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Hierarchical Deep Reinforcement Learning With
Experience Sharing for Metaverse in Education

Ryan Hare, Member, IEEE, and Ying Tang™, Senior Member, IEEE

Abstract—Metaverse has gained increasing interest in
education, with much of literature focusing on its great poten-
tial to enhance both individual and social aspects of learning.
However, little work has been done to address the systems
and technologies behind providing meaningful Metaverse learn-
ing. This article proposes a technical framework to address
this research gap, where a hierarchical multiagent reinforce-
ment learning approach with experience sharing is developed to
augment the intelligence of nonplayer characters in Metaverse
learning for personalization. The utility and benefits of the
proposed framework and methodologies are demonstrated in
Gridlock, a Metaverse learning game, as well as through extensive
simulations.

Index Terms—ACP, experience sharing, metaverse learning,
reinforcement learning (RL).

I. INTRODUCTION

EARNING is an inherently individual and social phe-
Lnomenon where learners acquire knowledge and under-
standing through both independent exploration and social
interactions with others [1]. While self-accumulation of knowl-
edge is important for students to be resilient, many of them
frequently need and prefer scaffolding and feedback to take
on challenging learning tasks. One particular theme that is
emerging as a predominant issue in learning technology is the
need for effective instructional tools and methods that not only
promote positive social interactions with peers and learning
environments, but also offer “just-in-time” instruction tailored
to individual student needs.

Metaverse, since Facebook started its meta project, is
growing rapidly with increasing interest in a wide range
of educational applications [2]. The Metaverse exists in a
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Fig. 1. Parallel intelligent education system.

space considered parallel to the physical world, revolution-
izing social interactions. The required artificial intelligence
(AI) technology enables learning analytics for personalization,
where a great amount of data about learners’ interactions with
both the virtual and physical worlds is collected. The data are
then used to understand how, when, and why the learners made
their learning choices. In fact, Metaverse learning resonates
much with our earlier development of Parallel Intelligent
Education as shown in Fig. 1 [3]. Furthermore, the Metaverse
creates a great starting point from which to construct a
new generation of cyber—physical-social systems to interface
with learners and expand education through human—computer
interactions.

Ideal learning often takes place when the learner is strate-
gically engaged in the construction of meaning and receives
feedback from the learning environment on how to be more
metacognitively adept [4]. Regardless of whether learning
occurred in a physical classroom or an artificial world, there
must be an effective way of observing and reasoning a
learner’s behavior. Based on those observations, appropriate
scaffolding can then be provided to improve student learn-
ing. The need, importance, and potential benefits of creating
a suitable mechanism to measure a student’s achievement and
area of difficulty in a learning environment can hardly be
overstated.

Despite the heated discussions on Metaverse learning, they
primarily focus on its roles and potential benefits [5], with
little work on technologies for Metaverse learning. For exam-
ple, a systematic approach from the basic structure to models
creating physical/virtual space to parallel intelligence for
decision-makings is required to provide meaningful and enjoy-
able learning experiences in Metaverse. As reported in two
recent surveys [6], [7] any learning environment with adap-
tation capability must be equipped with both “eyes” to track
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learners’ actions and a “brain” to make decisions on how to
dynamically adjust its elements or provide assistance.

With the development of mixed reality [8], augmented real-
ity [9], and virtual reality [10], the “eye” component has
been made easier through virtual environments, giving devel-
opers access to any and all data on learners’ actions and
performance. The advancements in sensor and networking
technology also makes it feasible within a learning environ-
ment to track learners’ physiological changes through external
stimuli, such as ECG [11], EEG [12], [13], webcams [14],
[15], [16], and even phone sensors [17]. However, there
are few discussions on how to create such a “brain” in
Metaverse, particularly to process information as it is collected
by eyes and to assess learners’ current state within learning
environments.

Our prior work started to explore the developmental issues
of Metaverse learning, especially in the applications of seri-
ous games [3]. While the use of reinforcement learning (RL)
in our work demonstrated a promising way to build the brain
part, challenges are still ahead. There are many student char-
acteristics and learning features that can be captured by eyes
and used to help the brain make decisions. The more features,
the higher dimensional data, the more accurate learner profil-
ing. However, for the same reason, the size of the state space
increases exponentially, and the large training time required
in RL delays responses and impacts overall performance.
This research aims to tackle these challenges and make the
following contributions.

