
COFINALITY QUANTIFIERS IN ABSTRACT ELEMENTARY

CLASSES AND BEYOND

WILL BONEY

Abstract. The cofinality quantifiers were introduced by Shelah as an example

of a compact logic stronger than first-order logic. We show that the classes
of models axiomatized by these quantifiers can be turned into an Abstract

Elementary Class by restricting to positive and deliberate uses. Rather than

using an ad hoc proof, we give a general framework of abstract Skolemization
that can prove a wide range of examples are Abstract Elementary Classes.

1. Introduction

Abstract Elementary Classes (AECs, introduced by Shelah [She87]) are the pri-
mary framework to do classification theory beyond first-order logic. They are de-
fined as a collection (K,≺K) of structures K and a strong substructure relation ≺K
satisfying a certain set of axioms; see [Bal09] for an introduction to these axioms
and the basic properties of AECs. These axioms are designed to be broad enough
to contain classes axiomatized by Lλ,ω and some extensions, but provide enough
structure to do classification theory. Beyond AECs, µ-AECs (introduced by Boney,
Grossberg, Lieberman, Rosicky, and Vasey [BGL+16]) can capture classes axioma-
tized in Lλ,µ, but at the loss of the development of their classification theory.

The primary extension of Lλ,ω that form AECs are extensions by cardinality
quantifiers Qα (although Baldwin, Ekloff, and Trlifaj [BET07] provide an extension
in a different direction). Here, the cardinality quantifier is interpreted so Qαxφ(x,y)
is true (in some structure) iff there are at least ℵα-many x that make φ(x,y) true.
Then classes axiomatized in Lλ,ω(Qα) form an AEC, although the strong substruc-
ture relation must be strengthened.1 Most logics extending Lλ,ω that axiomatize
AECs work by adding quantifiers that have a similar ‘feel’ to the cardinality quanti-
fiers, for instance the Ramsey or Magidor-Malitz quantifiers [MM77] or the structure
quantifiers [BV19].

We show how extension by another type of quantifier–the cofinality quantifiers
introduced by Shelah [She75] (see Section 2)–can be made an AEC. Cofinality
quantifiers, given a set of regular cardinals C, Qcof

C are a binary quantifier, where

Qcof
C x, y φ(x, y, z)

means that φ(x, y, z) is a linear order whose cofinality is in C. Among the many
properties of cofinality quantifiers, perhaps the most surprising is that L(Qcof

C ) is
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fully compact (see [She75] or Fact 2.2)! This is a rarity among extensions of first-
order logic: Lindström’s Theorem [Lin69] says that any extension of first-order logic
must sacrifice either compactness or the downward Löwenheim-Skolem property,
but in practice most extensions of first-order logic become incompact. This makes
cofinality quantifiers particularly intriguing to capture by an AEC since even small
fragments of compactness can greatly advance the classification theory (see Boney
and Vasey [BV17] for a survey).

In order to make cofinality quantifiers an AEC, we must make certain changes the
class. We give more details in Section 3, but the essential issue is that the cofinality
of a linear order is not preserved under increasing unions. This necessitates two
changes:

• Like cardinality quantifiers, the strong substructure relation must preserve
the cofinality of linear orders with a positive instance of the cofinality quan-
tifier. This manifests by not allowing end extensions of such linear orders.
• We have the additional issue that the cofinality can decrease following an

increasing union. This requires that we restrict to what we call positive,
deliberate uses of the cofinality quantifier.

Definition 3.1 makes these ideas precise.
Given a positive L(Qcof

C )-theory T , we form an AEC K+
T through the deliberate

use of these quantifiers (Definition 3.1), and we briefly explore the properties of
this AEC. An unfortunate consequence of the changes to strong substructure is
that many of the nice properties of elementary classes that follow from compactness
(amalgamation, etc.) do not hold in these AECs, although these AECs do have
some nice properties. We discuss how some of these issues have their roots in
the models produced by the compactness theorem for cofinality quantifiers. Still,
there are some general results that hold for any classes of models that can be made
into an AEC with some strong substructure relation (existence of EM models,
undefinability of well-order, etc.), and these apply to our classes. Moving beyond
AECs, classes axiomatized by cofinality quantifiers naturally form a µ-AEC without
the changes above; here, µ is the successor of the supremum2 of C for Qcof

C . This
follows from the fact that the cofinality quantifier Qcof

C is expressible in L∞,µ.
Rather than proving that K+

T forms an AEC through an ad hoc method, we
present a general framework of finitary abstract Skolemizations (Definition 4.1).
This captures the essence of Shelah’s Presentation Theorem [She87], but with a
tighter connection to the syntax used to define the AEC. This is a rather broad
method and is able to encompass most known quantifiers that define AECs (see
Example 4.7).

I would like to thank Samson Leung and the anonymous referee for helpful
comments on earlier versions of this paper.

