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Abstract: Automated ontology curation involves developing machine learning models that can learn patterns from sci-
entific literature to predict ontology concepts for pieces of text. Deep learning has been used in this area with
promising results. However, these models often ignore the semantically rich information that’s embedded in
the ontologies and treat ontology concepts as independent entities. Here, we present a novel approach called
Ontology Boosting for improving prediction accuracy of automated curation techniques powered by deep
learning. We evaluate the performance of-our. models using Jaccard semantic similarity — a metric designed
to assess similarity between ontolog§ concepts. "'Sernantic similarity metrics have the capability to estimate
partial similarity between ontology concepts thereby’ making them ideal for evaluating the performance of
annotation systems such as deep learning where the goal is to gétas, close as possible to human performance.
We use the CRAFT gold stagidard corpus for training our architectures ‘and. show that the Ontology Boosting

approach results in substar{ﬂal 1mprovements in the performance of these archltectures

knowledge representation that can be accessed by

humans and computers alike.

have been created for representing knowledge in sub-
domains such as anatomy, human disease, chemicals
and drugs, etc. Scientists and curators now use these
ontology concepts to describe various aspects of bi-
ological objects thereby creating knowledge bases of
ontology annotations. These annotations are critical
for transferring knowledge in free text such as publi-
cations into a computationally amenable format that
can power large-scale comparative analyses. Ontol-
ogy annotation is still largely accomplished via hu-
man curation - a process where scientists manually
read text and select ontology concepts that accurately
represent the information in the text. While there has
been a rapid growth in the number of ontologies as
well as the number of ontology-powered annotations,
ontology curation has not experienced the same level
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Since the 11:1}roduc—e___
tion of the Gene Ontology, over 900 bio-ontologies’

of advances
Automated cur;ttlon methods that «can scale tp the

I pace of pubhshlng aiid ‘Show' efﬁcrency and acérdcy

are direly neede;l The goal of these methods would
be to process, sclentlﬁc literature and mark words or

i _,phrases in text "with one or more ontology concepts
“thereby conductrng automated curation. Automated

curafron too{s can be used as stand-alone approaches
that perform annotation without supervision or pre-
liminary annotators that can make suggestions for hu-
man curators to accept or reject. In either case, it is
important for the models to replicate the process of
a human curator as closely as possible. One of the
ways in which curators select appropriate ontology
concepts is by looking at the concepts in the context
of the ontology including the hierarchy and relation-
ships in the ontology and not as concepts as individual
constructs. This indicates that for automated methods
to be successful at curation, they need to be cognizant
of the ontology structure as well as relationships be-
tween different concepts.

The ultimate goal of automated ontology concept
recognition is to develop intelligent systems that can
understand the ontology hierarchy and make predic-
tions that are cognizant of those relationships. For
example, if a phrase in text corresponds to ontology

Ontology-Powered Boosting for Improved Recognition of Ontology Concepts from Biological Literature.

DOI: 10.5220/0011683200003414

In Proceedings of the 16th International Joint Conference on Biomedical Engineering Systems and Technologies (BIOSTEC 2023) - Volume 3: BIOINFORMATICS, pages 80-90

ISBN: 978-989-758-631-6; ISSN: 2184-4305

Copyright (© 2023 by SCITEPRESS — Science and Technology Publications, Lda. Under CC license (CC BY-NC-ND 4.0)



Ontology-Powered Boosting for Improved Recognition of Ontology Concepts from Biological Literature

concept X in the gold standard, the model should ide-
ally recognize that X corresponds to the phrase. How-
ever, automated models are not perfect and sometimes
make mistakes. In this case, the desired outcome
would be for the model to recognize that semantically
similar concepts to X (such as X’s parent) exist in the
ontology and that those concepts should be associated
with the text. Ontology sentient models take the on-
tology structure or the ontology graph as input while
training and make predictions accordingly. However,
developing accurate ontology sentient models can be
a challenge due to the size and complexities of the on-
tology graph that often results in models that are too
large or require an inordinate time for training.

