2022 International Conference on Cyber-Physical Social Intelligence (ICCSI) | 978-1-6654-9835-7/22/$31.00 ©2022 IEEE | DOI: 10.1109/ICCSI55536.2022.9970680

Petri Nets and Hierarchical Reinforcement Learning for
Personalized Student Assistance in Serious Games

Ryan Hare
Dept. of Electrical and Computer Engineering
Rowan University
Glassboro, NJ, USA
harer6 @rowan.edu

Abstract—Adaptive serious games offer a new frontier for education,
especially in complex topics. However, optimal methods for in-game
adaptation are still being explored to address challenges such as lim-
ited educator resources, unpredictable or limited data, or complicated
implementation procedures. This work offers an adaptable framework
for personalized student assistance and directing within an adaptive
serious game using reinforcement learning and Petri nets. Our proposed
framework can be built upon by serious game developers and researchers
to create adaptive serious games for improving student learning in
other domains. Building on prior work, we address the challenge of
adaptive in-game content through Petri net player modelling and a
multi-agent deep reinforcement learning approach to gradually learn
optimal personalized assistance. Finally, we provide proof-of-concept
training performance for our proposed agent using a student simulation,
demonstrating that the proposed hierarchical reinforcement learning
approach offers significantly (effect size r = 0.8101) improved training
performance over a tabular, single-agent approach.

I. INTRODUCTION

As higher education becomes more complex, students will in-
evitably run into courses that they find confusing or boring, impairing
their learning process. Furthermore, strain on educator time and
resources compounds the issue, leading to students falling behind or
failing due to lack of support tailored to their ideal style of learning.
Adaptive educational systems offer one solution to this issue. By
modelling the student’s current mental state, ideal learning style, or
other relevant aspects, adaptive educational systems seek to provide
personalized, just-in-time support based on a student’s current needs
or misunderstandings.

A key challenge in creating adaptive educational systems for class-
room use is lack of usable data. It is difficult to create and populate
an accurate student model without sufficient data on a student’s
performance. However, by combining an adaptive educational system
into a serious game or virtual learning environment, any and all data
about that environment is made freely available. Furthermore, the
environment is highly controllable, allowing students to learn and
explore at their own pace. With serious games (SGs), there is the
added benefit of the game aspect, which simultaneously entertains
players while educating them.

Adaptive serious games (ASGs) extend the educational experience
by integrating an adaptive educational system into a virtual envi-
ronment, coupling adaptive educational support with an entertaining
and engaging learning environment. Recent trends in educational
technology continue to push for ASGs as a solution to limited
instructor resources and unengaging course content [1]-[3]. Using
the built-in adaptive educational system, ASGs adjust game content,
game difficulty, virtual environments, or other aspects to optimize a

This work was supported in part by the National Science Foundation under

Grant 1913809 and by the U.S. Department of Education Graduate Assistance
in Areas of National Need (GAANN) Grant Number P200A180055.

978-1-6654-9835-7/22/$31.00 ©2022 IEEE

Ying Tang*
Dept. of Electrical and Computer Engineering
Rowan University
Glassboro, NJ, USA
tang @rowan.edu

student’s learning. Furthermore, by “gamifying” the learning expe-
rience, ASGs further benefit students in terms of lesson enjoyment
and engagement [4].

In prior work, we designed a serious game called Gridlock, a
domain-specific game dealing with sequential logic design. Gridlock
was integrated with a proposed Petri net-based student model that
tracked and controlled player performance and player movement [5]
to systematically model the evolution of students’ knowledge. We
then extended the system’s ability to provide personalized assis-
tance through reinforcement learning (RL), allowing it to provide
automated support. While our approach was successful in modelling
and controlling player movement, the method’s ability to provide
personalized instructional support was limited due to data availability,
convergence issues, and the large size of the learning space.

To expand upon our prior work and deal with the exponentially
increasing size of our learning space, we propose combining a Petri
net-based game model and a hierarchical Markov decision process
(MDP). Our general-purpose Petri net model focuses on recording
and controlling player movement through a given serious game,
including personalized support, while the MDP helps us to predict
a player’s performance as a function of the provided educational
support. We then subdivide the overall learning space into a hier-
archical MDP, greatly decreasing the size of the learning space and
reducing data requirements. With RL, the system can automatically
learn associations between student performance and personalized
support, allowing it to provide optimal student support without
external intervention. The end result is a general-purpose, modular
system for integrating personalized support and player tracking into
a serious game.

