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NOVEL RESOLUTION ANALYSIS FOR THE RADON TRANSFORM
IN R? FOR FUNCTIONS WITH ROUGH EDGES"

ALEXANDER KATSEVICHT

Abstract. Let f be a compactly supported, piecewise C? function in R? with a jump across
a sufficiently smooth, non-self-intersecting curve S. Consider a family of modified functions f™ so
that f™ has a jump across a curve Se. Each Sc is an O(e)-size perturbation of S, which scales like
0(6’1/2) along S. The functions f™ are obtained by extending continuously the smooth components
of f on either side of S all the way to Se¢ so that the location of the jump shifts from S to Sc. By
linearity of the Radon transform and its inversion formula, we can consider only the perturbation
fPi=f— fm™. Let fP"°° be the reconstruction of f¥ from its discrete Radon transform data using a

filtered backprojection inversion formula, where ¢ is the data sampling rate. A simple asymptotic (as

€ — 0) formula to approximate f£°¢ in any O(e)-size neighborhood of S was derived heuristically in

an earlier paper of the author. Numerical experiments revealed that the formula is highly accurate

even for nonsmooth (i.e., only Hoélder continuous) Se. In this paper we provide a full proof of
this result, which says that the magnitude of the error between fP"°¢ and its easily and explicitly

computable approximation is O(e!/21n(1/€)). The main assumption is that the level sets of the
function Ho(+;€), which parametrizes the perturbation S — Se, are not too dense.
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1. Introduction.

1.1. Local resolution analysis: Original and new. Let f be a compactly
supported, piecewise C? function in R?, and S be some curve. We assume that f has
a jump discontinuity across S, and f is C? away from S. Let f**° be a reconstruction
from discrete tomographic data (i.e., discrete values of the appropriately averaged
classical Radon transform of f; see (2.2) and (2.3)), where € represents the data
sampling rate. The reconstruction is computed by substituting interpolated data into
a “continuous” filtered backprojection (FBP) inversion formula (see (2.4) and (2.5)).
This is always assumed whenever we mention reconstruction in what follows. In many
applications it is important to know the resolution of reconstruction from discrete
data, including medical imaging, materials science, and nondestructive testing.

In [16] the author initiated analysis of resolution, called local resolution analysis
(LRA), by focusing specifically on the behavior of f¢ near §. One of the main results
of [16] is the computation of the limit

(L1) DTB(; o, f) = lim [ (o + )
e—

in a 2D setting under the assumptions that (a) S a sufficiently smooth curve with
nonzero curvature, (b) f has a jump discontinuity across S, (c) xg € S is generic, and
(d) & is confined to a bounded set. The definition of a generic point in [16] is similar
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in spirit to the one used here (see Definition 2.6) but is more relaxed. It is important
to emphasize that both the size of the neighborhood around zg and the data sampling
rate go to zero simultaneously in (1.1). The limiting function DTB(Z; xo, f), which we
call the discrete transition behavior (DTB), contains complete information about the
resolution of reconstruction. The practical use of the DTB is based on the relation

(1.2) 15°(xo + ex) = DTB(&; 2o, f) + error term(Z, xg, €, f).

When € > 0 is sufficiently small, the error term is negligible, and DTB(Z; zo, f), which
is given by a simple formula, is an accurate approximation to f°°. Hence whatever one
wants to know about f°¢ can be found by looking at an easily accessible DTB(Z; xo, f).
Numerical experiments reported in [16] demonstrate that the error term in (1.2) is
indeed quite small for realistic values of e. LRA was extended to much more general
settings in subsequent papers [17, 18, 19, 20].

Functions, which have been investigated in the LRA framework are, for the most
part, nonsmooth across sufficiently smooth surfaces. On the other hand, in many
applications discontinuities of f occur across nonsmooth (rough) surfaces. Examples
include soil and rock imaging, where the surfaces of cracks and pores and boundaries
between adjacent regions with different properties are highly irregular and frequently
simulated by fractals [1, 8, 25, 31, 33, 34, 38].

It was proven in [21] that the original LRA based on (1.1) still works for functions
with jumps across nonsmooth curves (i.e., Holder continuous with some exponent
~v € (0,1]). Our approach to nonsmooth boundaries is asymptotic. We begin by
picking a compactly supported, piecewise C? function f, which has a jump across
a sufficiently smooth (C*), non-self-intersecting curve S (exactly as in the original
LRA). Then we construct a family of functions f™, each with a jump across some
curve S.. Here f™ and S, are modified versions of f and S, respectively, and S, is
not necessarily smooth. Denote also the perturbation fP:= f — fI". The superscripts
“m” and “p” stand for “modified” and “perturbation,” respectively.

