgroup of R?, hence it is a free group of rank k € {0, 1, 2}.
Denoting by T and 7' the period of, respectively, 1 — &t and r — &'t one has that
(T,0),(0,T") € T;p,. This implies that the rank of T, is two, hence we can find
two generators (t1, 1)), (12, 15) € Tins.

Let us finally introduce A := {&t € T2 : (t,5) € Tip; forsomes € R} to
denote the set of points in T2 where the supports of the curves t — t£ and t — t£’
intersect.

Let us now prove (i). Let s € [0, 1] be such that there exists # > 0 satisfying
dpa (&, (t + 5)&') < e. There exists ¢ € A such that d2 (1§, q) < ce, where
¢ = c(&,&") > 1, hence up to modifying ¢ we can assume that 1§ =: ¢ € A and
dp2(q, (t + 5)&') < 2¢e. Since t§ € A there exists ¢’ such that (¢, 1) € T;p, and,
exploiting the fact that (#1, ti), (12, té) € T;,; are generators, we can find k1, kp € Z
such that = k1) + katp and t = k1] + kat5. The following identity holds on T2

(t+ )& = (kit1 + kat2)&' + s&" = (ki (11 — 1)) + ka2 — 15)E" + g + s&',

therefore drp2 ((k(ty — 1)) + ka(t2 — 15) + 5)&',0) < 2ce. This implies —s €
Bzgg(kl(t1—t{)—i—kz(lz—té))—i—ZT’.NOticethatthe set E := {ki (t]—tll)—l-kz(tz—té) :
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ki, ko € Z}isdiscrete since t; — t{, th— té are rational numbers. Any two consecutive
points in E have a fixed distance ¢ = c¢(&,&’) > Oand E +ZT’ = E. In particular

V0, 1\ {s : dp2 (1€, 1 +5)E) =& Vi >0}

1 . 4c
<% ([—1, nny Bzcs(r)> <—e.

rekE
Let us now pass to the proof of (ii). Let s € [0, 1] be such that dp2 (1€, (r +
HwE) < % for some r > 0. Arguing as above we can assume that t§ = g € A,
dr2(q, (tw + s)&) < 10¢e N—! and we can find ¢/ € R and k;, ky € Z such that
(t,1") € Tins and k1ty + kot = t, ki) + kot = t'. We have the following identity
on T?:
(tw+9)E =18+ (t(w — 1) + )& = (kity + ka12)§" + (1(w — 1) + )&’
=q+ kit — 1) + ka2 — 15) +1(w — 1) +5)&’
=q + (ki(wt; —1]) + ka(wtr — 15) + 5)E’.
Thus, arguing as above we deduce —s € Byz, y-1 (k1 (wt; —1]) +ko(wr —15))) +
7T’
Notice now that the set E := {kj(wt; — 1)) + ka(wty — 1)) : ki, ky € Z} is
discrete, any two consecutive points in E have a fixed distance ¢ > ¢/ (£, )N~ >
Oand E 4+ ZT’ = E. In particular,

V0, 1\ {s : dp(1&, (tw +5)E) > ¢ Vi >0}
<! ([0, nn BIOESNI(;»)>
reE

2 - 1 20¢
< ——10ceN"" < e.
(¢, &N c'(§,8)

Proof of Proposition 7.1. Let us write
A=t r:m=1,...mp} fork=12.
The key ingredient is Lemma 7.2 and indeed the constant cq is chosen such that
ZCC’como <1, (34)

where C is the constant appearing in Lemma 7.2(i)&(ii).

Notice that we are interested in pairs (&, k, n) such that k = n mod 2. Without
loss of generality we can thus assume that k is a function of n and takes the values
1 or 2 depending on the congruence class of » modulo 2. In particular we will use
the shorthand notation a,,,,, for the point ag,, ., We will find ay, , inductively, after
endowing the set {1, ..., mo} x N\ {0} with the lexicographic order. More precisely
we write (m, n) < (m’,n’) if

e cithern < n’
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eorn=n"andm <m'.