Due to difficulty in gathering sufficient real-classroom data, we
verify system performance through student simulations informed by
in-classroom observations. By testing the completed system on these
student simulations, we were able to adjust system hyperparameters
and environmental variables to improve system performance and
verify that our proposed method provides more efficient learning
compared to a single MDP approach, especially in the early stages
of training when data are sparse and limited. To that end, Section
II overviews our proposed Petri net structure. Section III formalizes
our hierarchical MDP structure and combined Petri net/RL approach,
including definitions of our learning space. Section IV shows our
simulated results, followed by conclusions in Section V.

II. AGENT-DRIVEN PETRI NETS

A Petri net (PN) is a graphical model designed for modelling
discrete event systems [6]. Visually, a PN can be drawn as a
directed graph composed of places (circles) and transitions (bars),
with directed arcs connecting from place to transition or vice versa.

733

Authorized licensed use limited to: Rowan University Libraries. Downloaded on September 18,2023 at 03:16:30 UTC from IEEE Xplore. Restrictions apply.

At any given time step t, a place can contain a number of tokens,
which ”flow” through the Petri net whenever a transition is fired.
By representing the player as a token, a PN can easily model player
movement through a given serious game. With a Petri net model,
we create a generic structure for an adaptive serious game composed
of N ”learning blocks”. Each learning block pertains to a different
subset of knowledge to deliver to students, complete with hints, study
materials, or other easily personalized assistance.

In order to properly integrate a Petri net with reinforcement
learning (RL), we adapt extended Petri nets from our prior work
[5] into an agent-driven Petri net (APN). The main focus of the APN
is to integrate a PN with one or more RL agents. Specifically, we use
one ’high-level’ agent that deals with a student’s overall movement
through the game, and IV ’low-level’ agents, each of which deals with
personalized assistance in one of the /N learning blocks. Throughout
the paper, h and [in superscript will be used to refer to the high-
and low-level agents, respectively (for example, X" and X'). With
that in mind, the full definition of an APN is as a six-tuple in the
form (P,Y,I,0, M,0):

o P is a set of places that compose the Petri net. In our extended

APN, P is divided into two subsets of places, P = {P,, Ps}:
1) P,, where each place p, € P, represents a location in or
state of the game.
2) Ps, where each place ps € P represents a storage place
for instances of personalized support.

o T is a set of transitions that connect places in the Petri net. In
our extended APN, T is divided into N +3 subsets, 3 subsets for
grading, system-driven, and high-level agent-driven transitions,
and N subsets for low-level agent-driven transitions in each of
the N learning blocks. Thus, T = {Y,, T, T4 Y}, 1 n €
[1, N]}:

1) Y,, where each transition vy € Y4 represents a grading
transition which, upon firing, will update one or more
pieces of internal data in the relevant student marker.

2) Y., where each transition vs € Y represents player- or
system-driven movement of the player from one place to
another.

3) T! where each transition v € T” represents a high-level
agent-driven transition. The number of high-level agent-
driven transitions is determined by the number of learning
blocks, but they are all encapsulated in a single set.

4) T, represents low-level agent-driven transitions in learn-
ing block n. Each transition v%, € T, represents a
specific low-level agent-driven transition in learning block
n.

I is an input function, defining all arcs that connect from a place
p € P to a transition v € Y.

O is an output function, defining all arcs that connect from a
transition v € T to a place p € P.

e M is a marker function, defining the number of markers as

M(p) = RVp € P. In our extended APN, M also contains

student data, defined as:

— In addition to a single value for each place, the marker
stores student data M (p) = {R,Q}, where is a set of
student data. For non-student markers, M (p) = R.

¢ is unique to the extended APN, and defines a set of transition
probabilities partitioned into N + 1 subsets, 1 for the high-
level agent-driven transitions, and /N for low-level agent-driven
transitions in each of the /N learning blocks. d, then, is defined
as § = {6", 6%, :n € [1, N]}:

1) 6", which is defined for each transition v € T? and is
mapped to an high-level RL agent.

2) 6%, which is defined for each transition v}, € T, and
is mapped to the nth reinforcement learning agent.

