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Abstract—In this paper, the optimal placement and dynamic
resource allocation problem has been investigated for multi-
UAV enhanced reconfigurable intelligent surface (RIS) assisted
wireless network with uncertain time-varying wireless channels.
This paper aims to stimulate the potential of RIS by adding
mobility to RIS through unmanned aerial vehicles (UAV). A
novel UAV optimal placement and dynamic resource allocation
technique needs to be developed jointly. A novel online rein-
forcement learning based optimal resource allocation algorithm
has been designed. Firstly, a deep Q-learning based K-means
clustering algorithm is utilized to optimize the deployment
of the multi-UAV. Then, an online actor-critic reinforcement
learning algorithm is developed to learn the optimal transmit
power control as well as mobile RIS phase shift control policy.
Compared with conventional learning algorithms, the developed
algorithm can learn the optimal resource allocation and multi-
UAV placement for mobile RIS-assisted wireless networks in real-
time even with uncertain and time-varying wireless channels.
Eventually, numerical simulations are provided to demonstrate
the effectiveness of developed schemes.

Index Terms—Reconfigurable intelligent surfaces, Unmanned
aerial vehicles, dynamical channel, Reinforcement Learning

I. INTRODUCTION

The future smart city will be densely populated by a variety
of entities to perform a broad range of tasks such as sensing,
communicating, collaborating with human beings in the smart
city and so on. It poses a serious challenge to the next
generation of wireless networks with application to smart city
since the existing network is difficult to provide reliable and
resilient service for a large number of deterministic and mobile
users with different quality-of-service (QoS) requirements.
Moreover, the uncertainty and limited resource in the smart
city network makes the challenge even harder to overcome.
During the past decades, a variety of new techniques have been
developed to tackle this issue [1]. Among those techniques,
emerging reconfigurable intelligent surface (RIS) has been
considered one of the most promising technology.

In a highly dynamic and uncertain environment such as large
city, integrating RIS into wireless network can produce the
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multipath diversity gain to improve the network performance
since the RIS can reflect signals to multi-users simultaneously
by appropriately designing its phase shifts. Different from
other similar techniques such as relay-enhanced wireless net-
works, the RIS-assisted wireless network cannot only upgrade
the wireless network quality but also effectively reduce the
installation cost as well as network power consumption. Most
relay units used in relay-enhanced networks are complex to
install and require more extra power due to their active data
processing [2]. RIS units don’t need an extra power supply
due to their passive data processing.

Unmanned aerial vehicles (UAVs) have been widely adopted
to enhance the adaptivity of wireless communication by using
their mobility [6]. Recently, UAV has been considered as one
promising technique to enhance the adaptivity of RIS-assisted
wireless networks.

To fully stimulate the potential of UAV and RIS, this paper
investigates multi-UAV placement optimization along with re-
source allocation optimization in multiple UAV-enhanced RIS-
assisted wireless networks with uncertain and time-varying
wireless channels. With the rapid changes in the large city’s
cyber infrastructure, the developed optimal solution aims to
ensure the optimality, reliability, and resilience of the multi-
ple UAV-enhanced RIS-assisted wireless network for densely
distributing multi-users in large city. The major contributions
of this paper are given as follows:

e A harsh, time-varying, and uncertain environment has
been considered. To adapt to the time-varying wireless com-
munication environment and provide robust and stable com-
munication service, a state-space model has been developed
to represent the dynamic resource allocation system.

e A finite horizon optimal resource allocation problem
has been formulated along with UAV optimal placement.
Using dynamic programming [11] and K-means clustering
technique, we can find the best UAV placement and further
obtain the optimal transmit power control and RIS phase shift
control solution.

e A two-phase online optimization algorithm has been
designed for UAV placement and mobile RIS-assisted
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Fig. 1: Multi-UAV enhanced RIS-assisted wireless network in large city

wireless network resource allocation. At phase I, A deep
Q learning based K -means clustering algorithm is developed
to solve the UAVs’ optimal deployment. At phase II, a novel
online actor-critic reinforcement learning algorithm has been
developed to learn the optimal resource allocation for mobile
RIS-assisted wireless networks.