Let fX7'°¢ denote the reconstruction of f, where *=p, m. Since f* = f —
fP, the linearity of the Radon transform and FBP inversion formula imply f&*7¢ =
free — fbree. By construction, f has only smooth boundaries, so we can concentrate
on fPre¢. We show that under certain assumptions on fP, the error term in (1.2)
goes to zero as € — 0 (with f and fI°¢ replaced by fP and fP™°, respectively).
Nevertheless, numerical experiments in [21] demonstrate that this approach is not
entirely satisfactory: a significant mismatch between the reconstruction fPre¢(xzo+€)
and its approximation DTB(Z; g, fP) is observed. This means that the error term in
(1.2) decays slowly as e — 0 when S, is rough.

To overcome this problem, a new LRA has been developed in [21]. Tt is based on
allowing the DTB to depend on e:

(1.3)  fI™(xo+ €x) = DTBpew (Z; 20, €, f) + error termy (&, zg, €, f), * =p, m.

The idea is that since the new DTB is more flexible (due to its e-dependence), the error
term in (1.3) can be smaller than the one in (1.2). The new DTB proposed in [21] (see
(2.14)) is given by the convolution of an explicitly computed and suitably scaled kernel
with f*. Thus, analysis of resolution based on (1.3) is as simple as the one based on
(1.2), and it can be used quite easily to investigate the partial volume effect (PVE),
resolution, and many other properties of reconstruction in the case of rough bound-
aries. PVE arises due to limited resolution when the reconstructed value f™7¢(z) at
some point x is not the true value f™(z) but is an average of f™(z') over all 2’ near
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x [6]. PVE is most noticeable near the jumps of f™. It is especially detrimental when
accurate identification of the boundaries between regions in a reconstructed image is
required; see, e.g., subsection 1.2 below. See also section 3. Numerical experiments
presented in [21] show an excellent match between DTB,,c., (Z; o, €, fP) and the actual
reconstruction fP7e¢(xg + €%), even when S, is fractal.

To prove that the new DTB works well for nonsmooth S, it is not sufficient to
show that the error term in (1.3) goes to zero as € — 0. We need to establish that
the magnitude of the error is independent of how rough S is, i.e., independent of its
Holder exponent . This proved to be a difficult task. In [21] it was conjectured that
the error term in (1.3) is O(e'/?1In(1/¢)), and a partial result towards proving this
conjecture was established. In this paper we provide a full proof of the conjecture.

Let Z > s — y(s) € S, where 7 is an interval (or a union of intervals), be a
C*4(Z), regular parametrization of S. Let 5(5) be a unit vector orthogonal to S at
y(s) (which depends on s continuously). The parametrization of S, is given by Z 3
s — y(s)+eHo (e /2s;¢)8(s), where Hy defines the perturbation. Then f™ is obtained
by extending continuously the smooth components of f on either side of S all the way
to Se so that the location of the jump shifts from S to S¢ (see Figure 3). The main
assumption is that the function Hy (more precisely, the family Hy(-;€)) has level
sets that are not too dense. This assumption does allow fairly nonsmooth Hy. For
example, in [21] we construct a function on R, whose level sets are not too dense as
required, which is Hélder continuous with exponent  for any prescribed 0 < v < 1,
but which is not Holder continuous with any exponent 7' > v on a dense subset of
R. Our construction ensures that the size of the perturbation is O(e) in the direction
normal to S, and the perturbation scales like e /2 in the direction tangent to S.

The ideas behind the proof in this paper are quite different from those used in the
original approach [16, 17, 18, 19, 20]. The latter proofs revolve around the smoothness
of the singular support of f. The new proofs are based on cancellations occuring in
certain exponential sums. The assumption about the level sets of Hy is what allows
for the cancellations to occur.

1.2. Practical application of our results. An important application of our
results is in micro—computed tomography (CT) (i.e., CT capable of achieving microm-
eter resolution), which is a valuable tool for the imaging of rock samples extracted
from wells. The reconstructed images are used to investigate properties of the sam-
ples. A collection of numerical methods that determine various rock properties using
digital cores is collectively called digital rock physics (DRP) [7, 36]. Here the term
“digital core” refers to a digital representation of the rock sample (rock core) obtained
as a result of micro-CT scanning, reconstruction, and image analysis (segmentation
and classification, feature extraction, etc.) [12]. DRP “is a rapidly advancing tech-
nology that relies on digital images of rocks to simulate multiphysics ... and predict
properties of complex rocks (e.g., porosity, permeability, compressibility). ... For the
energy industry, DRP aims to achieve more, cheaper, and faster results as compared
to conventional laboratory measurements” [36]. Furthermore, “The simulation of
various rock properties based on three-dimensional digital cores plays an increasingly
important role in oil and gas exploration and development. The accuracy of 3D digital
core reconstruction is important for determining rock properties” [38] (italic font is
added here).