The automated annotation models previously de-
veloped by this team (Manda et al., 2018; Manda
et al., 2020; Devkota et al., 2022b; Devkota et al.,
2022a) have shown good accuracy in recognizing on-
tology concepts from text. In most cases, these sys-
tems are able to predict the same ontology concept as

the ground truth in the gold standard data achiesing ..

perfect accuracy. However, ontology—based/ﬁedic—
tion systems can also achieve partial accuraCy. This
happens when a model might not predief the exact
ontology concept as the gold standar@’f)ut a related
concept (sub class or super class) théreby achieving

concepts that were highly*{mrelated to the ground

trath.: This; olirThOdels” acédracy could heiimproved- "

by focusing on improving the partial aceygracy fér in-
stances when the model fails to make an exa’ct predlc-

tion. I . Sl . .
“4::. dencies and relatlonshlps between words using en-

E tiched representatlons of character and word embed-

With the above motivation, here, we present an al-
ternative approach called Ontology-powered Boost-
ing (OB) to improve the prediction performance
of automated curation models by using informa-
tion about the ontology hierarchy to post-process the
model’s predictions after training has completed. The
goal of OB is to combine the model’s preliminary
predictions with knowledge of the ontology hierarchy
to selectively increase the confidence of certain pre-
dictions to improve overall prediction accuracy. The
method relies on a computationally inexpensive cal-
culation and avoids bloated machine learning models
that cannot be trained or deployed without requiring
€Nnormous resources.

Note that the contribution of this work is not in
presenting novel architectures for recognizing ontol-
ogy concepts but rather in presenting the Ontology
Boosting approach for further improving prediction
accuracy of our previously published deep learning
architectures. Hence, we will present architecture de-

+-.2009), Textpresso (Miiller et al.,

to ‘achiéve’ reasOnaBie pamal accuracy anﬁ predlcted -

“et 4, 2017; Lyy et all,

tails briefly and will refer the reader to our prior work
for complete details.

2 BACKGROUND

Automated methods of recognizing ontology con-
cepts in literature have been developed in the last
decade and the approaches range from lexical anal-
ysis to traditional machine learning to deep learning
in more recent times.

Text mining tools that use traditional machine
learning based methods employ supervised learning
techniques using gold standard corpora (Beasley and
Manda, 2018). In 2018, we conducted a survey of
ontology-based Named Entity Recognition and con-
ducted a formal comparison of methods and tools
for recognizing ontology concepts from scientific lit-
erature. Three concept recognition tools (MetaMap
(Aronson, 2001), NCBO Annotator (Jonquet et al.,
2004) were com-
pared (Beasley and Manda, 2018).These methods can
form:generaliz_able associations between text and on-
tology concepts léading to improved accuracy.

The rise of deep learning in the areas of image

..__.prdbfems as, Well . Prﬂl}mmary.;research has shawn
that deep lea.rnmg methods:result:if¢ greater: BCEU-

racy for text-based tasks including identifying ontol-
ogy concepts in.. ext (Lample et al.,.2016;. Habibi
2017; Wang et 4l.. 2018;
Manda et al., 2020) Deep learning methods use vec-
tor representations that enable them to capture depen-