II. SYSTEM AND CHANNEL MODEL
A. System Model

Considering the UAV-enhanced RIS-assisted wireless net-
work as shown in Figure 1, there is base station (BS) with
N antennas, K UAV-enhanced RIS relays, where RIS is
consisting of M element units, and L single-antenna users
(UEs). Due to the harsh communication environment, the
direct signal links from BS to users are blocked. This is a two-
hop communication system, which means that the BS needs to
transmit signals through the UAV-enhanced RIS relay to users.
Then, at time ¢, the received signal at user [ with[ = 1,2, ..., L
can be presented as

yi(t) = hpy (1) (O Hp R, (t)X(t) + ni(t), (D

where x(t) € CM*! denotes the transmitted signal over
the [-th subcarrier, y;(t) denotes the received signal, n,(t)
is the additive white noise following normal distribution
CN(0,0’?), HBR,l(t) € CNXM and hRU,l(t) e CxN
represent channel gain matrix from BS to RIS relay and
from RIS relay to user respectively at time ¢. Moreover,®;(¢)
is a diagonal matrix applied by RIS reflecting elements.
Specifically, ®;(¢) for user [ at time ¢ is defined as ®;(t) =
diag[e?®11®) ei02.(8) eifrai(t)] ¢ CM*M [n addition, the
transmitted signal x(t) at time ¢ can be further represented
as 2(t) = Y, /(0 (1)s1(1) with pi(1). (1), 51(¢) being
the transmit power, beamforming vector at BS and transmitted
data to user [ respectively. Moreover, transmit power at BS is
limited and needs to satisfy the following constraints, i.e.

E[x[*(t)] = tr(P()Q™ (1)Q(t)) < P, 2)

where P, denotes the maximum transmit power, Q(¢) is
defined as Q(t) = [qy(t),...,qz ()] € CM*L and P(t) =
diag[p,(t), ..., pr ()] € CP*F.

B. Multi-UAV enhanced RIS-assisted wireless network channel

There are two types of dynamic wireless channels that need
to be modeled in the system, which are wireless channels
between base station (BS) to RIS relay, Hpr(t), and wireless
channel from RIS relay to individual user (UE), hry;(t) with
l€ll,2,..., L] those two types of dynamic wireless channels
can be modeled mathematically as follows
BS to UAV-enhanced RIS relay channel model:

Hpr(t) = V/Ber(t) x a(dr,0r,t) x a (¢5s,0ps,t) (3)

where /fSpgr(t) denotes the time-varying BS to RIS
relay channel gain, a(¢ps,0ps,t) and a(dg,0r,t) rep-
resent the multi-antenna array response vectors used for
data transmission from BS to RIS relay respectively, with
a(¢ps,0ps,t) = [a1(¢Bs,08s,t),...,an(¢Bs,0ps,t)]" € CV*!
and a(d)R]s, Or, t) = [a1(¢R, Or, t), . aM(gbR, Or, t)]T e cMx1,
Since we consider one BS and one UAV-enhanced RIS-assisted
wireless network relay for one users cluster in this paper, BS
to RIS relay wireless channel has been shared by all the users.

UAV-enhanced RIS relay to U E; wireless channel model:

hru(t) =/ Bru.(t) x a (¢rui1, OrU 1, t) 4

where +/Sru,(t) describes the time-vary channel gain from
RIS relay to user [ at time ¢, [ € [1,..., L], a(¢rui, Oru,t)
is the multi-antenna array response vector used for data
transmission from RIS relay to user ! with a(¢ru 1, Oru,,t) =
[a1(¢rUL, ORUL, E)s <o ant (PRUL, OROy, )] T € CMXL

Considering non-line of sight (NLOS) communication
wireless communication system, the time-varying Signal-to-
Interference-plus-Noise Ratio (SINR) at user [ with [ €
(1,...,L) can be obtained as

()| (i (1) 2ot Hpra(t))ay, ()]
l )
i 0 (O, ()@ Hp R (1)a; (1)]? + o7 “
Furthermore,the real-time system Spectral Efficiency (SE)
in bps/Hz can be represented as

n(t) =

L
R(t) = loga(1+ (1)), (6)
=1

II1. PROBLEM FORMULATION
A. Multi-UAV Optimal Placement

To optimize the multi-UAV placement, an optimal path
planning design problem can be formulated after measuring
the path gain and time delays among nodes.