As stated above, boundaries between regions with different properties inside the
rock are typically rough (see also [4]), i.e., they contain features across a wide range of
scales, including scales below what is accessible with micro-CT. Clearly, the quality
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of micro-CT images (denoted here f7*°) stongly affects the accuracy with which
various features of the rock (denoted here f™) are captured by its digital represen-
tation. This, in turn, strongly affects how accurate numerical simulations based on
the digital rock are. The goal of DRP is to ensure that the physical properties of the
rock computed using the digital core are as close as possible to the actual properties
of the sample. Therefore, effects that degrade the resolution of micro-CT (e.g., due
to finite data sampling) and how these effects manifest themselves in the presence
of rough boundaries require careful investigation. For example, using (3.8) and the
known scan parameters (i.e., the data sampling rate), one can determine how accu-
rately image segmentation based on thresholding of f"¢ allows one to recover the
actual boundaries in f. Once fully understood and quantified, these effects can be
accounted for at the step of image analysis, thereby leading to more accurate digital
rock models and more accurate DRP results.

1.3. Related results. Organization of the paper. To situate the paper in
a more general context, not much is known about how the Radon transform R, its
inverse R ', and adjoint R* act on distributions with complicated singularities. Since
R and R* are Fourier integral operators, their action on distributions and continuity in
various LP spaces have been studied in detail (see, e.g., [13, section 2.4], [11, 10, 23],
and references therein). Nevertheless, specifically the case of functions with rough
edges has never been explored to the best of our knowledge. A recent literature
search reveals a small number of works which investigate the Radon transform acting
on random fields [15, 35, 26]. The author did not find any publication on the Radon
transform of characteristic functions of domains with rough boundaries. This appears
to be the first paper that contains a result on the Radon transform of functions with
rough edges.

An alternative way to study resolution of tomographic reconstruction is based on
sampling theory. Applications of the classical sampling theory to Radon inversion are
in papers such as [29, 32, 5], just to name a few. Analysis of sampling for distributions
with semiclassical singularities is in [37, 27]. This line of work determines the sampling
rate required to reliably recover features of a given size and describes aliasing artifacts
if the sampling requirements are violated.

The paper is organized as follows. In section 2 we describe the setting of the prob-
lem, state the definition of a generic point, formulate all the assumptions (including as-
sumptions about the perturbation Hp), and formulate the main result (Theorem 2.7).
In section 3 we briefly discuss how DTBe can be used in practice. Also, we demon-
strate by numerical experiments that DTB,,.., (Z; zo, €, f*) is indeed a good approxi-
mation to f7°(xg 4 ei) even when S, is fractal. The fact that DTB,,eq (F; 2o, €, fP)
is a good approximation to fP7'®(xg + €Z) is demonstrated numerically in [21]. The
beginning of the proof is in section 4. We consider three cases:

(A) o€ S;

(B) zo €S, and there is a line through ¢, which is tangent to S; and

(C) zo ¢S, and no line through z¢ is tangent to S.

Sections 57 contain a nearly complete proof of the theorem in case (A). What is
left is one additional assertion, which is proven in a later section. Likewise, section 8
and section 9 contain a nearly complete proof of the theorem in case (B). The final
assertion of the theorem in cases (A) and (B) is proven in section 10. Originally, in
case (C) the theorem is proven in [21] under the assumption that the curvature of
S is nonzero at every point. Its proof without any restriction on the curvature is in
Appendix D. Proofs of all lemmas and some auxiliary results are in Appendices A—C.
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2. Preliminaries. Consider a function f(z), € R? in the plane, and let S be
some curve.

Assumptions 2.1 (properties of the function f).

F1. Sis a C* curve;

F2. f is compactly supported and f € C?(R?\ S); and

F3. for each g € S there exist a neighborhood U > zy, domains D, and functions
f+ € C*(R?) such that

f@)=xp_(x)f-(2)+xp, (x)fr(x), z€U\S,

(2.1)
D_ND,=@, D_UD,=U\S,

where xp, are the characteristic functions of D.

