

MobiSys ’23, June 18–22, 2023, Helsinki, Finland Xiaoyue Ma, Qiang Zeng, Haotian Chi, and Lannan Luo

We notice that, when a ZigBee or Z-Wave IoT device joins a hub,

it generates a sequence of setting-upmessages for handshaking [36].

These messages contain rich information about the device, such

as the device id, address, manufacture code, and all the supported

functions (e.g., unlock a door, turn on a camera). Surprisingly, none

of the existing works exploit such messages for IoT fuzzing. We

propose to make use of such messages to discover the functions of

a device and then perform systematic function-oriented fuzzing. It

is worth highlighting that we do not reverse engineer any IoT com-

panion apps but automatically derive a complete list of supported

functions of a device from setting-up messages.

Fuzzing Approach. Unlike prior work that hacks one companion

app per device (or manually collects test scripts) to send fuzzing

messages, we propose a uniform hub-based fuzzing architecture.

Our system, named H��F�����, �rst declares itself as a hub to con-

nect directly with the IoT device to be tested. H��F����� extracts

useful information from the setting-up messages and learns the

functions supported by the device. After that, H��F����� system-

atically generates testing messages for each of the functions and

sends them, through an inexpensive USB dongle, to the IoT device.

During the process, it captures inputs that trigger exceptions, such

as crashes.1

Since companion apps are not used, our fuzzing is not hindered

by various input sanitization inside companion apps. Moreover, our

investigation �nds that the device context (i.e., the device state be-

fore the current fuzzing message is sent) often has an impact on the

testing result. We thus conduct state-sensitive fuzzing. Speci�cally,

we set the device state to a special state before sending a testing

message. This signi�cantly helps vulnerability discovery.

We envision that H��F����� can be used by third-party security

researchers, IoT vendors who may not have the resources to de-

velop and maintain their white-box fuzzers, and organizations that

emphasize security and want to test their purchased IoT devices.

We implement H��F����� and conduct an extensive evaluation.

It is compared with a state-of-the-art work SNIPUZZ, which also

does not need to hack companion apps (but relies on manually

collected test scripts). The evaluation results show that H��F�����

can achieve much higher coverage of IoT functions than SNIPUZZ.

Speci�cally, H��F����� can achieve full function coverage for

each tested device, while the coverage of SNIPUZZ is much lower (∈

[0%, 66.7%]). As a result,H��F����� can detect more vulnerabilities.

We test 21 IoT devices from various vendors and �nd 23 zero-day

vulnerabilities (all are missed by SNIPUZZ). Four CVEs have been

assigned: CVE-2022-47100, CVE-2023-24678, CVE-2023-29779, CVE-

2023-29780. We make the following contributions.

● We propose a novel hub-based dynamic analysis architecture,

and demonstrate its usefulness for blackbox IoT fuzzing.

Compared to prior approaches, it does not need to reverse

engineer any companion apps (or collect testing scripts).

Moreover, our fuzzing is not impeded by various sanitization

in companion apps.

● We present function-oriented blackbox fuzzing, which de-

rives functions supported by IoT devices from setting-upmes-

sages and performs systematic function-oriented fuzzing.

1The hub-based design is inspired by PFirewall [10], but PFirewall �lters IoT data for
enhancing privacy, which is very di�erent from our purpose.

● We extract knowledge about message structures and com-

mand/attribute value ranges from the protocol speci�cations.

The knowledge can be reused to test other IoT devices. Our

fuzzing is guided by the precise knowledge, while prior work,

SNIPUZZ, by inaccurately inferred message structures.

● Device state-sensitive fuzzing is designed to detect vulner-

abilities that can only be triggered when a particular de-

vice condition is met. Our �ndings show that state-sensitive

fuzzing is very e�ective and helps �nd 18 vulnerabilities.

● We implement H��F�����2 and conduct an evaluate on 21

popular IoT devices. We �nd 23 zero-day vulnerabilities with

4 CVEs assigned.H��F����� signi�cantly outperforms prior

state of the art, in terms of both coverage and discovered

vulnerabilities.

2 RELATED WORK

2.1 Static Analysis-based Approaches

A set of approaches are based on static analysis, which requires

the access to IoT �rmware images [3, 7, 21–24, 33, 38, 53, 54, 56, 61,

62, 68]. For example, InnerEye [75] presents the �rst NLP-inspired

deep learning approach to analyzing native code in the literature.

However, as manufacturers often do not release their �rmware, the

applicability of these approaches is limited [9, 15, 48]. Moreover,

static analysis tends to have a high false positive rate.

2.2 Dynamic Analysis-based Approaches

Dynamic analysis-based IoT vulnerability detection approaches can

be divided into the following three groups.

Emulation. Some rely on emulation [8, 12, 16, 44, 64, 71]. Two

major challenges for �rmware emulation are the scalability and

throughput [35, 68, 69, 73]. Although a lot of e�orts have been made

to improve the performance, how to precisely emulate IoT devices

is still an open question [48, 64, 67].

Symbolic Execution. Another research line applies symbolic exe-

cution [13, 25, 39–41]. But the precise execution of IoT �rmware

needs to access various peripherals [46]. To symbolically execute

IoT �rmware, they consider all inputs from peripherals as symbolic,

which causes imprecision, or uses imprecise emulation results.

Blackbox Fuzzing. Recently, blackbox IoT fuzzing gains much

attention as an e�ective approach to �nding vulnerabilities [51, 60].

Existing blackbox IoT fuzzers either rely on reverse engineering

companion apps [9, 48] or manually collected testing programs [19].

For example, IoTFuzzer [9] and DIANE [48] hack companion

apps to test IoT devices. For each IoT device, they statically analyze

the companion app to locate and modify the code corresponding

to IoT device functions. However, this requires enormous reverse

engineering e�orts especially for obfuscated apps [6, 14], and the

static analysis may introduce false positives and false negatives in

identifying code for IoT device functions [19, 48].

SNIPUZZ [19] collects initial network messages using API-testing

programs and then mutates these messages, which saves the ef-

fort to reverse engineer companion apps. However, it has multiple

limitations. First, very few IoT vendors disclose their API-testing

2https://github.com/iot-sec23/HubFuzzer.

206

MobiSys ’23, June 18–22, 2023, Helsinki, Finland Xiaoyue Ma, Qiang Zeng, Haotian Chi, and Lannan Luo

bytes in a seed message one by one to generate probe messages,

the removed byte does not a�ect the roles of the subsequent bytes

in the message. However, for Z-based devices, the message is a

byte stream consisting of �elds. As a result, removing one byte

results in shifting the subsequent bytes left by one, which changes

the semantics of the subsequent bytes. Second, in order to segment

a message correctly, SNIPUZZ requires rich information from the

device responses. However, our evaluation �nds that most Z-based

devices report the errors in a uniform message (e.g., “No response

to ‘x’ command with seq id ‘y’ ”), making it hard for SNIPUZZ to

accurately determine the message snippets.

Cannot Handle Encrypted Messages. SNIPUZZ avoids the e�ort

to modify companion apps by directly mutating network packets.

However, when the communication is encrypted, the approach fails,

while most IoT devices use encrypted communication [9].

Ignoring Impacts of Device Context.We �nd that device context

(e.g., the current device state) often has an impact on the triggering

of device crashes, which is ignored by SNIPUZZ. For example, our

experiments reveal that only when the current brightness level of

Sengled Smart Bulb is the highest, can a crash be triggered.

4.2 Our Goals, Insight and Idea

We have the following goals in designing our system.

● Easy to use. Unlike prior work, our approach does not need

to reverse engineer companion apps or manually collect

testing programs.

● High function coverage. The system should have high

function coverage; i.e., it should test (almost) all functions

supported by an IoT device.

● Generalizable. It can be generalized to testing devices that

use complex messages and encrypted communication.

● State-sensitive fuzzing. The design of the fuzzing strategy

should take the impact of device states into consideration.

Our observation is that, to increase the sales, IoT vendors typically

build their devices to be able to connect various hubs [10]. Thus, we

propose a uniform hub-based architecture and build our fuzzer as a

hub to directly talk with IoT devices by sending/receiving messages

to/from IoT devices. For the same reason, most IoT devices support

standard wireless protocols, such as ZigBee and Z-Wave [66].

Our insight is that when a Z-based IoT device joins a hub, it

generates a sequence of setting-up messages to establish the con-

nection. These messages contain rich information about the device,

including device id, address, manufacture code, and supported func-

tions. Based on this, our idea is to make use of the setting-up

messages to get aware of the functions supported by IoT devices

and then perform systematic function-oriented fuzzing. The ap-

proach is easy to use, has a high function coverage and can be

generalized to devices that use complex messages and encryption.

Moreover, we extract knowledge about message command/at-

tribute value ranges from the protocol speci�cations, and the knowl-

edge is used to build our testing input mutation strategies, including

state-sensitive fuzzing.

4.3 System Architecture

Figure 3 shows the architecture of our system, called H��F�����,

containing four main components: Device Connector, Function Ex-

tractor, Fuzzing Mutator, and Response Monitor.