As stated, the structure assumes a game divided into N so-
called subject-specific blocks, each of which focuses on a subset
of the overall knowledge that the game intends to deliver. Using
the grading transitions, a player is tested, both to establish an initial
benchmark and to assess the player’s specific knowledge in each
learning block. The high-level agent-driven transitions allow the
system to dynamically select what blocks to visit, and the low-level
agent-driven transitions provide students with personalized support
inside the learning blocks.

We focus on integrating reinforcement learning (RL) with the
APN. Since RL involves probabilistic decision-making, the § function
allows us to map RL decision-making directly to transition proba-
bilities in the APN. Additionally, we store student feature vectors
in markers in the net, allowing student data to “flow” through the
net as the student moves. In our definition, €2 is a set of student
feature vectors in one instance of the game (for one student).
Q = {M,&n : n € [1,N]} such that &, is the feature vector
for learning block N. Additionally, 2 also contains N grade values,
An,n € [1,N], which are numerical “grades” assigned to each
feature vector. This “grading” is discussed in greater detail in Section
III-A in our discussion on agent states.

III. HIERARCHICAL MDPs AND DEEP RL
A. Hierarchical Markov Decision Processes

The basic principle of reinforcement learning (RL) is to allow some
intelligent agent to interact with an external environment [7]. At any
given time step, ¢, an RL agent observes the environment’s current
numerical state, s¢, and chooses an action, a¢, from a pool of possible
actions. Based on the resulting new state, s;41, the agent is provided
a numerical reward, r;41, determined from a reward function. The
agent then gradually learns what actions to take to maximize obtained
reward. The entire flow is called a transition, and a transition can be
represented as a 4-tuple, (s¢, at, re41, St41)-

In this implementation, we mainly focus on the combination of
Petri nets and reinforcement learning, applying standard RL methods
to implement intelligent agents in our game system. With our ap-
proach, we use a hierarchical MDP as a method to subdivide the state
space and allow for quicker and more accurate agent learning. Other
methods to solve this problem can be found in more depth in the
space of multi-agent reinforcement learning [8]—[11], which inspired
our more simplified implementation. In multi-agent reinforcement
learning, agents often work cooperatively to complete a shared task.
In our hierarchical MDP, the agents instead learn separately on
individual subtasks all with the shared goal of providing student
support.

This sequential model for reinforcement learning problems is
known as a Markov decision process (MDP). MDPs assume the
Markov property, which states that future states only depend on the
current state. The MDP is a 6-tuple in the form (S, A, R, ¢,~,),
which we extend as stated here into a hierarchical MDP:

o S is the set of all possible states. At time step t, the agent
observes state s; € S, selects an action, and arrives at a new
state s¢+1 € S. In the hierarchical MDP, the state space is a set
of NV +1 state spaces, 1 state space for the high-level agent, and
N state spaces for N low-level agents (one for each learning
block). Thus, S = {S", S :n € [1, N]}:

734

Authorized licensed use limited to: Rowan University Libraries. Downloaded on September 18,2023 at 03:16:30 UTC from IEEE Xplore. Restrictions apply.

1) S™ is the high-level state space.
2) SY are N low-level state spaces that each deal with
learning block n € [1, N].

o A is the set of all possible actions. The agent’s chosen action at
time step ¢ is denoted a; € A. In the hierarchical MDP, A is a set
of N +1 action spaces, 1 for the high-level agent and N for the
low-level agents. To summarize, A = {A" AL, : n € [1, N]}:

1) A" is the high-level action space that directly maps to
transition set Y7 in the APN. For example, Action a” €
AM directly maps to transition v € T%.

2) AL, are N low-level action spaces that each deal with
learning block n € [1, N] and each map to transition set
Y%, in the APN. For example, action al, € A!, directly
maps to transition v, € T4, .

e R is the reward function determining what reward the agent
receives. After firing action a; and arriving at state S;41, the
agent receives reward r; as determined by R. In the hierarchical
MDP, R is a set of reward functions, where R = {R", R'}:

1) R" is the high-level reward function, used to reward the
high-level agent.