2. Cofinality quantifiers and background

Background on abstract logics and quantifiers is given in Barwise [Bar82], but is
not really necessary here. The reader unfamiliar with these ideas can always replace
an abstract logic L by, depending on the circumstance, one of: finitary first-order
logic L = Lω,ω; infinitary logic Lλ,ω; or a mild extension of Lλ,ω by cardinality
quantifiers. For completeness, the logic Lλ,µ (for regular λ ≥ µ) extends first-order

2If C is unbounded, then the class does not have a Löwenheim-Skolem number.
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logic by closing formula formation under < λ-sized disjunctions and conjunctions,
and existential and universal quantification of < µ-sized sequences of free variables,
with the obvious semantics.

Cofinality quantifiers were introduced by Shelah [She75] to answer questions of
Keisler and Friedman on compact logics stronger than first-order. We gave an
informal description in the Introduction, but give a formal definition here.

Definition 2.1. Fix a logic L, a class of regular3 cardinals C, and a language τ .

(1) The logic L
(
Qcof
C

)
is an extension of L where we add a formulation rule

where, if φ(x,y, z) is a formula of L
(
Qcof
C

)
(τ) (with `(x) = `(y) finite),

then so is
Qcof
C x,yφ(x,y, z)

with z the remaining free variables. The semantics of this formula are given
by, if M is a τ -structure and c ∈M , then

M � Qcof
C x,yφ(x,y, c)

iff the relation φ(x,y, c) is a linear order without last element of the set
I := {a ∈ M : there is b ∈ M,M � φ(a,b, c)} and that the cofinality of
this linear order is in C.

(2) A fragment F of L
(
Qcof
C

)
(τ) is a collection F ⊂ L

(
Qcof
C

)
(τ) of formulas

that is closed under subformulas.

When we have a singleton C = {κ}, we write Qcof
κ in place of Qcof

{κ}; there is no risk

of confusion because we never place finite cardinals in C.

Note that the assertion that ‘φ(x,y, z) is a linear order without last element’
is expressible by a single first-order sentence, and it is the assertion about the
cofinality that makes this quantifier inexpressible in first-order logic. Also, due to
the requirement that φ(x,y, c) forms a linear order, we have several equivalent ways
to define the set underlying set I:

{a ∈M : there is b ∈M,M � φ(a,b, c)} = {b ∈M : there is a ∈M,M � φ(a,b, c)}
= {a ∈M : M � φ(a, a, c)}

The last is compactly denoted φ(M,M, c) and is how we will most often refer to
the underlying set.

The most common of the cofinality quantifiers used is Qcof
ω . Perhaps the most

useful fact about cofinality quantifiers is that first-order logic augmented by a single
cofinality quantifier is compact; recall a logic L is compact iff given any theory
T ⊂ L(τ), T has a model iff every finite subset has a model.

Fact 2.2 ( [She75], [CZ20, Corollary 4.4]). For every class C of regular cardinals,

L
(
Qcof
C

)
is compact.

Remark 2.3. (1) In keeping with Lindström’s Theorem [Lin69], L
(
Qcof
C

)
fails

the countable downward Löwenheim-Skolem property. For instance, the
L
(
Qcof
ω

)
({<})-sentence

“x < y is a linear order of the universe with no last element” ∧ ¬Qcof
ω x, y(x < y)

3The cofinality of a linear order is always a regular cardinal, so adding singular cardinals makes
no difference
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has no countable model.
(2) Casanovas and Ziegler [CZ20] have recently provided an excellent and self-

contained exposition of Fact 2.2. A reader suprised to learn about the

full compactness of L(Qcof
C ) is not alone; the exposition by Casanovas and

Ziegler [CZ20] was apparently inspired by a referee of Casanovas and She-
lah [CS19] that did not believe this was a ZFC result.

For future reference, it is helpful to understand the basic structure of the proof
of Fact 2.2. First note that Qcof

C is not interesting if C is empty or all regular
cardinals; in the former, it is always false and, in the latter, it reduces to the
first-order statement that the formula gives a linear order without last element.

Thus, at the start two cardinals are fixed: κ ∈ C and λ 6∈ C (if C is empty or all
regular cardinals, then Qcof

C is not interesting4). Then T is expanded to definably
link all definable linear orders that are positively quantified by Qcof

C in one group and
all definable linear orders that are negatively quantified by Qcof

C in another group.
Then we find a model of the first-order part of T in which all definable linear
orders have cofinality max{κ, λ}. This is iteratively extended by end-extending all
of one group of the linear orders while fixing the other group using the Extended
Omitting Types Theorem [CK12, Theorem 2.2.19]. We continue this iteration for
min{κ, λ}-many steps to achieve the desired cofinalities.

The key take away from this proof is that always produces models where the
definable linear orders have one of exactly two cofinalities: κ for the definable linear
orders satisfying Qcof

C and λ for the definable linear orders not satisfying Qcof
C .