At the starting point of the induction we set a1, = 0. For the inductive step, we fix
(m’, n’) and assume that a,, , has been already defined for any (m,n) < (m’, n’).
If m" < mgo we need to define a4 v, otherwise we have m’ = mgo and we need
to define a; ,7+1. We explain how to proceed just in the case m’ < my, since the
other case follows from the same argument. To fix ideas, let us assume that the
congruence class of n’ is 1, so that the congruence class of n’ — 1 is 2. We look for
A +1. € 10, 1] such that

/ o
d’ﬂ‘2((twn/ +am/+l,n’)€:m/+],l’xg"’l(t)) >co = ;
foreveryt > 0, whenl <m <m’ + 1

and

[ )
dp (Cwy + A 41,0)6m/ 41,15 xglm,Z () > o

foreveryt > 0, when1 <m < my

(we interpret the latter condition as empty when n’ = 1). Define the sets G}, G2, €
[0, 1] as

G,ln =A{a: dp(wy&pii —i—a"g‘m/ﬂy,,/,xg;’l(t)) > ¢o foreveryt > 0}

2, . '—1 €0
G, =f{a: dp@twy&wi1 +a§m/+1,,,/,xgn’2 1)) > ~ for everyt > 0} .

Finally, let G := G1N...N G:n, NGiN...Nn ano be their intersection. Note that
the existence of a,,/11 , is equivalent to the fact that G is not empty. According to
Lemma 7.2(1) .2 ([0, 1]\G,1n) < Ccq for every m € {1, ..., m'}, while according
to Lemma 7.2(ii) -2 ([0, 1]\G2,) < CCc for every m € {1, ..., mo}. In partic-
ular, by our choice of ¢( in (34) we have .2 ([0, 1]\G) < C(Cmg + m')cy <
2CCmygcy < 1, which in turn implies that G is not empty and completes the proof.

|

7.3. Suitable Discretized Speeds

Clearly we cannot apply the geometric arrangement of the previous section if we
d/p’ (2) 1/p

choose v, = n for the values of the parameter o since the rations of u g1 e

are not even guaranteed to be rational. The aim of the next lemma is to show that
it suffices to perturb {n},cn\ (0} slightly to a new sequence {v,},en\ (o} in order to
achieve that the w]’;j‘ are rational numbers with a denominator which is not too
large (in fact comparable to n).

Lemma 7.3. Fix 1 < p/ < 0. Then there exist C > 0, N € N depending only on
p', functions A : N\{0, 1} — {0, N}, N : N\{0, 1} — N\{0} and v : N\{0} — R™*
such that, for every n > 1 the following holds:

() lvp —n| < 1;
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1/p'
(i) (325) " =1+

(iii) N,, < Cn.

i

Sy

Proof of Proposition 7.1. We prove the statement by induction on n. For n = 1
andn = 2wesetvy = vy =1, Ap = 0, N, = 1, and the statement is satisfied.
Suppose now that the claim is verified for nn. If v; > n, we set v+ = vi, Ajig1 =0,
Ni+1 = Nj and the claim is verified. Hence we can assume that v; < 2. We claim

that we can choose Aj 1 = N, vi+1 and Nj41 with

Cr v\ 1/p —1
vis1 €li+1,74+2] and N,—,H:N[(”’l’:l) g —1] eN. (35)
n

Indeed, considering the continuous, decreasing function

o=a[(2)" 1]

it is enough to show that
< fm+1)—f(n+2)
: (i + 27 =1
(G + DY = ol Py (@ + 1 — o))

Nv /p

=: Ng(i, vy)

S o=

to find r € [n 4+ 1,7 + 2] such that f(¢) € N. Since the function g(n, v;) is
increasing with respect to the variable vj;,

Ng(i1, vi) > Ng(i, i — 1)
() ) (O 2 ) )

We finally choose N := N(p/) insucha way that infz>2 g(n,n — 1) > N~ we
notice that this infimum is positive since the function g(n, n — 1) is positive for
every n > 2 and, by a simple Taylor expansion, it grows linearly as 7 — oo. This
proves the claim (35).