2) R is the low-level reward function, used to reward all
low-level agents.

o (s, at,s¢41) is the transition probabilities that create a map-
ping from state to state based on the chosen actions. In the
hierarchical MDP, ¢ is a set of transition probabilities, where
¢ = {¢", ¢!, : n € [1, N]} for the high- and low-level state
spaces.

e v is the discount factor in range (0, 1). The discount factor is
used to weigh future rewards, determining how near- or far-
sighted the agent is. When v = 1, the agent will weigh all
rewards equally, and when v = 0, the agent only considers
possible reward for the next time step. To vary agent behavior
between high- and low-level, the discount factor in the hierar-
chical MDP, v = {y" '}, where:

1) 4" is the high-level discount factor.
2) ~! is the low-level discount factor.

o 7 is the agent’s policy, with 7 (s, a) determining the probability
of selecting action a € A given that state s € S is observed.
m(s,a) € [0,1]Vs € S,a € A. In the hierarchical MDP, the
policy 7 is a set of N 4 1 policies, 1 policy for the high-level
agent, and IV policies for the N low-level agents. Thus, 7 =
{m" xl :n €1, N}

1) «" is the high-level agent’s policy, creating a probability
distribution over S™ and A".

2) nl, are the low-level agent policies for each of n agents,
each creating a distribution over S, and A, forn € [1, N].

Using this extended hierarchical MDP, agents can be appropriately
configured to work with the agent-driven Petri net in an adaptive
serious game. To provide more detail about the reasoning behind the
extension into a hierarchical MDP, we now give a detailed explanation
of the configurations for states, actions, reward functions, and agent
policies in terms of applying the proposed system in an adaptive
serious game.

1) State: Initial student data are gathered with a baseline quiz to
establish students’ starting level of knowledge. As stated, for each
of the N subject-specific blocks, each student is assigned a set of
feature vectors Q = {An,wn : n € [1,N]} such that &, is the
student’s feature vector for learning block n and A, are numerical
“grades” assigned to each feature vector.

For the high-level agent, the state space could be represented as
the set of N feature vectors, 2. However, this state space would
be exceedingly large, so we apply a “grading” process to obtain
a set of integer values in place of the set of feature vectors. The
grading process uses the grading function, A(&), to obtain an integer
value, \,. By representing the high-level agent’s state space as the
set of grades, {A\, : n € [1, N]}, we reduce the size of the high-
level agent’s state space significantly. The grading function shown in
Equation 1 can be thought of as a generic translation of a feature
vector Wy, into an integer value \,,.

A(n) = An (€))

For the low-level agent, the student feature vectors can be directly
translated into the state values used by the RL agent to make
decisions. The state space for low-level agent n € [1, N] is then
defined by feature vector &,. For the actual values used in the
feature vectors, they could represent score on questions, time taken to
complete sections, emotional indicators transformed into numerical
values, or any other number of relevant numerical factors indicative
of student performance.

2) Action: The high-level agent makes broad decisions about the
student’s game route, deciding which subject-specific blocks to visit.
These actions directly correspond to each transition v € T in the
APN.

The low-level agent receives more specific information to make
better decisions about student assistance. Like the high-level agent,
the available actions for low-level agent n directly correspond to the
transitions vl, € T4, where n € [1, N].

3) Reward Functions: The agent’s reward structure is highly
important since the goal of the agent is to maximize reward. In
other words, reward structure determines final agent behaviour. In
our proposed reward structure, we focused on minimizing total game
completion time and maximizing student performance.

The high-level agent’s rewards are based on the following rules: 1)
avoid entering blocks in which a student has already proven mastery;
and 2) minimize total number of blocks entered. As such, the high-
level agent’s step-by-step reward can be derived from changes in
student grades, {AX, : n € [1,N]}. At the end of the game, the
agent can also be provided some large positive reward, o”, reduced
based on the total number of time steps in which the high-level agent
acted.

The low-level agent’s rewards are based on the following rules: 1)
improve the student’s performance indicators given from the feature
vector; and 2) enable the student to reach content mastery in as few
time steps as possible. Thus, step-by-step reward within block n can
be determined as the percentage change in feature vector w,, that was
triggered by the prior help action. Upon finishing a learning block,
the low-level agent can also be provided a large positive reward,
o', reduced by the number of steps taken to complete the relevant
learning block.