Finally, we give an explicit example showing that Qcof is stronger than L∞,ω.

Example 2.4. Recall that two structures are back and forth equivalent to each
other if and only if they are L∞,ω equivalent. It is routine to show that (Q, <) is
aback and forth equivalent to (Q×ω1, <). However, (Q, <) satisfies Qcof

ω x, y(x < y)
while (Q× ω1, <) does not.

We also provide the the basics of AECs (and µ-AECs); [Bal09, Gro1X] provide
further background.

Definition 2.5. Fix an infinite cardinal µ. A µ-Abstract Elementary Class (or
µ-AEC for short) is a pair (K,≺K) where K is a collection of structures in a fixed
< µ-ary language τK satisfying the following axioms

(1) ≺K is a partial order on K that is stronger than ⊂τK .
(2) K and ≺K are closed under isomorphisms.
(3) (Coherence) If M0,M1,M2 ∈ K such that M0 ≺K M2, M1 ≺K M2, and

M0 ⊂τK M1, then M0 ≺K M1

(4) (Closure under µ-directed limits) Given a µ-directed system {Mi ∈ K : i ∈
I}, we have that the colimit of this system

⋃
i∈I

Mi computed in the category

of τ -structures is also the colimit in K.
(5) (Lowenheim-Skölem-Tarksi number) There5 is a cardinal LS(K) such that,

for all M ∈ K and A ⊂ M , there is M0 ≺K M such that A ⊂ M0 and
‖M0‖ = |A|<µ + LS(K).

4All linear orders have some regular cardinal as there cofinality, so Qcof
REG is first-order express-

ible and Qcof
∅ is always false (which is also first-order expressible).

5Formally, once there is a cardinal satisfying this property, all cardinals above it do as well, so
we set LS(K) to be the minimal such cardinal.
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When clear, we often use K to refer to the pair (K,≺K).
By far the most common (and important) case is µ = ω, where we omit µ and

just call it an Abstract Elementary Class (or AEC).

AECs were introduced by Shelah [She87], and generalized to µ-AECs in [BGL+16].
They are the most common framework to develop classification theory for nonele-
mentary classes.

3. L(Qcof
C ) as an Abstract Elementary Class

Fix a set of regular cardinals C and a theory T in some fragment F of L
(
Qcof
C
)

(τ).

Recall that a fragment F is a subset of L
(
Qcof
C
)

(τ) that is closed under subformulas.
To build a notion of strong substructure that makes Mod T an Abstract Elemen-
tary Class, we will develop the notion of positive, deliberate uses of the cofinality
quantifier (Definition 3.1).

The main problem with making Mod T an AEC (or µ-AEC) is smoothness under
unions of chains (Definition 2.5.(4)): If 〈Iα : α < λ〉 is a sequence of linear orders

such that Iα is end-extended by Iα+1, then
⋃
α<λ

Iα has cofinality cfλ regardless of

the cofinalities of the Iα. This necessitates two changes:

(1) If M � Qcof
C x, yφ(x, y), then we should not allow end extensions of this de-

finable linear order in strong extensions; note this is similar to the condition
on strong extensions when using the cardinality quantifiers.

(2) If M � ¬Qcof
C x, yφ(x, y), then we similarly worry about end extensions.

However, disallowing any end extensions of any definable linear order would
be too restrictive6, so we will only allow positive instances of the cofinality
quantifier. This doesn’t solve the problem completely because definable lin-
ear orders that are not put under the Qcof

C quantifier will ‘accidentally’ end
up with a cofinality in C after the appropriate unions. So, via a Morleyiza-
tion, we avoid this accidental occurence by deliberately tagging formulas
that we wish to be affected by the cofinality restriction.

We detail the construction of positive, deliberate uses of the cofinality quantifier
that will form the strong substructure of an AEC (we deal with positive, deliberate
uses of quantifiers in more generality in Section 4). We work in some degree of
generality, allowing for an arbitrary logic L to be expanded by cofinality quantifiers,
but this will most often be first-order logic L with possible extension by infinitary
conjunction or cardinality quantifiers. Note that this expansion is similar to the
formation of weak models in [Kei70], but with only one direction of implication.

Definition 3.1. Fix a language τ and a logic L.

(1) Define τL∗ to be

τ ∪ {Rφ(z) : φ(x,y, z) ∈ L(τ)}

where each Rφ is new.

(2) Fix a base theory in L
(
Qcof
C

)
(τL∗ )

T cof
τ,L :=

{
∀z
(
Rφ(z)→ Qcof

C x,yφ(x,y, z)
)

: φ(x,y, z) ∈ L(τ)
}

6In particular, not allowing for a Löwenheim-Skolem number of the class.
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(3) Let T ⊂ L(Qcof
C )(τ) be a theory where Qcof

C only appears positively7. Define
two theories T ∗ ⊂ L(τL∗ ) and T+ ⊂ L(Qcof)(τL∗ ) by

T ∗ is the result of replacing each use of “Qcofx,yφ(x,y, z)” with

“Rφ(z)” in the inductive construction of each ψ ∈ T
T+ := T ∗ ∪ T cof

τ,L

(4) Given two τL∗ -structures M ⊂ N , define the relation

M ≺L(+) N

iff M ≺L N and, for all a ∈ M , if M � Rφ(a), then φ(M,M, a) is cofinal
in φ(N,N, a).