1) From the ACP perspective (Artificial societies,
Computational experiments, and Parallel execu-
tion), this work proposes a technical framework for
Metaverse learning, with emphasis on the function-
alities of Al-based nonplayer characters (NPCs) for
personalization.

2) An innovative hierarchical RL (HRL) method with expe-
rience sharing is proposed to address the issues of state
explosion and convergence time.

The remainder of this article is organized as follows.
Section II presents the ACP-based parallel control framework
for Metaverse learning. Section III focuses on the proposed
HRL with experience sharing. A case study is given in
Section IV, followed by our conclusions and future research
directions in Section V.

1I. ACP-BASED PARALLEL CONTROL
FOR METAVERSE LEARNING

The ACP approach has been widely used in several appli-
cation domains since its inception by Wang [18], such as
discrete-time nonlinear control [19], healthcare [20], educa-
tion [3], and motion recognition [21]. Extended from our
prior work, Fig. 2 presents an ACP-based parallel control
structure to design the brain in Metaverse learning for per-
sonalization. Learners interact with peers, including NPCs, in
an authentic world created in the Metaverse. In other words,
this structure creates a cyber—physical-social system that uses
human-computer interaction to augment learning with both
real peers and computer-controlled NPCs. There are three
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Fig. 2. ACP-based parallel control for metaverse learning.

types of Al-based NPCs that make the learning not only more
engaging but also individualized and effective.

1) Skilled learner NPC.

2) Apprentice learner NPC.

3) Tutor NPC.

These three NPCs all serve to interact with learners and aug-
ment their learning experience in different ways, as discussed
below.

A. Skilled Learner NPC

From the perspective of social constructivism, interactions
among peers produce both intellectual synergy of many minds
to bear on a problem, and the social stimulation of mutual
engagement in a common endeavor. With companions that
experience and learn in the same contexts for the same edu-
cation purposes, students tend to learn a great deal through
mutual exploration, meaning making, and feedback.

Skilled learner NPCs have more skills and experience than
the learner. Their existence in fact creates healthy competition,
a good means to improve effect-based learning and attention.

B. Apprentice Learner NPC

On the other hand, another type of companion is the one
who in fact needs more help from the learner. According to
the Protégé effects [22], deeper learning often occurs when
a learner approaches a topic with the intention to teach it
later. This process also helps the learner to identify his/her
own knowledge gaps. Thus, apprentice learner NPCs are those
who the learner can assist or teach to strengthen their own
knowledge.

C. Tutor NPC

The tutor NPC mirrors a physical instructor with three
types of intelligence resulting from big data, AlI, and
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practical experiences of many excellent instructors in
reality.

1) Descriptive Intelligence: The NPC interacts with the
learner and constantly monitors learning outcomes created by
the introduction of various learning materials. By soliciting
feedback, the NPC gains information about the effective-
ness of learning materials and about a learner’s difficul-
ties. The collected information will be the basis to create
what is called a student/player model [6], [7]. By analyz-
ing the data to determine the reason behind previous learning
mistakes or success in the past, this type of intelligence
helps gain insights into how learners will behave in the
future.

2) Predictive Infelligence: The most frequent challenge in
big data is that data collected in real time is not big enough.
Our prior work faced the same dilemma. Computational
experiments, as the natural extension and improvement of
simulations, offer a solution. At one end, the experiments
are controlled trials on the virtual Metaverse learning system
that transforms a set of inputs X = {x;|lx; € X} for indi-
vidual learners into a set of outputs ¥ = {yil; € Y},
representing their observable responses. During the operation
of these experiments, synthetic data is continuously gener-
ated through resampling or Monte Carlo methods [23]. In
the meantime, the tutor NPC gains more confidence with the
increasing data size to predict what is likely to happen to a
learner.

3) Prescriptive Intelligence: Another important function of
computational experiments is to understand how various fac-
tors influence the system output. From an understanding of
the present factors, the most important factors can then be
determined. In Metaverse learning, the tutor NPC needs to ana-
lyze data systematically and rigorously from both the physical
world and computational experiments. Consequently, it makes
the decision on what assistance to provide to a given learner to
maximize the positive impact on that learner’s education. The
decisions eventually guide the learner in actions. At the same
time, the actions are fed back to the virtual world forming the
parallel execution.