(1) The Device Connector component communicates with IoT

devices directly via protocols, such as ZigBee and Z-Wave. It does

three major things: i) pairing IoT devices; ii) sending testing mes-

sages to IoT devices; and iii) receiving messages from IoT devices.

(The implementation details are presented in Section 6.1)

(2) When a Z-based IoT device joins the hub, it generates a

sequence of setting-upmessages. The Function Extractor component

collects the setting-up messages and learns the functions supported

by the IoT device (Section 5.1).

(3) Based on the supported functions, the Fuzzing Mutator com-

ponent generates testing messages by mutating commands and

attributes (Section 5.2, Section 5.3 and Section 5.4).

(4) Finally, the Response Monitor component monitors the status

of the IoT device to capture crashes (Section 5.5).

The radio communication between IoT devices and H��F�����

is supported by a USB Dongle. We next present the design of each

of these components.

5 DESIGN OF HUBFUZZER

5.1 Learning Supported Functions

Clusters in ZigBee. As de�ned in the ZigBee Cluster Library

(ZCL) [74], each cluster corresponds to a speci�c functionality and

has an associated 2-byte cluster identi�er (i.e., CID). For example,

the On/O� cluster (with CID = 0x0006) allows a switch device to be

put into the ‘on’ and ‘o�’ states, and the Level Control cluster (with

CID = 0x0008) allows control of the level of a physical quantity (e.g.,

heating output) on a device. A list of all available clusters can be

found in the ZCL Speci�cation [74].

A cluster is a collection of commands and attributes, which de�ne

an interface to a speci�c functionality. (1) AnAttributes is a property

of a device that can be stored as a state; e.g., a switch device has

the switch attribute with two states, on and o�. (2)A Command is

a method that can control a device and manipulate attributes; e.g.,

the lock() (resp. unlock()) command in the Lock cluster can lock

(resp. unlock) a door.

Command Classes in Z-Wave. Similar to ZigBee, Z-Wave ab-

stracts device functionalities and groups related ones into command

classes [52]. A command class is a collection of commands and at-

tributes, where commands are used for controlling, querying, and

reporting device attributes corresponding to speci�c functionality.

There are three kinds of commands for each command class: Set,

Get, and Report. (1) A Set command is sent to a device to instruct

the device to perform a speci�c task (which may change the device

status). (2) A Get command is sent to a device to request the current

status of a device. (3) A Report command is sent from a device to

report its current device status if the status changes.

Note that the clusters in ZigBee and command classes in Z-Wave

can be implemented in any application pro�le (e.g., home automa-

tion), and an IoT device that operates in an application pro�le must

implement and respond correctly to all the required clusters/com-

mand classes. For example, a ZigBee light switch that operates in

208

No More Companion Apps Hacking but One Dongle: Hub-Based Blackbox Fuzzing of IoT Firmware MobiSys ’23, June 18–22, 2023, Helsinki, Finland

�������	
�� ��

	��������������

���
	����������

���������

HubFuzzer

�������������

	�����
��

��

��
�
	����� ���� ��
�
	���!

�	"�
��

��##	�����
�
��

���	
��
�����

��

��##	���$��	
	��

���������
���	
��

Figure 3: Architecture of HubFuzzer.

Figure 4: An example of setting-up messages.

the home-automation profile must correctly implement the On/Off

cluster and other required clusters in order to interoperate with

other home automation devices (e.g., hubs).

Although different names (i.e., clusters and command classes)

are used, they actually have the same meaning. For the sake of

presentation, we do not distinguish the two names and use clusters

in the following sections.

Our Method. A sequence of setting-up messages are generated

when a Z-based device joins a hub, which contains rich information

about the device, including the device id, manufacture code, and

supported functions. As an example, Figure 4 shows the information

extracted from the setting-up messages for the Third Reality smart

switch device, where the details of the most important ones, in-

clusters (i.e., in_clusters_v7), are highlighted. Here, incluster means

the contained commands can control this device. Note that there is

another field named outclusters (i.e., out_clusters_v7 in Figure 4),

which means the current device can control other devices using

the corresponding commands. As we aim to send testing messages

to IoT devices to trigger device actions, we focus on inclusters.

Based on the reported inclusters and according to the ZCL [74],

we can learn the functions supported by the device, and then deter-

mine (1) which commands can control this device, and (2) which

attributes are stored in the device. For example, for the three inclus-

ters in Figure 4, (1) the cluster CID = 0 is the Basic cluster, which is

a mandatory cluster for all ZigBee devices. It includes 21 attributes,

including the basic properties of a device, such as software and

hardware versions, manufacturer name, and 1 command, which

can send a ‘Reset To Factory Defaults’ message to reset the device

to its factory defaults. (2) The cluster CID = 1 is the Power Con-

figuration cluster, which allows information to be obtained about

the power sources of a device and voltage alarms to be configured.

58 attributes are defined, including the battery information and

battery settings. (3) The cluster CID = 6 is the On/Off cluster. It

includes 5 attributes, such as OnTime that specifies how long the

light remains on, and 6 commands, which allow a device to be put

into the ‘on’ and ‘off’ state for a time period or with an effect.

Extracting Knowledge to Support Fuzzing. The protocol spec-

ification [52, 74] provides a detailed description for each cluster,

including the contained commands, arguments/attributes, and each

argument’s data type and value range, which are reflected in the

corresponding protocol stack library. For example, zigpy [27] im-

plements ZigBee standard specifications [11] as a Python library,

and Z-Wave JS implements Z-Wave standard specifications [52].

We first extract the relevant information from these libraries us-

ing a script and store it in a database, which is then integrated in

HubFuzzer (note that this is a one-time effort). Specifically, zigpy

has a directory, zigpy/zcl/clusters, that contains a list of files

implementing all the clusters, including information about the as-

sociated commands, attributes, and the value range and data type

of each command’s argument, which is extracted by our script.

Similarly, Z-Wave JS provides a header file ZW_classcmd.h and

an Excel file List of defined Z-Wave Command Classes.xlsx,

from which we can extract relevant information about each cluster.

When fuzzing a device, we first learn the supported clusters from

the setting-upmessages, and then retrieve the supported commands

and attributes as well as the value range and data type of each com-

mand’s argument from the database. The information then assists

the testing message generation.

5.2 Packing Procedure

We generate various testing messages to trigger device actions and

monitor crashes. A simple solution is to mutate the augments of

each supported command (learned from the setting-up messages).

However, as the Z-based libraries used in our hub involve input

sanitization, a command with an out-of-range argument value will

get rejected, causing fewer testing messages to be sent.

As an example, the command move_to_level() in the Level

cluster moves the ‘current level’ of the device to a target level over

a specified time. The target level is set as an argument and must

be within the range of 0x00 to 0xFE. If we set the target level to

a value out of this range (e.g., 0xFF), this command will throw a

"failed to convert" error, and no testing message will be generated.

To resolve this issue, our solution is to locate the procedure

that packs messages, which we call the packing procedure. It is

209

MobiSys ’23, June 18–22, 2023, Helsinki, Finland Xiaoyue Ma, Qiang Zeng, Haotian Chi, and Lannan Luo

invoked by each command request to generate messages to be sent

to IoT devices. We then remove the input sanitization in the packing

procedure and mutate the information for building a message (e.g.,

command argument type and value) to generate testing messages.

Note unlike prior work that removes sanitization in the companion

app of each device, our sanitization elimination is one-time e�ort.

ZigBee. Listing 1 shows the signature of the packing procedure,

request, from zigpy [27], a library that implements the ZigBee

protocol stack. The request function is invoked by each command

to generate messages. To generate diverse testing messages that can

be accepted by devices,H��F�����mutates two critical parameters,

cluster and data (both are highlighted in blue). Speci�cally, cluster

stores the current cluster ID and data stores the payload.

def request(device, profile, cluster, src_ep, dst_ep,

sequence, data, expect_reply=True, use_ieee=False)

Listing 1: ZigBee packing procedure

There are two types of commands. We thus send two kinds of

testing messages by invoking the two types of commands.

● Cluster commands are de�ned in each cluster. Each cluster

may de�ne zero or more cluster commands.

● A write-a�ribute command can modify one or more speci-

�ed cluster attributes. Note that a write-attribute command is

not speci�c to an individual cluster but shared by all clusters.

Figure 5 shows the ZCLmessage format for the two types of com-

mands, where the sections that will be modi�ed to generate diverse

testing messages are highlighted in blue. Figure 5(a) shows the for-

mat of a message when a cluster command is invoked. The cluster

ID is stored in the header. The payload includes the command type,

the command ID, and the value of each command argument. If a

cluster command is invoked, the command type is 0x01, while if

a write-attribute command is invoked, the command type is 0x02.

Figure 5(b) shows the format of a message when a write-attribute

command is invoked. The cluster ID is also part of the header. The

payload speci�es the command type and one or more attributes. For

each attribute, themessage includes its attribute identi�er, data type,

and value. The commands and attributes are mutated to generate

testing messages.

