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A B S T R A C T   

Accurate inference of population parameters plays a pivotal role in unravelling evolutionary histories. While 
recombination has been universally accepted as a fundamental process in the evolution of sexually reproducing 
organisms, it remains challenging to model it exactly. Thus, existing coalescent-based approaches make different 
assumptions or approximations to facilitate phylogenetic inference, which can potentially bring about biases in 
estimates of evolutionary parameters when recombination is present. In this article, we evaluate the performance 
of population parameter estimation using three methods—StarBEAST2, SNAPP, and diCal2—that represent three 
different types of inference. We performed whole-genome simulations in which recombination rates, mutation 
rates, and levels of incomplete lineage sorting were varied. We show that StarBEAST2 using short or medium- 
sized loci is robust to realistic rates of recombination, which is in agreement with previous studies. SNAPP, as 
expected, is generally unaffected by recombination events. Most surprisingly, diCal2, a method that is designed 
to explicitly account for recombination, performs considerably worse than other methods under comparison.   

1. Introduction 

The development of statistical models has moved phylogenetics 
beyond the qualitative estimates of cladistic relationships to inference of 
demographic histories including divergence times, population size 
changes and other quantitative values. These statistical methods rely on 
the fact that different loci across the genome have distinct histories 
which arise from recombination during sexual reproduction. 

Instances of discordance have long been documented between the 
evolutionary history of a set of species and the evolutionary histories of 
individual loci within the genomes of those species. While such discor-
dance patterns arise due to biological processes acting within and across 
species, their analysis is confounded in practice by systematic error in 
the data. One biological source of discordance that is ubiquitous across 
the Tree of Life is incomplete lineage sorting, or ILS. When an ancestral 
population splits into two descendant populations, ancestral poly-
morphism could be maintained across multiple speciation events lead-
ing to conflict between individual gene genealogies and species 
phylogenies—a phenomenon known as ILS. To account for ILS in species 
tree inference, the multispecies coalescent (MSC) has emerged as the 
dominant model as it naturally accounts for coalescent stochasticity 
(Rannala and Yang, 2003). The model was later extended to operate on 

phylogenetic networks, giving rise to the multispecies network coales-
cent (MSNC), in order to account for reticulate evolutionary histories in 
the presence of ILS (Yu et al., 2014). 

Species phylogeny inference methods under the MSC (and MSNC) 
can be classified into two categories. Summary, or gene-tree-based, 
methods use gene tree estimates as the input data and infer species 
phylogenies that summarize these gene trees under various criteria. 
While these gene-tree methods are usually fast and scalable, their ac-
curacy is adversely affected by gene tree estimation error (Patel et al., 
2013). The second category consists of methods that directly infer the 
species phylogeny from molecular sequence data. While methods in the 
second category are often more accurate and produce more information 
on the evolutionary parameters, they are generally less scalable than 
gene-tree-based methods (Zimmermann et al., 2014). 

Most implementations of species phylogeny inference under the MSC 
assume that their input is structured into non–recombining loci or 
coalescence genes (Rannala and Yang, 2003; Heled and Drummond, 
2009; Bryant et al., 2012a; Ogilvie et al., 2017). These “c-genes” (Doyle, 
1997; Springer and Gatesy, 2016) correspond to the segments between 
recombination events in a genome, and therefore each site within a c- 
gene will share the same phylogenetic history as every other site in the 
same c-gene. However, in practice these implementations are instead 
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used to analyze data sets structured into m-genes, “a particular sequence 
of nucleotides along a molecule of DNA…which represents a functional 
unit of inheritance” (Rieger et al., 2012; Doyle, 2021). Because this is 
common practice, we seek to assess the impact of recombination within 
m-genes on the inference of the divergence times and population sizes by 
these methods when m-genes are used as input. We will refer to these 
implementations using “multilocus methods” as shorthand. 