With this definition in hand, we can be explicit about what is meant by positive
and deliberate:

(1) ‘Positive’ refers to the fact that the Qcof quantifiers are required to appear
positively in the theory T that we start with.

(2) ‘Deliberate’ refers to the aim to make the cofinality restriction a particular
choice about a tuple, rather than something that can be turned on or off
as we move to, e.g., unions. The predicates Rφ(z) are used to ‘tag’ the
parameters where we want to enforce a particular cofinality for φ(x,y, z).
On the other hand, if ¬Rφ(z) holds, then this has no other implications:
the cofinality could ‘accidentally’ be in C or it could not, and this could
change as a result of moving to ≺L(+)-extensions.

The reason to jump through all of these hoops is the following result.

Theorem 3.2. Fix a set of regular cardinal C. and set L = L, finitary first-order

logic. Let T ⊂ L
(
Qcof
C

)
(τ) be a theory where all instances of cofinality quantifiers

appear positively. Then
K+
T :=

(
ModT+,≺L(+)

)
is an Abstract Elementary Class with LS(K+

T ) = |τ |+ (sup C)+.

Proof: This is a corollary of the more general result Theorem 4.12 †

Remark 3.3. Theorem 3.2 remains true if L is replaced by Lλ,ω, L (Qα), or any
other logic that axiomatizes Abstract Elementary classes (with the appropriate mod-
ification to the substructure relation and the Löwenheim-Skolem number.

Now that we have an AEC K+
T axiomatized in the fully compact logic L

(
Qcof
C
)
,

we might hope that several nice consequences of compactness (amalgamation, tame-
ness, etc.) follow directly. However, this is not the case. The reason has to do with a
disconnect between L(Qcof

C )-elementary diagrams and the strong substructure ≺K+
T

.

Recall that the L-elementary diagram EDL(M) of a τ -structure M is the col-
lection of all L (τ ∪ {cm : m ∈M})-sententences that are true in M when we in-
terpret cMm = m. For first-order logic or any fragment of infinitary Lλ,κ, we have

7The idea of quantifiers appearing positively and the inductive construction of formulas as-
sumed in this definition do not apply to abstract logics generally, but are clearly defined for the

logics we will apply this definition to.
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an equivalence between ‘there exists an L-elementary embedding M → N ’ and
‘N � EDL(M).’

However, this does not hold for K+
T : modeling EDL(Qcof

C )(M) is not sufficient to

guarantee a K+
T -embedding since it does not guarantee that the Rφ-tagged linear

orders of M are cofinal in N (Condition 3.1.(4)). In the desired uses of compactness,
it is routine to find a model of some L-elementary diagram and turn that into an
extension of the desired models; this is not possible. However, we have some results.

Use L+(Qcof
C ) to denote the L(Qcof

C )-formulas where Qcof
C only appears positively.

Proposition 3.4. Let T be an L+(Qcof
C )-theory and define K+

T as in Theorem 3.2.

(1) K+
T has arbitrarily large models.

(2) Suppose M ∈ K has size κ and all Rφ-tagged linear orders have cofinality
κ; that is, if M � Rφ(a), then φ(M,M, a) has cofinality κ. Then M has a
proper ≺K+

T
-extension in K+

T .

Proof: The first follows easily from the compactness of L(Qcof
C ) since it doesn’t

mention ≺K+
T

. For the second, we use the notation and results of [CZ20]. Pick

some ψ that is not definably connected to the Rφ-tagged linear orders in M . Then,
by [CZ20, Corollary 3.2], we can find an L(Qcof

C )-elementary extension N of M that
extends ψ, but in which every Rφ-tagged order has M cofinal. †

3.1. L
(
Qcof
ω

)
as an ω1-Abstract Elementary Class. Above, there was much

effort put into finding precisely the right condition to form an AEC out of Mod T ,
and the end result was a rather restrictive solution. Here, we describe a more
uniform and natural approach with the drawback that the resulting class is not an
Abstract Elementary Class, but instead a µ-Abstract Elementary Class.

While Qcof
ω is not axiomatizable in L∞,ω (recall Example 2.4), it is axioma-

tizable in Lω1,ω1 . More generally, for any bounded set of regular cardinals C,
Qcof
C x,yφ(x,y, z) is expressible by the first-order statement that φ defines a lin-

ear order without last element and the L(µ+|C|)+,µ+ assertion

∨
λ∈C

∃〈xi : i < λ〉

 ∧
i<j<λ

φ(xi,xj , z) ∧ ∀w
∨
i<λ

φ(w,xi, z)


where µ = sup C. The logics Lλ,κ come with a well-known notion of elementarity.