The remainder of this article focuses on the tutor NPC, and
particularly on methods that enable predictive and prescriptive
analysis for personalized Metaverse learning.

III. HIERARCHICAL MULTIAGENT REINFORCEMENT
LEARNING WITH EXPERIENCE SHARING

The design of intelligent NPCs is a key component for
meaningful Metaverse learning. The more interactions NPCs
have with learners, the better understanding they gain on
learner behaviors, and the more appropriate scaffolding they
can provide. That said, NPCs very much resemble agents in
RL, who explore an unknown environment through trial and
error. While our prior work put forth to use RL for build-
ing the intelligence of NPCs, the convergence and efficiency
issues were not sufficiently addressed, limiting its practical
applications.

Learning is a continuous process that is gradual and cumu-
lative. Thus, Metaverse learning can be viewed as a dynamic
process with a sequence of tasks that engage learners in a con-
tinuous mode of interactions. The completion of a task might
lead to other tasks (i.e., sequential relation), and consequently
move learners closer to an ultimate learning goal. With these
remarks, this article builds upon the previous work and pro-
poses a HRL approach. Instead of having one agent to explore
the entire environment, multiple agents are built to share the
responsibilities. Considering that humans are more produc-
tive to prioritize difficult tasks for multitask learning [24], our
method designates a high-level agent to prioritize all tasks,
and individual low-level agents to take care of the tasks.

While the content knowledge and the level of cognitive
demand vary from task to task, all of them serve the same
final goal. With that in mind, there are experiences that can
and should be shared among the low-level agents. So, our
proposed HRL is further augmented with an experience shar-
ing mechanism. The detailed structure of the proposed method
is given in Fig. 3.

Without the loss of generality, deep RL is first described
in Section III-A. The proposed HRL structure is given in
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Fig. 4. Standard cycle of learning for an RL agent.

Section III-B, followed by the discussion of the experience
sharing strategy in Section III-C.

A. Reinforcement Learning

RL provides a natural scheme for sequential optimal deci-
sion making in uncertain and ever-changing environments [25].
Because of the ability of RL agents to learn complex behav-
ior and adapt to new situations, it has numerous applications
in self-driving vehicles [26], robotics [27], networking [28],
parameter optimization [29], disassembly planning [30], and
other control problems [31]. As shown in Fig. 4, at any given
time step, f, a trained RL agent observes the environment’s
current numerical state, s;, and chooses an action, q;, from
a pool of possible actions. Based on the resulting new state,
S:+1, the agent is provided a numerical reward, r.y1, deter-
mined from a reward function. The process repeats until the
reward is maximized. This evolution is generally modeled as
a Markov decision process (MDP) as defined below.

Definifion 1: Finite MDP is defined as six-tuple: MDP =
(S, AR ¢ v, 7).

1) § = {s51,52,..., 58]} is a finite or continuous set of state
values.
2) A={a1, aa,...,a;} is a finite set of possible actions.

3) R: SxA— R, Vs € §,a € A, there is a numerical
reward given to the agent when observing state s and
selecting action a.

4) ¢ (54, a;, Sr+1) defines the transition probabilities that cre-
ate a mapping from state to state based on a chosen
action.

5) y € [0,1] is a discount factor that is used to add
or subtract weight from future expected rewards when
computing the value of taking a given action.

6) m(s,a) € [0,1] is the policy that defines the agent’s
behavior containing a probability to take each action a e
A given that the agent observes state s € S.

The goal of the cycle in MDP is to find a policy that max-
imizes the state—action-value function Q(s,a). Q, then, is a
function of both a state and an action, and can be estimated
by the expected value of discounted future rewards r;4 1 with
discount factor y. E™ represents the expected value function,
which is computed as the average estimated reward assuming
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that the agent follows a stochastic policy, . This full equation
is shown as follows:

oo
0" (s,a) =E" |:Z}’kft+k+l|5123, a za,r]- (D

k=0

There are many methods to estimate or track the Q-function,
such as robust mean-field actor—critic [32], asynchronous
actor—critic [33], advantage actor—critic [34], and deep deter-
ministic policy gradient [35]. Double deep Q-learning is one
of them that uses neural networks to predict Q(s,a) [36].
Whenever the agent observes a new transition, the neural
network is retrained, adjusting the internal network weights
6 to minimize the difference between the network’s estimated
reward and the actual observed reward plus discounted future
reward, as estimated by the network. The difference is called
the cost function as defined in

Cost = Q(si, @i ) — g1 +y maxQ(siy1.a: B | (2)

As shown in (2), a second neural network with weights
is used for future reward predictions. This network is an exact
copy of the main network with different weights. Using a copy
of the main network with weights ¢+ for future predictions
helps to stabilize the main network during training. Every p
time steps, the copy network weights ¢+ are updated to reflect
the main network weights 6.