There are a few studies to date which have investigated the impact of 
recombination on species phylogeny estimation. Lanier and Knowles 
(2012) and Wang and Liu (2016) assessed the performance of 
coalescent-aware methods in the presence of recombination and have 
shown that species tree topology inference under the MSC appears to be 
robust to intra-locus recombination. In examining the impact of viola-
tions of free inter-locus recombination, Wang and Liu (2016) addition-
ally found that the use of recombination breakpoints for identifying loci 
improves the accuracy of species tree topology estimation. However, 
little is known about the extent to which recombination affects the 
estimation of ancestral population sizes and divergence times. Very 
recently, Zhu et al. (2022) tested the effects of intra-locus recombination 
on several inference problems including the estimation of population 
parameters under the MSC. They found that in “realistic” simulations, 
Bayesian methods using multilocus sequence data under the MSC per-
formed reasonably well when the amount of recombination was low or 
moderate, but could underestimate population sizes and inflate species 
divergence time given elevated recombination rates, confirming similar 
observations from previous studies (Wall, 2003; Lohse and Frantz, 
2014). 

The estimation of divergence times along with population sizes of 
species phylogenies can be conducted in a variety of ways and we choose 
three modern and representative approaches to study. First, the multi-
locus method StarBEAST2 (Ogilvie et al., 2017) jointly infers gene and 
species histories and is an extensively used approach to infer evolu-
tionary parameters while accounting for rate variation and gene 
discordance. Second, the single nucleotide polymorphism (SNP) method 
SNAPP (Bryant et al., 2012b) avoids the problem of c-gene/m-gene 
conflation by assuming the input data set consists of unlinked biallelic 
markers such as SNPs, since recombination cannot occur within a single 
site. Third, advances in whole-genome sequencing have been driving the 
development of another class of methods that use sequentially 
Markovian approximations of the coalescent to integrate over gene 
histories and recombination breakpoints (Steinrücken et al., 2019; Liu 
et al., 2021), thus conducting inference under the (multispecies) coa-
lescent with recombination, and we used diCal2 (Steinrücken et al., 
2019) to represent this class. 

While some degree of model violation is unavoidable for any statis-
tical method when applied to real data, we show that adding recombi-
nation and linkage has a similar and mild effect on StarBEAST2 and 
SNAPP. However, parameters inferred by diCal2 could be wildly erro-
neous, casting doubt on the approximations employed by that method. 
Our results add more support to the use of methods that assume 
recombination-free loci, even when the assumption is violated. 

2. Materials and methods 

2.1. Simulations 

To examine the impact of recombination on continuous parameter 
estimation given a fixed species topology, we performed whole-genome 
simulations under a classical coalescent with recombination model 
using msprime version 1.0.2 (Kelleher et al., 2016). We varied the 
species divergence times, mutation rates, and recombination rates to 
create data sets approximating different evolutionary scenarios, which 
were broadly similar to those estimated from modern humans and other 
hominids (Roach et al., 2010). Specifically, two model species trees with 
shallow and deep evolutionary timescales were used: i) a shallow phy-
logeny of height 1.5 million years, and ii) a deep phylogeny of height 18 

million years (Fig. 1). We considered two per-generation mutation rates, 
μ = 10−8/site/generation and μ = 10−7/site/generation, where the 
smaller rate is very similar to the modern human rate of 1.1 ×
10−8/site/generation reported by Roach et al. (2010). We used three 
different recombination rates: r = 2 × 10−9, r = 2 × 10−8, and r = 2 ×
10−7 per site per generation, where the medium rate is similar to the 
human genome-wide average recombination rate of 1.26 cM/Mb re-
ported in Jensen-Seaman et al. (2004). For each combination of μ and r, 
10 replicates of ten 1-Mb long chromosomal segments were simulated 
for each taxon. In all cases, the population size was 20,000 diploid in-
dividuals, and the generation time was 25 years as in Li and Durbin 
(2011). DNA sequences were generated assuming the Jukes-Cantor 
nucleotide substitution model. 

2.2. Continuous-parameter estimation 

For the inference of divergence times and population sizes, the true 
species tree topology (((A,B),C),D) (Fig. 1) was provided to all methods 
evaluated here. 

The Markov chain Monte Carlo (MCMC) convergence of StarBEAST2 
and SNAPP was examined by the Gelman-Rubin convergence diagnostic 
R̂ (Gelman and Rubin, 1992), and the effective sample size (ESS). 

