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ABSTRACT

Given the massive difficulty in emulating IoT firmware, blackbox
fuzzing of IoT devices for vulnerability discovery has become an
attractive option. However, existing blackbox IoT fuzzers need much
time and tedious effort to reverse engineer the IoT companion
app (or manually collect test scripts) of each IoT device, which
is unscalable when analyzing many devices. Moreover, fuzzing
through a companion app is impeded by the input sanitization
inside the app and limited to the manually revealed functions. We
notice that IoT devices are typically able to connect a hub using
standard wireless protocols (such as ZigBee, Z-Wave, and WiFi).
We thus propose a uniform hub-based architecture for fuzzing
various IoT devices, without reverse engineering any companion
apps. It exploits the messages exchanged between a hub and an
IoT device to automatically discover all the functions, and then
launches systematic function-oriented message-semantics-guided
fuzzing. It avoids sanitization imposed by a companion app. In
addition, it conducts device state-sensitive fuzzing, which we find
very effective in finding IoT bugs. We implement the system named
HusFuzzer. The evaluation shows that HuBFuzzERr leads to much
higher coverage than prior state of the art. We test 21 IoT devices
and find 23 zero-day vulnerabilities. Four CVEs have been assigned.
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1 INTRODUCTION

The global IoT market size is anticipated to rise from $478 billion in
2022 to $2,465 billion by 2029 [30]. Recent studies show that cyber
attacks against IoT devices are growing at alarming rates—the first
half of 2021 saw 1.5 billion attacks on smart devices, an increase
from 639 million in 2020 [55]. These attacks frequently exploit
vulnerabilities of IoT firmware. Thus, it is important to discover
vulnerabilities in IoT firmware.

Several vulnerability-finding systems use static analysis to ana-
lyze IoT firmware [3, 18, 45, 50, 72], but tend to report many false
positives. Others dynamically emulate firmware to support greybox
or whitebox fuzzing. Despite much work [8, 12, 44, 70, 71], emu-
lating IoT firmware is still an unresolved challenge, as the large
number of custom and proprietary hardware components make the
task of building an accurate emulator intractable [64].

Thus, blackbox fuzzing becomes an attractive option and receives
growing attention. For example, IoTFuzzer [9] and DIANE [48]
leverage IoT companion apps to send inputs to IoT devices. First,
as obfuscation has become a standard practice in developing mo-
bile apps [6, 14, 37] and strong obfuscation techniques are widely
available [6, 65], it requires much effort to reverse engineer and
modify an obfuscated companion app. Second, they combine static
analysis and manual effort to identify routines that can be used
to inject fuzzing messages, which is tedious, time consuming, and
incomplete [19, 48]. Third, such fuzzing is impeded by input sani-
tization inside a companion app. Actually, the main contribution
of DIANE [48] is to bypass certain, but not all, sanitization. DIANE
mitigates the third limitation but does not address the other two.
(SNIPUZZ [19] manually collects API-testing programs to fuzz IoT
devices. But very few vendors disclose their API-testing programs
and the disclosed test scripts do not necessarily cover all the func-
tions of a device.)

Our Insight and Main Idea. To increase sales, IoT vendors typ-
ically build their devices to be able to connect various hubs (e.g.,
hubs of Google, Amazon, SmartThings, and Home Assistant) [10].
Moreover, most IoT devices utilize standard wireless protocols [66].
ZigBee and Z-Wave are among the most popular wireless protocols
for home automation [63] and share a large market size [17, 29].
There are more than 100 million such devices in smart homes world-
wide, which cover 70% of the smart home market [17].
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We notice that, when a ZigBee or Z-Wave IoT device joins a hub,
it generates a sequence of setting-up messages for handshaking [36].
These messages contain rich information about the device, such
as the device id, address, manufacture code, and all the supported
functions (e.g., unlock a door, turn on a camera). Surprisingly, none
of the existing works exploit such messages for IoT fuzzing. We
propose to make use of such messages to discover the functions of
a device and then perform systematic function-oriented fuzzing. It
is worth highlighting that we do not reverse engineer any IoT com-
panion apps but automatically derive a complete list of supported
functions of a device from setting-up messages.

Fuzzing Approach. Unlike prior work that hacks one companion
app per device (or manually collects test scripts) to send fuzzing
messages, we propose a uniform hub-based fuzzing architecture.
Our system, named HUBFUZZER, first declares itself as a hub to con-
nect directly with the IoT device to be tested. HUBFUZZER extracts
useful information from the setting-up messages and learns the
functions supported by the device. After that, HUBFUZZER system-
atically generates testing messages for each of the functions and
sends them, through an inexpensive USB dongle, to the IoT device.
During the process, it captures inputs that trigger exceptions, such
as crashes.!

Since companion apps are not used, our fuzzing is not hindered
by various input sanitization inside companion apps. Moreover, our
investigation finds that the device context (i.e., the device state be-
fore the current fuzzing message is sent) often has an impact on the
testing result. We thus conduct state-sensitive fuzzing. Specifically,
we set the device state to a special state before sending a testing
message. This significantly helps vulnerability discovery.

We envision that HuBFUZZER can be used by third-party security
researchers, IoT vendors who may not have the resources to de-
velop and maintain their white-box fuzzers, and organizations that
emphasize security and want to test their purchased IoT devices.

We implement HuBFuzzER and conduct an extensive evaluation.
It is compared with a state-of-the-art work SNIPUZZ, which also
does not need to hack companion apps (but relies on manually
collected test scripts). The evaluation results show that HupFuzzer
can achieve much higher coverage of IoT functions than SNIPUZZ.
Specifically, HuBFuzzER can achieve full function coverage for
each tested device, while the coverage of SNIPUZZ is much lower (e
[0%,66.7%]). As a result, HUBFUZZER can detect more vulnerabilities.
We test 21 IoT devices from various vendors and find 23 zero-day
vulnerabilities (all are missed by SNIPUZZ). Four CVEs have been
assigned: CVE-2022-47100, CVE-2023-24678, CVE-2023-29779, CVE-
2023-29780. We make the following contributions.

e We propose a novel hub-based dynamic analysis architecture,
and demonstrate its usefulness for blackbox IoT fuzzing.
Compared to prior approaches, it does not need to reverse
engineer any companion apps (or collect testing scripts).
Moreover, our fuzzing is not impeded by various sanitization
in companion apps.

e We present function-oriented blackbox fuzzing, which de-
rives functions supported by IoT devices from setting-up mes-
sages and performs systematic function-oriented fuzzing.

!The hub-based design is inspired by PFirewall [10], but PFirewall filters IoT data for
enhancing privacy, which is very different from our purpose.
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o We extract knowledge about message structures and com-
mand/attribute value ranges from the protocol specifications.
The knowledge can be reused to test other IoT devices. Our
fuzzing is guided by the precise knowledge, while prior work,
SNIPUZZ, by inaccurately inferred message structures.

o Device state-sensitive fuzzing is designed to detect vulner-
abilities that can only be triggered when a particular de-
vice condition is met. Our findings show that state-sensitive
fuzzing is very effective and helps find 18 vulnerabilities.

o We implement HusFuzzer? and conduct an evaluate on 21
popular IoT devices. We find 23 zero-day vulnerabilities with
4 CVEs assigned. HuBFuzzER significantly outperforms prior
state of the art, in terms of both coverage and discovered
vulnerabilities.