Z-Wave. For the Z-Wave protocol, we �nd its packing procedure,

named sendMessage, from the Z-Wave JS library [5]. A Z-Wave

cluster contains three types of commands, Set, Get and Report (see

Section 5.1). As we aim to send testing messages to IoT devices to

trigger their actions, we use the Set command (its command ID

is 0x01) to generate testing messages. We follow a similar way to

mutate the cluster ID and payload of packed messages to generate

diverse testing messages.

Note that H��F����� mutates testing messages, which are then

encrypted and sent out of the hub. Thus, H��F����� has no prob-

lems dealing with IoT devices that use encryption. It is worth noting

that, although both prior work (DIANE [48]) and H��F����� need

to locate the functions for preparing testing messages, DIANE needs

to reverse-engineer and hack the companion app of each IoT device,

while it is one-time e�ort with H��F����� to locate and modify

the packing procedures.

5.3 Fuzzing Policies

We have the following fuzzing policies.

Policy 1:Changing Argument Values. There are 57 data types de�ned

in the ZCL. We divide them into two categories. (1) High risk types

have a higher probability of causing device crashes if argument

values of these types are mutated; there are 26 high risk types (e.g.,

OctetString, CharString, integer, �oat, Array, Set, and NoData). (2)

Low risk types are the rest (e.g., Time of day, Date).

Given a command with = arguments, we �rst mutate arguments

of high risk types, and then those of low risk. Speci�cally, we (a)

change the lengths of strings to trigger bu�er over�ow; (b) provide

empty values to strings to cause uninitialized variable vulnerability

or null pointer dereference; (c) mutate integer, double or �oat values

into extreme values to cause integer over�ow or out-of-range access;

(d) provide NULL or only one element to arrays, sets, or bags to cause

null pointer dereference or out-of-bounds access; and (e) provide

a randomly generated value to arguments with the NoData type

(NoData means no data should be provided).

Policy 2: Changing Argument Types. Given an argument supposedly

with the data type C , we change its type to a randomly selected one

C
′. For example, for an argument with the String type, we change its

type to the integer type by replacing a string value with an integer

value, to check whether the device can handle the special “string”.

We notice a special data type Unknown, which is not an actual

data type and should not be used for attributes or command argu-

ments. However, it is still de�ned in the ZCL for completeness to

reserve the data type identi�er for use where a data special type

unknown is needed. We thus also change C to Unknown to check

the device’s ability to handle such special cases.

Policy 3: Changing the Number of Arguments. We provide more

(or less) arguments to the current command. For example, given a

command that requires = arguments, we provide = + G , = − G , or 0

arguments (G ∈ Z).

Policy 4: Trying Unsupported Clusters and Commands. Besides the

supported clusters, we also randomly select a few unsupported clus-

ters given the full set in the ZCL [74] (our experiments randomly

select 3 unsupported clusters). For each command in a selected

unsupported cluster, we generate testing messages following the

command de�nition. Through this, we can check whether unex-

pected commands can cause the device to crash.

Regarding the write-attribute command, its semantics is to mod-

ify the device attributes (Section 5.2). To test the device’s ability

to handle such a command, we use this command to modify all

the attributes one by one; the attribute being changed becomes the

argument of the command. Moreover, for an attribute speci�ed in

the write-attribute command, if the device response indicates that

this attribute is “read-only”, we skip this attribute (Policies 1 and 2

are not applied to such cases), and move to the next attribute.

5.4 State-Sensitive Fuzzing

Based on our experiments, we �nd that the device state has a sig-

ni�cant impact on triggering crashes. For example, given a testing

message that turns up the brightness of a smart bulb with a certain

rate, only when the bulb’s current brightness is the highest (i.e.,

254), can the message cause the bulb to crash. We thus conduct

210

No More Companion Apps Hacking but One Dongle: Hub-Based Blackbox Fuzzing of IoT Firmware MobiSys ’23, June 18–22, 2023, Helsinki, Finland

ZCL Header

Frame Control Sequence Number Cluster ID

ZCL Payload

Command ID
Argument

Value
…

Payload

Command Type

(0x01)

…

(a) Cluster command.

Attribute

Identifier
…Attribute

Value
Attribute

Type

Command Type

(0x02)

ZCL Header

Frame Control Sequence Number Cluster ID

ZCL Payload

Payload…

(b) Write-attribute command.

Figure 5: Format of the ZCL frame.

state-sensitive fuzzing. Speci�cally, we �rst set the device state to a

special state (e.g., setting the bulb’s brightness as the highest/lowest)

before sending a testing message that may impact the state.

We call a message that sets the device state to a special state a

reset message. Given a command, we �rst determine which device

attribute it tries to modify. For the write-attribute command, it is

easy to determine as the attribute is speci�ed by us. For a cluster

command, we rely on the ZCL [74] and Z-Wave class speci�ca-

tion [52] to �nd the attribute modi�ed by this command. After

that, we determine the value range of the attribute based on the

speci�cation [52, 74] (this information is �rst extracted and stored

in a database, as discussed in Section 5.1). If a range is speci�ed, we

generate two reset messages by providing the maximum and mini-

mum values to the argument related to this attribute. If no range is

speci�ed, a random value is used to generate a reset message.

We clarify that not all vulnerabilities, in order to be triggered,

require the device to be set to a special state. Note that the in�uence

of device state is not considered by the prior IoT fuzzing work [9,

19, 48], As a result, they failed to detect many vulnerabilities, which

cause crashes only when a special condition is met.

5.5 Response Monitor

Figure 6 shows four scenarios about how an IoT device responds

when receiving a message<, where the device does not crash in

the two scenarios shown in Figure 6(a) and (b), but crashes in the

other two in Figure 6(c) and (d).

As shown in Figure 6(a), when< is valid, the device i) accepts it

and sends an ACK response to acknowledge receiving<, and then ii)

executes the corresponding command and sends a Report response

to report the updated device state (note that a device usually reports

its updated state after successfully executing a command). Thus

H��F����� receives two responses, ACK and Report.

As illustrated in Figure 6(b), when< is invalid, the device sends

an ACK response to acknowledge receiving<, but then discards<

(the device can handle invalid messages well, which is di�erent

from the two scenarios shown in Figure 6(c) and (d)). As a result,

H��F����� receives only one response, ACK.

For the two scenarios illustrated in Figure 6(c) and (d), < is

invalid, and the device crashes at di�erent points. In Figure 6(c),

the device crashes before sending an ACK response; as a result,

no response is received by H��F�����. In Figure 6(d), the device

crashes after sending an ACK; as a result, H��F����� receives an

ACK response but no Report response.

Based on this observation, we monitor device crashes using the

following rules.

● If no ACK response is received by H��F�����, it indicates

a device crash has occurred. (Note that when the network

connection is poor, a message may get lost, causing the ACK

to be lost as well. However, if the missing ACK is due to a

crash, the symptom can be reproduced in a reliable way

using the same message. But if it is due to poor network

connection, it cannot; plus, the device does not manifest a

restart due to crash, such as LED blinks and sound alerts.)

● If an ACK is received, but no Report response is received,

we cannot determine whether the device has crashed or not

(see Figure 6(b) and (d)). We thus need to distinguish them

by sending a reset message, which is known to be valid, for

the next state-sensitive testing. If no Report response is

received, it indicates that the device has crashed.

Moreover, our experiment results show an interesting and im-

portant phenomenon. Given a message that is known to cause a

device crash, if the fuzzer sends the same message multiple times

continuously, a device may enter a state worse than crashes; e.g.,

the device cannot re-join the network.

6 EVALUATION

This section presents the implementation of H��F����� and the

evaluation results. Speci�cally, Section 6.1 gives the implementation

details. Section 6.2 presents the experimental setup. Section 6.3

discusses the function coverage and and Section 6.4 the e�ectiveness

of vulnerability discovery; we compare H��F����� with the state-

of-the-art work. Section 6.5 presents the e�ciency of H��F�����.

6.1 Implementation

We have implemented a prototype of H��F�����. It communicates

with IoT devices directly through device-dependent protocols such

as ZigBee and Z-Wave. Several open-source platforms, e.g., Home

Assistant [26], openHAB [47], and WebThings [57], provide the

device connector alike functions and allow developers to use add-

ons for integrating various IoT devices.