Definition 3.5. Let C be a set of regular cardinals, τ be a langauge, and F be a

fragment of L(Qcof
C ).

(1) Setting µ = sup C, let F∗ be the fragment of L(µ+|C|)+,µ+(τ) that is formed

by replacing each instance of Qcof
C by the formulation listed above (including

the first-order part) and closing under subformula, etc.
(2) Given τ -structures M and N , set M ≺∗F N iff M ≺F∗ N .

Theorem 3.6. Fix a set C of regular cardinals and set µ = sup C. For any the-

ory T in L
(
Qcof
C

)
(τ), K∗T is a µ+-Abstract Elementary Class with LS(K∗T ) =

(|τ |+ µ+ + |C|)<µ. This AEC has arbitrarily large models (if nonempty) and sat-
isfies the undefinability of well-ordering.
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Proof: Classes axiomatized by L(µ+|C|)+,µ+ are the prototypical examples of

µ+-AECs, see [BGL+16, Example (3), p. 3052]. †

Remark 3.7. As with Theorem 3.2, the above can be naturally generalized to logics

of the form Lλ,κ
(
Qcof
C

)
.

Crucially, we have removed any restriction to positive or deliberate uses of the
cofinality quantifier. Note that additional model theoretic properties (amalgamtion,
etc.) still do not hold because, while L

(
Qcof
C
)

is compact, elementarity in this class
is according to L(µ+|C|)+,µ+ , which is still not compact.

4. Abstract Skolemizations and a sufficient criteria to be an AEC

We collect here two related and helpful results: a handy criteria for a class to be
an Abstract Elementary Class (Corollary 4.5) and an application of this to show
generally that positive, deliberate uses of infinitary quantification forms an Abstract
Elementary Class (Theorem 4.12).

We begin by discussing the general motivation of this result to help the reader
understand the series of abstract definitions that are forthcoming. There are two
related issues that the results of this section are intended to solve.

The first issue begins with the observation that Abstract Elementary Classes
are given through an entirely semantic set of axioms (recall Definition 2.5), so
don’t seem to have an explicit connection to the syntax normally central to model
theory. Shelah’s Presentation Theorem [She87] forms a connection by showing
that every AEC can be expanded by functions to a language where it omits an
axiomatization in terms of Lλ,ω (or, equivalently, by omitting types). In a sense
(see the discussion around [BB17, Section 3.1]), these additional functions act like
Skolem functions. Beyond strengthening the philosophical ties to model theory and
syntax, Shelah’s Presentation Theorem is useful in proving certain results about
AECs, e.g., computing Hanf numbers, finding indiscernibles, using large cardinals,
etc.

However, Shelah’s Presentation Theorem often feels unsatisfactory in that the
axiomatization it produces feels unnatural in part because it has to deal with such a
wide range of AECs. Even if the class has a very nice Lλ,ω-axiomatization (or even
first-order!), the axiomatization given by Shelah’s Presentation Theorem looks en-
tirely different: it just says that the models of AECs don’t contain any substructures
that don’t appear in the AEC. So there can be a large gap between the axioms we
use to define the class and the axioms coming from Shelah’s Presentation Theorem.

The second issue is more practical, but also highlights the problems with the gap
above. While the definition of AECs is abstract and asyntactic, the actual examples
of AECs that people give and use are very syntactically based. Most examples of
AECs that occur are given by axiomatizations in some fragment of Lλ,ω, with the
vast majority occurring in some mild extension of that logic via quantifiers, such
as ‘there exists uncountably many’ or the cofinality quantifier (see Example 4.7).
The only two examples the author knows of that don’t fit into those frameworks are
the modules studied in [BET07] (specifically coming from the strong substructure
relation) and saturated models of superstable theories. In particular, each of these
quantifiers admits a Skolemization to Lλ,ω that shows that it is an AEC and gives
rise to the strong substructure relation that is used.
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The results of this section address both of these situations by providing a more
natural and satisfying Skolemization that is built to more accurately track the
syntax that defines the majority of examples of AECs.

First, we define an abstract notion of Skolemization, that is, an expansion by
functions that turns the class into one axiomatizable by a universal theory in L∞,ω.
The goal of this notion is to capture the way in which various extensions of Lλ,ω
by different quantifiers have been turned into AECs.

Below, the dot in ‘· � τ ’ indicates the place to put the argument of the map;
that is, given a model M , the output of the map is M � τ . This notation is a little
clunky in the abstract, but allows us to use the normal notation for restrictions of
models.