2 RELATED WORK
2.1 Static Analysis-based Approaches

A set of approaches are based on static analysis, which requires
the access to IoT firmware images [3, 7, 21-24, 33, 38, 53, 54, 56, 61,
62, 68]. For example, InnerEye [75] presents the first NLP-inspired
deep learning approach to analyzing native code in the literature.
However, as manufacturers often do not release their firmware, the
applicability of these approaches is limited [9, 15, 48]. Moreover,
static analysis tends to have a high false positive rate.

2.2 Dynamic Analysis-based Approaches

Dynamic analysis-based IoT vulnerability detection approaches can
be divided into the following three groups.

Emulation. Some rely on emulation [8, 12, 16, 44, 64, 71]. Two
major challenges for firmware emulation are the scalability and
throughput 35, 68, 69, 73]. Although a lot of efforts have been made
to improve the performance, how to precisely emulate IoT devices
is still an open question [48, 64, 67].

Symbolic Execution. Another research line applies symbolic exe-
cution [13, 25, 39-41]. But the precise execution of IoT firmware
needs to access various peripherals [46]. To symbolically execute
IoT firmware, they consider all inputs from peripherals as symbolic,
which causes imprecision, or uses imprecise emulation results.

Blackbox Fuzzing. Recently, blackbox IoT fuzzing gains much
attention as an effective approach to finding vulnerabilities [51, 60].
Existing blackbox IoT fuzzers either rely on reverse engineering
companion apps [9, 48] or manually collected testing programs [19].

For example, IoTFuzzer [9] and DIANE [48] hack companion
apps to test IoT devices. For each IoT device, they statically analyze
the companion app to locate and modify the code corresponding
to IoT device functions. However, this requires enormous reverse
engineering efforts especially for obfuscated apps [6, 14], and the
static analysis may introduce false positives and false negatives in
identifying code for IoT device functions [19, 48].

SNIPUZZ [19] collects initial network messages using API-testing
programs and then mutates these messages, which saves the ef-
fort to reverse engineer companion apps. However, it has multiple
limitations. First, very few IoT vendors disclose their API-testing

*https://github.com/iot-sec23/HubFuzzer.
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Figure 1: A typical IoT platform architecture.

programs, Second, one needs to manually infer the message struc-
ture, which is tedious (it takes 5 man-hours of manual work per
device [19]) and inaccurate. Third, it can only test device functions
covered by API-testing programs, resulting in false negatives. Fi-
nally, SNIPUZZ fails if network messages are encrypted, while most
IoT communication protocols use encryption [9].

In sum, existing blackbox IoT fuzzers need much time and te-
dious effort to either reverse engineer the IoT companion app or
manually collect test scripts for each IoT device, which is unscal-
able when analyzing many devices. Moreover, they have limited
function coverage for testing devices.

3 BACKGROUND
3.1 IoT Platform Architecture

Figure 1 shows a typical IoT platform architecture, consisting of
the following main components: hub, smart apps, device handlers,
and cloud backend. The hub bridges the communication between
IoT devices and the cloud backend and the device-hub connection
uses various short/medium-range wireless radios (such as ZigBee,
Z-Wave and WiFi). It plays a critical role in the interconnectivity
and interoperability of heterogeneous IoT devices.

3.2 ZigBee and Z-Wave

ZigBee and Z-Wave are among the most popular wireless protocols
in home automation [42, 49]. The global ZigBee home automa-
tion market has grown significantly over the past few years and
will witness a 13% CAGR (compound annual growth rate) through
2027 [29]. Z-Wave devices cover 70% of the smart home market [17].
Nowadays, households increasingly use ZigBee and/or Z-Wave IoT
devices as they consume less power and reduce energy costs. This
work demonstrates our hub-based fuzzing approach on ZigBee and
Z-Wave IoT devices, which we call Z-based devices. We discuss how
the fuzzing approach can be generalized to testing WiFi, Bluetooth
and Thread/Matter devices in Section 7.

4 OVERVIEW

4.1 Limitations of the State of the Art

SNIPUZZ represents the latest progress in blackbox IoT fuzzing.
SNIPUZZ implements a snippet-based mutation strategy, which uses
feedback from IoT devices to segment a network packet into snip-
pets. To fuzz an IoT device, (1) SNIPUZZ needs to first collect seed
messages using the API-testing programs. (2) Then, for each seed
message, it removes its bytes one by one to generate a set of probe
messages, sends each probe message to the device, and collects the
device responses. (3) It then categorizes and clusters the responses.
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Figure 2: Commands covered by HuBFuzzeR vs. SNIPUZZ.
Among the 21 devices in our evaluation, only two devices,
Philips Bloom and Sengled Smart Bulb, release their API-
testing programs. For the other devices, we enhance SNIPUZZ
by regarding a device as its abstract device and consider the
commands for the abstract device covered by SNIPUZZ.

(4) Finally, based on the clusters, it infers message snippets to guide
mutation. However, SNIPUZZ has several limitations.

Manually Collecting Testing Programs. SNIPFUZZ needs the
API-testing programs to obtain seed messages. However, very few
IoT vendors disclose their API-testing programs. For example, only
2 out of the 21 devices used in our evaluation, Philips Bloom and
Sengled Smart Bulb, release their API-testing programs.

Low Function Coverage. In Figure 2, the blue bars represent the
number of commands covered by SNIPFUZZ, while the orange bars
represent that of our tool. For those without API-testing programs,
we improve SNIPFUZZ by regarding each device as its abstract de-
vice and count the commands of an abstract device as being covered
by SNIPFUZZ. For example, a smart lock is abstracted into a lock
with the lock() and unlock() commands. We can see that a large
portion of commands are missed by SNIPFUZZ, which we call hid-
den commands. For example, for Kwikset Smart Locker, there are
133 hidden commands out of 136 commands in total; two examples
are toggle_door (), which switches the device state from on to off
and the other way around, and set_pin_code(), which sets the
PIN for the device.

As SNIPUZZ cannot test the hidden commands, it has high false
negative rate in vulnerability discovery. For instance, one vulnera-
bility we discovered in Sengled Smart Bulb is related to the hidden
command Move_up, which moves the ‘current level’ of the device
up at a specified rate. This vulnerability is missed by SNIPUZZ.

Limited Message-Segmentation Capacity. The performance
of SNIPUZZ heavily depends on the effectiveness of its snippet
determination algorithm. However, there are two main limitations.
First, this algorithm works for devices where the message formats
are JSON, SOAP, and Key-Value. In such cases, when it removes the
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bytes in a seed message one by one to generate probe messages,
the removed byte does not affect the roles of the subsequent bytes
in the message. However, for Z-based devices, the message is a
byte stream consisting of fields. As a result, removing one byte
results in shifting the subsequent bytes left by one, which changes
the semantics of the subsequent bytes. Second, in order to segment
a message correctly, SNIPUZZ requires rich information from the
device responses. However, our evaluation finds that most Z-based
devices report the errors in a uniform message (e.g., “No response
to X’ command with seq id %y’ ”), making it hard for SNIPUZZ to
accurately determine the message snippets.