Experience replay is often used to further improve the sam-
ple efficiency and stability of training [37]. By storing a set
of past transition tuples, ¥ = {(s:, a;, rt+1, S:+1)}, the agent
can randomly sample from the pool whenever new training is
needed. Using experience replay improves data efficiency of
the network since past experience is reused. It also breaks any
correlations between data, as would occur when observing a
concurrent sequence of transitions. Finally, experience replay
helps prevent the agents from “forgetting” past information
by periodically “reminding” the agent what it has seen in the
past.

B. Hierarchical RL

HRL [38], [39] is a multiagent extension to RL systems that
allows us to divide tasks into two levels handled by high-level
and low-level agents, respectively. In our situation, a single
high-level agent is used to prioritize all tasks, suggesting which
learning tasks a learner completes in what order. As the learner
explores the world, one of N low-level agents then provides
task-specific support. The use of HRL has its merit in not only
strategizing student learning, but also reducing computational
intensity and training time via limiting the complexity of the
state space. The two-level hierarchical MDP is a decompo-
sition of the MDP into upper and low levels, each of which
resembles the original definition of MDP as defined below.

Definifion 2: The hierarchical MDP is defined as: HMDP
= {MDP/}, where j = {h, I}

s = (5" s

a) S" is the high-level state space.
b) Sf; are N low-level state spaces that each deal with
a learning task, n € [1, N].
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2) A = {Ah, Ai} is the action space defined separately for
high and low-level agents.

3) R = {R“’, RI} the reward function used to reward the
high and low-level agents, respectively.

4) ¢ = {¢", ¢!} for the high- and low-level state spaces.

5) y = {y", y'}is defined to vary agent behavior between
high and low levels.

a) When y = 1, the agent will weigh all rewards
equally.
b) When y = 0, the agent only considers possible

reward for the next time step.
6) # = {x", xl).
a) 7" is the high-level agent’s policy, creating a
probability distribution over S" and A",
b) :rr,‘; are the low-level agent policies for each of n
agents, each creating a distribution over S| and A!.
In this multiagent structure, the high-level agent observes
the combination of all data from the learner, selecting which
task the learner needs to tackle first. The corresponding low-
level agent should then be activated to assist the learner, with
the low-level agents each specializing in providing assistance
related to one specific task and related content knowledge.

C. Experience Sharing

As stated earlier, rather than deploying one agent to cap-
ture generalized behavior in the entire Metaverse, this work
instead opts to divide the target learning space into N sub-
tasks, with each contributing to the overall knowledge that the
system seeks to deliver. As such, each subtask has an indi-
vidual MDP and RL agent assigned to complete, with the
high-level agent choosing which subtask should be prioritized.
While the transition probability function ¢ (s;, a;, S.+1) varies
among the low-level agents, they operate similarly to offer
assistance to learners with the rest of the system parameters are
set. Inspired by the recent success of transfer learning methods,
such as shared experience actor—critic [40], focused priori-
tized experience sharing [41], confidence-based sharing [42],
and Q-matrix transfer [43], this research further proposes a
weighted mutual experience sharing method to take advantage
of this similarity between low-level agents.

Because the environmental dynamics, ¢ (s, a;, s;+1), are
different between agents, other agents’ experience is not nec-
essarily ideal. To address this, different weights are introduced
to control how samples gathered from other agents are con-
sidered when retraining the neural networks. An agent’s own
experience has a weight of 1.0, while that of other agents
varies based on the estimated usefulness. Then, when retrain-
ing the predictive neural network for each agent, the agent still
prioritizes its own experience while also gaining benefits from
other agents’ experiences.