Assumptions 2.1 describe a typical function, which has a jump discontinuity across a
smooth curve (see Figure 1).
The discrete tomographic data are given by

(6 . _
0D flow)=1 [[ w C% ky)f@ﬁ%p;iﬂjAncwa+kAm
R‘Z

where w is the detector aperture function, Ap =€, Aa = ke, and k > 0, p, &, are fixed.
Here and below, & and « in the same equation are always related by & = (cos a, sin a).
The same applies to § = (cos, sin #) and 0. Sometimes we also use - = (—sin 8, cos6).

If w(p) satisfies certain conditions, in the limit ¢ — 0T the values feco+ (o, p5),
k,j € Z, represent the discretized (classical) Radon transform that integrates functions
along lines [30]:

(23) floni= [ so—a-nrwa

In reality, line integrals cannot be measured due to the finite resolution of the CT
detector. In parallel beam geometry, which (2.2) describes, for each ay,p; the actual
measurement represents a weighted average of f (ag,p) over a small neighborhood
of p;j. The size of the neighborhood and the averaging kernel w (also known as the
detector aperture function) depend on the detector. For our purposes, all we need to
assume is that w is some sufficiently smooth, compactly supported, and normalized
function.

Assumptions 2.2 (propertles of the aperture function w).
AF1. wis even, and w € C’OMH(R) (i.e., w is compactly supported, and w([#1+1) ¢
L>(R)) for some ﬁ > 3.
AF2. Normalization: [w(p)dp=1.

Here [ /] is the ceiling function, i.e., the integer n such that n—1 < 8 <n. The required
value of § is stated below in Theorem 2.7. Later we also use the floor function |3],

S 6(s) y

D,f xy) Y (S)

Fic. 1. Illustration of a function f discontinuous across S.
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which gives the integer n such that n < 8 < n + 1, and the fractional part function

{8}:=B—18].

Reconstruction from discrete data is achieved by the formula

ey pew--te y Lt E2) v,

« X
T \anl<n/2 P= k-

where ¢ is an interpolation kernel, and the integral is understood in the principal value
sense. Equation (2.4) is a discretized version of the “continuous” inversion formula
[30]

1 1 pr(a,p)
) =—— — [ 2" dpda.
(2.5) f(x) a|<7r/27f/ pda

27 p—a-x

Equations (2.4) and (2.5) describe discrete and continuous FBP-type reconstruction,
respectively [30].

Assumptions 2.3 (properties of the interpolation kernel ).
IK1. ¢ is even, compactly supported, and its Fourier transform satisfies ¢(\) =
O(AI=(+1), A = oo
IK2. ¢ is exact up to order 1, i.e.,

(2.6) Z] plu—j)=u™, m=0,1, ueR.
JEZ

Here § is the same as in Assumption 2.2 (AF1). As is easily seen, Assumption 2.3
(IK2) implies [ ¢(p)dp = 1. See section IV.D in [2], which shows that ¢ with the
desired properties can be found for any >0 (i.e., for any regularity of ).

Let Ho(u;€), u € R, be a family of functions defined for all € > 0 sufficiently small.
We use Hy to parametrize perturbations of S. Define the function

1, 0<t<r,
(2.7) x(t,r)=<¢ -1, r<t<o,
0 otherwise.

Assumptions 2.4 (properties of the perturbation function Hp). There exist con-
stants ¢, p, L > 0, which are independent of €, such that for all ¢ > 0 sufficiently
small,

HI. |Ho(u;e)| <c for all u e R;

H2. the function (¢,u) — x(t, Ho(u;€)) is measurable in R?; and

H3. for any interval I of any length L > Lg the set

(2.8) U(l,t,e):={uel:sgn(t)(Ho(u;e) —t) >0}
is either empty or a union of no more than pL intervals U,,, dist(Up,,Un,) >0,

ny # na, for almost all ¢ #£ 0.

Assumption H2 is informally interpreted as saying that if ¢ > 0 (resp., ¢ < 0), then
Hy(us€e) >t (resp., Ho(u;e) <t) for u in a measurable set for almost all ¢ (and each
€ > 0 sufficiently small). Thus, the meaning of the argument ¢ of x in (2.7) is the
value that defines a level set of Hy. The meaning of the argument r is the value of
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e
U,

F1a. 2. Illustration of the level sets of Hy and Assumptions 2.4 (H2, H3). Here I = [a,b].