2.2.1. StarBEAST2 
To prepare the sequence alignments for StarBEAST2, five alignments 

of length 200, 1000, and 5000 bp were extracted from each chromo-
somal segment by evenly sampling across the segments using python 
script from https:// github.com/ForBioPhylogenomics/tutorials/blo 
b/main/week2_src/make_alignments_from_vcf.py. 

The StarBEAST2 analyses used the Jukes-Cantor substitution model 
with a strict clock where the clock rate was set to the true mutation rate, 
and assumed a Yule prior on the species tree where Uniform(0,0.01) was 
used as prior distribution on the speciation rate. Constant population 
sizes were estimated given a 1/X hyperprior (popMean). 

The chain length was set to 0.5 billion generations, sampling every 
200,000 states, and the first 20 % of collected samples were discarded as 
burn-in. Three independent runs (using different seeds) of such chains 
were carried out on every data set. We generated maximum clade 
credibility (MCC) trees with posterior mean heights using TreeAnnota-
tor v2.6.6 (Drummond et al., 2012). 

2.2.2. SNAPP 
For each data set, the segments from 10 chromosomes were 

concatenated into one file via BCFtools’s concat command (Danecek 

Fig. 1. The model species tree used in the simulations. Values in blue and 
orange at internal nodes represent the node times in million years for the 
shallow and deep phylogenies, respectively. Population size of 20,000 in-
dividuals and generation time of 25 years were assumed. (For interpretation of 
the references to colour in this figure legend, the reader is referred to the web 
version of this article.) 
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et al., 2021). The SNAPP input XML files were produced by the ruby 
script snapp_prep.rb (Stange et al., 2018). Specifically, the ruby script 
extracted at most 1000 SNPs, where the minimum distance between 
SNPs was 1000 nucleotides, with only variable sites included. We used a 
1/X prior on the speciation rate lambda in the Yule model. We placed a 
gamma-distributed prior on the population size parameter theta, with an 
alpha (shape parameter of the gamma distribution) value of 0.5 and beta 
(rate parameter of the gamma distribution) values of 33 and 3, for the 
low- and high-mutation-rate scenarios, respectively. The clock rate was 
fixed to the true mutation rate. To enable ascertainment correction, we 
included the number of constant sites that is ascertained for. 

MCMC chains were run for 24 h of wall-clock time with a single 
thread (on average, each chain was run over 40 million generations) and 
sampled every 5,000 generations. The first 30 % samples of each chain 
were discarded as burn-in. Three independent chains were run on each 
replicate data set. The post-burn-in samples were summarized as an 
MCC tree with nodes scaled to the mean height estimates using 
TreeAnnotator v2.6.6 (Drummond et al., 2012). 

2.2.3. diCal2 
diCal2 was given as input the simulated haplotypes, the true 

recombination rate, and the true mutation rate. For each generation, we 
used 70 particles, each of which performed 6 EM-steps, and 6 best points 
were selected as the parents for the next generation. Time was dis-
cretized into intervals by 11 break points, which was chosen log- 
uniformly between 1000 years and 300 million years. The genetic al-
gorithm was repeated for 5 generations as used in Steinrücken et al. 
(2019). The parameters with highest composite likelihoods were 
reported. 

3. Results 

3.1. Characteristics of the simulation data 

Because the accumulation of recombination is a result of the product 
of interaction between recombination rate and time span, deep diver-
gence tends to yield shorter c-genes compared with the recent diver-
gence, with a mean length slightly over 62 % of that of the shallow 
phylogeny (Table 1). At both tree depths, increases in recombination 
rate result in shorter c-genes (Table 1). Based on our simulations, we 
observed that an order of magnitude increase in the recombination rate 
leads to roughly an order of magnitude decrease in the average c-gene 
size. As expected, the mutation rate has negligible impact on the lengths 
of c-genes (results are now shown in the table). 