With this choice of vj 41 and Nj1, recalling also that v; < n, we get that the
statement (iii) is satisfied:

- NP -l
Nip1 < N[(l + :) - 1] < C.
n
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7.4. Disjointness of the Supports
) d/p" (v, \1/P'
Set wy 1= p,'t (%)
Proposition 7.1 to Al, A and {w,}n>1 (notice that the assumptions are satisfied in
view of Lemma 7.3) obtaining the family {as , : & € A"} Finally, starting from
the building blocks introduced in Sect. 4 we define

where {v,},>1 is given by Lemma 7.3. We apply

WE,,uqul,v,,/K(t» x) = WS»Mqul,vn/K(t’ X = aé,ng)y
Ok 141,00 /i (1 %) 1= Ok 4y vy /i (1 X — g n§)

forany n > 1 and & € Al", as already explained.
We therefore now show (33), namely that

WE,uqH,vn/K . 85’,uq+1,vm/f((tvx) =0 forany(x,t) € T2 x R,

whenever £ # &', |n —m| < landn,m < C)\z(Ha)ﬂ.

Indeed for any fixed ¢ > 0 one has the inclusions

Suppwé,uqﬂ,vn//((t’ ) C B2puq_+ll(tw”é +a$,n$),

Supp@é/sﬂq-%—lyvm/l((tv ) C Bpﬂq—ll(twmg/ + aé’,méj‘/)7

hence we justneed to check that Bszil (tw,& +a5’"§)mb1‘1 (twp&'+ag n§') =
q q

¢. Proposition 7.1 guarantees
’ ’ €0
dp2 (twp + ag p&, twn§" +agr &) > P

hence the claim is proven provided that

3 co

-1
dHatt = anrarr (36)
q

The proof of (36) follows from the choice of puy+1 = )\Zy, and since y > 1,
b>d(l+a)+1.

7.5. Proof of the Proposition 2.1 in the Case d=2

The estimates up to Sect. 6.2 are done in the same exact way, up to observing

that v, /k is comparable to n/k up to a factor 2. In Sect. 6.3, we compute in (30)
(p)

g+1 in order to see the cancellation of the old error Ry;

the p.roduct of Oq([_?l agd w
now it has the expression

R
(p)  (p) 14
ol = ¥ X atelrd = mas (1)

n>12 geAlnl

®S‘Mq+|,vn/1< Wé,uq+1,vn/K (Agt1t, Ag41X),
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as a consequence of (33), (26), the factthat x - x = x and x («|R¢| —n) - x (k| Re| —
n) = 0 when |n —m| > 1.

Since the average of O ., |.n/x We i, 1.0/ Which appears from the forth line
of formula (30), in the definition of RY%447 and in m is now v, /k € rather than n/k &,
the definition of R, should now be replaced by

~ Ry v
Rei= ) x(xlRe| —n)m—”
n>12

and the obvious modification takes place for the definition of R? adr and m. The
estimate (31) now works analogously to give |R; — Ry| < %8q+2. The rest of the
estimates work as in Sects. 6.3 and 6.4.

8. Proof of the Ill-Posedness Theorems

8.1. Proof of Theorem 1.4

Without loss of generality we assume 7 = 1. Let o, b, a9, M > 5, f > 0 be
fixed as in Proposition 2.1. Let a > ag be chosen such that
o
I/p _ 1
= 3Mm°
qg=0
Let xo be a smooth time cutoff which equals 11in [0, 1/3] and 0 in [2/3, 1],
We set A = 20a and define the starting triple (pg, ug, Ro) of the iteration as
follows:
sm()»xl)
po = 10 + (1+=5-1)
cos(Axq)
e
4x

(I'=Xxo(®),  wuo=0,
Ro = —d:xo0

Simple computations show that the tripe enjoys (6) withg = 0. Moreover || Ro|l ;1 <
cr = Chy ! and thus (7) is satisfied because 28 < 1 (again we need to assume
ag sufficiently large to absorb the constant). Next [|9; pollco+ [l ollc1 < CA < Cho.
Since ug = 0 and @ > 1, we conclude that (8) is satisfied as well.

Next use Proposition 2.1 to build inductively (o4, uq, R,) for every g > 1. The
sequence {p;}qen is Cauchy in C(L”) and we denote by p € C([0, 1], LP) its
limit. Similarly the sequence of divergence-free vector fields {u, },en is Cauchy in
C([0, 1], L”") and C([0, 1], W"); hence, we define u € C°([0, 1], L?' n W17)
as its (divergence-free) limit.