Hy(u;€), which is being compared with ¢. In particular, U(I,t,€) can be equivalently
defined as follows:

U(I,t,e)={uel:sgn(t)=x(t,Ho(u;e€))}

2.9
29) ={uel:Hy(uje) >t if t>0, and Ho(u;e) <t if t <0}.

Assumption H3 further specifies that this set is just a union of intervals U,,, and the
number of U,, for any interval I =[a,b], b —a > L¢ is bounded by p(b — a).

Our assumptions allow Hy to be discontinuous. The endpoints of U,, are denoted
U2y and Ugpi1: Uy = [Ugn, Uznt1], where the bar denotes closure (see Figure 2). The
distance between the intervals is positve, so u,, < u,+1 for all n. The intervals U,, and
the points u,, depend on ¢, I, and €. If Hy is continuous, then for each ¢ and € > 0 the
collection of uy,’s is simply the level set {u € R: Ho(us€e) =t}.

Assumptions 2.4 (H1, H2) imply that [, [i [x(¢, Ho(u;€))|dtdu is well defined and
bounded for any bounded interval I. By the Fubini theorem, Assumption 2.4 (H3),
and (2.9),

/I/Rg(t,u)x(t,Ho(u;e))dtdu:A/Ig(t,u)x(t,Ho(u;e))dudt
Z/ngn(t)zn:/[]n g(t,u)dudt

for any sufficiently regular function g. Equation (2.10) is the main reason why we as-
sume 2.4 (H2). In the proof of Theorem 2.7, we integrate over a domain bounded by
the u-axis and the graph of Hy(u;e€). The first integral in (2.10) reflects the most com-
mon way to do that: the outer integral is with respect to u, while inside we integrate
with respect to ¢ between t =0 and ¢ = Hy(u;€) (due to the x function). However, in
the proof we need to change the order of integration and integrate with respect to ¢
outside (as is done in the second and third integrals in (2.10)). Assumption 2.4 (H2)
and the Fubini theorem allow us to change the order of integration.

Suppose S is parametrized by Z 3 s — y(s) € S, where Z is an interval (or a
union of intervals), y € C*(Z), and |y'(s)| # 0 for any s € Z. The normal direction to
S at the point y(s) is denoted 6(s) (and the corresponding polar angle is 6(s)); see
Figure 1. Define

(2.11)
FP@) = (f(x) = f-(@)X(t, He(s)), @ =y(s) +10(s), He(s):=eHo(e "/ ?s;e).

Consider the modified function f*:= f — fP and the curve S, parametrized by

(2.10)

—

(2.12) I3s—y(s)+ He(s)d(s) €S..
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F1G. 3. Illustration of the perturbations S — Se and ff. The perturbation fF is supported in
the shaded regions.

By Assumption 2.4 (H1), S, is an O(e)-size perturbation of S. At the points where
H.(s) > 0, a small region is removed from D, and added to D_ (see lighter shaded
regions in Figure 3). At the points where H.(s) < 0, a small region is removed
from D_ and added to D, (see darker shaded regions in Figure 3). Thus, f™(z) is
discontinuous across S, instead of S.

Let fem and fep denote the data for f™ and fP defined by (2.2), with f replaced
by f™ and fP, respectively. Similarly, let f*"°¢ and fP7°° denote the reconstruction
of f™ and fP from the data f™ and fP, respectively. In [16, 18, 20], we obtained
the DTB in the case of a sufficiently smooth §. By linearity of the measurement
process described by (2.2) and the inversion formula (2.4) (which correspond to the
steps f — ﬂ and f. — fre°, respectively), we can ignore the original function f and
consider the reconstruction of only the perturbation fP: fP — ff —> fpree,

By (2.2) and (2.4),

(2.13)

fep—rec(x) _ _%é Z Z'H(p/ (W) //w (pj_eo_zky) fep(@/)dy»

lok|<m/2 j

where H denotes the Hilbert transform (see the integral with respect to p in (2.5)).
Clearly, fP° can be written as the first integral in (2.10) with some g. In the proof
of Theorem 2.7 below, we will change the order of integration using (2.10) in some
very similar integrals (see (4.11) and (8.6)).

Following [21], replace the sums with respect to k£ and j with integrals to obtain
the new DTB:

; 1 T—y .
ey ~t ([ & () F2(y)dy = DTByen(#: 20,6, /7).
(2.14) ¢ /1/ A

K(z):= (He' *w)(@-z)da.

_go

As is easily seen, K is radial and compactly supported.