Speci�cally, Home Assistant contains a ZigBee protocol stack,

called zigpy [27], which implements ZigBee standard speci�ca-

tions [11] as a Python library. It allows ZigBee devices to connect

directly to Home Assistant. Home Assistant also provides Z-Wave JS

to support connection with Z-Wave devices [5]. Numerous Z-based

IoT devices are supported by Home Assistant, including sensors

(e.g., motion, door, and temperature sensors), lights, switches, but-

tons, covers, fans, climate control equipment, locks, and alarm

211

MobiSys ’23, June 18–22, 2023, Helsinki, Finland Xiaoyue Ma, Qiang Zeng, Haotian Chi, and Lannan Luo

HubFuzzer IoT Device

m

ACK

Report

Accept m &

execute command

HubFuzzer IoT Device

m

No_ACK

HubFuzzer IoT Device

m

ACK m is invalid; crash happens

after sending ACK

No_Report

HubFuzzer IoT Device

m

ACK m is invalid; acknowledge
receiving m but discard m

No_Report

(a) Device does not crash

m is invalid; crash

happens before

sending ACK

(c) Device crashes

(b) Device does not crash

(d) Device crashes

Figure 6: Di�erent scenarios when an IoT device receives a message.

ID Device Type Vendor Model Firmware Version Protocol

1 Thermostat Centralite Pearl 0x04075010 ZigBee

2 Lighting Sengled Bulb E11-N1EAW 0x00000024 ZigBee

3 Lighting Innr FL 120 C 0x28002162 ZigBee

4 Lighting Philip Bloom Bloom 1.88.1 ZigBee

5 Lighting Sengled Strip E1G-G8E 0x00000024 ZigBee

6 Blind Third Reality 3RSB015BZ 1.00.54 ZigBee

7 Plug Lumi ZNCZ12LM 18 ZigBee

8 Locker Schlage BE468GBAK CAM 619 0.21.0 ZigBee

9 Locker Kwikset 99140-139 0x40a32a10 ZigBee

10 Sensor Tuya B09TDQ9GP6 v1.0.10 ZigBee

11 Switch Tuya B09XCP7DN1 v1.1.0 ZigBee

12 Switch Third Reality 3RSS009B v1.01.10 ZigBee

13 Dimmer Switch Sengled E1E-G7F v0.0.9 ZigBee

14 Plug Minoston MP21Z v1.0.1 Z-Wave

15 Wall Switch Aeotec ZW130-A v2.3 Z-Wave

16 Sensor Aeotec ZW080 v3.28 Z-Wave

17 Switch Aeotec ZW096-A v1.7 Z-Wave

18 Motion Sensor Fibaro FGMS-001 v3.4 Z-Wave

19 Thermostat Honeywell TH6320ZW2003 v1.3 Z-Wave

20 Locker Kwikset 98880-004 v4.79 Z-Wave

21 Dimmer Plug Minoston MP22Z v7.13.9 Z-Wave

(a) Device details

(b) Photo of devices

Figure 7: IoT devices used in our experiments.

system devices. In our implementation, we utilize the ZigBee and

Z-Wave add-ons of Home Assistant to connect with Z-based de-

vices. The Device Connector is built with a Nortek Security &

Control HUSBZB-1 USB dongle for the ZigBee and Z-Wave radio

communication capabilities ($39.50 on Amazon [20]) .

6.2 Experimental Setup

IoT Devices Under Test.We have selected 21 popular consumer

Z-based IoT devices from both online and o�ine markets, covering

various well-known brands, such as Philips, Centralite, Third Real-

ity, Sengled, Aeotec, and Lumi. The types of selected IoT devices

include smart switch, plug, lighting, blind, locker, sensor, and ther-

mostat. These devices are either recommended by Amazon or the

best-selling products available in supermarkets. The details (type,

vendor, version, protocol, etc.) of the devices are described in Fig-

ure 7(a). To deliver a visual impression of these devices, Figure 7(b)

shows a photo of these devices.

Moreover, as we compare H��F����� with SNIPUZZ [19], we

also selected the Z-based IoT device considered by SNIPUZZ: Philip

Bloom Lighting, with ID=4 in Figure 7(a). Other devices tested by

SNIPUZZ are WiFi based, so we did not include them.

Testing Environment. Our H��F����� runs on a Ubuntu 20.04

PC with 4.9 GHz Intel® Core(TM) i7 CPU and 32 GB RAM. We

con�gured the Z-based devices in a fully-controlled network to

avoid the interference of irrelevant tra�c.

Baseline Method. SNIPUZZ [19] has proven to be more e�ective in

vulnerability discovery in IoT devices than many other tools, such

as IoTFuzzer [9] (a blackbox fuzzer for IoT devices), NEMESYS [34] (a

212

No More Companion Apps Hacking but One Dongle: Hub-Based Blackbox Fuzzing of IoT Firmware MobiSys ’23, June 18–22, 2023, Helsinki, Finland

Table 1: Function Coverage Results. N/A: Z-Wave devices do not sup-

port write-attribute commands.

ID
H��F����� SNIPUZZ

Cluster Command Attribute Cluster Command Attribute

1 8(100%) 29(100%) 91(100%) 2(25%) 19(66.7%) 0(0%)

2 8(100%) 48(100%) 99(100%) 3(37.5%) 5(10.4%) 0(0%)

3 8(100%) 44(100%) 94(100%) 3(37.5%) 5(11.4%) 0(0%)

4 8(100%) 54(100%) 100(100%) 4(50%) 14(25.9%) 0(0%)

5 8(100%) 48(100%) 99(100%) 3(37.5%) 5(10.4%) 0(0%)

6 7(100%) 30(100%) 93(100%) 1(14.3%) 10(33.3%) 0(0%)

7 7(100%) 26(100%) 100(100%) 1(14.3%) 3(11.5%) 0(0%)

8 7(100%) 55(100%) 81(100%) 1(14.3%) 3(6%) 0(0%)

9 7(100%) 55(100%) 81(100%) 1(14.3%) 3(6%) 0(0%)

10 3(100%) 4(100%) 79(100%) 0(0%) 0(0%) 0(0%)

11 5(100%) 26(100%) 34(100%) 1(20%) 3(11.5%) 0(0%)

12 6(100%) 26 (100%) 91(100%) 1(16.7%) 3(11.5%) 0(0%)

13 5(100%) 26(100%) 42(100%) 1(20%) 3(11.5%) 0(0%)

14 14(100%) 89(100%) N/A 1(7%) 3(3%) N/A

15 19(100%) 117(100%) N/A 3(16%) 6(5%) N/A

16 16(100%) 85(100%) N/A 3(19%) 7(8%) N/A

17 18(100%) 89(100%) N/A 1(5%) 3(4%) N/A

18 20(100%) 115(100%) N/A 0(0%) 0(0%) N/A

19 21(100%) 113(100%) N/A 2(9.5%) 19(16.8%) N/A

20 15(100%) 106(100%) N/A 1(6.7%) 3(2.8%) N/A

21 15(100%) 96(100%) N/A 1(6.7%) 3(3.1%) N/A

Table 2: Vulnerability Discovery Results. (UV : Un-

known Vulnerability. DoS: Denial of Service.)

ID
H��F����� SNIPUZZ

Vul. Type Number Vul. Type Number

1 UV/DoS 2 - 0

2 UV/DoS 8 - 0

3 - 0 - 0

4 - 0 - 0

5 UV/DoS 8 - 0

6 UV/DoS 2 - 0

7 - 0 - 0

8 - 0 - 0

9 - 0 - 0

10 - 0 - 0

11 - 0 - 0

12 - 0 - 0

13 DoS 1 - 0

14 - 0 - 0

15 UV 1 - 0

16 - 0 - 0

17 - 0 - 0

18 DoS 1 - 0

19 - 0 - 0

20 - 0 - 0

21 - 0 - 0

protocol reverse engineering tool), BooFuzz [32] (a network proto-

col fuzzer), DooNA [58] (a network protocol fuzzer).We thus consider

SNIPUZZ as a baseline method and compare it with H��F�����.

6.3 Function Coverage

We �rst evaluate the function coverage when fuzzing with H���

F�����, and compare it to that of the baseline tool SNIPUZZ. Since

the function of a device is determined by the clusters that the device

supports, we measure the cluster coverage. Moreover, as a cluster

is a related collection of commands and attributes, we also conduct

a more �ne-grained comparison by measuring the command and

attribute coverage. The results are shown in Table 1.

Cluster and Command Coverage. H��F����� makes use of

setting-up messages to extract the supported clusters of a device

(Section 5.1). A Z-based device relies on the setting-up messages to

declare its functions to a hub. In other words, functions described in

these messages fully cover a device’s functions that can be used or

tested. As shown in Table 1, we can see thatH��F����� can achieve

full coverage for clusters, commands, and attributes, while SNIPUZZ

cannot. For a given device, SNIPUZZ uses its API-testing programs

to obtain seed messages, which are mutated to generate testing

messages. If the API-testing programs do not cover a command

" , it is di�cult (or impossible) to cover " by mutating the seed

messages via blackbox fuzzing. As a result, SNIPUZZ can only test

the clusters and commands included in the API-testing programs.

Attribute Coverage. For ZigBee devices, the write-attribute com-

mand is shared by all clusters and can be used to modify device

attributes (Section 5.2). H��F����� can achieve full attribute cov-

erage since we can generate testing messages to modify all the

supported attributes via the write-attribute commands (i.e., the

command type 0G02). However, the write-attribute command is not

covered by any API-testing programs. As a result, SNIPUZZ can-

not generate testing messages corresponding to the write-attribute

commands to modify device attributes.