Clearly p and u solve the continuity equation and p is nonnegative on T¢ by

1
1nf,o > inf po +me(,oq+1 pg) > = Z(Sq{fl =1
q=0
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Moreover, p does not coincide with the solution which is constantly 1, because

o o
1
lo—1Lr = I1 — pollLr — E log+1 — pgllLr = TN M E 8q+1 > 0.
q=0 q=0

Finally, since po(t, -) = 1 for ¢ € [0, 1/3], point (c) in Proposition 2.1 ensures that
p(t,-) = 1 for every t sufficiently close to 0.

8.2. Proof of Theorem 1.3

Letu € C([0, T], W' (T, RY) N LP") and p € C([0, T], LP(T%)) for some
p’ > s be given by Theorem 1.4. Since p is nonnegative we are in position to
apply Ambrosio’s superposition principle (see e.g. [3, Theorem 3.2]) that provides
a probability measure 1 on AC([0, 7], T%), supported on the integral curves of the
vector field u in the sense of Definition 1.1, such that p(z, -) £ = (e;)#n for any
t € [0, T]. Above it is not necessary to specify a pointwise representative of u,
indeed given two Borel maps v, w such that v = w = u Z?*!-ae. it holds that

T
/ (/0 0 (5)) — wiy ()] ds) dn()

T
= / (/ [v(y) — w(y)|p(s, y) d.ff’(y)) ds =0,
0 Td

hence 7 is concentrated on integral curves of v if and only if it is concentrated on
integral curves of w.

Let us now consider the disintegration {1}« of n with respect to the map
eo, which is .#?-a.e. well defined, and a pointwise defined regular lagrangian flow

X (¢, x) associated to u. Given v, a representative of u, we set

A(w) :={x € T¢ | t = X (¢, x)is an integral curve of v and 7y is not a Dirac deltaont — X (¢, x)}.

Notice that, for any x € A(v) there exist at least two integral curves of v starting
at x and

LY AW)AA(w)) =0 wheneverv = w = u L ae.,
since t — X (t, x) is an integral curve of both v and w for #“4-a.e. x € T¢.
We need to prove that Z4AW)) > 0. Assume by contradiction that A(v) is
negligible. Then one has the identities

o(t, ) L = (e)un = X(t, )L = 4,

which lead to a sought contradiction being p non constant.
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9. Asymmetric Lusin-Lipschitz Estimates

9.1. Proof of Proposition 1.7

We will prove the inequality up to constants and we assume o > 1/d, since for
any o € (0, 1/d) a simple application of the Young inequality gives

g() + g(0)ag(y)! 77 = g(x) + g(x) T4 <g<x)£‘f$>‘3g(y>”?>
< Cla, d)(g(x) + g(x)*g(M'™).

We next introduce the following localized Hardy Littlewood maximal function:
regarding any integrable function f : T¢ — R as a periodic function on R, we
set

Mf(x):= sup —
0<r<3 R"J Bpe

[fl(z)dz .

We will show below that the conclusion of the proposition holds for
g(x) := (M| DulH)? (x),

where g = ad. In particular the map L” > Du + g € L is continuous.

Note first that it suffices to prove the estimate for x, y € {g < oo} C {M|Du| <
00}. On {g = oo} we can arbitrarily define u to be O: this will not matter for our
purposes because when one of the two points x, y belong to {g = oo} the right hand
side of (5) is infinite, making the inequality trivial. On {g < oo} we wish instead to
define u everywhere in a sensible way. We fix thus a smooth convolution kernel ¢
supported in the ball of radius 1, assume x € {g < oo} and consider uy 1= u*@y—«.
Recalling the Poincaré inequality

2% / u(z) — ur(x)|dz < C27*M|Du(x)| < €27 g(x)
B, (x)

(where the constant depends on ¢), we infer |ugy1(x) — ug(x)| < C2_kg(x). This
implies that {u (x)}x is a Cauchy sequence and has a limit: we define then u(x) to
be such limit.