dlngSferm ti‘almng data (Casteleiro et al., 2018). We
evaluatédifie feasibility of using deep learning for the
task of recognizing ontology concepts in a 2018 study
(Manda et al., 2018). We compared Gated Recurrent
Units (GRUs), Long Short Term Memory (LSTM),
Recurrent Neural Networks (RNNs), and Multi Layer
Perceptrons (MLPs) and evaluated their performance
on the CRAFT gold standard dataset. We also intro-
duced a new deep learning model/architecture based
on combining multiple GRUs with a character+word
based input. We used data from five ontologies in
the CRAFT corpus as a Gold Standard to evaluate
our model’s performance. Results showed that our
GRU-based model outperformed prior models across
all five ontologies. These findings indicated that deep
learning algorithms are a promising avenue to be ex-
plored for automated ontology-based curation of data.
This study also served as a formal comparison and
guideline for building and selecting deep learning
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models and architectures for ontology-based curation. ing model uncertainty into account. Here we take a
In 2020, we presented new architectures based two step approach, 1) identify candidates for boost-
on GRUs and LSTM combined with different in- ing, and 2) boost the predictions with semantically
put encoding formats for automated Named Entity similar concepts.
Recognition (NER) of ontology concepts from text. In the first step, we identify the candidate pre-
We found that GRU-based models outperform LSTM dictions where the deep learning models had low
models across all evaluation metrics. We also created confidence. = We calculate the uncertainty in the
multi level deep learning models designed to incorpo- predictions based on the last layer softmax out-
rate ontology hierarchy into the prediction. Surpris- put. The layer outputs a probability vector (v; =<
ingly, inclusion of ontology semantics via subsump- p(x0),p(x1),- - p(xm) >, where i is the i’th input to-
tion reasoning yielded modest performance improve- ken and p(x;) probability of tag x;), corresponding to
ment (Manda et al., 2020). This result indicated that all possible tags (0---m), for each token that is pro-
more sophisticated approaches to take advantage of vided as input to the model. In general, we calcu-
the ontology hierarchy are needed. late the argmax(v;) to select the tag with the highest
Continuing this work, a 2022 study (Devkota probability as the model output. Here we leverage the
et al., 2022b) presented state of the art deep learning top k probabilities from v; vector to calculate the un-
architectures based on GRUs for annotating text with certainty in the model’s predictions by evaluating the
ontology concepts. We augmented the models with entropy H (v;¥) using Shannon’s information entropy
additional information sources including NCBI’s Bio- where v;* = p(argmax(v;)).
Thesauraus and Unified Medical Language System The highest predicted probability of the v; prob-
(UMLS) to augment information from CRAFT fof ifi=--... _ability vector and the entropy (H(V;)) value are used
creasing prediction accuracy. We demonstra/te’& that ‘to-determine the threshold for the predictions where
augmenting the model with additional inputpipelines boostin_g__n_e_eds to be applied. The intuition behind
can substantially enhance prediction perfefmance. this is to orily'boost specific predictions where the
Considering that our previous atterapt at creating model has low corfﬁ'dence We choose the thresh-

;;;;;;;;;;;;

mtelhgent predlctlon systems that use the ontology

”ptrroacfh to provld,lng the,f oritology as _rrprlIt to ;
thé deép Tearning ‘odel’ (Wnda et al.,"2020)." In’
2022, we presented an mtelhgent annotation syster
(Devkotd ét7al,; 2022a) that‘uses: the ontolagy, hierat--- 1"

-

chy for training and predicting ontology- eoncep,fs for model S perfong@hce and has a detrlmental effect on
pieces of text. Here, we used a vector of’,se»rnantlc computational Hyerhead.
similarity scores to the ground truth and all AHGESt6Fs:; The secord step boosts the predicted probabili-
in the ontology to train the model. This representation ~“ities of the identified candidates by combining them
allowed the model to identify the target GO term fol- With the mﬂdel predictions of the candidate’s ances-
lowed by “similar” GO terms that are partially accu- tors/subsumers Specifically, for each token i, we
rate predictions. This output label representation also boost the probabilities of top k tags (p(argmaxi(v;)))
helped the model optimize the weights to target more with the probabilities of their subsumers using the fol-
than one prediction label. We showed that our ontol- lowing computation:
ogy aware models can resuh in.2% - 10% (depend- I(xj) = *log(fx/C)
ing upon choice of embedding) improvements over a o plx ) L I(x )
baseline model that doesn’t use ontology hierarchies. 5(xj) = B plx;) * I(xj) + Z p\x -
n=1
where, we first calculate the information content

3 METHODS (I(xj)) of tag x; (0 < j < m, where m is the num-

ber of tags) as the negative log of concept frequency
3.1 Ontology Boosting (fy) over the total number of available concepts (C).