Cannot Handle Encrypted Messages. SNIPUZZ avoids the effort
to modify companion apps by directly mutating network packets.
However, when the communication is encrypted, the approach fails,
while most IoT devices use encrypted communication [9].

Ignoring Impacts of Device Context. We find that device context
(e.g., the current device state) often has an impact on the triggering
of device crashes, which is ignored by SNIPUZZ. For example, our
experiments reveal that only when the current brightness level of
Sengled Smart Bulb is the highest, can a crash be triggered.

4.2 Our Goals, Insight and Idea

We have the following goals in designing our system.

o Easy to use. Unlike prior work, our approach does not need
to reverse engineer companion apps or manually collect
testing programs.

e High function coverage. The system should have high
function coverage; i.e., it should test (almost) all functions
supported by an IoT device.

o Generalizable. It can be generalized to testing devices that
use complex messages and encrypted communication.

o State-sensitive fuzzing. The design of the fuzzing strategy
should take the impact of device states into consideration.

Our observation is that, to increase the sales, IoT vendors typically
build their devices to be able to connect various hubs [10]. Thus, we
propose a uniform hub-based architecture and build our fuzzer as a
hub to directly talk with IoT devices by sending/receiving messages
to/from IoT devices. For the same reason, most IoT devices support
standard wireless protocols, such as ZigBee and Z-Wave [66].

Our insight is that when a Z-based IoT device joins a hub, it
generates a sequence of setting-up messages to establish the con-
nection. These messages contain rich information about the device,
including device id, address, manufacture code, and supported func-
tions. Based on this, our idea is to make use of the setting-up
messages to get aware of the functions supported by IoT devices
and then perform systematic function-oriented fuzzing. The ap-
proach is easy to use, has a high function coverage and can be
generalized to devices that use complex messages and encryption.

Moreover, we extract knowledge about message command/at-
tribute value ranges from the protocol specifications, and the knowl-
edge is used to build our testing input mutation strategies, including
state-sensitive fuzzing.
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4.3 System Architecture

Figure 3 shows the architecture of our system, called HUBFUZZER,
containing four main components: Device Connector, Function Ex-
tractor, Fuzzing Mutator, and Response Monitor.

(1) The Device Connector component communicates with IoT
devices directly via protocols, such as ZigBee and Z-Wave. It does
three major things: i) pairing IoT devices; ii) sending testing mes-
sages to IoT devices; and iii) receiving messages from IoT devices.
(The implementation details are presented in Section 6.1)

(2) When a Z-based IoT device joins the hub, it generates a
sequence of setting-up messages. The Function Extractor component
collects the setting-up messages and learns the functions supported
by the IoT device (Section 5.1).

(3) Based on the supported functions, the Fuzzing Mutator com-
ponent generates testing messages by mutating commands and
attributes (Section 5.2, Section 5.3 and Section 5.4).

(4) Finally, the Response Monitor component monitors the status
of the IoT device to capture crashes (Section 5.5).

The radio communication between IoT devices and HuBFuzzer
is supported by a USB Dongle. We next present the design of each
of these components.

5 DESIGN OF HUBFUZZER
5.1 Learning Supported Functions

Clusters in ZigBee. As defined in the ZigBee Cluster Library
(ZCL) [74], each cluster corresponds to a specific functionality and
has an associated 2-byte cluster identifier (i.e., CID). For example,
the On/Off cluster (with CID = 0x0006) allows a switch device to be
put into the ‘on’ and ‘off” states, and the Level Control cluster (with
CID = 0x0008) allows control of the level of a physical quantity (e.g.,
heating output) on a device. A list of all available clusters can be
found in the ZCL Specification [74].

A cluster is a collection of commands and attributes, which define
an interface to a specific functionality. (1) An Attributes is a property
of a device that can be stored as a state; e.g., a switch device has
the switch attribute with two states, on and off. (2)A Command is
a method that can control a device and manipulate attributes; e.g.,
the Lock() (resp. unlock()) command in the Lock cluster can lock
(resp. unlock) a door.

Command Classes in Z-Wave. Similar to ZigBee, Z-Wave ab-
stracts device functionalities and groups related ones into command
classes [52]. A command class is a collection of commands and at-
tributes, where commands are used for controlling, querying, and
reporting device attributes corresponding to specific functionality.

There are three kinds of commands for each command class: Set,
Get, and Report. (1) A Set command is sent to a device to instruct
the device to perform a specific task (which may change the device
status). (2) A Get command is sent to a device to request the current
status of a device. (3) A Report command is sent from a device to
report its current device status if the status changes.

Note that the clusters in ZigBee and command classes in Z-Wave
can be implemented in any application profile (e.g., home automa-
tion), and an IoT device that operates in an application profile must
implement and respond correctly to all the required clusters/com-
mand classes. For example, a ZigBee light switch that operates in
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Figure 4: An example of setting-up messages.

the home-automation profile must correctly implement the On/Off
cluster and other required clusters in order to interoperate with
other home automation devices (e.g., hubs).

Although different names (i.e., clusters and command classes)
are used, they actually have the same meaning. For the sake of
presentation, we do not distinguish the two names and use clusters
in the following sections.

Our Method. A sequence of setting-up messages are generated
when a Z-based device joins a hub, which contains rich information
about the device, including the device id, manufacture code, and
supported functions. As an example, Figure 4 shows the information
extracted from the setting-up messages for the Third Reality smart
switch device, where the details of the most important ones, in-
clusters (i.e., in_clusters_v7), are highlighted. Here, incluster means
the contained commands can control this device. Note that there is
another field named outclusters (i.e., out_clusters_v7 in Figure 4),
which means the current device can control other devices using
the corresponding commands. As we aim to send testing messages
to IoT devices to trigger device actions, we focus on inclusters.
Based on the reported inclusters and according to the ZCL [74],
we can learn the functions supported by the device, and then deter-
mine (1) which commands can control this device, and (2) which
attributes are stored in the device. For example, for the three inclus-
ters in Figure 4, (1) the cluster CID = 0 is the Basic cluster, which is
a mandatory cluster for all ZigBee devices. It includes 21 attributes,
including the basic properties of a device, such as software and
hardware versions, manufacturer name, and 1 command, which
can send a ‘Reset To Factory Defaults’ message to reset the device
to its factory defaults. (2) The cluster CID = 1 is the Power Con-
figuration cluster, which allows information to be obtained about
the power sources of a device and voltage alarms to be configured.
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58 attributes are defined, including the battery information and
battery settings. (3) The cluster CID = 6 is the On/Off cluster. It
includes 5 attributes, such as OnTime that specifies how long the
light remains on, and 6 commands, which allow a device to be put
into the ‘on’ and ‘off’ state for a time period or with an effect.