For a real number s, let (s) denote the distance from s to the nearest integer:
(s) := minez |s — I = min({s},1 — {s}). The following definition is in [24, p. 121]
(after a slight modification in the spirit of [28, p. 172]).

DEFINITION 2.5. Let n>0. The irrational number s is said to be of type n if for
any n1 >0, there exists c(s,m1) >0 such that

(2.15) m™ (ms) > c(s,m1) for any m € N.

The irrational number s is said to be of constant type or badly approrimable if there
exists c(s) >0 such that m{ms) > ¢(s) for any m € N.
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P

//h. B
/u,l EO X S

X0

FiG. 4. Illustration of the assumptions P1-P4 in Definition 2.6. The red segment of S and the
red dashed line illustrate the situation prohibited by P1. The two blue line segments are involved in
P3 and P4.

See also [28], where the numbers which satisfy (2.15) are called (7 — 1)-order Roth
numbers. It is known that > 1 for any irrational s. The set of irrationals of each
type n > 1 is of full measure in the Lebesgue sense, while the class of constant type is
dense in the space of real numbers, but it is of null measure [28].

DEFINITION 2.6. A point xo € R? is said to be generic if the following assumptions
are satisfied:

P1. No line, which is tangent to S at a point where the curvature of S is zero,
passes through xq;

P2. the line through the origin and xo is not tangent to S;

P3. kl|xol| is irrational and of finite type; and

P4. if xg € S, then the number /90_8- - g, where 0 is a unit vector tangent to S
at xq, 18 irrational and of finite type.

In the rest of the paper we consider only generic points zg.

Definition 2.6 is illustrated by Figure 4. The geometric meaning of assumptions
P1 and P2 is clear. Since k = Aa/Ap, the units of x are 1/length. Assumptions P3
and P4 imply that the two blue line segments in Figure 4 have irrational lengths when
expressed in the units of 1/ (thereby making the two quantities dimensionless).

The deeper meaning of assumption P4 is that the singularity of f at z¢ is in general
position with respect to the data grid (ax,p;). Consider the function p(a) = & - xo,
whose graph is a curve in the Radon (or data) space. Let 6y be a value such that the
line {x € R2: 6y -z = p(f)} is tangent to S at xo. This is precisely the line in the
data that “sees” the singularity of f at xg. Clearly,

(2.16) \59% - x| = (Aa/Ap)|dp(a = 6p) /da| = k|p’ (6p)].

Assumption P4 says that p(a) has an irrational slope at o = 6 if the scales along
the p- and a-axes are Ap and Aq, respectively (see (2.2)). This assumption is quite
natural; it and its analogues always appear even when boundaries are sufficiently
smooth [16, 17, 18, 19, 20].

In the case of sufficiently smooth boundaries, we do not need to know the type of
the irrational number kp’(6y) since we establish only convergence to zero of the error
term in (1.2). In this paper we establish the rate of convergence of the error term in
(1.3). To quantify this rate we need more information about kp’(6p), namely, its type
(see also the second paragraph below).

Similarly, if 6; is a value such that p(6;) = 0, then k|zg| = (Aa/Ap)|dp(a =
01)/da|. Assumption P3 requires that the slope p’(61) be irrational when the p- and
a-axes are scaled the same way as before. This assumption is new. It is imposed
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only when fP has a jump across a rough curve. Assumption P3 is needed because
the wave front set of fP above x € S, contains not only directions perpendicular to S,
(which would be the case if S, were smooth) but many other directions as well. If S, is
nonsmooth almost everywhere (which is allowed by Assumptions 2.4), it may happen
that S.U(R?\0) C WF(fP). Reconstruction of such a function is clearly more difficult
than the one with sufficiently smooth boundaries, so an additional assumption makes
sense. =

More specifically, we need to know the type of k|zg| (and the type of g - zg
if zyp € S) in order to control the magnitude of certain exponential sums, which are
central to the proof of Theorem 2.7 (see subsection 7.5 and section 9).

By P4, zg #0. Clearly, the set of generic x is dense in the plane. Let 19 denote
the type of k|xg| if g € S, and the larger of the two types (in P3 and P4)—if 25 € S.
Our main result is the following theorem.

THEOREM 2.7. Suppose
1. f satisfies Assumptions 2.1,
2. the detector aperture function w satisfies Assumptions 2.2,
3. the interpolation kernel ¢ satisfies Assumptions 2.3,
4. the perturbation Hy satisfies Assumptions 2.4, and
5. point xg is generic.
If B >mng + 2, one has

(2.17) fP(z0 + e3) = // ( To +€F) = )fp( )dy + O(e"/2In(1/e)), € — 0,

where K is given by (2.14) and the big-O term is uniform with respect to & in any
compact set.

