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ABSTRACT

Accurate inference of population parameters plays a pivotal role in unravelling evolutionary histories. While
recombination has been universally accepted as a fundamental process in the evolution of sexually reproducing
organisms, it remains challenging to model it exactly. Thus, existing coalescent-based approaches make different
assumptions or approximations to facilitate phylogenetic inference, which can potentially bring about biases in
estimates of evolutionary parameters when recombination is present. In this article, we evaluate the performance
of population parameter estimation using three methods—StarBEAST2, SNAPP, and diCal2—that represent three
different types of inference. We performed whole-genome simulations in which recombination rates, mutation
rates, and levels of incomplete lineage sorting were varied. We show that StarBEAST2 using short or medium-
sized loci is robust to realistic rates of recombination, which is in agreement with previous studies. SNAPP, as
expected, is generally unaffected by recombination events. Most surprisingly, diCal2, a method that is designed

to explicitly account for recombination, performs considerably worse than other methods under comparison.

1. Introduction

The development of statistical models has moved phylogenetics
beyond the qualitative estimates of cladistic relationships to inference of
demographic histories including divergence times, population size
changes and other quantitative values. These statistical methods rely on
the fact that different loci across the genome have distinct histories
which arise from recombination during sexual reproduction.

Instances of discordance have long been documented between the
evolutionary history of a set of species and the evolutionary histories of
individual loci within the genomes of those species. While such discor-
dance patterns arise due to biological processes acting within and across
species, their analysis is confounded in practice by systematic error in
the data. One biological source of discordance that is ubiquitous across
the Tree of Life is incomplete lineage sorting, or ILS. When an ancestral
population splits into two descendant populations, ancestral poly-
morphism could be maintained across multiple speciation events lead-
ing to conflict between individual gene genealogies and species
phylogenies—a phenomenon known as ILS. To account for ILS in species
tree inference, the multispecies coalescent (MSC) has emerged as the
dominant model as it naturally accounts for coalescent stochasticity
(Rannala and Yang, 2003). The model was later extended to operate on
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phylogenetic networks, giving rise to the multispecies network coales-
cent (MSNQ), in order to account for reticulate evolutionary histories in
the presence of ILS (Yu et al., 2014).

Species phylogeny inference methods under the MSC (and MSNC)
can be classified into two categories. Summary, or gene-tree-based,
methods use gene tree estimates as the input data and infer species
phylogenies that summarize these gene trees under various criteria.
While these gene-tree methods are usually fast and scalable, their ac-
curacy is adversely affected by gene tree estimation error (Patel et al.,
2013). The second category consists of methods that directly infer the
species phylogeny from molecular sequence data. While methods in the
second category are often more accurate and produce more information
on the evolutionary parameters, they are generally less scalable than
gene-tree-based methods (Zimmermann et al., 2014).

Most implementations of species phylogeny inference under the MSC
assume that their input is structured into non-recombining loci or
coalescence genes (Rannala and Yang, 2003; Heled and Drummond,
2009; Bryant et al., 2012a; Ogilvie et al., 2017). These “c-genes” (Doyle,
1997; Springer and Gatesy, 2016) correspond to the segments between
recombination events in a genome, and therefore each site within a c-
gene will share the same phylogenetic history as every other site in the
same c-gene. However, in practice these implementations are instead
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used to analyze data sets structured into m-genes, “a particular sequence
of nucleotides along a molecule of DNA...which represents a functional
unit of inheritance” (Rieger et al., 2012; Doyle, 2021). Because this is
common practice, we seek to assess the impact of recombination within
m-genes on the inference of the divergence times and population sizes by
these methods when m-genes are used as input. We will refer to these
implementations using “multilocus methods” as shorthand.