A K-means clustering method is adopted to group a large
number of distributed wireless mobile users beforehand. Users
are divided into ¢ clusters and obtain the corresponding centers
in different clusters, i.e. centery, ..., centero. Then, UAVs that
carried RIS are assigned to different clusters and aligned with
relevant cluster centers to maximize the coverage.

Under the complex environment and interference between
each other, it is critical to design the novel power allocation
and phase shifting maximize the communication quality.
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B. Resource allocation for multi-user within the cluster

The total power dissipated in the o-th cluster in which
including U users concludes the BS transmit power(p,),
hardware static power at BS(Pgg ), RIS relay(Pg ) as well
as at user equipment(Pyg ). Using this consumption, the
total power operated on the multi-UAV enhanced RIS-assisted
wireless network of o-th downlink cluster is defined as

U
po—total(t) - Z(ﬁpu(t) + PUE,u(t)) + PBS,o(t) + PR,o(t)7 (7)

u=1

where ¢ = v with v being the efficiency of the transmit
power amplifier. v = [1,..., U] presents the user numbers of
cluster s. The total power for the entire system is

o
Ptotal(t) = Z Po—total (t) (8)
o=1

Similar to [12], Considering (7) as the denominator of the
energy efficiency (EE) function, then the EE performance
NeE = (B - R)/Piotar With B presenting the Bandwidth, can
be obtained using (6) and (7) as

By loga(1+7u(t)

suml_; (Epu(t) + Pup,u(t)) + Ps,o(t) + PR,o(t)(’g)

The goal is to maximize the energy efficiency ngg(t)
and minimize the power consumed by jointly optimizing the
transmit power P = [p; (t), p2(¢), ..., pv (t)] from BS and phase
shift matrix ® = [¢1(t), Po(t), ..., ()] from RIS.

Considering the transmit power P(¢) and RIS phase shifts
®(t) as two system states in the multi-UAV enhanced RIS-
assisted wireless network, the dynamics of system resource
allocation can be represented as

P(t+1) = P(t) + up(t) (10)
B(t+1) =B(t) + uo(t) (11)

with P € CU*V, & € CM*M being UAV-enhanced RIS-
assisted wireless network states, and up € CE*XX yg €
CM>*M being resource allocation control policy, i.e. transmit
power control policy and RIS phase shifts control policy. Next,
the resource allocation finite horizon cost function can be
defined as

nee(t) =

VP, ®,t) = ZFT(P,Q,uP,ucp,T)
7r . 1 (12)
= 2{(”(13(7)52(7) Q(7))) + 155 (P, B, 7)

+up(1)Rpup(r) + ug (1) Reus ()}

where 7(P, ®,up,us,t) = L(P,®,t) + ub(t)Rpup(t) +
ul(t)Rouqe(t) is positive definite finite horizon cost-to-
go function, including L(P,®,t) representing the trans-
mit power cost as well as energy efficiency cost and
ub(t)Rpup(t),ul (t)Reus(t) representing the cost of trans-
mit power control and RIS phase shifts control respectively,
nee(P, ®,t) is positive energy efficiency function that defined
in Eq. (9), Rp, Ry are positive definite weighting matrices for
transmit power control and RIS phase shifts control, and T
is the finite final time.