For Z-Wave devices (IDs 14-21), they do not support the write-

attribute command.

6.4 Vulnerability Discovery

To fuzz-test a device, the only manual e�ort is to pair it with H���

F�����. We test 21 IoT devices and discover 23 zero-day vulner-

abilities in 7 devices as presented in Table 2. We have reported

all the 23 newly discovered vulnerabilities to their vendors. Specif-

ically, we �nd 2 vulnerabilities in Centralite Pearl (ID = 1) with

CVE-2023-24678; 8 vulnerabilities in Sengled Bulb E11-N1EAW (ID

= 2) with CVE-2022-47100; 8 vulnerabilities in Sengled Strip E1G-

G85 (ID = 5) with CVE-2022-47100; 2 vulnerabilities in Third Reality

3RSB015BZ (ID = 6) with CVE-2023-29780; and 1 vulnerability in

Sengled E1E-G7F (ID = 13) with CVE-2023-29779; 1 vulnerability in

Aeotec ZW130-A (ID = 15); and 1 vulnerability in Fibaro FGMS-001

(ID = 18). For the last two, the CVE requests are under review. To

save CVE resources, given multiple vulnerabilities of a device that

are related to a group of similar commands or exploit messages,

only one CVE is requested.

6.4.1 Case Studies. Below we discuss several discovered vulner-

abilities as case studies. The details of these vulnerabilities are

summarized in Table 3.

Case 1: Centralite Pearl Thermostat (ID = 1). We discover

two vulnerabilities: one is UV (unknown vulnerability) and the

other DoS (Denial of Service). The two vulnerabilities have been

assigned CVE-2023-24678. Both are related to the hidden command,

213

MobiSys ’23, June 18–22, 2023, Helsinki, Finland Xiaoyue Ma, Qiang Zeng, Haotian Chi, and Lannan Luo

Table 3: Some of Discovered Vulnerabilities Details. (HD API: Hidden API, de�ned in Section 4.1.)

ID
HD

Command
Normal Mes.�→ Exploit Required Device

Observations CVE
API? (only payload is shown) Initial State

1 ✓ Write_Battery_thres(uint8)

0x02007d20�→ 0x02007d42 Heating mode
Device crashed &

CVE-2023-24678Policy 2: Change argument is set to 32
bricked

type from uint8 to CharString degrees Celsius

2 ✓ Move_up(uint8)

0x01010003�→ 0x01010000 Brightness

Device crashed CVE-2022-47100Policy 1: Provide an invalid is set to

value 0x00 to the argument the lowest (0)

2 ✓ Move_down(uint8)

0x01010102�→ 0x01010100 Brightness

Device crashed CVE-2022-47100Policy 1: Provide an invalid is set to

value 0x00 to the argument the highest (254)

5 ✓ Move_up_OnOff(uint8)

0x01050007�→ 0x01050000 Brightness

Device crashed CVE-2022-47100Policy 1: Provide an invalid is set to

value 0x00 to the argument the lowest (0)

5 ✓ Move_down_OnOff(uint8)

0x01050108�→ 0x01050100 Brightness

Device crashed CVE-2022-47100Policy 1: Provide an invalid is set to

value 0x00 to the argument the highest (254)

6 5 Down_close()

0x0103�→ 0x010303

Any state Device crashed CVE-2023-29780Policy 3: Provide one or more

arguments to the command

13 ✓ Set_short_poll_interval(uint16)

0x01030009�→ 0x01030000

Any state

Device kept

CVE-2023-29779Policy 1: Provide an invalid reporting state until

value 0x0000 to the argument battery was drained

15 ✓ Firmware_Update_Request_Get(uint8,uint8)

0x7A038601�→ 0x7A03�

Any state Device crashed Under reviewPolicy 3: Provide only one argument

with an invalid value 0x�

18 ✓
An invalid command

0x8101

Any state Device crashed Under review
in the Clock cluster

Policy 4: Try unsupported cluster 0x81

and invalid command 0x01

Write_Battery_thres (unit8), which can set a threshold for low

battery alarms. This hidden command accepts one argument with

the data type uint8.

Triggering vulnerabilities. If we change the data type of this

command to CharString (following the fuzzing policy 2 in Sec-

tion 5.3), and at the same time, the device heating mode is set to

32 degrees Celsius (the required device initial state), the generated

testing message makes the device crash. Speci�cally, as shown in

the fourth column in Table 3, the normal message is 0G02007320

(note that only the payload is shown here), where the last two

digits 0G20 represents the unit8 data type. If we change it to 0G42

representing the CharString data type, the message 0G02007342

causes the device to crash.

Observations.We have two observations indicating two kinds

of vulnerabilities. (1) UV: If the exploit (i.e., 0G02007342) is sent

once, the device loses the connection and reconnects automatically

after around one second. (2) Permanent DoS: If the exploit is sent

multiple times within a period of time (in our experiment, we send

50 commands in 100 seconds), the device loses the connection and

cannot reconnect automatically anymore, allowing an attacker to

conduct DoS attacks. Moreover, even if we reboot, manually factory

reset, or manually pair the device, it still cannot rejoin the network

anymore, indicating that the device is completely bricked.

The two vulnerabilities are probably because of null pointer

dereference, bu�er over�ow, or memory leaks, which may be ex-

ploited to hijack the control �ow.

Case 2: Sengled Bulb E11-N1EAW (ID = 2).We �nd eight vulner-

abilities: four are UV and four DoS. These vulnerabilities have been

assigned CVE-2022-47100. They are related to four hidden com-

mands, Move_up (unit8), Move_down (unit8), Move_up_OnOff

(unit8), as well as Move_down_OnOff (unit8), which can in-

crease or decrease the brightness of the device with or without

the OnO� e�ect at a certain rate. Each command accepts one argu-

ment with the data type uint8, which speci�es the rate value.

Triggering vulnerabilities. If we set the device to the required

initial state and then provide an invalid value 0G00 to the argument

(following the fuzzing policy 1), the testing message makes the

device crash. Take Move_up (unit8) as an example (the third row

in Table 3), the normal message is 0G01010003, where the last two

digits 0G03 indicate the rate value. If we set the brightness of the

device to the lowest (i.e., 0) and the rate to an invalid value 0G00,

the message 0G01010000 causes the device to crash.

Observations.We have the following two observations for each

command. (1)UV: If the exploit is sent once, the device �ashes once,

loses the connection, automatically changes to its factory status,

and then rejoins the network after one second. (2) Extended DoS:

If the exploit is sent multiple times within a period of time, the

device cannot reconnect automatically until we manually pair it,

allowing an attacker to conduct extended DoS attacks.

Case 3: Third Reality 3RSB015BZ (ID = 6).We detect two vulner-

abilities, which have been assigned CVE-2023-29780. Both of them

are related to the command, Down_close(), which can extend the

smart blind to the maximum length. This command does not accept

any argument. However, if we provide an argument to it (following

the fuzzing policy 3), no matter what the current device state is,

the generated testing message can trigger the vulnerabilities.

214

No More Companion Apps Hacking but One Dongle: Hub-Based Blackbox Fuzzing of IoT Firmware MobiSys ’23, June 18–22, 2023, Helsinki, Finland

Moreover, our observations are that if the message is sent once,

the device loses the connection and rejoins automatically; however,

if the message is sent multiple times in succession, the device loses

connection and rejoins after around 30 seconds, allowing an at-

tacker to conduct DoS attacks. The two vulnerabilities are con�rmed

by the vendor.

Case 4: Sengled E1E-G7F (ID = 13). We �nd one DoS vulnerabil-

ity, which have been assigned CVE-2023-29779. This vulnerability

is related to Set_short_poll_interval (uint16), which can set

the interval of the short poll. This command receives an argument

with the data type uint16, which speci�es the interval value. To

trigger the vulnerability, we provide an invalid value 0x0000 to

the argument (it means that the interval is set to 0). Our observa-

tions are that the device keeps reporting its states with no interval

and does not respond to any normal messages. More importantly,

in our experiments, the device drained its battery �nally as it kept

reporting its status.

Case 5: Aeotec ZW130-A (ID = 15). We discover one UV vul-

nerability. We have requested a CVE for it, and it is currently

under view. This vulnerability is related to a hidden command,

Firmware_Update_Request_Get (uint8, uint8), which is used

to initiate a �rmware update. This command requires two argu-

ments: ManufacturerID and Firmware ID, both of which have the

data type unit8 and their valid values ∈ [0, 254]. To trigger the

vulnerability, we provide only one argument with an invalid value

0x�, which results in a device crash.

Case 6: Fibaro FGMS-001 (ID = 18).We reveal one DoS vulner-

ability. We have requested a CVE for it, and it is currently under

view. The Fibaro FGMS-001 is designed to trigger various actions or

events, such as detecting motion, changes in lighting, and tempera-

ture in the environment. To trigger the vulnerability, an invalid

command in an unsupported cluster, speci�cally the Clock cluster

(0x81), is involved, which aims to synchronize the device clock with

the controller system clock. We send a testing message containing

the unsupported cluster (0x81) and an invalid command (0x01); the

command is invalid because it does not exist in the cluster (0x81).