3. Discussion of the practical use of Theorem 2.7. Even though Theo-
rem 2.7 is about the reconstruction of fP, in practice one does not separate the object
being scanned, fI", into its constituent parts. This is usually done only for theoretical
analysis. Therefore, in this section we discuss how to relate (2.17) to the accuracy of
the reconstruction of fI".

By construction (see (2.11) and the following sentence) we can represent f™ in
the form f™ = f — fP, where f is piecewise C? and has jumps across sufficiently
smooth curves (cumulatively denoted S), and fP is a perturbation of the kind (2.11)
supported between S and some nonsmooth curves (cumulatively denoted S,). Thus,
fP may have jumps across both & and S..

As was mentioned before, the map f — {f;(aj,pk)}j,kez — fre¢ is linear. Hence
fhoeree = frec _ fprec Pick any generic g € S as in Theorem 2.7. Denote K (x) :=

€ 2K (x/€). The error of the approximation (fP7¢ — K, * fP)(xo + €i) is estimated
in Theorem 2.7.
Denote

lim, o+ f(z0 +t00), 0o+ (x — o) >0,
lim;_,o- f(wo +16p), 0o (z—x0) <O,

(3.1) folws 7o) == {

where 50 is perpendicular to S at xg (see Figure 5). Thus, fo(z;xz0) takes only two
values: one value in each of the half-planes +0y - (x — z¢) > 0 (assuming zg is fixed).
It is proven in [20, Theorem 4.7, case = 0] that the original DTB (1.1) satisfies

(3.2) DTB(&; 2o, f) = (Ke * fo)(zo + €i).
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Sxg+076y)

\COI//
f(x0+0 6o)

Fic. 5. Construction of the function fo. Red arrows indicate two limiting values of f on each
side of xg. The dashed line is 6y - (x — x0) =0.

The right-hand side of (3.2) is independent of € because fo (o + €%; o) is independent
of € > 0. In the notation of [20], our case corresponds to theoretically exact recon-
struction, i.e., f = f. The statement of the theorem in [20] is not exactly the same
as (3.2) but can be easily seen to be equivalent to it. Also, [20, Theorem 4.7, case
k = 0] asserts that the error fI°¢(xo+ex) — DTB(&;x0, f) — 0 as e — 0 when there are
no global artifacts. The rate of convergence is not established in [20], but numerical
experiments in [16] show that the error term is negligible for realistic values of e.

Observing that S is a C* curve (so S is locally well approximated by a tangent
line at 7o) and thatf is C? on each side of S (in the sense of (2.1)), it is obvious that
(Kex (f — fo))(xo + €&) = O(e). Therefore, by (3.2),

(3.3) IDTB(; xo, f) — DTBpew(&; 7o, €, f)| = O(e).

This and (2.14) imply that the approximation (f!°¢ — K. * f)(xo + e) is expected to
be accurate. Our numerical experiments confirm that this is indeed the case.

We experiment with the same fractal phantom as in [21]. Here f is the charac-
teristic function of the disc centered at z. = (0.1,0.2) with radius R =0.3, and § is
its boundary. The perturbed boundary S, is given by 7(0) = R+ eHy(0/¢'/?) in polar
coordinates with the origin at the center of the disc, where

(3.4) Hy(s)=5 Z r~sin(r"s), c=|log,(m)|, r=v12, y=1/2.

n=c
The function Hj is a real Weierstrass-type function (see [3]), which is continuous
everywhere and differentiable nowhere and whose graph is a curve whose fractal di-
mension exceeds one [3]. It is well known that Hy is bounded and Hélder continuous

with exponent 7.
We set

e=Ap=12/(N,—1), Aa=n/N,, Noy=N,—1

and consider two values, IV, = 501 and N, = 1001. Results of the experiments with
N, =501 and N, = 1001 are shown in Figures 6 and 7, respectively. In each of the
experiments we consider two points zy € S:

20 =2, — ROy, 0y =0.33m,0.497

and reconstruct f*7re(x):
1. inside a region of interest (ROI), which is a square centered at zo with side
length 100¢; and
2. along a segment of the line through zy and perpendicular to §: = =xg +eh§07
|h| < 15.
In (2.4) we use the Keys interpolation kernel [22, 2]
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deal edge —
reconsiructed edge
new DT ——