There are a few studies to date which have investigated the impact of
recombination on species phylogeny estimation. Lanier and Knowles
(2012) and Wang and Liu (2016) assessed the performance of
coalescent-aware methods in the presence of recombination and have
shown that species tree topology inference under the MSC appears to be
robust to intra-locus recombination. In examining the impact of viola-
tions of free inter-locus recombination, Wang and Liu (2016) addition-
ally found that the use of recombination breakpoints for identifying loci
improves the accuracy of species tree topology estimation. However,
little is known about the extent to which recombination affects the
estimation of ancestral population sizes and divergence times. Very
recently, Zhu et al. (2022) tested the effects of intra-locus recombination
on several inference problems including the estimation of population
parameters under the MSC. They found that in “realistic” simulations,
Bayesian methods using multilocus sequence data under the MSC per-
formed reasonably well when the amount of recombination was low or
moderate, but could underestimate population sizes and inflate species
divergence time given elevated recombination rates, confirming similar
observations from previous studies (Wall, 2003; Lohse and Frantz,
2014).

The estimation of divergence times along with population sizes of
species phylogenies can be conducted in a variety of ways and we choose
three modern and representative approaches to study. First, the multi-
locus method StarBEAST2 (Ogilvie et al., 2017) jointly infers gene and
species histories and is an extensively used approach to infer evolu-
tionary parameters while accounting for rate variation and gene
discordance. Second, the single nucleotide polymorphism (SNP) method
SNAPP (Bryant et al., 2012b) avoids the problem of c-gene/m-gene
conflation by assuming the input data set consists of unlinked biallelic
markers such as SNPs, since recombination cannot occur within a single
site. Third, advances in whole-genome sequencing have been driving the
development of another class of methods that use sequentially
Markovian approximations of the coalescent to integrate over gene
histories and recombination breakpoints (Steinriicken et al., 2019; Liu
et al., 2021), thus conducting inference under the (multispecies) coa-
lescent with recombination, and we used diCal2 (Steinriicken et al.,
2019) to represent this class.

While some degree of model violation is unavoidable for any statis-
tical method when applied to real data, we show that adding recombi-
nation and linkage has a similar and mild effect on StarBEAST2 and
SNAPP. However, parameters inferred by diCal2 could be wildly erro-
neous, casting doubt on the approximations employed by that method.
Our results add more support to the use of methods that assume
recombination-free loci, even when the assumption is violated.

2. Materials and methods
2.1. Simulations

To examine the impact of recombination on continuous parameter
estimation given a fixed species topology, we performed whole-genome
simulations under a classical coalescent with recombination model
using msprime version 1.0.2 (Kelleher et al., 2016). We varied the
species divergence times, mutation rates, and recombination rates to
create data sets approximating different evolutionary scenarios, which
were broadly similar to those estimated from modern humans and other
hominids (Roach et al., 2010). Specifically, two model species trees with
shallow and deep evolutionary timescales were used: i) a shallow phy-
logeny of height 1.5 million years, and ii) a deep phylogeny of height 18
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million years (Fig. 1). We considered two per-generation mutation rates,
p = 10~8/site/generation and p = 1077 /site/generation, where the
smaller rate is very similar to the modern human rate of 1.1 x
10’8/site/generation reported by Roach et al. (2010). We used three
different recombination rates: r =2 x 10°, r=2 x 108, andr = 2 x
1077 per site per generation, where the medium rate is similar to the
human genome-wide average recombination rate of 1.26 cM/Mb re-
ported in Jensen-Seaman et al. (2004). For each combination of p and r,
10 replicates of ten 1-Mb long chromosomal segments were simulated
for each taxon. In all cases, the population size was 20,000 diploid in-
dividuals, and the generation time was 25 years as in Li and Durbin
(2011). DNA sequences were generated assuming the Jukes-Cantor
nucleotide substitution model.

2.2. Continuous-parameter estimation

For the inference of divergence times and population sizes, the true
species tree topology (((A,B),C),D) (Fig. 1) was provided to all methods
evaluated here.