To determine the weights, the system needs a similarity
metric to estimate how beneficial an agent’s experience is.
While there is no direct prediction made of ¢ in double
deep Q-learning, a neural network is used to predict Q, the
expected reward function. By comparing these reward func-
tions, a rough estimate of the similarity of two agents can
be achieved. So, to compare two agents, the centered kernel

Algorithm 1 Low-Level Agent Training With Experience
Sharing

Initialize:
Low-level agents A" for n € [1, N]
Agent memory W" for n e [1, N]
Inputs:
Batch size b
1: While true do
2:  Observe initial state s for A’
3. Get action a from s} from A’ using e-greedy policy
4. Observe new state 5 41 and reward 1
5 For agent A’ such that j € {[1, N] —i} do
6 Sample batch B c W/, |B/|=b
7 Using B as input, get per-layer neuron activation
matrices from 4/ and A’

8: Compute weight w as the average similarity
between the per-layer neuron activation matrices
using Eq. (3).

9:  End for

10:  Get batch B' c W/, |BY| = b with weights 1.0

11:  Get batches B/ C W/V{j € [1,N]|j # i}, |B/| = £ with
weights w/

12:  Get final batch B = B' U B'V{j € [1, N]|j # i}

13:  Train agent A’ using batch B to minimize Eq. (2)
according to double deep Q-learning

14: End while

alignment (CKA) similarity metric [44], as shown in (3), is
adopted to directly compare the neural network representations
between two agents

~/HSIC(K,K)HSIC(L.L)

where K and L are kernel matrices derived from a set of
input data, and HSIC is the Hilbert—Schmidt independence
criterion (HSIC) that is used to compute a statistical depen-
dence between two matrix kernels [45]. Apparently, CKA is
a normalized version of HSIC that is invariant to uniform
scaling.

The pseudocode of low-level agent training with knowledge
sharing is presented in Algorithm 1. In this algorithm, an agent
A’ is trained on a given iteration, with i specifying the target
low-level agent. Note that the network activation matrices used
in the comparison represent the internal values at each neuron
in the network when given a set of input data. These internal
numerical values give the network’s representation of the input
data, which can then be used for the comparison. Since these
matrices are generated for each layer in the network, the simi-
larity comparison is made for each layer, and the final weight is
computed as the average of all similarities. It is then expected
that the similarity decreases as the agents learn more specific
internal weights.

Algorithm 1 also makes use of e-greedy exploration, which
is a common exploration policy in RL. With e-greedy explo-
ration, an exploration factor, € € [0, 1], is set to determine
the chance of the agent selecting a uniformly random action
from the action space. Then, with probability 1 — e, the agent
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instead selects the action with the max expected reward, as
estimated by the Q-function.

Algorithm 1 covers training for the low-level agents as these
agents make use of our proposed experience sharing method.
Unlike the low-level agents, the high-level agent operates
independently to delegate tasks to the low-level agents. The
high-level agent does not make use of any special methodology
to undergo training. Thus, in our proposed system, the high-
level agent is strained according to the standard approach of
double deep Q-learning, as discussed in the original paper [36].

IV. CASE STUDY

This section presents a case study to better understand the
proposed methodology. First, the ACP-based framework and
associated approach are applied to the design of a Metaverse
learning game called Gridlock. The pilot testing of Gridlock
as part of a computer engineering course helps collect a set
of real-world learner data. A series of computational experi-
ments is then built upon the data to verify the efficiency and
effectiveness of the proposed approach in providing predica-
tive and prescriptive analysis of human behaviors in Metaverse
learning. Section IV-A briefly describes Gridlock. The sim-
ulation setup is presented in Section IV-B, followed by the
experimental results in Section I'V-C.

A. Gridlock

Metaverse learning engages early computer engineering stu-
dents who assume the role of an engineer within Gridlock to
design the logic controller for a traffic light. To do so, learners
are required to transform the knowledge and skills learned in
class into a feasible solution.

Under the ACP-based parallel control framework, learn-
ers play the game in the physical world and the same game
scenes are running concurrently in the virtual space. The game
splits up the design of a traffic light into eight topics, each
tasking learners with specific knowledge that is part of the
solution. A high-level agent and eight low-level agents are
then deployed to build the tutor NPC who solicits learners’
feedback and personalizes their learning experiences. More
details on the Metaverse game can be found in [3] and on the
project website [46].