We next fix x, y € {g < oo}, regard u as a periodic function defined on the
whole R and set R := |x — y|. W.Lo.g. R < 1. Moreover we recall the classical
inequality

|u<x)—u<y)|sc(d)(/ [Du@]_, / _1Du@)]

_ dz) .(37)
Br(x) lx — 2471 Br(y 1x — 2|91

When u € C! we refer the reader to [22, Lemma 3.1] for a proof. Otherwise,
the inequality can be validated passing to the limit on the respective ones for the
approximating functions uy’s (using that limy ux(x) = wu(x), limg ur(y) = u(y)
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and standard facts about convolutions). Then a classical telescoping argument gives

that
/ |Du(z)| Z/ |Du(z)| dz

oo 1x — 291 Byt (\Byit ) 1X = 2|47
< C(d)RM|Dul(x). (38)

Recall that ¢ € (1/d, r/d) and fix ¢ € (0, 1] to be chosen later. We write

|Du(z)| J |Du(z)|
a—1 92 = a1 4z
Bry [y — 2l BrO)\Ber() Y — 2l

D
+/ ADu@l gy

Ber(y) |y — 2[971

Let us study I and I separately. Using the Holder inequality, we get

1/q R 1
q -
I< (/BR(y)IDM(Z)l dZ) (C(d)/ERs(d—l)q/_d-'r] ds)

1 ta 1
s(denRWq(—;/' |Du@n%h)
RYJ Byr@

(Rg)dflfd/q’
< C(d, q)Rg(x)e?9 =4+ = C(d, q)Rg(x)s 1+

1/4'

where % =1- % and ¢ = ad. For what concerns /I, we argue as in (38) getting
Il < C(d)ReM|Dul(y) = C(d)Reg(y).
Putting the two estimates together and choosing
q/d
 _(E)T forem) = s

1 otherwise,

we obtain

[Du@l o ol
——7dz = C(d, 0)R(g(x) + g(x)*g(y) ),
Br(y) ly =zl

which, along with (38), gives the desired conclusion.

9.2. A Second Version of the Asymmetric Lusin—Lipschiz Estimate

A simple application of the Young inequality gives the following linear version
of (5):
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Corollary 9.1. Letu € W' (T?) for some | < r < d. Then, forany q € [r, r%)

there exist a positive constant C := C(r,d, q) and nonnegative functions a € L
and b € L1 satisfying

lallzr < CllDully and ||blize < Cl|Dullrr, (39)
together with
u(x) — u(y)| < Ix — yl(a(x) + b(y)) foranyx,y e RI\N.

Moreover, we can take N = () provided we choose a suitable representative of u,
a and b and the latter can be selected so that the respective map W' > u —
(a,b) € L' x L1 is continuous.

Proof of Proposition 7.1. Assume without loss of generality ||Duljzr = 1 and
q > r.Given g € (r, r%) we consider & € (0, r/d) such that g = 7= Let g be
as in Proposition 1.7. We apply Young’s inequality with exponents (r/«, r/(r —))

to get
lu(x) —u(y)| < |x — yl(g(x) + g(x)*g(»' ™)
< v — yI(g() + g a/r + g(y) e (1 —a/r)) .

Setting

1-o
a(x) = g(x) +g() a/r,  bx)=gx) e (l —a/r)=gx)/"(1 —a/r),
one can easily check that |la|;1 < C(r,d, q) and ||b||L« < C(r,d, q). O

We will now show that the range of exponents above is optimal. First of all we
prove the following simple proposition:

Proposition 9.2. Lerd > 2,0 < B < d and g > 1. If there exist g € L' (By) and
h € L1(By) such that

1
[xIf 1yl

‘ < Ix = yl(g(x) + h(y)) Vx,ye B CRY, (40)

d—1
then g < T

Proof of Proposition 7.1. Fix « > 0. Plugging y = |x|%x in (40), dividing by
[x|(1 — |x|%) and integrating in B,2(0), we get

1 — |x|p 1 /
dx < g(x)dx
/31/2(0) 1 —|x|® |x|Plet+D+ B1/2(0)

+/ hx|x|*) dx.
B1/2(0)

By changing variables in the last integral, according to y = x|x|%, we end up with

1 1
———dx < C/ gx)dx + C/ h(y)——5—dy.(41)
~/B|/2(0) |x|pletD+H Bi2(0) B |y[%a

By Holder’s inequality, the last integral in (41) is finite for any o < g — 1; therefore,

(41) implies (o + 1) <d — 1 for any @ < g — 1. This easily gives g < dﬁ%l. O
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Let us now fix 1 < r < d. For any B < d/r — 1 consider the function
u(x) = |x| = WIL’Cr (R9) and cut it off with a smooth cut-off function so that it is
compactly supported in (—1/2, 1/2)?. Extend then the function by periodicity and
regard it as a function in W' (T?). Proposition 9.2 ensures that the exponent ¢ in
Corollary 9.1, associated to u, must satisfy g < d’%l and therefore g < r% + ¢
withe — Owhen g — d/r — 1.