I(x;) is then utilized to calculate the boosted proba-
bility, p(x;), which consists of two components, the

A key component of our approach is to combine the W -
modulated original probability (B * p(x;) * I(x;)) and

prediction of the deep learning architectures with the

graph structure of ontological concepts. Here we supportive parent boosting (Zz M),
“boost” the predictions of the deep learning model by The modulated original probablhty combines the
supporting them with similar predictions while tak- original probability with a weighting factor [ and the
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information content of the concept I(x;). The second 3.3 Data Preprocessing
part of the computation evaluates all of the subsumer

probabilities of x; by individually calculating the The following preprocessing steps are performed to
modulated probabilities of parents (0t p(x}) * I(x})), translate annotations from the CRAFT corpus to the
where x; has d ancestors, while controlhng the 1nﬂu- desired input formats for the deep learning models.
ence by normalizing with the depth factor n. Here ot is Please refer to previous work (Devkota et al., 2022b)
a weighting parameter used to control the influence of for full details.

the ancestor probabilities to the boosting. The calcu-

lated parent probabilities are then summed and added 3.3.1 Sentence Segmentation and Tokenization

to the modulated probability of x;.
Using the aforementioned approach, p(x;) com-
bines the predicted probabilities of the tags with their
ancestor’s predictions from a single model. This is
done only for the GO annotations, where a specific
annotation probability might be boosted to make it the
top prediction if it had supporting parent predictions
from the model. The information content parameter
modulates the effect on the boosted probability by
taking frequency of occurrence of a concept and its
hierarchy into account. o and B parameters can fur-
ther control the emphasis we put on the parental £ofi: ...
tribution vs original probability, where a f3 ya’fue of
0 nullifies the parental contribution and of ]-includes
the parental support completely. As we g0 higher in
the ancestor path, the depth factor n enforces lower
contrlbutlons commg from h1 gher sub’sumers

Annotations for each CRAFT article are recorded
in the corresponding xml annotations file via char-
acter index spans. In order to obtain annotations
per word, we utilize a sentence segmentation library
called SpaCy (https://spacy.io/). First, the segmenter
splits the text into sentences by accounting for sen-
tence end marks (such as periods, exclamation, ques-
tion marks, etc.) and then uses a tokenizer to split
the sentences into individual words (or tokens) by ac-
counting for word boundaries (such as space, hyphen,
tab, etc.).

332 10B Tagging

Each extracted.\}(/'ord/t_qken is mapped to a GO term or
an out- of concept annotai't'ion Each token is mapped

3 ar; : 31 to md,icaiﬁ the

fo'r a; _n ri':ar_a otat-ion_

SIS

thiéshold (H ( ')) Yo dhd’ B f6” midximize the “modet

prediction accuracy. Spemﬁcally, we utilize Tree-
structyred: Pafzen. Estiiatofs (TPE) (Bergstta.et-ak ;- SITh B i
2013) approach to derive the optimal values for/each POS taggmg locﬂ<s at the contextual 1nformat10n of
of parameters for maximizing our objectlve’,functlon the word base(_ix_on the words surrounding it in a sen-
The objective function in the experiment is défined 07, tence or a phf;{',s'e Here we used the SpaCy POS tag-
maximize the mean semantic similarity. o and [ are f"'f":'ger to evaluaté and tag the tokens of sentences with

-

evaluated with continuous values between 0.0 to 1.0, 15 pa;rgs Qf gpeech tags — adjective, adposition (such
while k was evaluated for values between 1 - 10. The as - in,toy; durlng) adverb, auxiliary (such as - is, has
range of entropy was defined to be continuous values done, will do, should do), conjunction, coordinating
ranging from 0.0 to the highest value of entropy of the conjunction, determiner, interjection, noun, numeral,
top k predictions for each token. particle, pronoun, proper noun, punctuation, subor-
We demonstrate the efficacy of the Ontology dinating conjunction, symbol, verb, other (not anno-

Boosting approach on two deep learning architectures tated to any of the others), and space.
from our previous work (Devkota et al., 2022b; De- We represent character level aspects of a token
vkota et al., 2022a). using character encodings. These encodings repre-
sent upper-case and lower-case characters with ‘C’ or
3.2 Training Dataset ‘c’ respectively. Numbers are represented using an
‘N’ and punctuation (such as commas, periods, and

This study uses GO annotations from version v4.0.1 dashes) are retained in the encoding.