Within Gridlock, agent actions are translated into student
assistance. The high-level agent selects from different loca-
tions in the virtual environment, each of which pertains to
a different subtopic of the game’s educational content. The
learner is then guided toward the target area and, by extension,
the target subtopic. The eight low-level agents, meanwhile,
operate within these specific areas. At set points in the
learner’s play, the relevant low-level agent is queried to select a
piece of assistance from an expert-designed pool of assistance
actions.

All agent states are determined by the learner’s performance
variables, which are tracked by monitoring the learner’s behav-
ior and administering regular content tests. Specifically, learner
performance variables are score on tests, time taken on tests,
time taken to move through game segments, emotion estimates
captured through webcam images, and additional values that
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track the learner’s game inputs. All variables are normalized
in the range [0.0, 1.0], with 1.0 indicating a positive outcome.

Agent reward is determined by fluctuations in the learner’s
performance variables. As all variables are normalized,
any increasing variables result in positive rewards for the
agents. Thus, the low-level agents are incentivized to choose
actions that most increase the learner’s measured performance.
Likewise, the high-level agent is rewarded for increases in
performance as well, incentivizing the high-level agent to
select subtopics where the learner shows poor performance.
Finally, all agents are given diminishing returns on their reward
on a per-learner basis, ensuring that they minimize the number
of actions taken on any one learner and, by extension, ensur-
ing that learners complete the game with as little assistance
as possible.

B. Experimental Setup

To simulate human-like learner responses, we use binary
decision trees with learner variables. The binary decision trees
are generated out to a certain depth and then fit to the data
collected during pilot testing. At each node in the tree, one
variable and one value are chosen as the splitting criteria. At
each leaf node, the possible actions are split into five cat-
egories based on the real-world data: “very good,” “good,”
“neutral,” “bad,” and *“very bad.” So, by traversing this deci-
sion tree based on a generated instance of learner data, the
system consistently decides which actions are best in which
situations in a way that reflects the real-world data. This setup
further reflects real-world applications as each low-level agent
has a unique decision tree, creating a unique environment that
must be learned.

At each step, depending on the chosen action’s category,
the learner’s data is then shifted either positively or negatively.
The magnitude of the shifts is again informed by our observa-
tions. For example, very good actions automatically shift the
learner’s data to a position that indicates mastery of the knowl-
edge for the subtask. This reflects learners who understood
a topic after only one piece of assistance. Meanwhile, good
actions do not necessarily shift into mastery but do shift in a
positive direction, reflecting learners that required two or more
pieces of assistance before grasping a topic. Neutral actions
apply noise to the data, but do not shift the average in a sig-
nificant direction. Bad and very bad actions then apply either
slight or severe negative shifts and are meant to be avoided
by the agents.

To reflect the real-world implementation, all variables were
capped in the range [0.0, 1.0], with 1.0 representing per-
fect performance on any specific metric. All agent tasks
and configurations were based on the description given in
Section IV-A. Agent rewards are determined by the average
percentage change in all the learner’s variables, with an addi-
tional reward r. added whenever a subtask was marked as
complete. All agents use three fully connected layers, two with
64 neurons each, with an additional layer at the output with a
neuron for each possible action. Fully connected layers used
the relu activation function, while the output layer used a linear
activation function. Our loss function is mean-squared-error.
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TABLE I

NETWORK AND AGENT HYPERPARAMETERS

Parameter | Description Value
a Learning Rate 0.001
Yh High-level Discount Factor 0.9
Vi Low-level Discount Factor 0.9
k Update target network every 5
b Training batch size 200
€ Exploration Factor 08— 1.0
T Completion Reward 3
Decision Tree Depth 7
N Number of Low-level Agents 8
14,] Number of Actions per Low-level 8
Agent
=]
L
=
&
e
o]
2 . Single-agent (Avg)
g ¥ single-agent
& . Multi-agent (Avg)
1] Multi-agent
=
kS
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Training Episode
Fig. 5. Single-agent RL versus HRL average cumulative reward obtained
per episode.

Additionally, the parameters shown in Table I are used for the
double deep Q-learning.