Extracting Knowledge to Support Fuzzing. The protocol spec-
ification [52, 74] provides a detailed description for each cluster,
including the contained commands, arguments/attributes, and each
argument’s data type and value range, which are reflected in the
corresponding protocol stack library. For example, zigpy [27] im-
plements ZigBee standard specifications [11] as a Python library,
and Z-Wave S implements Z-Wave standard specifications [52].
We first extract the relevant information from these libraries us-
ing a script and store it in a database, which is then integrated in
HusFuzzER (note that this is a one-time effort). Specifically, zigpy
has a directory, zigpy/zcl/clusters, that contains a list of files
implementing all the clusters, including information about the as-
sociated commands, attributes, and the value range and data type
of each command’s argument, which is extracted by our script.
Similarly, Z-Wave S provides a header file ZW_classcmd.h and
an Excel file List of defined Z-Wave Command Classes.xlsx,
from which we can extract relevant information about each cluster.
When fuzzing a device, we first learn the supported clusters from
the setting-up messages, and then retrieve the supported commands
and attributes as well as the value range and data type of each com-
mand’s argument from the database. The information then assists
the testing message generation.

5.2 Packing Procedure

We generate various testing messages to trigger device actions and
monitor crashes. A simple solution is to mutate the augments of
each supported command (learned from the setting-up messages).
However, as the Z-based libraries used in our hub involve input
sanitization, a command with an out-of-range argument value will
get rejected, causing fewer testing messages to be sent.

As an example, the command move_to_level() in the Level
cluster moves the ‘current level” of the device to a target level over
a specified time. The target level is set as an argument and must
be within the range of 0x00 to 0xFE. If we set the target level to
a value out of this range (e.g., 0xFF), this command will throw a
"failed to convert" error, and no testing message will be generated.

To resolve this issue, our solution is to locate the procedure
that packs messages, which we call the packing procedure. 1t is
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invoked by each command request to generate messages to be sent
to IoT devices. We then remove the input sanitization in the packing
procedure and mutate the information for building a message (e.g.,
command argument type and value) to generate testing messages.
Note unlike prior work that removes sanitization in the companion
app of each device, our sanitization elimination is one-time effort.

ZigBee. Listing 1 shows the signature of the packing procedure,
request, from zigpy [27], a library that implements the ZigBee
protocol stack. The request function is invoked by each command
to generate messages. To generate diverse testing messages that can
be accepted by devices, HuBFUZZER mutates two critical parameters,
cluster and data (both are highlighted in blue). Specifically, cluster
stores the current cluster ID and data stores the payload.

def request(device, profile, cluster, src_ep, dst_ep,
sequence, data, expect_reply=True, use_ieee=False)

Listing 1: ZigBee packing procedure

There are two types of commands. We thus send two kinds of
testing messages by invoking the two types of commands.

e Cluster commands are defined in each cluster. Each cluster
may define zero or more cluster commands.

o A write-attribute command can modify one or more speci-
fied cluster attributes. Note that a write-attribute command is
not specific to an individual cluster but shared by all clusters.

Figure 5 shows the ZCL message format for the two types of com-
mands, where the sections that will be modified to generate diverse
testing messages are highlighted in blue. Figure 5(a) shows the for-
mat of a message when a cluster command is invoked. The cluster
ID is stored in the header. The payload includes the command type,
the command ID, and the value of each command argument. If a
cluster command is invoked, the command type is 0x01, while if
a write-attribute command is invoked, the command type is 0x02.
Figure 5(b) shows the format of a message when a write-attribute
command is invoked. The cluster ID is also part of the header. The
payload specifies the command type and one or more attributes. For
each attribute, the message includes its attribute identifier, data type,
and value. The commands and attributes are mutated to generate
testing messages.

Z-Wave. For the Z-Wave protocol, we find its packing procedure,
named sendMessage, from the Z-Wave ¥S library [5]. A Z-Wave
cluster contains three types of commands, Set, Get and Report (see
Section 5.1). As we aim to send testing messages to IoT devices to
trigger their actions, we use the Set command (its command ID
is 0x01) to generate testing messages. We follow a similar way to
mutate the cluster ID and payload of packed messages to generate
diverse testing messages.

Note that HuBFuzzER mutates testing messages, which are then
encrypted and sent out of the hub. Thus, HuBFuzzEr has no prob-
lems dealing with IoT devices that use encryption. It is worth noting
that, although both prior work (DIANE [48]) and HuBFuUZZER need
to locate the functions for preparing testing messages, DIANE needs
to reverse-engineer and hack the companion app of each IoT device,
while it is one-time effort with HuBFuzzEr to locate and modify
the packing procedures.
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5.3 Fuzzing Policies
We have the following fuzzing policies.

Policy 1: Changing Argument Values. There are 57 data types defined
in the ZCL. We divide them into two categories. (1) High risk types
have a higher probability of causing device crashes if argument
values of these types are mutated; there are 26 high risk types (e.g.,
OctetString, CharString, integer, float, Array, Set, and NoData). (2)
Low risk types are the rest (e.g., Time of day, Date).

Given a command with n arguments, we first mutate arguments
of high risk types, and then those of low risk. Specifically, we (a)
change the lengths of strings to trigger buffer overflow; (b) provide
empty values to strings to cause uninitialized variable vulnerability
or null pointer dereference; (c) mutate integer, double or float values
into extreme values to cause integer overflow or out-of-range access;
(d) provide NULL or only one element to arrays, sets, or bags to cause
null pointer dereference or out-of-bounds access; and (e) provide
a randomly generated value to arguments with the NoData type
(NoData means no data should be provided).

Policy 2: Changing Argument Types. Given an argument supposedly
with the data type t, we change its type to a randomly selected one
t'. For example, for an argument with the String type, we change its
type to the integer type by replacing a string value with an integer
value, to check whether the device can handle the special “string”.

We notice a special data type Unknown, which is not an actual
data type and should not be used for attributes or command argu-
ments. However, it is still defined in the ZCL for completeness to
reserve the data type identifier for use where a data special type
unknown is needed. We thus also change ¢ to Unknown to check
the device’s ability to handle such special cases.

Policy 3: Changing the Number of Arguments. We provide more
(or less) arguments to the current command. For example, given a
command that requires n arguments, we provide n+x,n—x,or0
arguments (x € Z).

Policy 4: Trying Unsupported Clusters and Commands. Besides the
supported clusters, we also randomly select a few unsupported clus-
ters given the full set in the ZCL [74] (our experiments randomly
select 3 unsupported clusters). For each command in a selected
unsupported cluster, we generate testing messages following the
command definition. Through this, we can check whether unex-
pected commands can cause the device to crash.

Regarding the write-attribute command, its semantics is to mod-
ify the device attributes (Section 5.2). To test the device’s ability
to handle such a command, we use this command to modify all
the attributes one by one; the attribute being changed becomes the
argument of the command. Moreover, for an attribute specified in
the write-attribute command, if the device response indicates that
this attribute is “read-only”, we skip this attribute (Policies 1 and 2
are not applied to such cases), and move to the next attribute.