4) Agent Policies: Finally, to translate policies into transition
probabilities, the agents must first generate policies. Agent policies
are determined by II — 7, which assigns a probability distribution
based on past observed rewards. The specifics of the distribution IT is
determined by implementation. 7", the high-level agent’s policy, can
then be directly mapped to 6" in the agent-driven Petri net (APN).
Likewise, 7, for n € [1, N] can each be mapped to 6% in the APN.

B. Solving MDPs with Deep Reinforcement Learning

Q-learning is a tabular method that tracks and updates a Q-function
[12]. The Q-function, Q(s,a), is a function that determines the

735

Authorized licensed use limited to: Rowan University Libraries. Downloaded on September 18,2023 at 03:16:30 UTC from IEEE Xplore. Restrictions apply.

(RL Agent

Reward r,
e > . . .
Learning Module Action Selection
 —

State s,
k- Action
KA a,
New State [eoememcmenaans Environment .
St+1
.
0 Updated
. : Student Feature Sludc?:)V ector
Reward 1| Agent | Vector (s..y) | Student -
' Reward ‘Acti !
\: (Tp41) ction (@) gerioys Game;

Fig. 1. The standard cycle of learning for an RL agent.

agent’s expected reward when selecting an action a € A while
observing a state s € S. By looking at the expected reward values
in this function, the agent can know which action will provide the
best expected reward [12]. The agent also applies a discount factor,
~v € [0,1], to weigh future rewards. Whenever a new transition is
observed at time step ¢, the Q-function is updated as per Equation 2.

Q(s1,ar) = Qs1, ar) + (re41 +ymaxQ(se+1,a)) (2)

The main issues we address from our prior work are the large learn-
ing space, lack of generalization between similar states, mediocre
early performance, and long convergence times we faced when using
a tabular single-agent approach [5]. Further, we hope to extend
the system’s data efficiency and improve system performance when
faced with a small amount of real-world data. We address these
issues by extending the tabular single-agent method into a multi-
agent hierarchical approach using deep Q-learning, an extended form
of Q-learning that uses a neural network to predict Q(s,a) [13].
Whenever the agent observes a new transition, the neural network
is retrained, adjusting the internal network weights 6 to minimize
the difference between the network’s estimated reward and the actual
observed reward plus discounted future reward, as estimated by the
network. The difference is also called the cost function, and is shown
in Equation 3.

Cost = Q(st, a1;0¢) = (re41 + ymax Q(se1,a;9¢) (3)

As shown in Equation 3, a second neural network with weights o
is used for future reward predictions. This network is an exact copy
of the main network with different weights. This method is called
double deep Q-learning [13]. Using a copy of the main network with
weights ¢ for future predictions helps to stabilize the main network
during training. Every p time steps, the copy network weights ¢ are
updated to reflect the main network weights 6.

Another optimization for deep Q-learning is experience replay. By
storing a set of past transition tuples, ¥ = {(s¢, at, 7¢+1, St+1) } the
agent can randomly sample from the pool whenever new training is
needed. Using experience replay improves data efficiency of the net-
work since past experience is reused. It also breaks any correlations
between data, as would occur when observing a concurrent sequence
of transitions. Finally, experience replay helps prevent the agents from
“forgetting” past information by periodically “reminding” the agent
what it has seen in the past.

Agent-driven Petri Net Operation with RL
Require: Set Z = {po} where po is the place € P where all player
markers are initialized
1: while (Z # 0) do
2: for each place p € Z do
3 H(p)=10
4 if v e T,Vu € I(p) then
5: Fire v and deposit token into O(v)
6: else if v € T Vo € I(p) then
7: Record updated @;, vector(s)
8 Populate updated 2* using Equation 1
9 Calculate 74,1 from R"
0 Call Algorithm III-B on last agent to act with transition

tuple (Q, as, 41, Q%)

11: Fire v and deposit token into O(v)

12: else if v € T"Vv € I(p) then

13: Observe high-level state, s} = {\, : n € [1, N]} from
Q

14: Update high-level policy, 7" (sf) from IT

15: Update 6" « 7" (s})

16: Fire available transition v based on probabilities 6" and
deposit token into O(t)

17: else if v € Y., Vv € I(p) then

18: Observe low-level state for agent n, si =w, €0

19: Update low-level policy for agent n, 7l (st) from II

20: Update 6, « w@(si)

21: Fire available transition v based on probabilities 6 and
deposit token into O(t)