9.3. The Critical Case p = d

We discuss here possible improvements of (5) in the critical case p = d. First
of all observe that, in general, we cannot expect (4) to hold for u € wld(Td)
since it would in turn imply u € L°°. However, following closely the proof of
Proposition 1.7, one can show that

d—1
lu(x) —u(y)| < C(d)|lx — y| (1 + M|[Du|(x) (1 + log (M|Du|d(y)) ‘ ))
forany x, y € R/\N, (42)

where N C R is negligible. We do not give the details since (42) does not play
any role in the sequel. We instead show a generalization of (5) for maps with Du in
the Lorentz space L%'!; as a corollary we get the .#¢-a.e. uniqueness of trajectories
of vector fields enjoying such regularity.

For the reader’s convenience we recall that the Lorentz spaces are defined for
r € [1,00), g € [1,00] in the following way. For every measurable function
f:T? — R we set

Ifllzra = r LA = DY 0 0,00y, 29

(seee.g. [20]) and hence we define L"-7 as the space of functions f suchthat || f||1r.a
is finite.2 Notice that LP-? = L?, that the inclusion L4 (T¢) c L4-1(T9) c L4(T%)
holds for any ¢ > d and that the Holder inequality (for Lorentz spaces) implies
in particular that || fgll1 < C@)|fl a1 |||g||dejm. We recall finally that the

assumption Du € L% in Proposition 9.3 below implies, by a result of Stein, the
continuity of u.

Proposition 9.3. Assume u € wLi(Td) satisfy Du € L4Y. Then there exists
g € L4 such that

lgllpaco = C(d)||Dullpa.r,
u(x) —u(y)| < (Cd)M|Du|(x) + g(x)|x — y| foranyx,y € R/\N (43)

2 Note that, in spite of the notation, || - ||z ¢ is in general not a norm. Indeed it can be
shown that for (r,q) # (1, 00) the topological vector space L™9 is locally convex and
there exists a norm ||| - |||,4 which is equivalent to || - ||zr¢ in the sense that the inequality

c! A Mg < I flliLra < Cl fllr,q holds for every f. On the other hand L1 is not
locally convex.
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for some negligible set N. The latter can be assumed to be empty if u is appropriately
defined pointwise and moreover there is a continuous selection map L' 5 Du >
g e Lb™,

Proof of Proposition 7.1. Fix x, y € R? with |x —y| < 3/2and set R := 2|x — y|
and argue as in the proof of Proposition 1.7. Our conclusion will follow from (37)
and (38) provided we show that

Du(z
Br(y 1Y — 2

for some g € L% (RY) satisfying (43).
The Holder inequality for Lorentz spaces gives

[Du(z)] 1-d

———dz < C@IIDullpripliparlllx =77 _a_

/BR(y)|y—Z|d_l R(y) L La-T°
= C(@II|DullpgyllLar-

Observe that

|||Du|13R(y)||Ld,1 < |||Du|133R(x)||Ld,1 < 3R sup t_1|||Du|lB,(x)”Ld,1-

0<t<9

Let us set g(x) := supy, .9 = |Du|1p,(x)ll a.1 and check (43). First, notice that

g(x) = sup ¢ '|[|Dullp,x)ll o
0<t<9

1/d

= sup /:O (tidf"({lDul > AN B,(x))) di

0<t<9
<C() / ) [M 1y ()] dn,

where in the latter estimates we regard | Du| as a function on the torus.
d
Now we argue by duality. Fix h € L7-T'! Recall that lg? 7100 = ||g||‘£dyoo for

any nonnegative g € L¢>°. Hence, using the weak (1, 1) estimate for the maximal
function, we get

/ g(x)h(x)dst(d)/ / (M pu=) )] h(x) dx do.
Td 0 Td
<C(@) f M Apa] o bl o, d2
0 Ld-1
=C(d) f M) 1T e

o
<@ [ LD = ) arhl

=C@|Dullgar|inll

d
a1t

Since h € deTl’l is arbitrary, by duality we get the desired estimate (see e.g. [20,
Theorem 1.4.17]). O
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10. Well Posedness Theorems

First of all we observe that, arguing as in [11, Corollary 5.4], Proposition 9.3
implies the following result:

Corollary 10.1. Letu € L'([0, T1, W1(T9)) satisfy | Du| € L'([0, T1, L4 (T4))
and divu € LY ([0, T], L®°(T9)). For £?-a.e. x € T4 there exists a unique trajec-
tory of u starting at x at time t = Q.