Definition 4.1. Fix (K,≺K), where K is a class of τ -structures and ≺K is a partial
order on K. A (finitary) abstract Skolemization (to a universal theory in L∞,ω) of
(K,≺K) is an expansion of the language τ∗ := τ ∪ {Fi : i ∈ I} by finitary function
symbols and a universal theory T ∗ ⊂ L∞,ω(τ∗) such that the restriction map

· � τ : (ModT ∗,⊂)→ (K,≺K)

satisfies the following properties:

(1) (capturing) The restriction map is a functor that is surjective on objects
and arrows.

(2) (lifting) Every map f : M → N in K has a lift8 f∗ : M∗ → N∗ in ModT ∗.
Moreover, given any lift M∗ of the model M and any map f : M → N in
K, there is a lift f∗ : M∗ → N∗ in ModT ∗ with the prescribed domain.

(3) (coherence/local testability) Given M0 ⊂M1 ⊂ N , if there are separate lifts
M∗0 ⊂ N∗0 and M∗1 ⊂ N∗1, then there are lifts M∗∗0 ⊂M∗∗1 ⊂ N∗∗.

We can also define a < µ-ary abstract Skolemization (to a universal theory in
L∞,µ) by allowing the function symbols to be < µ-ary and the universal theory T ∗

to be in L∞,µ.

We could also speak of abstract Skolemizations to theories in (fragments of) logics
different than universal theories, but we don’t have use for that here.

We often omit ‘finitary’ and ‘to a universal theory in L∞,ω’.

We do not explicitly mention it in the definition, but the restriction functor as
above is faithful (injective on arrows).

Proposition 4.2. Any restriction functor between classes of substructures with
arrows extending embeddings (such as the one above) is faithful.

Proof: In both categories, the arrows between structures are determined by
their value on the underlying sets. †

Crucially, we should mention that the expansion given by these abstract Skolem-
izations is not a functorial expansion [Vas16, Definition 3.1]. That is, just like in
the original Shelah’s Presentation Theorem and (concrete) Skolemizations, choices
must be made in the expansion, and different choices lead to incompatible choices.

8A lift of a model M or an arrow f : M → N (or a more complicated diagram) from K is a
model M∗ or arrow f∗ : M∗ → N∗ from (ModT ∗,⊂) such that the restriction functor maps them

down to the original: M∗ � τ = M , N∗ � τ = N , and f∗ � τ = f
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A functorial expansion (such as a Morleyization) would mean that the lifting prop-
erty Definition 4.1.(2) was strengthened to ‘. . . every f : M → N in K has a unique
lift f∗ : M∗ → N∗ . . . .’

The following sequence of results connects AECs to abstract Skolemizations (one
direction is Shelah’s Presentation Theorem).

Theorem 4.3. If (K,≺K) has an abstract Skolemization, then (K,≺K) is an AEC
with Löwenheim-Skolem number |τ∗|, where τ∗ is the language in the witnessing
expansion.

Proof: Let {Fi : i ∈ I} and T ∗ ⊂ L∞,ω (τ ∪ {Fi : i ∈ I}) witness the abstract
Skolemization. Most of the AEC axioms (recall Definition 2.5 when µ = ω) follow
immediately. We comment on the three axioms that tend to cause issues for classes
being AECs: coherence, smoothness, Löwenheim-Skolem.

Coherence: This is directly addressed by the ‘coherence/local testability’ prop-
erty of the expansion. If we have M0 ⊂ M1, M0 ≺K M2, and M1 ≺K M2, the
surjectivity of the restriction gives lifts M∗0 ⊂ M∗02 and M∗1 ⊂ M∗12 . This is pre-
cisely the set up to give lifts M∗∗0 ⊂ M∗∗1 ⊂ M∗∗2 . By applying the restriction
functor, we have M0 ≺K M1, as desired.

Smoothness: This is the key use of the condition (2). Let 〈Mi ∈ K : i < α〉 be a
continuous, ≺K-increasing chain of structures with α limit. We define a continuous,
⊂-increasing chain 〈M∗i � T ∗ : i < α〉 such that M∗i is a lift of Mi. To do this, start
by letting M∗0 be any lift of M0. For successors i = j + 1, we have a lift M∗j of Mj

and Mj ≺K Mi, so condition (2) guarantees a lift M∗i of Mi such that M∗j ⊂ M∗i .
For limits, we can take unions since the restriction functor preserves unions.
In the end, we have that ⋃

i<α

Mi =

(⋃
i<α

M∗i

)
� τ

so this union is in K and is the least upper bound of the chain.
Löwenheim-Skolem: Let A ⊂M ∈ K and let M∗ be a lift of M . Then, since the

restriction functor doesn’t change the universe, A ⊂M∗. Set M∗0 to be the closure
of A under the τ ∪ {Fi : i ∈ I}-functions of M . Since T ∗ is universal, M∗0 � T ∗, so
M∗0 � τ ≺K M , contains A, and has size ≤ |A|+ |τ ∪ {Fi : i ∈ I}|.

†

Theorem 4.4. If (K,≺K) is an AEC, then the expansion given in Shelah’s Pre-
sentation Theorem is an abstract Skolemization.