The Markov chain Monte Carlo (MCMC) convergence of StarBEAST2
and SNAPP was examined by the Gelman-Rubin convergence diagnostic

R (Gelman and Rubin, 1992), and the effective sample size (ESS).

2.2.1. StarBEAST2

To prepare the sequence alignments for StarBEAST2, five alignments
of length 200, 1000, and 5000 bp were extracted from each chromo-
somal segment by evenly sampling across the segments using python
script from https:// github.com/ForBioPhylogenomics/tutorials/blo
b/main/week2_src/make_alignments_from_vcf.py.

The StarBEAST2 analyses used the Jukes-Cantor substitution model
with a strict clock where the clock rate was set to the true mutation rate,
and assumed a Yule prior on the species tree where Uniform(0,0.01) was
used as prior distribution on the speciation rate. Constant population
sizes were estimated given a 1/X hyperprior (popMean).

The chain length was set to 0.5 billion generations, sampling every
200,000 states, and the first 20 % of collected samples were discarded as
burn-in. Three independent runs (using different seeds) of such chains
were carried out on every data set. We generated maximum clade
credibility (MCC) trees with posterior mean heights using TreeAnnota-
tor v2.6.6 (Drummond et al., 2012).

2.2.2. SNAPP
For each data set, the segments from 10 chromosomes were
concatenated into one file via BCFtools’s concat command (Danecek
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Fig. 1. The model species tree used in the simulations. Values in blue and
orange at internal nodes represent the node times in million years for the
shallow and deep phylogenies, respectively. Population size of 20,000 in-
dividuals and generation time of 25 years were assumed. (For interpretation of
the references to colour in this figure legend, the reader is referred to the web
version of this article.)
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et al.,, 2021). The SNAPP input XML files were produced by the ruby
script snapp_prep.rb (Stange et al., 2018). Specifically, the ruby script
extracted at most 1000 SNPs, where the minimum distance between
SNPs was 1000 nucleotides, with only variable sites included. We used a
1/X prior on the speciation rate lambda in the Yule model. We placed a
gamma-distributed prior on the population size parameter theta, with an
alpha (shape parameter of the gamma distribution) value of 0.5 and beta
(rate parameter of the gamma distribution) values of 33 and 3, for the
low- and high-mutation-rate scenarios, respectively. The clock rate was
fixed to the true mutation rate. To enable ascertainment correction, we
included the number of constant sites that is ascertained for.

MCMC chains were run for 24 h of wall-clock time with a single
thread (on average, each chain was run over 40 million generations) and
sampled every 5,000 generations. The first 30 % samples of each chain
were discarded as burn-in. Three independent chains were run on each
replicate data set. The post-burn-in samples were summarized as an
MCC tree with nodes scaled to the mean height estimates using
TreeAnnotator v2.6.6 (Drummond et al., 2012).

2.2.3. diCal2

diCal2 was given as input the simulated haplotypes, the true
recombination rate, and the true mutation rate. For each generation, we
used 70 particles, each of which performed 6 EM-steps, and 6 best points
were selected as the parents for the next generation. Time was dis-
cretized into intervals by 11 break points, which was chosen log-
uniformly between 1000 years and 300 million years. The genetic al-
gorithm was repeated for 5 generations as used in Steinriicken et al.
(2019). The parameters with highest composite likelihoods were
reported.

3. Results
3.1. Characteristics of the simulation data

Because the accumulation of recombination is a result of the product
of interaction between recombination rate and time span, deep diver-
gence tends to yield shorter c-genes compared with the recent diver-
gence, with a mean length slightly over 62 % of that of the shallow
phylogeny (Table 1). At both tree depths, increases in recombination
rate result in shorter c-genes (Table 1). Based on our simulations, we
observed that an order of magnitude increase in the recombination rate
leads to roughly an order of magnitude decrease in the average c-gene
size. As expected, the mutation rate has negligible impact on the lengths
of c-genes (results are now shown in the table).