Proof of Proposition 7.1. Let X be the regular Lagrangian flow associated to u,
which exists by the DiPerna-Lions theory. We wish to show that for a.e. x the curve
t — X(t,x) is in fact the unique trajectory of the ODE. Consider the function
h(t,x) := M|Dul(t, x) + g(t, x), where g(¢,-) is the map given by Proposi-
tion 9.3 when applied to u(t, -) (we choose u +— g continuously in order to avoid
measurability issues). Observe that, by the usual change of coordinates formula,

T T
f f h(t, X(t,x))dtdx < Cf f h(t,x)dxdt < c0.
T4J 0 0J Td

In particular, for a.e. x, we have that that r — y(¢) := X(t, x) is an absolutely
continuous trajectory solving y (t) = u(t, y(t)) and that a(t) := h(t,y()) =
M|Du|(t,y(t))+g(t,y()) € L'((0, T)). Fix such an x and assume y is another
absolutely continuous trajectory solving )j(t) = u(t, y(t)) and y(0) = x. It then
follows that f(¢) := |y (z) — y(¢)| is absolutely continuous and that

@) < fut, y @) —ut, @) < C(M|Dul(t, y (1)) + g(t, y (1)) f (1)
= Ca(t) f(1).

Since f(0) = 0anda € L1, it follows from Gronwall’s Lemma that f =0on
[0, T]. O

Proof of Theorem 1.5. By Ambrosio’s superposition principle (see [3, Theorem 3.2])
there exists a family of probability measures {1}, cge C Pr(AC([O, T1, T4)) con-
centrated on integral curves of u, starting from x € T¢ at time ¢ = 0, such that

/ d(x)p(t, x)dx =/ (fd’(l/(f)) dﬂx()/)) po(x)dx
Rd Rd
for any ¢ € C.(RY). (44)

Let us also recall that under our assumptions on u there exists a unique regular
Lagrangian flow X associated to it (see [19]). The desired conclusion follows from
the following claim: for ,oo.iﬂd -ae. x € R, N, is concentrated on the curve ¢ —
X (t, x).

We prove the claim just in the case 1 < r < d. The case r > d follows from
the fact that we have classical uniqueness of the trajectories for a.e. initial data,
as observed by [11, Corollary 5.2] (we can of course use Corollary 10.1 as well,
since L? ¢ L% forevery p > d). Forany ¢ € [0, T] we consider a representative
of u(r,) € Wi (T4, R?) such that Corollary 9.1 holds with N = ¢ for some



E. BRUE ET AL.
a; € LlloC and b; € L satisfying (39) (note that (2) guarantees p’ € (r, rff})).
Note that by the last statement of Corollary 9.1 we can ignore any measurability
issue in the variable .
Forany y € AC([O, T], Rd) integral curve of «, and any x € R4 one has

d
d_t|X(t’x) —yO] = |u@, X, x)) —ut, y®)]
= 1X( x) =y Ol(a (X, x)) + b (y (1))

for a.e. t € [0, T]. Therefore Gronwall’s lemma guarantees X (-, x) = y, provided
that

T
y(0) =x and / (ar (X (2, x)) + b;(y (1)) dt < o0.
0

Therefore our claim follows from

T '
/ a;(X(t,x))dt < oo and / b;(y(t))dt < oo forny-a.e.y 45)
0 0

for po-Z4-a.e. x € T¢.
The first one is a consequence of

T T T
/ (/ at(X(t,x))dt> dx < C/ / a;(x)dxdt < C/ | Duyllr dt < o0,
Td 0 0J Td 0

where the constant C > 0 depends on the compressibility constant in Definition 1.2.
Here we have used (39). The second inequality in (45) follows from

T T
/ ( / / bz()/(l))dldnx(y)) po(x) dx = / / b ()t x) dx di
Td 0 0J Td
T
< ( f bl dr) Lol

<ClIDullprryllpliLewry < oo,

where we have used (44) and (39).
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