(https://github.com/UCDenver-ccp/CRAFT/releases/
tag/v4.0.1) of The Colorado Richly Annotated Full 3.34 BioThesaurus Encoding
Text Corpus (CRAFT) (Bada et al., 2012), a manually
annotated corpus containing 97 articles each of which
is annotated to 10 ontologies.

One of the architectures tested in this study uses exter-
nal information from existing large scale knowledge
bases. The first data source we use is BioThesaurus
(Liu et al., 2006), which is a database of protein and
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gene names mapped to the UniProt Knowledgebase.
If a token is present in the database, we map if it iden-
tifies as a protein name, biomedical terms, chemical
terms, and/or macromolecule.

3.3.5 Unified Medical Language System
(UMLS) Encoding

Next, we query the UMLS (Lindberg et al., 1993)
database for tokens extracted from the articles.
Words/tokens associated with a UMLS term are en-
coded as 1 or 0 otherwise. If a phrase (sequence of
tokens) is found in UMLS, all tokens from the phrase
are encoded as 1.

3.4 Deep Learning Architecture

‘We evaluate our boosting approach on two deep learn-
ing architectures from our prior work (Devkota et al.,
2022b; Devkota et al., 2022a). We describe the two

architectures briefly here and refer the reader t_(;fthe..__

articles for comprehensive details. rd
P
Ve
3.4.1 Architecture 1 - Externally Augmented
Predictor (A)) o
.-"

tations, an,d’ 3) Sequen(;e Modeler Th1s archltcemne,
was orlgmally pubhshed 1n/(D/erota etal., 2022b)

Bi-Directional GRU
150 Units - 0.1 Dropout

Concatenate

5 S Siei
St Swin S
Bi-Directional GRU

150 Units - 0.1 Dropout

Spatial Dropout-0.3

Figure 1: Architecture of a GRU based model for ontology
concept recognition. Figure originally published in (De-
vkota et al., 2022b).

Input Pipelines. Each sentence and each token are
provided six different components as input — 1) to-

ken (X'okemy 2) character sequence (X<hary | 3) token-
character representation (Xtm’jn) 4) parts-of-speech

(Xﬁzﬁ) 5) BioThesaurus (Xz%ng) and 6) UMLS
(XUMLS)

train

The token (Xt’r"cflfl") input, is a sequential tensor

where each token is represented with a high di-

84

mensional one hot encoded vector. Similarly, the
character sequence (X"") is also a sequential ten-
sor consisting of character sequences present in a
word/token.
Character representations (X,rril’;;) and POS tags
t’;gi) are based on words/tokens in sentences. Bio-
thesaurus encodings (X297 contain a four dimen-
sional vector sequence where each token is one hot
encoded for its association with protein, biomedical,
chemical and macromolecule categories. UMLS en-
codings (XYMLS) are also provided as an one hot en-
coded vector sequence, where 1 indicates a token’s

presence and 0 indicates absence in UMLS.

Embedding/Latent Representations. The super-
vised embedding is a bottleneck layer which learns
to map the one hot encoded input into a smaller di-
mensional representation. We used ELMo (Peters
et al., 2018) pretrained embeddings for the thr(ifz;n in-

put. Embeddings in ELMo are learned via a bidi-

--rectional language model where the sequence of the

words are also taken into account. We use the pre-
trainéd model on 1 Billion Word Benchmark, which
consists of appréi(imat_q!y 800M tokens of news crawl
data and has an embeddi.'jig of 1024 dimensional out-

22 Pt embedding vectors;. -

Sequénce Medeler.: - We uttizé BIEGRUE T W To-
cations in the architgcture, first to model the sequence

. of characters present.in ;each-token;-and-a-.second
main Bi-GRU m@del to concatenate 1nput plpehnes

together. After: tﬁe embedding of the characters, they
are passed vi ithe first Bi-GRU (consisting of 150

“/-units) resulting in a sequence representation of the

: PRI e e Fe.
..‘: ST :...-' Toeria e DT e e
el
S S s, i
A
in SNEY .
» - H K
Seii Swiat St

i-a sentence. 10% dropout is used in this
plpehn,e m iggularize the output to prevent overfitting.