22: end if

23: Z =ZUJU{0O(v)N P}

24: end for

25: Z=7—{p}
26: end while
Deep Q-learning Q-function Update
Require: New transition tuple ¢ = (s¢, G, Tr41, St4+1)
Replay memory ¥
Batch size b
Target agent
: Append ¢y — ¥
: Sample batch of b transitions from ¥
: for Each transition 1, € batch do
Predict Q(s¢+1,a;9:) from copy network
Using v, and Q(s¢+1,a), adjust 6; to minimize Equation 3
: end for

R

C. Deep Q-learning for Hierarchical MDPs

In a hierarchical Markov decision process (MDP), deep Q-learning
is extended into a multi-agent configuration [14]-[16]. In the pro-
posed system, the game makes use of a high-level agent that controls
student movement from block to block and N low-level agents that
each control student assistance inside an assigned learning block. By
splitting the problem to a multi-agent approach, the overall size of
the learning space is greatly decreased for all agents, allowing the
agents to better learn optimal policies with a lower data requirement.

The key connection between the deep Q-learning and the agent-
driven Petri net (APN) is in the APN’s transition probabilities
function, J. As stated, this function assigns probabilities to firing
every available transition from a given place. By mapping J to the

736

Authorized licensed use limited to: Rowan University Libraries. Downloaded on September 18,2023 at 03:16:30 UTC from IEEE Xplore. Restrictions apply.

- Grading Transition

- Player/System-driven Transition

- High-level Agent-driven Transition

- Low-level Agent-driven Transition

pg0.3

Fig. 2. APN structure in Gridlock.

RL agent’s policy, 7, the RL agent’s actions are therefor assigned
directly to the APN’s transitions.

Algorithm III-B shows the full adaptive optimization process. In
this process, transitions are fired when available based on player
marker positioning. Depending on the type of transition, the system
observes different results, including updated feature vectors in the
APN, stored knowledge in the reinforcement learning replay memory,
Q-learning updates, and updated transition probabilities.

IV. EXPERIMENTAL RESULTS
A. Parameters and Network Layout

For testing, we integrated our proposed system into a serious game
called Gridlock. Gridlock is a domain-specific serious game intended
for intro-level university students, designed to instruct them on the
basics of digital logic and digital circuit design. In Gridlock, N = 7 is
the number of blocks and the size of the high-level state vector while
|&n| = 15 is the size of all low-level state vectors. For the structure
of the agent-driven Petri net (APN) in Gridlock, refer to Figure 2.
As shown, the agent-driven transitions allow the student marker to be
moved into any of the learning blocks. Once in a learning block, the
student marker enables all help transitions, allowing the low-level
agents to decide what help transition to fire, ultimately providing
assistance to the student.

For our RL agent exploration policy, we determined agent policy
using Boltzmann exploration [17], as shown in Equation 4. Both
exploration factor, €, and the Boltzmann temperature values, " and
7!, were determined experimentally. Finally, reward functions were
determined as defined in Section III-A, with w” and ' determined
experimentally as well.

Q(s¢,a)
e T

w(sp,a) = | ——F5= |Vac A “)
(ZiileQ(‘trv 7,))

All parameter values used in testing are shown in Table I. Some
parameters were gradually changed over the course of simulated agent
training, and are indicated by an arrow pointing from the initial value
to the final value.

TABLE 1
NETWORK AND AGENT HYPERPARAMETERS

Name Description Value

ol High-level completion reward 50
o Low-level completion reward 0
@ Neural network learning rate 0.0001
~h High-level discount factor 0.85
~ Low-level discount factor 0.85
€ Exploration factor 0.6 — 1.0
P Update target network every 5 steps
b Training batch size 200
Th High-level agent Boltzmann temperature 200
7t Low-level agent Boltzmann temperature 8

max |¥| Max replay memory size 50000

min || Min replay memory size for training 100

For our simulated student testing, our hierarchical deep Q-learning
agents and simulation setup were coded in Python [18] using Keras
[19] to create the deep Q-networks for the high- and low-level agents.
The networks used had an input layer with the size of the state
vector (7 for high-level, 15 for low-level), two dense layers with
the relu activation function with 60 and 40 neurons, respectively, and
then a dense output layer sized to the number of possible actions
(|A"| = 7 for high-level, |A}| = 12 for all low-level) with the relu
activation function. Finally, for our grading function, A, we used a
trained random forest classifier to classify student feature vectors into
integer grade values in the range [1, 3].