3.2. Accuracy of continuous parameter estimates 

Overall, all methods inferred better estimates of divergence times 
compared with population sizes. Bayesian inference based on the MSC 
using either linked sites (i.e., StarBEAST2) or SNPs (i.e., SNAPP) per-
formed well for small recombination rates. StarBEAST2 inferred more 
accurate divergence time at deeper timescale whereas SNAPP performed 
better estimation of divergence time at shallow divergence (Supple-
mentary Fig. S1 and Fig. 2). All methods yielded more accurate ancestral 
population sizes for the shallow simulations where the most accurate 
method was SNAPP; in contrast, SNAPP tended to overestimate the 

population sizes backward in time for the deep simulations, reflecting 
the discussion of Bryant et al. (2012b) that “θ values can only be reliably 
inferred for ancestral populations if sufficiently many coalescent events 
occur within these populations.” 

It has been previously shown that recombination results in biased 
estimates of ancestral population parameters (Wall, 2003; Lohse and 
Frantz, 2014; Zhu et al., 2022). Here we repeated the StarBEAST2 an-
alyses on data with growing segment lengths (200, 1000, and 5000 
sites), as longer segments tend to encompass more intra-genic recom-
bination breakpoints (Table 1). For small recombination rates, more 
sites slightly improved the estimates of StarBEAST2 (Supplementary 
Fig. S1 and Fig. 2). As recombination rate increases, the parameter es-
timates of longer segments started to deviate from the true values, with 
ancestral population sizes being underestimated but divergence times 
being overestimated. Remarkably, using sequences with 5000 sites 
under high recombination rates, StarBEAST2 underestimated the pop-
ulation sizes in terms of posterior mean by 9.5 % and 39 % on average, 
for the shallow and deep species trees, respectively. We noticed that 
such underestimation of population sizes was accumulated backwards in 
time (as reflected by truth > NAB > NABC > NABCD). Despite a few ex-
ceptions (e.g., shallow phylogeny, r = 2 × 10−7, µ = 10−7, and length of 
1000 sites), StarBEAST2 using short and intermediate segments seemed 
to be relatively robust to the presence of recombination. This supports 
the previous finding that excessive recombination events affected 
Bayesian analysis of multilocus sequence data assuming the MSC model 
(Zhu et al., 2022). 

In comparison to StarBEAST2, SNAPP tended to overestimate NABC 
and NABCD at deep timescales. The performance of SNAPP, as expected, 
was in general unaffected by the recombination rate changes. As 
opposed to StarBEAST2, SNAPP yielded less variable ancestral popula-
tion sizes at deep phylogenetic relationships. 

Although diCal2 was designed to explicitly account for the recom-
bination process, it appears to be the worst-performing one among all 
the methods evaluated here in this study. We found that diCal2 under-
estimated the root population size by about 43.2 % on average. Notably, 
we observed a large variance of diCal2’s estimates between replicates 
for the deep phylogeny when the relative rates of recombination to 
mutation are 0.2 (NABC) and 2 (TAB and TABC). To determine whether the 
observed large variance was due to convergence issues, we additionally 
conducted diCal2 analyses on the full data sets using narrow bounds for 
the population parameters. We only detected minor convergence prob-
lems under a model condition with high recombination rate and muta-
tion rate (r = 2 × 10−7, µ = 10−7, and deep phylogeny; Supplementary 
Fig. S2). Hence, the observed erroneous behavior of diCal2 was not 
directly tied to convergence issues. 

4. Discussion 

The results presented here show that realistic levels of recombination 
are likely to have very little impact on Bayesian inference of evolu-
tionary parameters under MSC using either multilocus data or unlinked 
SNPs. Surprisingly, anomalous behavior of diCal2, which was designed 
for analyzing full genome sequences in the presence of recombination, 
was found in our simulation study, most likely caused by extensive ap-
proximations employed in its algorithm. Still, the utility of MSC methods 
will depend on factors including the level of recombination, the lengths 
of loci, and the time scale of the phylogeny. The worse performance of 
StarBEAST2 when loci had thousands of sites clearly suggests that the 
amassing of intra-locus recombination events substantially hinders the 
power of MSC-based multilocus analysis. If the genetic loci were 
sampled from genomic regions with high recombination rates, it would 
be better to utilize larger numbers of short loci rather than fewer long 
loci. Our results also reinforce that the accuracy of SNAPP is impacted by 
the level of ILS: in the presence of extensive ILS, SNAPP yields highly 
accurate results, whereas in the absence or presences of low levels of ILS, 
SNAPP constitutes a biased estimator of population parameters. 