5.4 State-Sensitive Fuzzing

Based on our experiments, we find that the device state has a sig-
nificant impact on triggering crashes. For example, given a testing
message that turns up the brightness of a smart bulb with a certain
rate, only when the bulb’s current brightness is the highest (i.e.,
254), can the message cause the bulb to crash. We thus conduct
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ZCL Header ZCL Payload ZCL Header ZCL Payload
Frame Control Sequence Number | Cluster ID Payload Frame Control Sequence Number | Cluster ID Payload
C_ommand Type Argument C_:ommand Type | Attribute Attribute Attribute
(0x01) Command ID | Ve (0x02) Identifier | Value Type

(a) Cluster command.

(b) Write-attribute command.

Figure 5: Format of the ZCL frame.

state-sensitive fuzzing. Specifically, we first set the device state to a
special state (e.g., setting the bulb’s brightness as the highest/lowest)
before sending a testing message that may impact the state.

We call a message that sets the device state to a special state a
reset message. Given a command, we first determine which device
attribute it tries to modify. For the write-attribute command, it is
easy to determine as the attribute is specified by us. For a cluster
command, we rely on the ZCL [74] and Z-Wave class specifica-
tion [52] to find the attribute modified by this command. After
that, we determine the value range of the attribute based on the
specification [52, 74] (this information is first extracted and stored
in a database, as discussed in Section 5.1). If a range is specified, we
generate two reset messages by providing the maximum and mini-
mum values to the argument related to this attribute. If no range is
specified, a random value is used to generate a reset message.

We clarify that not all vulnerabilities, in order to be triggered,
require the device to be set to a special state. Note that the influence
of device state is not considered by the prior IoT fuzzing work [9,
19, 48], As a result, they failed to detect many vulnerabilities, which
cause crashes only when a special condition is met.

5.5 Response Monitor

Figure 6 shows four scenarios about how an IoT device responds
when receiving a message m, where the device does not crash in
the two scenarios shown in Figure 6(a) and (b), but crashes in the
other two in Figure 6(c) and (d).

As shown in Figure 6(a), when m is valid, the device i) accepts it
and sends an ACK response to acknowledge receiving m, and then ii)
executes the corresponding command and sends a Report response
to report the updated device state (note that a device usually reports
its updated state after successfully executing a command). Thus
HuBFuzzER receives two responses, ACK and Report.

As illustrated in Figure 6(b), when m is invalid, the device sends
an ACK response to acknowledge receiving m, but then discards m
(the device can handle invalid messages well, which is different
from the two scenarios shown in Figure 6(c) and (d)). As a result,
HuBFUZzER receives only one response, ACK.

For the two scenarios illustrated in Figure 6(c) and (d), m is
invalid, and the device crashes at different points. In Figure 6(c),
the device crashes before sending an ACK response; as a result,
no response is received by HuBFuzzer. In Figure 6(d), the device
crashes after sending an ACK; as a result, HUBFUZZER receives an
ACK response but no Report response.

Based on this observation, we monitor device crashes using the
following rules.
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o If no ACK response is received by HUBFUZZER, it indicates
a device crash has occurred. (Note that when the network
connection is poor, a message may get lost, causing the ACK
to be lost as well. However, if the missing ACK is due to a
crash, the symptom can be reproduced in a reliable way
using the same message. But if it is due to poor network
connection, it cannot; plus, the device does not manifest a
restart due to crash, such as LED blinks and sound alerts.)

e If an ACK is received, but no Report response is received,
we cannot determine whether the device has crashed or not
(see Figure 6(b) and (d)). We thus need to distinguish them
by sending a reset message, which is known to be valid, for
the next state-sensitive testing. If no Report response is
received, it indicates that the device has crashed.

Moreover, our experiment results show an interesting and im-
portant phenomenon. Given a message that is known to cause a
device crash, if the fuzzer sends the same message multiple times
continuously, a device may enter a state worse than crashes; eg.,
the device cannot re-join the network.

6 EVALUATION

This section presents the implementation of HuBFuzzER and the
evaluation results. Specifically, Section 6.1 gives the implementation
details. Section 6.2 presents the experimental setup. Section 6.3
discusses the function coverage and and Section 6.4 the effectiveness
of vulnerability discovery; we compare HuBFuzzER with the state-
of-the-art work. Section 6.5 presents the efficiency of HuBFuzzEr.

6.1 Implementation

We have implemented a prototype of HuBFuzzERr. It communicates
with IoT devices directly through device-dependent protocols such
as ZigBee and Z-Wave. Several open-source platforms, e.g., Home
Assistant [26], openHAB [47], and WebThings [57], provide the
device connector alike functions and allow developers to use add-
ons for integrating various IoT devices.

Specifically, Home Assistant contains a ZigBee protocol stack,
called zigpy [27], which implements ZigBee standard specifica-
tions [11] as a Python library. It allows ZigBee devices to connect
directly to Home Assistant. Home Assistant also provides Z-Wave 7S
to support connection with Z-Wave devices [5]. Numerous Z-based
IoT devices are supported by Home Assistant, including sensors
(e.g., motion, door, and temperature sensors), lights, switches, but-
tons, covers, fans, climate control equipment, locks, and alarm
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Figure 6: Different scenarios when an IoT device receives a message.

ID | Device Type Vendor Model Firmware Version | Protocol
1 Thermostat Centralite Pearl 0x04075010 ZigBee
2 Lighting Sengled Bulb E11-N1IEAW 0x00000024 ZigBee
3 Lighting Innr FL 120 C 0x28002162 ZigBee
4 Lighting Philip Bloom Bloom 1.88.1 ZigBee
5 Lighting Sengled Strip E1G-G8E 0x00000024 ZigBee
6 Blind Third Reality 3RSB015BZ 1.00.54 ZigBee
7 Plug Lumi ZNCZ12LM 18 ZigBee
8 Locker Schlage BE468GBAK CAM 619 0.21.0 ZigBee
9 Locker Kwikset 99140-139 0x40a32a10 ZigBee
10 Sensor Tuya B09TDQIGP6 v1.0.10 ZigBee
11 Switch Tuya B09XCP7DN1 v1.1.0 ZigBee
12 Switch Third Reality 3RSS009B v1.01.10 ZigBee
13 | Dimmer Switch Sengled E1E-G7F v0.0.9 ZigBee
14 Plug Minoston MP21Z v1.0.1 Z-Wave
15 | Wall Switch Aeotec ZW130-A v2.3 Z-Wave
16 Sensor Aeotec ZW080 v3.28 Z-Wave
17 Switch Aeotec ZW096-A v1.7 Z-Wave
18 | Motion Sensor Fibaro FGMS-001 v3.4 Z-Wave
19 Thermostat Honeywell TH6320ZW2003 v1.3 Z-Wave e -
20 Locker Kwikset 98880-004 v4.79 Z-Wave (b) Photo of devices
21 | Dimmer Plug Minoston MP22Z v7.13.9 Z-Wave

(a) Device details

Figure 7: IoT devices used in our experiments.

system devices. In our implementation, we utilize the ZigBee and
Z-Wave add-ons of Home Assistant to connect with Z-based de-
vices. The Device Connector is built with a Nortek Security &
Control HUSBZB-1 USB dongle for the ZigBee and Z-Wave radio
communication capabilities ($39.50 on Amazon [20]) .