3.2. Accuracy of continuous parameter estimates

Overall, all methods inferred better estimates of divergence times
compared with population sizes. Bayesian inference based on the MSC
using either linked sites (i.e., StarBEAST2) or SNPs (i.e., SNAPP) per-
formed well for small recombination rates. StarBEAST2 inferred more
accurate divergence time at deeper timescale whereas SNAPP performed
better estimation of divergence time at shallow divergence (Supple-
mentary Fig. S1 and Fig. 2). All methods yielded more accurate ancestral
population sizes for the shallow simulations where the most accurate
method was SNAPP; in contrast, SNAPP tended to overestimate the

Table 1
Means and standard deviations of the average c-gene lengths of the
simulated data. Each value was obtained from 10 replicates.

Shallow Deep
Recombination rate
Mean SD Mean SD
2x107° 1160.69 21.44 723.57 12.68
2x10°8 117.37 0.98 73.00 0.32
2x 1077 12.16 0.03 7.78 0.01
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population sizes backward in time for the deep simulations, reflecting
the discussion of Bryant et al. (2012b) that “@ values can only be reliably
inferred for ancestral populations if sufficiently many coalescent events
occur within these populations.”

It has been previously shown that recombination results in biased
estimates of ancestral population parameters (Wall, 2003; Lohse and
Frantz, 2014; Zhu et al., 2022). Here we repeated the StarBEAST2 an-
alyses on data with growing segment lengths (200, 1000, and 5000
sites), as longer segments tend to encompass more intra-genic recom-
bination breakpoints (Table 1). For small recombination rates, more
sites slightly improved the estimates of StarBEAST2 (Supplementary
Fig. S1 and Fig. 2). As recombination rate increases, the parameter es-
timates of longer segments started to deviate from the true values, with
ancestral population sizes being underestimated but divergence times
being overestimated. Remarkably, using sequences with 5000 sites
under high recombination rates, StarBEAST2 underestimated the pop-
ulation sizes in terms of posterior mean by 9.5 % and 39 % on average,
for the shallow and deep species trees, respectively. We noticed that
such underestimation of population sizes was accumulated backwards in
time (as reflected by truth > Nag > Napc > Napcp). Despite a few ex-
ceptions (e.g., shallow phylogeny, r = 2 x 1077, u = 1077, and length of
1000 sites), StarBEAST2 using short and intermediate segments seemed
to be relatively robust to the presence of recombination. This supports
the previous finding that excessive recombination events affected
Bayesian analysis of multilocus sequence data assuming the MSC model
(Zhu et al., 2022).

In comparison to StarBEAST2, SNAPP tended to overestimate Napc
and Nypcp at deep timescales. The performance of SNAPP, as expected,
was in general unaffected by the recombination rate changes. As
opposed to StarBEAST2, SNAPP yielded less variable ancestral popula-
tion sizes at deep phylogenetic relationships.

Although diCal2 was designed to explicitly account for the recom-
bination process, it appears to be the worst-performing one among all
the methods evaluated here in this study. We found that diCal2 under-
estimated the root population size by about 43.2 % on average. Notably,
we observed a large variance of diCal2’s estimates between replicates
for the deep phylogeny when the relative rates of recombination to
mutation are 0.2 (Nagc) and 2 (Tap and Tagc). To determine whether the
observed large variance was due to convergence issues, we additionally
conducted diCal2 analyses on the full data sets using narrow bounds for
the population parameters. We only detected minor convergence prob-
lems under a model condition with high recombination rate and muta-
tion rate (r = 2 x 10~7, u = 1077, and deep phylogeny; Supplementary
Fig. S2). Hence, the observed erroneous behavior of diCal2 was not
directly tied to convergence issues.