B. Results

Initial results focused on early performance of a single-agent deep
Q-learning approach compared to the proposed hierarchical agent
structure. We compare the cumulative reward obtained by both agents
per episode (one instance of the game, from start to finish) over
5000 episodes. We also compare the rolling average of the cumulative
reward, with both shown in Figure 3.

By observation, the hierarchical approach has visibly improved
average reward in the early stages of training. By the Mann-Whitney

737

Authorized licensed use limited to: Rowan University Libraries. Downloaded on September 18,2023 at 03:16:30 UTC from IEEE Xplore. Restrictions apply.

500
i 400

{300
\ Single-agent
200))
\ Hierarchical
| — Single-agent (avg)

Lo lf — Hierarchical (avg)

=3
g

-100

Cumulative Reward
per Episode

-2000 200

I 1000 2000 3000 4000 5000 1 1000 2000 3000 4000 5000

Training Episode

Fig. 3. Single-agent RL vs hierarchical RL cumulative reward obtained per
episode.

U test, the cumulative reward showed a significant improvement in
the hierarchical agent’s performance with an effect size » = 0.8101.
Figure 4 compares the number of steps taken to complete each
episode for the single-agent and hierarchical approach, as well as
the rolling average of the number of steps taken. For the hierarchical
agent, number of steps taken is cumulative over the high- and low-
level agents. In step size, the hierarchical agent showed a similar
level of improvement with an effect size » = 0.6113.

Single-agent
Hierarchical
—Single-agent (avg)

—Hierarchical (avg)

Cumulative Steps
per Episode

11000 2000 3000 4000 5000 1 1000 2000 3000 4000 5000

Training Episode

Fig. 4. Single-agent RL vs hierarchical RL total steps taken per episode until
completion.

This preliminary testing shows the improvements made by the
proposed method over the method used in our prior work. The new
multi-agent approach with deep Q-learning allows for the agent to
perform better in the early stages of training, demonstrating that, at
least for simulated students, the system can be effective for student
assistance with small amounts of data.

V. CONCLUSION

Our proposed work focuses on developing a general-purpose RL
system to provide automated, adaptive content in an educational
serious game. We also put a heavy focus on operating in low-
data environments. To that end, our proposed method extends our
prior work with learning-embedded attributed Petri nets to add a
hierarchical Markov decision process. We also adapt deep Q-learning
as a reinforcement learning approach to optimize the aforementioned
Markov decision process. All these methods combine to create
a modular and extensible model for adaptive serious games with
automated learning optimization and high data efficiency. Through
a student simulation, we show a proof-of-concept of the proposed
system on an existing game. We demonstrate that an agent using the
proposed method achieves better average reward and more efficient
operation in terms of steps taken to reach episode completion. Further,
the proposed method provides improved performance in the early
stages of training and more consistent performance overall.

To expand upon this research, we intend to focus on collecting
classroom data for system verification. Other future areas of explo-
ration for this work we will explore are more advanced methods
for RL to further improve agent performance such as learning from
expert-generated policies. Other emerging methods such as transfer
learning and more advanced human-like simulations could also serve

to further improve data efficiency and lead to overall better adaptive

system performance.

REFERENCES

[1] L. Shoukry, S. Gobel, and R. Steinmetz, “Learning analytics and serious
games: Trends and considerations,” in Proceedings of the 2014 ACM
International Workshop on Serious Games, ser. SeriousGames ’14.
New York, NY, USA: Association for Computing Machinery, 2014, p.
21-26. [Online]. Available: https://doi.org/10.1145/2656719.2656729

[2] D. Hooshyar, M. Yousefi, and H. Lim, “A systematic review of
data-driven approaches in player modeling of educational games,”
Artificial Intelligence Review, vol. 52, no. 3, pp. 1997-2017, Oct 2019.
[Online]. Available: https://doi.org/10.1007/s10462-017-9609-8

[3] K. Chrysafiadi and M. Virvou, “Student modeling approaches:
A literature review for the last decade,” Expert Systems with
Applications, vol. 40, no. 11, pp. 4715-4729, 2013. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S095741741300122X

[4] J. Krath, L. Schirmann, and H. F. von Korflesch, “Revealing
the theoretical basis of gamification: A systematic review
and analysis of theory in research on gamification, serious
games and game-based learning,” Computers in Human
Behavior, vol. 125, p. 106963, 2021. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0747563221002867

[5] J. Liang, Y. Tang, R. Hare, B. Wu, and F.-Y. Wang, “A learning-

embedded attributed petri net to optimize student learning in a serious
game,” IEEE Transactions on Computational Social Systems, pp. 1-9,
2021.