6.2 Experimental Setup

IoT Devices Under Test. We have selected 21 popular consumer
Z-based IoT devices from both online and offline markets, covering
various well-known brands, such as Philips, Centralite, Third Real-
ity, Sengled, Aeotec, and Lumi. The types of selected IoT devices
include smart switch, plug, lighting, blind, locker, sensor, and ther-
mostat. These devices are either recommended by Amazon or the
best-selling products available in supermarkets. The details (type,

vendor, version, protocol, etc.) of the devices are described in Fig-
ure 7(a). To deliver a visual impression of these devices, Figure 7(b)
shows a photo of these devices.

Moreover, as we compare HuBFuzzer with SNIPUZZ [19], we

also selected the Z-based IoT device considered by SNIPUZZ: Philip
Bloom Lighting, with ID=4 in Figure 7(a). Other devices tested by
SNIPUZZ are WiFi based, so we did not include them.
Testing Environment. Our HuBFuUzzER runs on a Ubuntu 20.04
PC with 4.9 GHz Intel® Core™) i7 CPU and 32 GB RAM. We
configured the Z-based devices in a fully-controlled network to
avoid the interference of irrelevant traffic.

Baseline Method. SNIPUZZ [19] has proven to be more effective in
vulnerability discovery in IoT devices than many other tools, such
as [oTFuzzer [9] (a blackbox fuzzer for IoT devices), NEMESYS [34] (a
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Table 1: Function Coverage Results. N/A: Z-Wave devices do not sup-

port write-attribute commands.
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Table 2: Vulnerability Discovery Results. (UV: Un-
known Vulnerability. DoS: Denial of Service.)

D HusFuzzeEr SNIPUZZ D HusFuzzEr SNIPUZZ
Cluster ~ Command  Attribute | Cluster Command Attribute Vul. Type Number | Vul. Type Number
1 | 8(100%)  29(100%)  91(100%) | 2(25%)  19(66.7%)  0(0%) 1 | UV/DoS 2 R 0
2 | 8(100%)  48(100%)  99(100%) | 3(37.5%)  5(10.4%) 0(0%) 2 | UV/DoS 8 - 0
3 | 8(100%)  44(100%)  94(100%) | 3(37.5%)  5(11.4%) 0(0%) 3 - 0 - 0
4 | 8(100%)  54(100%)  100(100%) | 4(50%)  14(25.9%)  0(0%) 4 - 0 - 0
5 | 8(100%)  48(100%)  99(100%) | 3(37.5%)  5(10.4%) 0(0%) 5 | UV/DoS 8 - 0
6 | 7(100%)  30(100%)  93(100%) | 1(14.3%) 10(33.3%)  0(0%) 6 | UV/DoS 2 - 0
7 | 7(100%)  26(100%)  100(100%) | 1(14.3%)  3(11.5%) 0(0%) 7 - 0 - 0
8 | 7(100%)  55(100%) 81(100%) 1(143%)  3(6%) 0(0%) 8 - 0 - 0
9 | 7(100%)  55(100%)  81(100%) | 1(14.3%) 3(6%) 0(0%) 9 - 0 - 0
10 | 3(100%)  4(100%)  79(100%) | 0(0%) 0(0%) 0(0%) 10 - 0 - 0
11 | 5(100%)  26(100%)  34(100%) | 1(20%)  3(11.5%) 0(0%) 11 - 0 - 0
12 | 6(100%) 26 (100%)  91(100%) | 1(167%)  3(11.5%) 0(0%) 12 - 0 - 0
13 | 5(100%)  26(100%)  42(100%) | 1(20%)  3(11.5%) 0(0%) 13 DoS 1 - 0
14 | 14(100%)  89(100%) N/A 1(7%) 3(3%) N/A 14 - 0 - 0
15 | 19(100%) 117(100%) N/A 3(16%) 6(5%) N/A 15 uv 1 - 0
16 | 16(100%)  85(100%) N/A 3(19%) 7(8%) N/A 16 - 0 - 0
17 | 18(100%)  89(100%) N/A 1(5%) 3(4%) N/A 17 - 0 - 0
18 | 20(100%)  115(100%) N/A 0(0%) 0(0%) N/A 18 Do$S 1 - 0
19 | 21(100%)  113(100%) N/A 209.5%)  19(16.8%) N/A 19 - 0 - 0
20 | 15(100%)  106(100%) N/A 16.7%)  3(2.8%) N/A 20 - 0 - 0
21 | 15(100%)  96(100%) N/A 16.7%)  3(3.1%) N/A 21 - 0 - 0

protocol reverse engineering tool), BooFuzz [32] (a network proto-
col fuzzer), DooNA [58] (a network protocol fuzzer). We thus consider
SNIPUZZ as a baseline method and compare it with HUBFUZZER.

6.3 Function Coverage

We first evaluate the function coverage when fuzzing with Hus-
FuzzeR, and compare it to that of the baseline tool SNIPUZZ. Since
the function of a device is determined by the clusters that the device
supports, we measure the cluster coverage. Moreover, as a cluster
is a related collection of commands and attributes, we also conduct
a more fine-grained comparison by measuring the command and
attribute coverage. The results are shown in Table 1.

Cluster and Command Coverage. HuBFuzzer makes use of
setting-up messages to extract the supported clusters of a device
(Section 5.1). A Z-based device relies on the setting-up messages to
declare its functions to a hub. In other words, functions described in
these messages fully cover a device’s functions that can be used or
tested. As shown in Table 1, we can see that HUBFUZZER can achieve
full coverage for clusters, commands, and attributes, while SNIPUZZ
cannot. For a given device, SNIPUZZ uses its API-testing programs
to obtain seed messages, which are mutated to generate testing
messages. If the API-testing programs do not cover a command
M, it is difficult (or impossible) to cover M by mutating the seed
messages via blackbox fuzzing. As a result, SNIPUZZ can only test
the clusters and commands included in the API-testing programs.

Attribute Coverage. For ZigBee devices, the write-attribute com-
mand is shared by all clusters and can be used to modify device
attributes (Section 5.2). HuBFuzzER can achieve full attribute cov-
erage since we can generate testing messages to modify all the
supported attributes via the write-attribute commands (i.e., the
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command type 0x02). However, the write-attribute command is not
covered by any API-testing programs. As a result, SNIPUZZ can-
not generate testing messages corresponding to the write-attribute
commands to modify device attributes.

For Z-Wave devices (IDs 14-21), they do not support the write-
attribute command.

6.4 Vulnerability Discovery

To fuzz-test a device, the only manual effort is to pair it with Hus-
Fuzzer. We test 21 IoT devices and discover 23 zero-day vulner-
abilities in 7 devices as presented in Table 2. We have reported
all the 23 newly discovered vulnerabilities to their vendors. Specif-
ically, we find 2 vulnerabilities in Centralite Pearl (ID = 1) with
CVE-2023-24678; 8 vulnerabilities in Sengled Bulb E11-N1EAW (ID
= 2) with CVE-2022-47100; 8 vulnerabilities in Sengled Strip E1G-
G385 (ID = 5) with CVE-2022-47100; 2 vulnerabilities in Third Reality
3RSB015BZ (ID = 6) with CVE-2023-29780; and 1 vulnerability in
Sengled E1E-G7F (ID = 13) with CVE-2023-29779; 1 vulnerability in
Aeotec ZW130-A (ID = 15); and 1 vulnerability in Fibaro FGMS-001
(ID = 18). For the last two, the CVE requests are under review. To
save CVE resources, given multiple vulnerabilities of a device that
are related to a group of similar commands or exploit messages,
only one CVE is requested.