The following proof assumes familiarity with the proof and the idea of Shelah’s
Presentation Theorem; see Baldwin and Boney [BB17, Section 3.1] for an exposi-
tion.

Proof: Shelah’s Presentation Theorem presents (K,≺K) by an expansion to
τ∗ = τ(K) ∪ {Fnα : n < ω, α < LS(K)} that omit a collection Γ of quantifier-free
types. We can express this omission through the following L∞,ω sentence∧

p∈Γ

∀x
∨
φ∈p

¬φ(x)

The statement of Shelah’s Presentation Theorem ( [BB17, Fact 3.1.1] is perfect for
our purposes) gives everything we need except for the coherence/local testability
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condition. But this holds exactly because the starting class (K,≺K) is an AEC and,
therefore, satisfies coherence. †

Corollary 4.5. Given a pair (K,≺K) in a finitary language, we have that (K,≺K)
is an AEC iff it has a finitary abstract Skolemization to a universal theory in L∞,ω.

Proof: The two directions are Theorems 4.3 and 4.4. †

We can also generalize this result to µ-AECs, which we state without proof (the
proof is the same).

Theorem 4.6. Given a pair (K,≺K) in a < µ-ary language, we have that (K,≺K)
is a µ-AEC iff it has a < µ-ary abstract Skolemization to a universal theory in
L∞,µ.

Now we turn to the question of how to find abstract Skolemizations. As we men-
tioned at the beginning of this section, our motivation for abstract Skolemizations
is to use syntactic axiomatizations of mild extensions of Lλ,ω to show that those
logics axiomatize Abstract Elementary classes.

In each example below, the quantifiers are expressible in a fragment of L∞,∞
whose only use of inifinitary quantification was a single existential quantifier at the
very beginning. We highlight these examples to develop a common framework to
encompass all of them in Definition 4.8.

Example 4.7. Below, we axiomatize several quantifiers often used in axiomatizing
examples of Abstract Elementary Classes: Qcof

κ is the cofinality quantifier we have
seen; Qα is the quantifier ‘there exists ≥ ℵα-many;’ and Qecα is the quantifier that
says the formula is a definable equivalence class with at least αα-many equivalence
classes. In the axiomatization of Qcof

κ and Qecα , ‘its domain’ refers to the set {a :
φ(a, a, z)}.

Qcof
κ x,yφ(x,y, z) ⇐⇒ ∃〈xi : i < κ〉 (‘φ(x,y, z) defines a linear order on its domain with no last element’

∧∀x′
∨
i<κ

φ(x′,xi, z)

)

Qαxφ(x,y) ⇐⇒ ∃〈xi : i < ℵα〉

 ∧
i<ℵα

φ(xi,y) ∧
∧

i<j<ℵα

xi 6= xj


¬Qα+1xφ(x,y) ⇐⇒ ∃〈xi : i < ℵα〉∀z

(
φ(z,y)→

∨
i<ℵα

z = xi

)
Qecα x,yφ(x,y, z) ⇐⇒ ∃〈xi : i < ℵα〉 (‘φ(x,y, z) defines an equivalence relation on its domain’∧

i<j<ℵα

¬φ(xi,xj , z)


¬Qecα+1x,yφ(x,y, z) ⇐⇒ ∃〈xi : i < ℵα〉 (‘φ(x,y, z) defines an equivalence relation on its domain’

∧∀x′
(
φ(x′,x′, z)→

∨
i<ℵα

φ(xi,x
′, z)

))
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The Ramsey/Magidor-Malitz quantifiers [MM77] could be similarly expressed in this
way. Moreover, the strong substructure relation is exactly elementarity according
to the fragment of L∞,∞ containing the right hand sides.

This form is exactly what allows for a finitary abstract Skolemization to L∞,ω
(which can then be further Skolemized to a universal theory). Note that the fact
that both the positive and negative instances of cardinality quantifiers9have this
nice form is what accounts for not needing to worry about deliberate uses of this
quantifier.

We now make this connection precise, beginning with some definitions.

Definition 4.8. Say that a quantifier Q is κ-existentially definable in L1 over L0

iff, for each language τ , there is a map

φ(x,y) ∈ L0(τ) 7→ Ψφ(xi : i < κ,y) ∈ L1(τ)

such that the following holds

� ∀y

(Qxφ(x,y))↔

∃{xi : i < κ}
∧

ψ∈Ψφ

ψ(xi : i < κ,y)


The following definition only makes sense due to a subtle (and often overlooked)

feature of L∞,ω: the formation of infinitary conjuncts and disjuncts is only allowed
if the resulting formula has only finitely many free variables. We relax this to form
L(∞,ω).

Definition 4.9. The logic L(λ,ω) is exactly like Lλ,ω except without the restriction
to finitely many free variables in conjunctions and disjunctions.