Next, assuming that the equivalent channel matrix
(HZ,(t)®Hpr(t)), has a right inverse, the perfect inter-
ference suppression is achieved By setting the zero-force
precoding matrix to Q(t) = (Hpy(t)®(t)Hpr(t))™ with
Hpy (t) = [y ()7 iy, hrox()T]T € COM [12],
Hpr € CM*N_ Replacing Q(¢) in (12), then cost function
can be rewritten as

Tr 1
T
V(P,®,1) = ; {m +up(1)Rpup(r)

+ug (7) Raua () + tr((Hiy (1) ®(7)Her (7)) *
P(r)(Hru(7)®(7)Her (7)) 13
According to the classic optimal control theory [13], the
optimal cost function and optimal transmit power control
policy and RIS phase shifts control policy can be derived as

V*(P,®,t) = min V(P,®,1) (14)
us,up

{u},up} =argmin V(P, ®,¢) (15)

Moreover, according to Bellman’s principle of optimality [14],
the finite horizon optimal cost function can be represented
dynamically as

V*(P,®,t) = min {r(P,®,t)} + V*(P,®,t+1) (16)
ug,up

Eq. (16) is also well-known as Bellman Equation. Using

Bellman Equation along with optimal control theory [13],

optimal control policies, i.e. optimal transmit power and RIS

phase shift, can be solved via dynamic programming [15] as

1oV (P, ®,t+]1)

R N S 17
., 1 v, ®,t+1)
R (eI 1o

Substituting Egs. (17) and (18) into Bellman Equation (16),
we obtain the Hamilton-Jacobi-Bellman (HJB) equation as
18V*(P, P.t+1)
4  OP(t+1)
OV(P. @, t+1) 10VH(P, @, t+1)
OP(t+1) 4 0P(t+1)
L OVEP, Dt + 1)
R 1 ) )
“ e TTH@(t 1 1)

VP, ®,t) = L(P*, ®* 1) +

x Rp

+V*P,®,t+1)
19)

IV. TWO-PHASE MULTI-UAV PLACEMENT AND
RESOURCE ALLOCATION OPTIMIZATION

A. Phase I: Deep Q Learning based Intelligent Multi-UAV
Placement for UAV-enhanced RIS-assisted wireless network

To adopt deep reinforcement learning for optmizing the
multi-UAV placement in UAV-enhanced RIS-assisted wire-
less network, the action space is defined as A,y =
[ai,movingvai,rotation]vi = 1727"'71(- Qi moving vector in-
cludes the moving options corresponding to the mov-
ing direction and moving distance. @; rotating VECtor in-
cludes the rotation options of relay i. Then, the reward
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function at relay i can be defined as Reward: r;(t)
g (3 f(relay;, User; o), f(relay;, source)). f(x) is the com-
munication quality comprehensive evaluation function be-
tween two nodes, also consists of path gain and time delay
at receiver, it can be obtained through analyzing the data col-
lected by channel measurement. g(x) is the reward evaluation
function to summarize overall communication quality for the
developed novel relay network.

To reduce training complexity, we only set orientation in-
formation and relative coordinate position of current relay, the
sequence s; ;, as preprocessing input instead of the entire map
image. the preprocessing function ¢ from deep reinforcement
learning development here gathers a last series of history and
stacks them to produce enough input to the deep Q network.
Next, the detailed algorithm is given next in Algorithml.

Algorithm 1 Deep Reinforcement Learning Based Intelligent
multi-UAV Placement (Phase I)

1: Do K-means clustering for all users positions, get centers
for different clusters centery...centerp

2: Assign all mobile UAV relay and base stations their own
cluster centers.

3: Do Deep Q Network (DQN) learning within each UAV-
enhanced RIS-assisted wireless network relay 7 network.

4: Set memory pool D, for each UAV-enhanced RIS-assisted
wireless network relay. Set action-value function @; for
each UAV-enhanced RIS-assisted wireless network relay
with random weights.