Our observation is that if the testing message is sent multiple

times within a period of time (in our experiment, we send it 120

times in around 60 seconds), the device crashes.

6.4.2 Comparison with Baseline Method. We consider SNIPUZZ

as the baseline, which represents the state of the art in blackbox

fuzzing of IoT devices [19]. We use it to test these devices. However,

after 24 hours fuzz testing on each device, no crashes are found

by SNIPUZZ. There are various reasons. First, SNIPUZZ needs the

API-testing programs of IoT devices to collect seed messages, and

can only test the commands that are covered by the API-testing

programs. As a result, it cannot detect the vulnerabilities triggered

by the hidden commands, which include all the vulnerabilities in

Table 3, except those of Third Reality Blind (ID = 6).

Second, the vulnerabilities in Third Reality Blind (ID = 6), which

is related to a non-hidden command, however, are still missed by

SNIPUZZ. This is due to the ine�ectiveness of its snippet determina-

tion algorithm—the algorithm determines that all the bytes in the

seed message corresponding to the Down_close() command are

in a single snippet, while the correct number of snippets is 15. Be-

cause of the very inaccurate segmentation, it fails to generate

the messages to exploit the vulnerabilities.

We further evaluate the e�ectiveness of the snippet determina-

tion algorithm of SNIPUZZ. Speci�cally, for each discovered vul-

nerability, we provide SNIPUZZ with a message corresponding to

the hidden command that can trigger the vulnerability. We then

use the snippet determination algorithm to analyze these messages.

The result shows that SNIPUZZ cannot accurately determine the

snippets for any of them.

There are two main reasons that cause SNIPUZZ to fail. First,

SNIPUZZ removes the bytes in a seedmessage one by one to generate

probe messages. So it works for devices where the message formats

are JSON, SOAP, and Key-Value—the removed byte usually do not

impact the roles of the subsequent bytes in the message. However,

for Z-based devices, the message format is a byte stream of �elds.

As a result, removing one byte causes to shift the subsequent bytes

left by one, which changes the semantics of these bytes. Second, as

discussed in SNIPUZZ, the e�ectiveness of its snippet determination

algorithm depends on how much information could be obtained

from the device responses. However, most of our devices report the

errors with a uniform message, making it infeasible for SNIPUZZ to

accurately conduct message segmentation.

The discussion above indicates that even if API-testing programs

are upgraded to include the hidden commands and SNIPUZZ modi-

�es the API-testing programs to inject testing messages in order to

overcome the barrier of encrypted communication, SNIPUZZ still

fails to detect the vulnerabilities. Moreover, SNIPUZZ does not lever-

age state-sensitive fuzzing, while we make use of it to �nd most

most of the vulnerabilities (18 out of 23).

6.5 E�ciency

We measure the e�ciency of fuzzing in terms of vulnerabilities

discovered over time and over the number of testing messages. The

results are shown in Figure 8(a)-(g). We can see thatH��F����� can

e�ciently discover vulnerabilities. For example, for Centralite Pearl

Thermostat (ID = 1) in Figure 8(a), within 9 minutes and less than

600 test messages, the two vulnerabilities are found. For Sengled

Bulb E11-N1EAW (ID = 2) in Figure 8(b), all the eight vulnerabilities

are detected within 20 minutes.

In Figure 8(h), we present the total time taken by H��F�����

for fuzz testing each of the 21 devices. Since we can obtain the

functions supported by IoT devices from the setting-up messages,

we test all of them. For ZigBee devices (ID from 1 to 13), the longest

fuzz testing time is 13.75 hours for the device ID = 3. For Z-Wave

devices (ID from 14 to 21), the fuzz testing time is about half an hour

due to relatively fewer commands supported by Z-Wave devices.

7 DISCUSSION

TestingWiFi and Bluetooth Devices.We showcase the proposed

idea and techniques on ZigBee and Z-Wave IoT devices, which have

a large market size [17, 29]. Essentionally, the fuzzing idea lever-

ages the local IoT control channel, which enables an IoT device to

be controlled locally. A device supports one or more local control

channels as long as it is compatible with HomeKit [31], and many

IoT vendors support HomeKit. According to the HomeKit protocol,

215

MobiSys ’23, June 18–22, 2023, Helsinki, Finland Xiaoyue Ma, Qiang Zeng, Haotian Chi, and Lannan Luo

(a) Centralite Pearl Thermostat (ID = 1) (b) Sengled Bulb E11-N1EAW (ID = 2) (c) Sengled Strip E1G-G85 (ID = 5)

(d) Third Reality 3RSB015BZ (ID = 6) (e) Sengled E1E-G7F (ID = 13) (f) Aeotec ZW130-A (ID = 15)

(g) Fibaro FGMS-001 (ID = 18)

ID Time ID Time ID Time ID Time ID Time ID Time ID Time

1 2.98 h 4 11.89 h 7 2.89 h 10 1.71 h 13 3.06 h 16 0.43 h 19 0.58 h

2 11.35 h 5 11.26 h 8 12.08 h 11 7.2 h 14 0.43 h 17 0.48 h 20 0.55 h

3 13.75 h 6 11.19 h 9 12.19 h 12 2.6 h 15 0.55 h 18 0.58 h 21 0.49 h

(h) Total fuzzing time for all devices

Figure 8: Runtime performance. (a)-(g) show the vulnerabilities (red dots) discovered over time and over the number of testing

messages. (h) shows the total fuzzing time for testing each of the 21 devices.

a HomeKit-enabled device not only pairs with a HomeKit hub but

also declares its device type and functions [4]. Our future work

will exploit the HomeKit framework for building a hub to test WiFi

and Bluetooth devices. The work certainly involves new technical

challenges, but it is promising. For example, some tutorials (Home-

Assistant [59], HomeBridge [28]) introduce how to build your own

opensource HomeKit hub, which can be a starting point.

TestingMatter Devices.Matter and Thread are two industry-wide

standards designed to improves smart home device interoperabil-

ity and connectivity [2]. Matter standardizes the application layer,

and Thread the lower layers. They are developed by Google, Ama-

zon, Apple and more than a hundred other leading technology

companies. This provides great research opportunities. Multiple

vendors target December 2022 to release devices that implement

Matter/Thread [1]. A key feature of Matter is that IoT devices can

be controlled locally [43]. Speci�cally, a Matter-compatible device

must be accessible to smart home control centers in the home

network, without a detour via the Internet. The control center com-

municates with IoT devices at home directly, which in principle is

similar to the HomeKit architecture. Thus, a promising future work

is to apply the hub-based fuzzing idea to testing Matter devices.

8 CONCLUSION

Blackbox fuzzing of IoT �rmware gains growing attention, as it

delivers promising results. Di�erent from prior work that reverse

engineers companion apps or manually collects test scripts, we

propose another direction: hub-based IoT fuzzing, where the fuzzer

declares itself as a hub to connect IoT devices. H��F����� exploits

the setting-up messages to discover functions supported by IoT

devices and then performs systematic function-oriented fuzzing.

The mutation is guided by knowledge extracted from IoT protocol

speci�cations. State-sensitive fuzzing is conducted, which is e�ec-

tive in �nding vulnerabilities. Our fuzzing is not constrained by

input sanitization of companion apps and can deal with encrypted

communication. We have implemented H��F����� and conducted

an extensive evaluation with 21 popular IoT devices. We discov-

ered 23 zero-day vulnerabilities, signi�cantly outperforming prior

state of the art. Four CVEs have been assigned and more are under

review. We advocate that, because of the imminent popularity of

Matter/Threat devices and their emphasis on interoperability, the

hub-based fuzzing is worth further exploration.

ACKNOWLEDGEMENTS

This work was supported in part by the US National Science Founda-

tion (NSF) under grants CNS-2309550, CNS-2310322, CNS-2309477,

and CNS-2304720. The authors would like to thank the anonymous

reviewers for their valuable comments.

APPENDIX

The research artifact accompanying this paper is available via https:

//doi.org/10.5281/zenodo.7924626.

216

No More Companion Apps Hacking but One Dongle: Hub-Based Blackbox Fuzzing of IoT Firmware MobiSys ’23, June 18–22, 2023, Helsinki, Finland

REFERENCES
[1] 2022. Matter (standard). https://en.wikipedia.org/wiki/Matter_(standard).
[2] 2022. Your home is getting more helpful with Matter and Thread. https://store.

google.com/intl/en/ideas/articles/matter-thread-for-your-smart-home/.
[3] Zafeer Ahmed, Ibrahim Nadir, Haroon Mahmood, Ali Hammad Akbar, and

Ghalib Asadullah Shah. 2020. Identifying mirai-exploitable vulnerabilities in IoT
�rmware through static analysis. In Proc. IEEE International Conference on Cyber
Warfare and Security (ICCWS).