The character sequence representation is then con-
catenated with the ELMo embeddings, character rep-
resentation, and parts of speech, and input tensors
from Bio-Thesaurus and UMLS. This concatenated
feature map representing each sentence is then passed
to a spatial dropout, which removes 30% of the 1-D
sequence features from the input to the main Bi-GRU.
The main Bi-GRU processes the feature maps (with
10% dropout), and outputs to a single time-distributed
dense layer of 1774 nodes (representing each of the
output tags).

Architecture hyper-parameters, which include —
supervised embedding shape ({20, 50, 100, 150,
200}), dropout ({01, .2, .3, .5, .7}), number of epochs
({50, 100, 200, 300}), and class weighting, were eval-
vated using a grid search approach. We used Adam
(Kingma and Ba, 2017) as our optimiser for all of the
experiments with a default learning rate of 0.0001.
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3.4.2 Architecture 2 - Intelligent Predictor (A;)

Aj, as shown in figure 2 uses an intelligent predic-
tion system by using the ontology hierarchy structure
as opposed to A; (Devkota et al., 2022a). This ar-
chitecture was originally published in (Devkota et al.,
2022a). The overall structure of the A; is similar to
Ap in terms of the Sequence Modeler and Embed-
ding/Latent Representation components. This archi-
tecture varies in the Input Pipelines provided as well
as how the target vector is represented for training the
model.

Embedding
il

Dimensicn

(e e

8 Sers L
Dimension
Time Distelbuted
S Seinr 5

L3 L S
@A
S Sest A

Bi-Directional GRU Bi-Directional GRU
Embedding 180 Usita- 0.1 Dropons 180 Usita- 0.1 Dropous
=
Dot .
Time Dittted / i

Figure 2: Architecture of an intelligent ontology pr@dlctlon
system based on GRUs. Figure originally pubhshed in (De-
vkota et al., 2022a). A

-
ks

Input Pipelines. We provide threeAr inputs for each
wﬁpd 'a'sentf;ncc 23) (okefi (X]PR), 2y ¢Harkctes ™

Lrain

ard ;bf-speech (X,’jgg’
Alerre ne _,-":;/X -_.-'

Target Vector Representatmn _Target labels to be

prédiceed até typicalfy provided ds-a ore-hot e—ncoded S

vector where the 51ze of the vector equai&the number

W

ies, the output labels correspond to the s Of il GO- “ii-.is similar to 4he sequence modeler in A;. The differ-

':ence,s .are 1n the optimizer, the loss function and the

terms. Typically, the value of the GO term to be pre-
dicted is set to a 1 and the value of all other GO terms
is set to 0. This approach of representing the target
labels, however, does not allow the model to learn the
ontology hierarchy nor does it allow for semantically
similar partial predictions.

In A, we use Jaccard semantic similarity scores
as values in the label vector. The value of the GO
term to be predicted is set to 1 and the value of all
other GO terms in the vector is set to the Jaccard sim-
ilarity score between that term and the GO term to
be predicted. This representation allows the model to
identify the target GO term followed by “similar” GO
terms that are partially accurate predictions. This out-
put label representation also helps the model optimize
the weights to target more than one prediction label.

So for each output tag, the representation is as fol-
lows:

T ==
T AT &T#0
(1)

where, Y is the final target vector, [ is the label

_ {z =1, R
/= [B*jsim((rv‘r)]v

for the word, 7 is the ground truth tag, 7 is the pre-
dicted tag, B is the Jaccard weight, and Jg, is the Jac-

card similarity between 7 and 7. The target vector
Y is computed by comparing the true tag (7) with the
possible tags (‘7), where if the 7 == T == O (no an-
notation) OR a GO annotation then the value is set
to 1. Else, if the ground truth tag (7) is a GO term,
then we calculate its Jaccard similarity to all possible
GO terms and create the target vector by weighting
it with B. We evaluate  values between {0, .25, .5,
1}, where a 3 value 0 indicates the traditional one-hot
vectorization and a 3 value 1 indicates the full Jaccard
score taken into account.