5: for episode =1, M do
6:  Set sequence s; 1=x;,1 and get ¢; 1 = (Si1)
7.  for t=1, T do
8: With probability € randomly get a; ¢ from A,ciqy
9: Otherwise select a;; = maz,QF (¢(si)),a;0)
10: Execute action a;; in emulator and get reward r; ;
11: ri(t) =g (O f(relay;, User; ), f(relay;, source))
12: Set 8;. 441 = Si,t, ¢, T;¢+1 and preprocess
¢i,t+1 = ¢(5i,t+1
13: Store transition (@ ¢, @; ¢, 7 ¢, Pit+1) in D;
14: Sample random minibatch of transitions
(i i Tijs Gijr) from D;
s Set yi; — Tij for termm/c-tl i j+1
. ri; +ymaz, Q(¢i 11,0 ;6) else
16: Perform a gradient descent step on
(yi,j - Q(Qbi,jaai,j; 9))2
17:  end for
18: end for

B. Online Actor-Critic Reinforcement Learning Based Opti-
mal Resource Allocation Design

1) Actor-Critic RL Structure:

Adopting the Actor-Critic RL structure for optimal resource
allocation in RIS-assisted system, one Critic component along
with two Actor components have been designed, i.e.

Critic (Cost Function): To learn the optimal cost function
V*(P,®,t) along with time by using the real-time RIS-
wireless system state P(¢), ®(t). The Critic component will be
tuned through Bellman Equation since optimal cost function
is the unique solution to maintain the Bellman Equation.

Actor 1 (Transmit Power Control): To learn the optimal
transmit power control u(¢) along with time by using Eq.
(17) along with the learned optimal cost function from Critic.

Actor 2 (RIS phase shifts Control): To learn the optimal RIS
phase shifts control u}(¢) along with time by using Eq. (18)
along with the learned optimal cost function from Ceritic.

r . CriticNN ‘
- - T €
/ lf- VieWy; ¥y |
V; / v,l
! /
Actor NN 1 Actor NN 2 Up i | UAVEnhancedRIS- |[p, ]

assisted wireless
network

i

= T
Ug i < Wyoi Pusi

=
p,i <~ Wupi Puri

v

Fig. 2: actor-critic-structure.

The developed Actor Critic RL for the optimal resource allo-
cation design in UAV-enhanced RIS-assisted wireless network
is shown in Figure 2. Along with time, the UAV-enhanced
RIS-assisted wireless network provides real-time system states
to both Critic and Two Actor Components. Then, the Critic
NN can update learned cost function value to further hold
the Bellman Equation. Meanwhile, the updated optimal cost
function value from Critic is delivered to two Actor compo-
nents. The estimated optimal transmit power and RIS phase
shifts control policies can be updated. It is important to note
that the estimated transmit power and RIS phase shifts control
policies can converge to optimal solutions while learned cost
function value is converging to optimal cost function value.

2) Actor-Critic NN based Optimal Resource Allocation:

To learn the optimal cost function as well as optimal
transmit power control policy and optimal RIS phase shifts
control policy, Neural Networks have been used along with
Actor Critic RL algorithm. Specifically, according to universal
approximation theorem [16], NN can be used to present the
time based functions V*(P, ®,¢), uh(t), uj(t) as

VP, ®,t) = Wiy, (P, ®,1) + ep (20)
up(P,®,t) =W, ;0 p(P,®,t) + €, p 1)
uy(P,®@,t) =W, W, 0P, ®,t) +eno (22

with Wy € Cv*1, W, p € ClerxU W, 4 € CluoxM
being the target NN weights for Critic NN and Two Actor
NNs respectively, ¥y (t) € Cv*l W, p(t) € ClurxU,
W, 5(t) € Clws*M being NNs activation functions, and
ev(t) € C, €, p(t) € CV*Y, €,4(t) € CM*M being NNs
reconstruction errors. Since those optimal values cannot be
obtained directly, we estimate them through Critic NN and
two Actor NNs as

V(P ®,1) = W (t)ihy (P, ®,1) (23)
ip(P,®,t) = W, p(t)®, p(P,®,1) (24)
g (P, ®,t) = W, ()T, o(P, &, 1) (25)

where Wy (t) € Cv*', W, p(t) € CrXU W, 4(t) €
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Clw.eXM peing the estimated NN weights for Critic NN
and Two Actor NNs respectively. To ensure the estimated
values from NNs can converge to ideal optimal solutions, the
appropriate NN update laws are needed to force the estimated
NN weights to converge to targets.