[6] R. Zurawski and M. Zhou, “Petri nets and industrial applications: A
tutorial,” IEEE Transactions on Industrial Electronics, vol. 41, no. 6,
pp. 567-583, 1994.

[7]1 C. Watkins, “Learning from delayed rewards,” 01 1989.

[8] T. Rashid, M. Samvelyan, C. Schroeder, G. Farquhar, J. Foerster,
and S. Whiteson, “QMIX: Monotonic value function factorisation
for deep multi-agent reinforcement learning,” in Proceedings of the
35th International Conference on Machine Learning, ser. Proceedings
of Machine Learning Research, J. Dy and A. Krause, Eds.,
vol. 80. PMLR, 10-15 Jul 2018, pp. 4295-4304. [Online]. Available:
https://proceedings.mlr.press/v80/rashid 18a.html

[9] J. Zhao, Y. Zhao, W. Wang, M. Yang, X. Hu, W. Zhou,
J. Hao, and H. Li, “Coach-assisted multi-agent reinforcement learning
framework for unexpected crashed agents,” 2022. [Online]. Available:
https://arxiv.org/abs/2203.08454

[10] Y. Yang, R. Luo, M. Li, M. Zhou, W. Zhang, and J. Wang,
“Mean field multi-agent reinforcement learning,” in Proceedings
of the 35th International Conference on Machine Learning, ser.
Proceedings of Machine Learning Research, J. Dy and A. Krause, Eds.,
vol. 80. PMLR, 10-15 Jul 2018, pp. 5571-5580. [Online]. Available:
https://proceedings.mlr.press/v80/yang18d.html

[11] Z. Zhou and G. Liu, “Romfac: A robust mean-field actor-critic
reinforcement learning against adversarial perturbations on states,”
2022. [Online]. Available: https://arxiv.org/abs/2205.07229

[12] C. J. C. H. Watkins and P. Dayan, “Q-learning,” Machine Learning,
vol. 8, no. 3, pp. 279-292, May 1992. [Online]. Available:
https://doi.org/10.1007/BF00992698

[13] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou,
D. Wierstra, and M. A. Riedmiller, “Playing atari with deep
reinforcement learning,” CoRR, vol. abs/1312.5602, 2013. [Online].
Available: http://arxiv.org/abs/1312.5602

[14] M. Brittain and P. Wei, “Hierarchical reinforcement learning with deep
nested agents,” CoRR, vol. abs/1805.07008, 2018. [Online]. Available:
http://arxiv.org/abs/1805.07008

[15] T. G. Dietterich, “Hierarchical reinforcement learning with the MAXQ
value function decomposition,” CoRR, vol. ¢s.L.G/9905014, 1999.
[Online]. Available: https://arxiv.org/abs/cs/9905014

[16] P.Dayan and G. E. Hinton, “Feudal reinforcement learning,” in Advances
in Neural Information Processing Systems, S. Hanson, J. Cowan, and
C. Giles, Eds., vol. 5. Morgan-Kaufmann, 1993. [Online]. Available:
https://proceedings.neurips.cc/paper/1992/file/d14220ee66aeec73c49038
385428ec4c-Paper.pdf

[17] N. Cesa-Bianchi, C. Gentile, G. Lugosi, and G. Neu,
exploration done right,” 2017.

[18] G. Van Rossum and F. L. Drake, Python 3 Reference Manual.
Valley, CA: CreateSpace, 2009.

[19] F. Chollet et al., “Keras,” https://keras.io, 2015.

“Boltzmann

Scotts

738

Authorized licensed use limited to: Rowan University Libraries. Downloaded on September 18,2023 at 03:16:30 UTC from IEEE Xplore. Restrictions apply.