The Jaccard similarity (sp,) of Athe ground truth

concept 7 and a predicted concept T (Pesquita et al.,

) ""'20,(_)9) is calculated as:

) - SEOST)
#S(T)US(T)|
where,.S(T) is;the; set of.ontelogy subsumers. of

pegﬁcally, j;-{m of two concepts (A,,E) Han:on-

@)

“tology is defired gs: Ihze ratioof: the; mumbej Gf ,ci;n—

cepts in the intersection of their subsumers over the

. number of concepts in thelr umon of Ihelr subsumers
: (Pesqurta étal.; 2009) e e

Sequence Modeler The sequence modeler for A

aCthit;O it ft_,inctlon in the final output layer. A soft-
max activation is used in the final layer which normal-
izes the output of the model to a probability distribu-
tion over the output tags. We use the Adam algorithm
with weight decay (Loshchilov and Hutter, 2017) as
our optimiser with an initial learning rate of 0.001.
The learning rate is reduced by a factor of 0.1 after
the first 10000 training steps, and reduced further by
a factor of 0.1 after the next 15000 steps. The weight
decays by a factor of 0.0001 after the first 10000 steps
and further by another factor of 0.0001 after the next
15000 steps. We use sigmoid focal cross entropy
(Lin et al., 2017) as the loss function. Sigmoid focal
cross entropy is particularly useful for cases where we
have highly imbalanced classes. It reduces the relative
loss for easy to classify, higher frequency examples,
putting more focus on harder to classify, misclassified
examples. This loss function uses «, also called bal-
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ancing factor and [ or modulating factor, which are
set to 0.25 and 2.0 respectively.

3.5 Performance Evaluation Metrics

Our primary evaluation metric in this study is seman-
tic similarity. Metrics such as F1 are designed for tra-
ditional information retrieval systems that either re-
trieve a piece of information or fail to do so (a binary
evaluation). However, this is not a true indication of
the performance of ontology-based retrieval or pre-
diction systems where the notion of partial accuracy
applies. A model might not predict the exact concept
as a gold standard but might predict the parent or an
ancestor of the ground truth as indicated by the ontol-
ogy. The parent will have a higher degree of similarity
to the ground truth thereby resulting in high semantic
similarity (but would count as a failure for F1 compu-
tation). Semantic similarity metrics (Pesquita et al.,
2009) designed to measure different degrees of sim-

ilarity between ontology concepts can be leve;ae{ged""-

to measure the similarity between the predicted con-
cept and the actual annotation to quantify/ﬁe partial
prediction accuracy. Here, we use Jaccard similarity
(Pesquita et al., 2009) that measures/tﬁe ontological
distance, bctween tWQ. conccpts to Assess part,Lal Simi,,

¢ : G .
chitectutes. The model is ta/skéd with predlctlng non#

annotatlons (1ndlcated by an 0" tag) or annotatioris

(ifidicated: by A GO tig). Since the majority -of tags< T -

in the training corpus are non- annotations;, the model
biasing the F1 score, we omit accurate predlofions of: Ly
‘0’ tags from the calculation to report a relatively
conservative F1 score.

4 RESULTS AND DISCUSSION

Table 1 presents a summary of how boosting affected
the results of the two architectures. First, we see that
the majority of tokens are selected for boosting via
the Bayesian selection process (Row 2). However, the
majority of tokens that are boosted remain unchanged
indicating that when the model makes correct predic-
tions, the boosting process largely retains the correct
prediction (Row 3). Reassuringly, boosting does not
change any of the GO predictions to an ‘O’ tag (Row
4). The majority of incorrect predictions made by the
models happen when the ground truth is a GO con-
cept but the model incorrectly predicts an ‘O’ (non-
annotation). Boosting makes a substantial difference
in this case by changing these instances from an ‘O’ to
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a GO concept (Row 5). Of these instances, 37% (A1)
- 41% (A3) are corrected from an ‘O’ prediction to
an exactly matching GO concept as the ground truth
(Row 6). When boosting corrects an ‘O’ prediction to
a GO term (exact or partial match to the ground truth),
the average semantic similarity of these instances lies
between 53 % - 60%.