6.4.1 Case Studies. Below we discuss several discovered vulner-
abilities as case studies. The details of these vulnerabilities are
summarized in Table 3.

Case 1: Centralite Pearl Thermostat (ID = 1). We discover
two vulnerabilities: one is UV (unknown vulnerability) and the
other DoS (Denial of Service). The two vulnerabilities have been
assigned CVE-2023-24678. Both are related to the hidden command,
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Table 3: Some of Discovered Vulnerabilities Details. (HD API: Hidden API, defined in Section 4.1.)
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D HD Command Normal Mes. — Exploit Requ'il'red Device Observations CVE
API? (only payload is shown) Initial State
0x02007d20 — 0x02007d42 Heating mode Device crashed &
1 v Write_Battery_thres(uint8) Policy 2: Change argument is set to 32 bricked CVE-2023-24678
type from uint8 to CharString degrees Celsius
0x01010003 — 0x01010000 Brightness
2 v Move_up(uint8) Policy 1: Provide an invalid is set to Device crashed CVE-2022-47100
value 0x00 to the argument the lowest (0)
0x01010102 — 0x01010100 Brightness
2 v Move_down(uint8) Policy 1: Provide an invalid is set to Device crashed CVE-2022-47100
value 0x00 to the argument the highest (254)
0x01050007 — 0x01050000 Brightness
5 v Move_up_OnOff(uint8) Policy 1: Provide an invalid is set to Device crashed CVE-2022-47100
value 0x00 to the argument the lowest (0)
0x01050108 — 0x01050100 Brightness
5 NG Move_down_OnOff (uint8) Policy 1: Provide an invalid is set to Device crashed CVE-2022-47100
value 0x00 to the argument the highest (254)
0x0103 — 0x010303
6 X Down_close() Policy 3: Provide one or more Any state Device crashed CVE-2023-29780
arguments to the command
0x01030009 — 0x01030000 Device kept
13| Set_short_poll_interval(uint16) Policy 1: Provide an invalid Any state reporting state until | CVE-2023-29779
value 0x0000 to the argument battery was drained
0x7A038601 —> 0x7A03ff
15 N Firmware_Update_Request_Get(uint8,uint8) Policy 3: Provide only one argument Any state Device crashed Under review
with an invalid value 0xff
. . 0x8101
18| V An invalid command Policy 4: Try unsupported cluster 0x81 Any state Device crashed Under review
in the Clock cluster . .
and invalid command 0x01

Write_Battery_thres (unit8), which can set a threshold for low
battery alarms. This hidden command accepts one argument with
the data type uint8.

Triggering vulnerabilities. If we change the data type of this
command to CharString (following the fuzzing policy 2 in Sec-
tion 5.3), and at the same time, the device heating mode is set to
32 degrees Celsius (the required device initial state), the generated
testing message makes the device crash. Specifically, as shown in
the fourth column in Table 3, the normal message is 0x02007d20
(note that only the payload is shown here), where the last two
digits 0x20 represents the unit8 data type. If we change it to 0x42
representing the CharString data type, the message 0x02007d42
causes the device to crash.

Observations. We have two observations indicating two kinds
of vulnerabilities. (1) UV: If the exploit (i.e., 0x02007d42) is sent
once, the device loses the connection and reconnects automatically
after around one second. (2) Permanent DoS: If the exploit is sent
multiple times within a period of time (in our experiment, we send
50 commands in 100 seconds), the device loses the connection and
cannot reconnect automatically anymore, allowing an attacker to
conduct DoS attacks. Moreover, even if we reboot, manually factory
reset, or manually pair the device, it still cannot rejoin the network
anymore, indicating that the device is completely bricked.

The two vulnerabilities are probably because of null pointer
dereference, buffer overflow, or memory leaks, which may be ex-
ploited to hijack the control flow.

Case 2: Sengled Bulb E11-N1EAW (ID = 2). We find eight vulner-
abilities: four are UV and four DoS. These vulnerabilities have been
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assigned CVE-2022-47100. They are related to four hidden com-
mands, Move_up (unit8), Move_down (unit8), Move_up_OnOff
(unit8), as well as Move_down_OnOff (unit8), which can in-
crease or decrease the brightness of the device with or without
the OnOff effect at a certain rate. Each command accepts one argu-
ment with the data type uint8, which specifies the rate value.

Triggering vulnerabilities. If we set the device to the required
initial state and then provide an invalid value 0x00 to the argument
(following the fuzzing policy 1), the testing message makes the
device crash. Take Move_up (unit8) as an example (the third row
in Table 3), the normal message is 0x01010003, where the last two
digits 0x03 indicate the rate value. If we set the brightness of the
device to the lowest (i.e., 0) and the rate to an invalid value 0x00,
the message 0x01010000 causes the device to crash.

Observations. We have the following two observations for each
command. (1) UV: If the exploit is sent once, the device flashes once,
loses the connection, automatically changes to its factory status,
and then rejoins the network after one second. (2) Extended DoS:
If the exploit is sent multiple times within a period of time, the
device cannot reconnect automatically until we manually pair it,
allowing an attacker to conduct extended DoS attacks.

Case 3: Third Reality 3RSB015BZ (ID = 6). We detect two vulner-
abilities, which have been assigned CVE-2023-29780. Both of them
are related to the command, Down_close (), which can extend the
smart blind to the maximum length. This command does not accept
any argument. However, if we provide an argument to it (following
the fuzzing policy 3), no matter what the current device state is,
the generated testing message can trigger the vulnerabilities.
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Moreover, our observations are that if the message is sent once,
the device loses the connection and rejoins automatically; however,
if the message is sent multiple times in succession, the device loses
connection and rejoins after around 30 seconds, allowing an at-
tacker to conduct DoS attacks. The two vulnerabilities are confirmed
by the vendor.

Case 4: Sengled E1E-G7F (ID = 13). We find one DoS vulnerabil-
ity, which have been assigned CVE-2023-29779. This vulnerability
is related to Set_short_poll_interval (uint16), which can set
the interval of the short poll. This command receives an argument
with the data type uint16, which specifies the interval value. To
trigger the vulnerability, we provide an invalid value 0x0000 to
the argument (it means that the interval is set to 0). Our observa-
tions are that the device keeps reporting its states with no interval
and does not respond to any normal messages. More importantly,
in our experiments, the device drained its battery finally as it kept
reporting its status.

Case 5: Aeotec ZW130-A (ID = 15). We discover one UV vul-
nerability. We have requested a CVE for it, and it is currently
under view. This vulnerability is related to a hidden command,
Firmware_Update_Request_Get (uint8, uint8), which is used
to initiate a firmware update. This command requires two argu-
ments: ManufacturerID and Firmware ID, both of which have the
data type unit8 and their valid values € [0,254]. To trigger the
vulnerability, we provide only one argument with an invalid value
0xff, which results in a device crash.