[4] Apple. 2023. Developing Apps and accessories for the home.
https://developer.apple.com/apple-home/.

[5] Home Assistant. 2022. Z-Wave JS. https://www.home-assistant.io/integrations/
zwave_js/.

[6] Lina Berzinskas. 2020. Obfuscating Android Apps: Do you know your choices
for protection? https://proandroiddev.com/obfuscation-is-important-do-you-
know-your-options-30b3ef396dfe.

[7] Chen Cao, Le Guan, Jiang Ming, and Peng Liu. 2020. Device-agnostic �rmware
execution is possible: A concolic execution approach for peripheral emulation.
In Annual Computer Security Applications Conference (ACSAC).

[8] DamingDChen,MaverickWoo, David Brumley, andManuel Egele. 2016. Towards
automated dynamic analysis for Linux-based embedded �rmware. In Network
and Distributed System Security Symposium (NDSS).

[9] Jiongyi Chen, Wenrui Diao, Qingchuan Zhao, Chaoshun Zuo, Zhiqiang Lin,
XiaoFeng Wang, Wing Cheong Lau, Menghan Sun, Ronghai Yang, and Kehuan
Zhang. 2018. IoTFuzzer: Discovering memory corruptions in IoT through App-
based fuzzing. In Network and Distributed System Security Symposium (NDSS).

[10] Haotian Chi, Qiang Zeng, Xiaojiang Du, and Lannan Luo. 2021. PFirewall:
Semantics-aware customizable data �ow control for home automation systems.
In Network and Distributed System Security Symposium (NDSS).

[11] Connectivity Standards Alliance. 2022. Building the foundation and future of the
IoT. https://csa-iot.org.

[12] Andrei Costin, Apostolis Zarras, and Aurélien Francillon. 2016. Automated
dynamic �rmware analysis at scale: A case study on embedded web interfaces. In
Proc. ACMAsia Conference on Computer and Communications Security (ASIACCS).

[13] Drew Davidson, Benjamin Moench, Thomas Ristenpart, and Somesh Jha. 2013.
FIE on �rmware: Finding vulnerabilities in embedded systems using symbolic
execution. In USENIX Security Symposium (USENIX Security).

[14] Shuaike Dong, Menghao Li, Wenrui Diao, Xiangyu Liu, Jian Liu, Zhou Li, Fenghao
Xu, Kai Chen, Xiaofeng Wang, and Kehuan Zhang. 2018. Understanding Android
obfuscation techniques: A large-scale investigation in the wild. In Security and
Privacy in Communication Networks.

[15] Jianhe Du, Xin Luo, Libiao Jin, and Feifei Gao. 2022. Robust tensor-based algo-
rithm for UAV-assisted IoT communication systems via nested PARAFAC analysis.
IEEE Transactions on Signal Processing 70 (2022), 5117–5132.

[16] Xuechao Du, Andong Chen, Boyuan He, Hao Chen, Fan Zhang, and Yan Chen.
2022. A�Iot: Fuzzing on Linux-based IoT devicewith binary-level instrumentation.
Computers & Security 122 (2022), 102889.

[17] Z-Wave explained: What is Z-Wave and why is it important for your smart home?
2022. https://www.the-ambient.com/guides/zwave-z-wave-smart-home-guide-
281.

[18] Qian Feng, Rundong Zhou, Chengcheng Xu, Yao Cheng, Brian Testa, and Heng
Yin. 2016. Scalable graph-based bug search for �rmware images. In Proc. ACM
SIGSAC Conference on Computer and Communications Security (CCS).

[19] Xiaotao Feng, Ruoxi Sun, Xiaogang Zhu, Minhui Xue, Sheng Wen, Dongxi Liu,
Surya Nepal, and Yang Xiang. 2021. Snipuzz: Black-box fuzzing of IoT �rmware
via message snippet inference. In Proc. ACM SIGSAC Conference on Computer and
Communications Security (CCS).

[20] GoControl CECOMINOD016164 HUSBZB-1 USB Dongle. 2023. https:
//www.amazon.com/GoControl-CECOMINOD016164-HUSBZB-1-USB-
Hub/dp/B01GJ826F.

[21] Zhijie Gui, Hui Shu, Fei Kang, and Xiaobing Xiong. 2020. FIRMCORN:
Vulnerability-oriented fuzzing of IoT �rmware via optimized virtual execution.
IEEE Access 8 (2020), 29826–29841.

[22] Zhijie Gui, Hui Shu, and Ju Yang. 2020. FIRMNANO: Toward IoT �rmware fuzzing
through augmented virtual execution. In Proc. IEEE International Conference on
Software Engineering and Service Science (ICSESS).

[23] Daojing He, Hongjie Gu, Tinghui Li, Yongliang Du, Xiaolei Wang, Sencun Zhu,
and Nadra Guizani. 2020. Toward hybrid static-dynamic detection of vulnerabili-
ties in IoT �rmware. IEEE Network 35, 2 (2020), 202–207.

[24] Daojing He, Xiaohu Yu, Tinghui Li, Sammy Chan, and Mohsen Guizani. 2022.
Firmware vulnerabilities homology detection based on clonal selection algorithm
for IoT devices. IEEE Internet of Things Journal 9, 17 (2022), 16438–16445.

[25] Grant Hernandez, Farhaan Fowze, Dave Jing Tian, Tuba Yavuz, and Kevin RB But-
ler. 2017. FirmUSB: Vetting USB device �rmware using domain informed symbolic
execution. In Proc. ACM SIGSAC Conference on Computer and Communications
Security (CCS).

[26] Home Assistant. 2022. Home Assistant. https://www.home-assistant.iol.
[27] Home Assistant. 2022. Zigbee Home Automation. https://www.home-assistant.

io/integrations/zha/.

[28] Homebridge. 2021. Homebridge HomeKit Control. https://github.com/
minamoanes/homebridge-homekit-control.

[29] Global Market Insights Inc. 2021. IoT Gateway Devices Market Revenue to Cross
USD 20 Bn by 2027. https://www.prnewswire.com/news-releases/iot-gateway-
devices-market-revenue-to-cross-usd-20-bn-by-2027-global-market-insights-
inc-301336087.html.

[30] Fortune Business Insights. 2022. Internet of Things Market Size [2022-2029]
Worth USD 2465.26 Billion. https://www.globenewswire.com/en/news-
release/2022/04/04/2415728/0/en/Internet-of-Things-Market-Size-2022-2029-
Worth-USD-2465-26-Billion-Exhibiting-a-CAGR-of-26-4.html.

[31] Yan Jia, Bin Yuan, Luyi Xing, Dongfang Zhao, Yifan Zhang, XiaoFeng Wang,
Yijing Liu, Kaimin Zheng, Peyton Crnjak, Yuqing Zhang, et al. 2021. Who’s in
control? On security risks of disjointed IoT device management channels. In Proc.
ACM SIGSAC Conference on Computer and Communications Security (CCS).

[32] Joshua Pereyda. 2017. Boofuzz: Network protocol fuzzing for humans. https:
//boofuzz.readthedocs.io/en/stable/.

[33] Mingeun Kim, Dongkwan Kim, Eunsoo Kim, Suryeon Kim, Yeongjin Jang, and
Yongdae Kim. 2020. FirmAE: Towards large-scale emulation of IoT �rmware for
dynamic analysis. In Annual Computer Security Applications Conference (ACSAC).

[34] Stephan Kleber, Henning Kopp, and Frank Kargl. 2018. NEMESYS: Network
message syntax reverse engineering by analysis of the intrinsic structure of
individual messages. In USENIX Workshop on O�ensive Technologies.

[35] Wenqiang Li, Jiameng Shi, Fengjun Li, Jingqiang Lin, Wei Wang, and Le Guan.
2022. `AFL: Non-intrusive feedback-driven fuzzing for microcontroller �rmware.
In International Conference on Software Engineering (ICSE).

[36] Xiaopeng Li, Qiang Zeng, Lannan Luo, and Tongbo Luo. 2020. T2Pair: Secure and
usable pairing for heterogeneous IoT devices. In Proc. ACM SIGSAC Conference
on Computer and Communications Security (CCS).

[37] Mingyue Liang, Zhoujun Li, Qiang Zeng, and Zhejun Fang. 2018. Deobfuscation
of virtualization-obfuscated code through symbolic execution and compilation
optimization. In Proc. IEEE International Conference on Information and Commu-
nications Security (ICICS).

[38] Lannan Luo and Qiang Zeng. 2016. SolMiner: Mining distinct solutions in
programs. In International Conference on Software Engineering (ICSE).

[39] Lannan Luo, Qiang Zeng, Chen Cao, Kai Chen, Jian Liu, Limin Liu, Neng Gao,
Min Yang, Xinyu Xing, and Peng Liu. 2017. System service call-oriented symbolic
execution of Android framework with applications to vulnerability discovery
and exploit generation. In Proc. ACM International Conference on Mobile Systems,
Applications, and Services (MobiSys).