We examine the impact of our boosting approach
on improving prediction accuracy of the two architec-
tures presented above (Table 2). The base scores refer
to the output of the architecture before boosting was
applied and the boosted scores reflect performance af-
ter boosting is applied. We see that boosting improves
Jaccard semantic similarity scores by 7% for A; and
5.8% for the A;. The F1 scores experience a modest
improvement of 2.5% for A; and no improvement for

Aj.

Ontology Boosting corrected 201 incorrect pre-
dictions (A1) while changing 6 correct predictions to
a semantically similar concept to the ground truth.

. Similarly, boosting corrected 174 incorrect predic-

tiens (A,) while changing 113 correct predictions to
a differ_en_t__GO concept (semantically similar). The
net effect of ‘these_two contributions appears to re-
sult in modest impi”o'\'fements or keeps the F1 score

unchanged Howe\{er the real contrlbutlon of boost—

Figures 30 and . 3k ‘Show * the probabrhfy of ' the
hlghest predlctlon And entropy (of the top 5 predlc—
tlons are shown «gi blue and 1ncorrect ones are shown
in red. These graphs indicate the probability and en-
tropy zones where the architectures make incorrect

*'»':'pxedlctlons that can be corrected using boosting. We

use: ljhe Bayt:51an method described above to select in-
correctxpredlctlons on this graph to be boosted.
Figure 4a shows the incorrect predictions by A;.
Like above, the majority of these instances were cases
where the ground truth is a GO concept and the
prediction is an ‘O’ term (non-annotation). Figure
4b shows instances incorrectly predicted as ‘O’ that
were corrected by boosting. In this figure, blue in-
stances represent cases where the boosted prediction
was an exact match to the ground truth (100% ac-
curacy) whereas the purple instances represent cases
where the boosted prediction was a partial match to
the ground truth. The size of the purple instances re-
flect the degree of partial relatedness to the ground
truth - larger indicates higher semantic similarity to
the ground truth. We see that boosting has a substan-
tial effect on correcting inaccurate predictions.
Figure 5a shows the incorrect predictions by Aj.
The majority of these instances were cases where the
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Table 1: Effect of ontology boosting on the two architectures.

Row | Description Ay Ay
1 Total number of tokens 5439 | 5495
2 Number of tokens boosted 4972 | 5197
3 Number of tokens boosted but unchanged 4411 | 4587
4 Number of tokens boosted from GO to O 0 0
5 Number of tokens boosted from O to GO 534 366
6 Number of tokens boosted from O to an exact GO | 197 152
7 Average Semantic Similarity for O to GO 0.53 | 0.60

Table 2: Impact of boosting on the two architectures.

Architecture Semantic Similarity Modified F1
A Base 0.84 0.83

Boosted 0.90 0.85
Aj Base 0.85 0.81

Boosted-” "0.90, 0.81

// B .
~ L
/ Prediction

* Correct
* Incorrect

EntrGpy of tops Jtetfictions

0
0 0.2 N
Probability of top prediétioty
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S . } }
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E 15 : .
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- . . ) o °. ot
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(b) Architecture A;.

Figure 3: Distribution of correct and incorrect predictions with respect to probability and entropy of predictions.
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ground truth is a GO concept and the prediction is an
‘O’ term (non-annotation). Figure 5b shows instances
incorrectly predicted as ‘O’ that were corrected by
boosting.

S CONCLUSIONS

Automated methods for ontology-based annotation
of scientific literature are important for represent-
ing knowledge in a consistent machine-readable for-
mat. Deep learning models have shown promising
improvements and performance at this task. How-
ever, the majority of these architectures do not ac-
count for or take advantage of the ontology hierarchy
thereby losing valuable information. Encoding and
representing complex ontologies can lead to massive
models that are computationally and financially infea-
sible to train. Here, we presented a novel approach
called Ontology Boosting that allows post processing
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’ e-af ontology predictions by deep learning architectures

to se’Iechf;Ly improve the confidence of certain pre-
dictions by using information from the ontology such
as subsumers, information content, depth of a con-
cept in the ontology, etc. We show that this computa-
tionally inexpensive step can result in substantial im-
provements to our key performance metric - semantic
similarity. Our results clearly show that the predic-
tions made by the deep learning model are closer to
the human ground truth after applying the Boosting
process as compared to before.
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