Case 6: Fibaro FGMS-001 (ID = 18). We reveal one DoS vulner-
ability. We have requested a CVE for it, and it is currently under
view. The Fibaro FGMS-001 is designed to trigger various actions or
events, such as detecting motion, changes in lighting, and tempera-
ture in the environment. To trigger the vulnerability, an invalid
command in an unsupported cluster, specifically the Clock cluster
(0x81), is involved, which aims to synchronize the device clock with
the controller system clock. We send a testing message containing
the unsupported cluster (0x81) and an invalid command (0x01); the
command is invalid because it does not exist in the cluster (0x81).
Our observation is that if the testing message is sent multiple
times within a period of time (in our experiment, we send it 120
times in around 60 seconds), the device crashes.

6.4.2 Comparison with Baseline Method. We consider SNIPUZZ
as the baseline, which represents the state of the art in blackbox
fuzzing of IoT devices [19]. We use it to test these devices. However,
after 24 hours fuzz testing on each device, no crashes are found
by SNIPUZZ. There are various reasons. First, SNIPUZZ needs the
API-testing programs of IoT devices to collect seed messages, and
can only test the commands that are covered by the API-testing
programs. As a result, it cannot detect the vulnerabilities triggered
by the hidden commands, which include all the vulnerabilities in
Table 3, except those of Third Reality Blind (ID = 6).

Second, the vulnerabilities in Third Reality Blind (ID = 6), which
is related to a non-hidden command, however, are still missed by
SNIPUZZ. This is due to the ineffectiveness of its snippet determina-
tion algorithm—the algorithm determines that all the bytes in the
seed message corresponding to the Down_close() command are
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in a single snippet, while the correct number of snippets is 15. Be-
cause of the very inaccurate segmentation, it fails to generate
the messages to exploit the vulnerabilities.

We further evaluate the effectiveness of the snippet determina-
tion algorithm of SNIPUZZ. Specifically, for each discovered vul-
nerability, we provide SNIPUZZ with a message corresponding to
the hidden command that can trigger the vulnerability. We then
use the snippet determination algorithm to analyze these messages.
The result shows that SNIPUZZ cannot accurately determine the
snippets for any of them.

There are two main reasons that cause SNIPUZZ to fail. First,
SNIPUZZ removes the bytes in a seed message one by one to generate
probe messages. So it works for devices where the message formats
are JSON, SOAP, and Key-Value—the removed byte usually do not
impact the roles of the subsequent bytes in the message. However,
for Z-based devices, the message format is a byte stream of fields.
As a result, removing one byte causes to shift the subsequent bytes
left by one, which changes the semantics of these bytes. Second, as
discussed in SNIPUZZ, the effectiveness of its snippet determination
algorithm depends on how much information could be obtained
from the device responses. However, most of our devices report the
errors with a uniform message, making it infeasible for SNIPUZZ to
accurately conduct message segmentation.

The discussion above indicates that even if API-testing programs
are upgraded to include the hidden commands and SNIPUZZ modi-
fies the API-testing programs to inject testing messages in order to
overcome the barrier of encrypted communication, SNIPUZZ still
fails to detect the vulnerabilities. Moreover, SNIPUZZ does not lever-
age state-sensitive fuzzing, while we make use of it to find most
most of the vulnerabilities (18 out of 23).

6.5 Efficiency

We measure the efficiency of fuzzing in terms of vulnerabilities
discovered over time and over the number of testing messages. The
results are shown in Figure 8(a)-(g). We can see that HUBFUZZER can
efficiently discover vulnerabilities. For example, for Centralite Pearl
Thermostat (ID = 1) in Figure 8(a), within 9 minutes and less than
600 test messages, the two vulnerabilities are found. For Sengled
Bulb E11-N1IEAW (ID = 2) in Figure 8(b), all the eight vulnerabilities
are detected within 20 minutes.

In Figure 8(h), we present the total time taken by HuBFuzzER
for fuzz testing each of the 21 devices. Since we can obtain the
functions supported by IoT devices from the setting-up messages,
we test all of them. For ZigBee devices (ID from 1 to 13), the longest
fuzz testing time is 13.75 hours for the device ID = 3. For Z-Wave
devices (ID from 14 to 21), the fuzz testing time is about half an hour
due to relatively fewer commands supported by Z-Wave devices.

7 DISCUSSION

Testing WiFi and Bluetooth Devices. We showcase the proposed
idea and techniques on ZigBee and Z-Wave IoT devices, which have
a large market size [17, 29]. Essentionally, the fuzzing idea lever-
ages the local IoT control channel, which enables an IoT device to
be controlled locally. A device supports one or more local control
channels as long as it is compatible with HomeKit [31], and many
IoT vendors support HomeKit. According to the HomeKit protocol,
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Figure 8: Runtime performance. (a)-(g) show the vulnerabilities (red dots) discovered over time and over the number of testing
messages. (h) shows the total fuzzing time for testing each of the 21 devices.

a HomeKit-enabled device not only pairs with a HomeKit hub but
also declares its device type and functions [4]. Our future work
will exploit the HomeKit framework for building a hub to test WiFi
and Bluetooth devices. The work certainly involves new technical
challenges, but it is promising. For example, some tutorials (Home-
Assistant [59], HomeBridge [28]) introduce how to build your own
opensource HomeKit hub, which can be a starting point.

Testing Matter Devices. Matter and Thread are two industry-wide
standards designed to improves smart home device interoperabil-
ity and connectivity [2]. Matter standardizes the application layer,
and Thread the lower layers. They are developed by Google, Ama-
zon, Apple and more than a hundred other leading technology
companies. This provides great research opportunities. Multiple
vendors target December 2022 to release devices that implement
Matter/Thread [1]. A key feature of Matter is that IoT devices can
be controlled locally [43]. Specifically, a Matter-compatible device
must be accessible to smart home control centers in the home
network, without a detour via the Internet. The control center com-
municates with [oT devices at home directly, which in principle is
similar to the HomeKit architecture. Thus, a promising future work
is to apply the hub-based fuzzing idea to testing Matter devices.

8 CONCLUSION

Blackbox fuzzing of IoT firmware gains growing attention, as it
delivers promising results. Different from prior work that reverse
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engineers companion apps or manually collects test scripts, we
propose another direction: hub-based IoT fuzzing, where the fuzzer
declares itself as a hub to connect IoT devices. HUBFUZZER exploits
the setting-up messages to discover functions supported by IoT
devices and then performs systematic function-oriented fuzzing.
The mutation is guided by knowledge extracted from IoT protocol
specifications. State-sensitive fuzzing is conducted, which is effec-
tive in finding vulnerabilities. Our fuzzing is not constrained by
input sanitization of companion apps and can deal with encrypted
communication. We have implemented HuBFuzzEer and conducted
an extensive evaluation with 21 popular IoT devices. We discov-
ered 23 zero-day vulnerabilities, significantly outperforming prior
state of the art. Four CVEs have been assigned and more are under
review. We advocate that, because of the imminent popularity of
Matter/Threat devices and their emphasis on interoperability, the
hub-based fuzzing is worth further exploration.
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