According to classic optimal control theory [13], the optimal
cost function is the unique solution to maintain the Bellman
Equation, i.e.

0=rP*, & t)+V*P,&,t+1)— VP, &,t) (26

However, by substituting the estimated cost function from
Critic NN into Bellman Equation, Eq. (26) will not hold and
lead to residual error epg(t) defined as

epp(t) =r(P,®,t) + V(P,®,t+1) — V(P,®,t)
= T(Pa ‘Pa t) + W$(t)A¢V(P7 ‘I,7 t)

with Atpy, (P, @,1) = Py (P, @, 1 + 1) — by (P, @, 1).

To force the estimated cost function to converge to the
optimal cost function, the estimated Critic NN should be
updated to reduce the residual error. Hence, using the gradient
descent algorithm, the update law for Critic NN can be
designed as

27

AUy (P, ®, t){egr — (P, ®,1)}"

7 t 1) = i t
Wy (t+1) = Wy (t) + av 1+ AUy (P, ®,1)|2

(28)

where ay is Critic NN tuning parameter with 0 < ay < 1.

Using the estimated cost function from Critic NN as well
as Egs. (17) and (18), two Actor NN estimation errors are

T 1,0V (P,®,t+1)

u 1)=WwW, v, p(P, P, = _—

eurplt+1) =W p(0)%ur (P ®,0) + 5 Ry T2t
(29)

. 1,0V (P, ®,t+1)
. 1) =W, o), pP,®, 2 T et 1)
ewa(t+1) = W a(O)®ur®, &0+ SRy =500

(30

Using two Actor NN estimation errors, the two Actor NN
weights can be updated as

‘II(P7 ¢7 t)eZ,P(t + 1)
1+ (@, p(P,®,1)[?

Wu7p(t + 1) = Wu7p(t) — QP

€2y

TP, &, t)el (t+1
Wu,\ll(t + 1) - Wu,\Il(t) — Qi ( ) "IJ( )

1+ %, p(P, @, 1)

where o, p,ay, e are two Actor NNs tuning parameters with
0 < ay,p,aye <1

Next, the structure of the actor-critic network is shown in
Figure 2.The complete algorithm is shown in algorithm?2.

V. SIMULATION
A. Efficiency of UAV Deployment

As Figure 3 shows, the UAV-enhanced RIS-assisted wireless
network has one base station, and three mobile RISs carried by
UAV for covering 50 distributed wireless users in the uncertain
and dynamic wireless communication environment. The de-
veloped deep Q learning based K -means clustering algorithm
can learn the optimal placement for UAVs to maximize the
potential for having a large wireless coverage.

(32)

Algorithm 2 Actor-Critic RL based online optimal power
allocation and phase shift control (Phase II)

1: Acquire agent number

2: Initialize NN weights WV,,»,VAVU, Pis Wu)@’i randomly
3: Initialize eBEg i, €y, P> €u,®,; t0 be 0O

4: while True do

5:  Update NNs’ approximation errors by Eq. 27, Eq. 29
and Eq. 30, i.e.,

eBE, < Ti+ W\C/F,iva,i
19V
P;
0V
* 0P,
6:  Update critic NN weights by solving Eq. 28, i.e.,

AUy {epm,;i —r:i}"

AT 1 __
ewp Wy p;Wypi+ iRP

AT 1
eu,d,i < WayaiWur:+ §R

WV,i = WV,i + ay

L+ |[AWy,?
7. Update power actor NN weights by solving Eq. 31, i.e.,
WuPi :Wu Py — Oy PzLE’P’Z
o o LA ([ pall?
8:  Update Phase actor NN weights by solving Eq. 32, i.e.,
Wuqli:wu‘lli_au\lli%eiu%
o o UL ([P p?