C. Comparative Results

To verify all aspects of the system, two different compu-
tational experiments are conducted. In the first experiment,
the focus is put on a single-agent approach compared to the
proposed multiagent hierarchy using the high-level agent and
N = 8 low-level agents, with 8 chosen as a balanced number
of low-level agents and subtasks. All agent rewards ranged in
[—20, 5].

Fig. 5 compares the cumulative reward obtained by both
agents per episode over 5000 training episodes. In this case,
an episode consists of a learner initially interacting with the
system and getting assistance in all subtasks until their data
is satisfactory. It is clear to see that the hierarchical approach
has visibly improved average reward in the early stages of
training. By the Mann—Whitney U test, the cumulative reward
shows a significant improvement in the hierarchical agent’s
performance with an effect size of 0.8101.

Fig. 6 compares the number of steps taken to complete each
episode for the single-agent and hierarchical approaches, as
well as the rolling average of the number of steps taken. For
the hierarchical agent, the number of steps taken is cumulative

300

250
200
B single-agent (Avg)
I single-agent
B Multi-agent (Avg)
Multi-agent

Cumulative Steps per Episode

1 1001

2001 3001
Training Episode

4001 5001

Fig. 6. Single-agent RL versus HRL total steps taken per episode until
completion by all agents.
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. Multi-agent
=~ Mutual Transfer
g™ Weighted Transfer

0z

a1 0

Average Reward over all Agents
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Training Episode

Fig. 7. Comparison of single-agent and multiagent methods, including
standard multiagent, mutual experience sharing, and weighted experience
sharing.

over the high- and low-level agents. In step size, the hierarchi-
cal agent shows a similar level of improvement with an effect
size of 0.6113.

The second experiment focuses solely on the N low-level
agents that provide task-specific assistance. Like the prior
experiment, we chose N = 8 as a balanced number of agents
to simulate. Beyond that, simulated learner responses are com-
puted by the same method as the first experiment. Agent
rewards are capped in the range [—2, 3]. In this experiment,
four cases are considered, where case 1 uses a single-agent
approach, case 2 an N-agent approach, case 3 an N-agent
approach with mutual experience sharing, and case 4 an
N-agent approach with our proposed method of weighted
experience sharing. Note that mutual experience sharing in
case 3 is identical to our proposed approach, but all sample
weights are fixed to 1.0 and no similarity metric is com-
puted. Finally, all agents are initialized with the same network
weights and same random seeds for learner simulations.

The comparison of the average reward per episode over all
eight agents among four cases is then presented in Fig. 7.
As shown, our proposed method outperforms all others in the
average reward. When comparing it with the second-best case
(i.e., case 2) using the Mann—Whitney U test, the effect size
is 0.3890. Furthermore, all multiagent approaches have better
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performance than the single-agent method. This verifies our
hypothesis that multiagent approaches can learn more special-
ized behavior, while a single agent would take more experience
to learn generalized behavior for all tasks. For our proposed
approach, the weighted experience sharing does improve the
overall reward of all agents, even in the early stages of train-
ing. Without weighing the knowledge from different agents,
the system performs even worse than a standard multiagent
approach (effect size of 0.1765), which supports our hypoth-
esis that shared experience should be weighted as it does not
fully represent the dynamics of the target agent.

V. CONCLUSION

With the push toward Metaverse as the future learning plat-
form, more research is needed into new technologies, systems,
and methods to support Metaverse learning. To address this
growing need, this article developed a technical framework
for Metaverse learning from the ACP perspective. A special
emphasis is put on functionalities of Al-based NPC design
for personalized educational experiences in Metaverse. To that
end, an innovative HRL approach with experience sharing is
proposed, where predictive and prescriptive analysis of learner
behavior in Metaverse is effectively conducted. Finally, the
framework was successfully applied to the design of Gridlock,
a learning serious game. The case study empirically demon-
strated that both the hierarchical multiagent approach and
experience sharing contribute to improving agent learning
efficiency and reducing data requirements.

While the ACP-based parallel control framework is imple-
mented in Gridlock, the development of computational experi-
ments is still in its infancy. Exploring the essence of deduction
and induction to strengthen computational experiments is wor-
thy of future research efforts [47]. Applying our proposed
framework and approach to other Metaverse learning appli-
cations is always needed to further test their validity and
practicality. It is our hope that our work builds a technological
foundation that inspires more research on Metaverse learning.
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