[40] Lannan Luo, Qiang Zeng, Chen Cao, Kai Chen, Jian Liu, Limin Liu, Neng Gao, Min
Yang, Xinyu Xing, and Peng Liu. 2019. Tainting-assisted and context-migrated
symbolic execution of Android framework for vulnerability discovery and exploit
generation. IEEE Transactions on Mobile Computing 19, 12 (2019), 2946–2964.

[41] Lannan Luo, Qiang Zeng, Bokai Yang, Fei Zuo, and JunzheWang. 2021. Westworld:
Fuzzing-assisted remote dynamic symbolic execution of smart Apps on IoT cloud
platforms. In Annual Computer Security Applications Conference (ACSAC).

[42] Global Z-Wave Automation Market. 2022. https://www.prophecymarketinsights.
com/market_insight/Global-Z-Wave-Automation-Market-4593.

[43] Matter-Smarthome. 2023. Bene�ts of Matter #1: Local connection. https://matter-
smarthome.de/en/bene�ts/bene�ts-of-matter-1-local-connection/.

[44] Alejandro Mera, Bo Feng, Long Lu, and Engin Kirda. 2021. DICE: Automatic
emulation of DMA input channels for dynamic �rmware analysis. In Proc. IEEE
Symposium on Security and Privacy (S&P).

[45] IbrahimNadir, Zafeer Ahmad, HaroonMahmood, Ghalib Asadullah Shah, Farrukh
Shahzad, Muhammad Umair, Hassam Khan, and Usman Gulzar. 2019. An auditing
framework for vulnerability analysis of IoT system. In IEEE European Symposium
on Security and Privacy Workshops.

[46] Anh TV Nguyen and Mizuhito Ogawa. 2022. Automatic stub generation for
dynamic symbolic execution of ARM binary. In International Symposium on
Information and Communication Technology.

[47] OpenHAB. 2022. openhab–features–introduction. http://www.openhab.org/
features/introduction.html.

[48] Nilo Redini, Andrea Continella, Dipanjan Das, Giulio De Pasquale, Noah Spahn,
Aravind Machiry, Antonio Bianchi, Christopher Kruegel, and Giovanni Vigna.
2021. DIANE: Identifying fuzzing triggers in Apps to generate under-constrained
inputs for IoT devices. In Proc. IEEE Symposium on Security and Privacy (S&P).

[49] Sandler Research. 2016. ZigBee Home Automation Market to Grow at 26% CAGR
to 202. https://prn.to/3jLYLmk.

[50] Vinay Sachidananda, Suhas Bhairav, and Yuval Elovici. 2020. OVER: Overhauling
vulnerability detection for IoT through an adaptable and automated static analysis
framework. In Proc. ACM Symposium on Applied Computing (SAC).

[51] Zhan Shu and Guanhua Yan. 2022. IoTInfer: Automated blackbox fuzz testing of
IoT network protocols guided by �nite state machine inference. IEEE Internet of
Things Journal 9, 22 (2022), 22737–22751.

[52] Smartthings. 2022. Z-Wave Command Classes. https://graph.api.smartthings.
com/ide/doc/zwave-utils.html.

[53] Prashast Srivastava, Hui Peng, Jiahao Li, Hamed Okhravi, Howard Shrobe, and
Mathias Payer. 2019. Firmfuzz: Automated IoT �rmware introspection and

217

MobiSys ’23, June 18–22, 2023, Helsinki, Finland Xiaoyue Ma, Qiang Zeng, Haotian Chi, and Lannan Luo

analysis. In International ACM Workshop on Security and Privacy for the Internet-
of-Things.

[54] Pengfei Sun, Luis Garcia, Gabriel Salles-Loustau, and Saman Zonouz. 2020. Hybrid
�rmware analysis for known mobile and IoT security vulnerabilities. In Proc.
IEEE/IFIP International Conference on Dependable Systems and Networks (DSN).

[55] IoT World Today. 2021. IoT Cyberattacks Escalate in 2021, According to Kasper-
sky. https://www.iotworldtoday.com/2021/09/17/iot-cyberattacks-escalate-in-
2021-according-to-kaspersky/.

[56] Junzhe Wang and Lannan Luo. 2022. Privacy leakage analysis for colluding smart
Apps. In IEEE/IFIP International Conference on Dependable Systems and Networks
Workshops.

[57] Webthings. 2022. https://webthings.io.
[58] wireghoul. 2019. Doona. https://github.com/wireghoul/doona.
[59] Wltd. 2020. How to Easily Use a Raspberry Pi as a Homekit Hub.

https://wltd.org/posts/how-to-easily-use-a-raspberry-pi-as-a-homekit-hub.
[60] Zelin Xu, Wei Huang, Wenqing Fan, and Yixuan Cheng. 2022. FIoTFuzzer:

Response-based black-box fuzzing for IoT devices. In Proc. IEEE/ACIS International
Conference on Computer and Information Science (ICIS).

[61] Yao Yao, Wei Zhou, Yan Jia, Lipeng Zhu, Peng Liu, and Yuqing Zhang. 2019.
Identifying privilege separation vulnerabilities in IoT �rmware with symbolic
execution. In European Symposium on Research in Computer Security.

[62] Qidi Yin, Xu Zhou, and Hangwei Zhang. 2021. FirmHunter: State-aware and
introspection-driven grey-box fuzzing towards IoT �rmware. Applied Sciences
11, 19 (2021), 9094.

[63] Z Wave Vs ZigBee: Which Is Better For Your Smart Home? 2022. https://
thesmartcave.com/z-wave-vs-zigbee-home-automation/.

[64] Jonas Zaddach, Luca Bruno, Aurelien Francillon, and Davide Balzarotti. 2014.
AVATAR: A framework to support dynamic security analysis of embedded sys-
tems’ �rmwares. In Network and Distributed System Security Symposium (NDSS).

[65] Qiang Zeng, Lannan Luo, Zhiyun Qian, Xiaojiang Du, and Zhoujun Li. 2018.
Resilient decentralized Android application repackaging detection using logic
bombs. In Proc. ACM International Symposium on Code Generation and Optimiza-
tion (CGO).

[66] Wei Zhang, Yan Meng, Yugeng Liu, Xiaokuan Zhang, Yinqian Zhang, and Haojin
Zhu. 2018. Homonit: Monitoring smart home Apps from encrypted tra�c. In
Proc. ACM SIGSAC Conference on Computer and Communications Security (CCS).

[67] Yu Zhang, Nanyu Zhong, Wei You, Yanyan Zou, Kunpeng Jian, Jiahuan Xu, Jian
Sun, Baoxu Liu, and Wei Huo. 2022. NDFuzz: A non-intrusive coverage-guided
fuzzing framework for virtualized network devices. Cybersecurity 5, 1 (2022),
1–21.

[68] Yaowen Zheng, Ali Davanian, Heng Yin, Chengyu Song, Hongsong Zhu, and
Limin Sun. 2019. FIRM-AFL∶ High-throughput greybox fuzzing of IoT �rmware
via augmented process emulation. In USENIX Security Symposium (USENIX Secu-
rity).

[69] Yaowen Zheng, Yuekang Li, Cen Zhang, Hongsong Zhu, Yang Liu, and Limin Sun.
2022. E�cient greybox fuzzing of applications in Linux-based IoT devices via
enhanced user-mode emulation. In International Symposium on Software Testing
and Analysis (ISSTA).

[70] Wei Zhou, Le Guan, Peng Liu, and Yuqing Zhang. 2021. Automatic �rmware
emulation through invalidity-guided knowledge inference. In USENIX Security
Symposium (USENIX Security).

[71] Wei Zhou, Lan Zhang, Le Guan, Peng Liu, and Yuqing Zhang. 2022. What your
�rmware tells you is not how you should emulate it: A speci�cation-guided
approach for �rmware emulation. In Proc. ACM SIGSAC Conference on Computer
and Communications Security (CCS).

[72] Lipeng Zhu, Xiaotong Fu, Yao Yao, Yuqing Zhang, and He Wang. 2019. FIoT:
Detecting the memory corruption in lightweight IoT device �rmware. In IEEE
International Conference On Trust, Security And Privacy In Computing And Com-
munications/ IEEE International Conference On Big Data Science And Engineering.

[73] Xiaogang Zhu, Sheng Wen, Seyit Camtepe, and Yang Xiang. 2022. Fuzzing: A
survey for roadmap. ACM Computing Surveys (CSUR) 54, 11s (2022), 1–36.

[74] ZigBee. 2022. ZigBee Cluster Library Speci�cation. https://zigbeealliance.org/wp-
content/uploads/2019/12/07-5123-06-zigbee-cluster-library-speci�cation.pdf.

[75] Fei Zuo, Xiaopeng Li, Patrick Young, Lannan Luo, Qiang Zeng, and Zhexin Zhang.
2019. Neural machine translation inspired binary code similarity comparison
beyond function pairs. In Network and Distributed System Security Symposium
(NDSS).

218