. - T

9: Up; < W%P,i‘:[lu,l:’,i

10: ﬁ<I>,i — Wu7<pvilI’u,<I>,i

11:  Execute 4p;, 43, and observe new transmitter power
p; and phase shift ®;

12: end while

PRg D

" X % B 3@

(a) t; = 1s (b) ta = 20s (c) t3 = 60s

Fig. 3: Optimal UAV placement for maximizing coverage with mobile multi-users

B. Performance of Online Actor-Critic Reinforcement Learn-
ing based Optimal Resource Allocation

After UAVs are deployed, the developed algorithm can opti-
mize the transmit power control and RIS phase shift control to
stimulate all the potentials of the UAV-enhanced RIS-assisted
wireless network. Firstly, parameters used in optimal resource
allocation are given in Table I. Then the simulation results
under the environment are presented as follows.
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TABLE I: Parameters Descriptions

Parameter Description Value
BW Transmission bandwidth 180kHz
ay learning rate for critic network 0.001

Qy, Py Oy, @ learning rate for actor network 1&2 0.001
Pps circuit dissipated power at BS 9dBW

13 circuit dissipated power coefficients at BS 1.2
Pyg dissipated power at each user 10dBm
P (b) dissipated power at the m-th RIS element | 10dBm

1) Spectral Efficiency and Energy Efficiency with Optimal
Resource Allocation vs. number of BS antennas and RIS units

Figure 4 compares both spectrum efficiency and energy
efficiency with different number of BS antennas, N = 16, 32
and RIS units, i.e. M = 8,16 under power range from 0O to
50 dBm. As shown in Figure 4, increasing BS antenna and
RIS units can enhance the spectrum efficiency but degrade the
energy efficiency since more antennas cost more energy. Due
to limited resource for large number of users in smart city,
maximizing energy efficiency is much more important than
spectrum efficiency.

—— N=16M=8
N=32,M=16

Average EE(Kbit/joule)
Average SE(bps/Hz)

5 10 15 20 25 30 35 40 45 50 55 0 10 20 30 4 50
PrseldBm) Prax(dBm)

(a) Average EE compared with N=16, with

M=8 and N=32, M=16

(b) Average SE compared
N=16, M=8 and N=32, M=16

Fig. 4: Comparison of SE and EE with different number of BS antennas and RIS elements
under equal number of users and UAVs in UAV-enhanced RIS-assisted wireless network

2) Online Learning Performance Eventually, the energy effi-
ciency (EE) process versus time steps has been evaluated. As
shown in Figure 5, EE can be increased along with P(t),
and the developed Actor-Critic RL based optimal resource
allocation algorithm is able to learn the optimal solution within
finite time even under dynamic environment.

Average EE(Kbit/joule)
Average EE(Kbit/joule)
3

8

I ) T aom ww e e 100
steps sps

(a) Instant EE versus time steps

under Par = 20dBm, 22dBm,

24dBm.

(b) Average EE versus time steps
under Par = 20dBm, 22dBm,
24dBm.

Fig. 5: The instant EE and average EE versus time steps
VI. CONCLUSION

In this paper, a novel online Actor-Critic Reinforcement
Learning algorithm has been developed to optimize the UAV-

enhanced RIS-assisted multi-user wireless system within a
finite time. Compared with other existing algorithms, the
developed algorithm can fully stimulate the potential UAV
and RIS by online learning optimal UAV placement as well
as resource allocation policies. Through the deep Q learning
algorithm, UAVs carry RIS to find the best places for covering
multi-user in large city. Then, the online actor-critic reinforce-
ment learning algorithm can learn the optimal transmit power
and RIS phase shift to optimize the wireless network quality,
e.g. energy efficiency, etc., in real-time under uncertainties
from time-varying wireless channels. Through comparing with
existing algorithms in the simulation, the effectiveness of our
developed algorithm has been demonstrated.
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