4. Discussion

The results presented here show that realistic levels of recombination
are likely to have very little impact on Bayesian inference of evolu-
tionary parameters under MSC using either multilocus data or unlinked
SNPs. Surprisingly, anomalous behavior of diCal2, which was designed
for analyzing full genome sequences in the presence of recombination,
was found in our simulation study, most likely caused by extensive ap-
proximations employed in its algorithm. Still, the utility of MSC methods
will depend on factors including the level of recombination, the lengths
of loci, and the time scale of the phylogeny. The worse performance of
StarBEAST2 when loci had thousands of sites clearly suggests that the
amassing of intra-locus recombination events substantially hinders the
power of MSC-based multilocus analysis. If the genetic loci were
sampled from genomic regions with high recombination rates, it would
be better to utilize larger numbers of short loci rather than fewer long
loci. Our results also reinforce that the accuracy of SNAPP is impacted by
the level of ILS: in the presence of extensive ILS, SNAPP yields highly
accurate results, whereas in the absence or presences of low levels of ILS,
SNAPP constitutes a biased estimator of population parameters.
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Fig. 2. Inference results on the deep
phylogeny. Results are shown for five
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In terms of the running time of methods, due to differences in the
underlying algorithms and variation in the chain lengths, the efficiency
of the MCMC-based methods, namely StarBEAST2 and SNAPP, was
measured by wall-clock time required per unit ESS so that the number of
iterations is not a factor, whereas the efficiency of diCal2 was assessed
by wall-clock time spent on a single data set. Using these measures,
StarBEAST2 was faster than SNAPP in our study, taking 0.27 min on
average to obtain 1 ESS compared to 0.51 min in the case of SNAPP.
diCal2 was the least efficient method with an average runtime of 130
wall-clock hours on each data set. It is worth mentioning that diCal2
could be conducted in a parametric bootstrapping manner. But given the
computational cost of diCal2, performing a bootstrap analysis would be
prohibitive on our data sets.

While diCal2 failed to achieve desirable performance in our study, it
is still worth exploring other inference techniques under the multispe-
cies coalescent with recombination that utilize different mathematical
or algorithmic frameworks. Furthermore, beyond the estimation of
evolutionary parameters, StarBEAST2 has the advantage of being able to
produce better estimates of gene trees than those obtained by methods
that infer gene trees independently of the species phylogeny.

Our analyses of how recombination affects the estimation of ances-
tral population parameters is similar to the recent work by Zhu et al.
(2022). However, the latter focused on the effect of recombination on
Bayesian analyses for addressing different phylogenetic questions under
the MSC. In contrast, our work explores the power of different types of
methods under various evolutionary scenarios. Zhu et al. (2022) simu-
lated data with intra-locus recombination under the multispecies

network coalescent (Yu et al., 2014) model and varied the number of loci
as well as number of sequences. We simulated whole-genome data under
the MSC, and then sampled distantly-spaced segments of small, medium,
and large sizes across the genome, which is a common practice in
empirical phylogenomic analyses. As a result, our data included the
effect of both intra- and inter-locus recombination, whereas Zhu et al.
(2022)’s data incorporated intra-locus recombination and introgression,
but not inter-locus recombination.

It is important to note that neither our study nor that of Zhu et al.
(2022) incorporated variation of substitution or recombination rates
among lineages and sites. Rate heterogeneity has been widely observed
in real data (Nabholz et al., 2008; Beeson et al., 2019). In addition, it has
been demonstrated that ILS could result in apparent substitution rate
variation, which in turn may cause technical bias in evolutionary
parameter estimation (Mendes and Hahn, 2016), and the use of species
tree relaxed clocks enables more robust parameter inference (Ogilvie
et al., 2017). Therefore, it is worth investigating how reliable current
methods with or without relaxed clocks are in the presence of varying
levels of rate heterogeneity.

Finally, while we limited our study to the impact of recombination
on MSC-based species tree inference methods, other evolutionary pro-
cesses such as gene flow and gene duplication and loss could have an
even much larger impact on the performance of those inference
methods. In particular, it is worth exploring how the interaction among
these processes impact phylogenomic inference under the MSC.
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