Since the distinction is subtle, we give an example involving well-ordering to
emphasize the differences. As is well-known, Lω1,ω cannot define well-ordering,
while the stronger logic Lω1,ω1 can (by the sentence Φ below). We consider three
related formulas and discuss how they affect the logics

Lω1,ω ⊂ L(ω1,ω) ⊂ Lω1,ω1

Example 4.10.

φ(xn : n < ω) := “
∧
n<ω

xn+1 < xn”

ψ(xn : n < ω) := “φ(xn : n < ω)→ ∃y
∧
y < xn”

Φ := “∃〈xn : n < ω〉φ(xn : n < ω)”

• Lω1,ω: None of the formulas φ(x), ψ(x),Φ 6∈ Lω1,ω are in Lω1,ω and this

logic cannot talk about well-ordering in any way. As a further example, we
can build models M ≺Lω1,ω

N with an ill-founded sequence in M such that
a lower bound is added in N .
• L(ω1,ω: The formulas φ(x), ψ(x) are in this logic, but it does not contain

the full sentence Φ that asserts the relation is well-ordered. This gives it a
limited ability to discuss well-ordering. Thus, in contrast with Lω1,ω, if we

9When α is a successor, this is immediate from what is written. When α is limit, ¬Qαxφ(x)

is equivalent to
∨
β<α

¬Qβxφ(x).



COFINALITY QUANTIFIERS IN ABSTRACT ELEMENTARY CLASSES AND BEYOND 13

are given M ≺L(ω1,ω)
N , then any ill-founded sequence from M with a lower

bound in N must have already had a lower bound in M (by applying the
elementarity to ψ(a)). However, we can still build models M ′ ≺L(ω1,ω)

N ′

such that M ′ is well-ordered but N ′ is not well-ordered.
• Lω1,ω1

:. All the formulas φ(x), ψ(x), and Φ are in this logic, and well-

ordering is definable. Thus, if M ′ ≺Lω1,ω1
N ′, then M ′ is well-ordered iff

N ′ is well-ordered.

Definition 4.8 captures the quantifiers listed above.

Proposition 4.11. All quantifiers in Example 4.7 are κ-existentially definable in
L(λ+κ,ω) over Lλ,ω for the appropriate κ.

Proof: The required maps are exactly given in Example 4.7. †

Theorem 4.12. If Q is κ-existentially definable in L(µ,ω) over Lλ,ω, then classes
axiomatized by positive, deliberate uses of Q in Lλ,ω have finitary abstract Skolem-
izations.

Furthermore, the same holds if Lλ,ω is extended by some collection of quantifiers
that are κ-existentially definable in L(µ,ω) over Lλ,ω.

Proof: Let Q be κ-existentially definable in L(µ,ω) over Lλ,ω via the map
φ(x,y) 7→ Ψ(xi : i < κ,y). Following Definition 3.1, an axiomatization via positive,
deliberate uses of Q in Lλ,ω consists of

• T ⊂ Lλ,ω (Q) (τ) with Q only occurring positively;
• τ∗ = τ ∪ {Rφ(y) : φ(x,y) ∈ Lλ,ω(τ)};
• T ∗ ⊂ Lλ,ω(τ) is the result of inductively replacing instances of ‘Qxφ(x,y)’

in T by ‘Rφ(y)’; and
• T+ = T ∗ ∪ {∀y (Rφ(y)→ Qxφ(x,y)) : φ(x,y) ∈ Lλ,ω}

Then K := Mod(T+) is the class we need to we need to provide the Skolemization
for. We describe the Skolemization in two steps.

For the first step, for each φ(x,y), add functions{
FQ,φi,j (y) : i < κ, j < `(x)

}
and set

T++ = T ∗ ∪
{
∀y
(
Rφ(y)→ Ψφ

(
FQ,φi,j (y) : j < `(x), i < κ,y

))
: φ(x,y) ∈ Lλ,ω

}
Crucially, T++ is an Lλ+µ,ω-theory. So this gives a Skolemization of T+ to a (non-
universal) theory in Lλ+µ,ω. It is a standard result (e.g., see [Kei71, Theorem 17]
for the case Lω1,ω) that L∞,ω theories have finitary Skolemizations to universal
theories in L∞,ω; the second step is to do this Skolemization.

Putting these steps together, we have a finitary Skolemization of K to a universal
theory in L∞,ω; we can define ≺K by setting M ≺K N iff there are lifts M∗ and N∗

such that M∗ ⊂ N∗. †

Corollary 4.13. All of the quantifiers listed in Example 4.7 form AECs when used
positively and deliberately over L∞,ω and can be mixed together.
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Note that the strong substructure relation ≺K in Defintion 4.1 can be recovered
from the expansion T ∗. Chasing through the definitions, the appropriate strong
substructure relation in the cases above is elementarity according to the fragment
of L∞,∞ needed to define the quantifiers; this corresponds exactly to the seemingly
ad hoc notions given for cardinality and cofinality quantifiers.
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