Table 1 
Means and standard deviations of the average c-gene lengths of the 
simulated data. Each value was obtained from 10 replicates.  

Recombination rate 
Shallow Deep 

Mean SD Mean SD 

2 × 10−9  1160.69  21.44  723.57  12.68 
2 × 10−8  117.37  0.98  73.00  0.32 
2 × 10−7  12.16  0.03  7.78  0.01  
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In terms of the running time of methods, due to differences in the 
underlying algorithms and variation in the chain lengths, the efficiency 
of the MCMC-based methods, namely StarBEAST2 and SNAPP, was 
measured by wall-clock time required per unit ESS so that the number of 
iterations is not a factor, whereas the efficiency of diCal2 was assessed 
by wall-clock time spent on a single data set. Using these measures, 
StarBEAST2 was faster than SNAPP in our study, taking 0.27 min on 
average to obtain 1 ESS compared to 0.51 min in the case of SNAPP. 
diCal2 was the least efficient method with an average runtime of 130 
wall-clock hours on each data set. It is worth mentioning that diCal2 
could be conducted in a parametric bootstrapping manner. But given the 
computational cost of diCal2, performing a bootstrap analysis would be 
prohibitive on our data sets. 

While diCal2 failed to achieve desirable performance in our study, it 
is still worth exploring other inference techniques under the multispe-
cies coalescent with recombination that utilize different mathematical 
or algorithmic frameworks. Furthermore, beyond the estimation of 
evolutionary parameters, StarBEAST2 has the advantage of being able to 
produce better estimates of gene trees than those obtained by methods 
that infer gene trees independently of the species phylogeny. 

Our analyses of how recombination affects the estimation of ances-
tral population parameters is similar to the recent work by Zhu et al. 
(2022). However, the latter focused on the effect of recombination on 
Bayesian analyses for addressing different phylogenetic questions under 
the MSC. In contrast, our work explores the power of different types of 
methods under various evolutionary scenarios. Zhu et al. (2022) simu-
lated data with intra-locus recombination under the multispecies 

network coalescent (Yu et al., 2014) model and varied the number of loci 
as well as number of sequences. We simulated whole-genome data under 
the MSC, and then sampled distantly-spaced segments of small, medium, 
and large sizes across the genome, which is a common practice in 
empirical phylogenomic analyses. As a result, our data included the 
effect of both intra- and inter-locus recombination, whereas Zhu et al. 
(2022)’s data incorporated intra-locus recombination and introgression, 
but not inter-locus recombination. 

It is important to note that neither our study nor that of Zhu et al. 
(2022) incorporated variation of substitution or recombination rates 
among lineages and sites. Rate heterogeneity has been widely observed 
in real data (Nabholz et al., 2008; Beeson et al., 2019). In addition, it has 
been demonstrated that ILS could result in apparent substitution rate 
variation, which in turn may cause technical bias in evolutionary 
parameter estimation (Mendes and Hahn, 2016), and the use of species 
tree relaxed clocks enables more robust parameter inference (Ogilvie 
et al., 2017). Therefore, it is worth investigating how reliable current 
methods with or without relaxed clocks are in the presence of varying 
levels of rate heterogeneity. 

Finally, while we limited our study to the impact of recombination 
on MSC-based species tree inference methods, other evolutionary pro-
cesses such as gene flow and gene duplication and loss could have an 
even much larger impact on the performance of those inference 
methods. In particular, it is worth exploring how the interaction among 
these processes impact phylogenomic inference under the MSC. 

Fig. 2. Inference results on the deep 
phylogeny. Results are shown for five 
methods: StarBEAST2 with gene align-
ments of length 200 (StarBEAST2-200), 
1000 (StarBEAST2-1000), and 5000 
(StarBEAST2-5000), SNAPP, and diCal2. 
a) Boxplots showing the estimation error 
of population sizes. NAB = the population 
size of the A-B ancestral population, 
NABC = the population size of the A-B-C 
ancestral population, and NABCD = the 
population size of the root population. b) 
Boxplots showing the estimation error of 
divergence times. TAB = the time of the 
A-B split, TABC = the time of the A-B-C 
split, and TABCD = the time of the A-B-C- 
D split.   
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