08

06

04

02

ideal edge
reconstructed edge
new DTB ——

F1G. 6. ROI in the fractal phantom of [21], N, = 501. Top row: 6y = 0.33m, bottom row:
0o = 0.497. Left to right: density plot of the reconstructed ROI with the location of the profile
shown, WL =0, WW =0.1; density plot of the reconstructed ROI, WL =1, WW =0.1; profiles of
the ideal edge (red), reconstructed edge (green), and predicted edge (or DTBpew, blue). Values of h
are on the horizontal axis.

ideal edge
reconstructed edge
new DTB

ideal edge
reconstructed edge
new DTt

F1G. 7. ROI in the fractal phantom of [21], Np = 1001. Top row: 6y = 0.337, bottom row:
0o = 0.497. Left to right: density plot of the reconstructed ROI with the location of the profile
shown, WL =0, WW =0.1; density plot of the reconstructed ROI, WL =1, WW =0.1; profiles of
the tdeal edge (red), reconstructed edge (green), and predicted edge (or DTBpew, blue). Values of h
are on the horizontal axis.

Copyright (©) by SIAM. Unauthorized reproduction of this article is prohibited.



Downloaded 09/18/23 to 68.205.98.33 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

ANALYSIS OF RESOLUTION 4267

(3.5) o(t)=3B3(t +2) — (Ba(t +2) + Ba(t + 1)),

where B,, is the cardinal B-spline of degree n supported on [0,n+1]. Thus, supp(y) =
[—2,2]. As the detector aperture function we take

(3.6) w(p)=1/Apif [p| <Ap/2 and w(p)=0if [p| > Ap/2.

Density plots of the reconstructed ROIs are shown in the left and center panels of
Figure 6 and Figure 7. In the left panels, window level (WL)=0 and window width
(WW)=0.1. In the center panels, WL =0 and WW =0.1. This means that only the
values in the range |f"°(z) — WL| < WW/2 are shown accurately. Values outside
the window are changed as follows. If f™"¢(z) < WL — WW/2 at some pixel z, then
the value is replaced by WL — WW /2. Similarly, if fr¢(z) > WL+ WW/2, then the
value is replaced by WL + WW /2. This is done in order to better see small artifacts
that might be invisible if the full window with WW ~ 1 were used.

In all density plots, a lighter shade of grey stands for a smaller reconstructed
value. Thus, in the left panels grey color stands for pixel values around 0 and white
color for pixel values above 0.05. In the middle panels, black color stands for pixel
values below 0.95 and grey color for pixel values around 1.

The reconstructed profiles of f™7¢¢(z¢+eZ) (using (2.2) and (2.4) with f replaced
by f*), along with the predicted reconstruction

(37) DTBneW({f; Zo, €, fén) = (Ke * fén)(l'() + 6(2),

and the ideal edge f(xo + eZ) are shown in the right panels. Here & = hé, |h| <15.
On the vertical axis are the values of the three functions and on the horizontal axis
the values of h. The locations of the profiles are shown in the left panels. As expected,
we see an excellent match between f*"°° and DTBeyw.

In summary, our discussion and experiments show that for realistically small
values € > 0, we have an accurate approximation

(3.8) firee(z) @ DTBhew (E; 70,6, f) = (K x f)(2), 2 =m0 + €X, 19 €S,

where K is a radial, compactly supported, and easily computable kernel (2.14). Equa-
tion (3.8) provides a simple, easy to use relationship between the unknown object fI*
and the actual reconstruction from discrete data f™7° in a neighborhood of S, (the
jump of f™). Using (3.8), one can answer any question one might have about the
reconstruction, e.g., what the resolution of the reconstruction is for a given class of
objects f, how accurately the location of the jump of f™ can be determined by
thresholding f™7'°°, and many others.

Theoretical estimation of the approximation accuracy fre¢ — K. x f (i.e., when
only smooth boundaries are present) as well as numerical analysis of resolution, seg-
mentation accuracy, and other applied questions in the presence of rough boundaries
are beyond the scope of the paper and will be the subject of future work.

Consider now the reconstruction of only f. Suppose zg € S is not generic. Recall
that assumption P3 in Definition 2.6 is not needed when boundaries are sufficiently
smooth. Thus, we assume that assumption P4 is violated for the selected zy. Numer-
ical experiments in [17] with the Radon transform in R? demonstrate that in this case
it may happen that fr°(xog+e&) —DTB(Z; x0, f) 7 0 as e — 0. Hence it is reasonable
to expect that the same phenomenon occurs in R? as well. In this case, due to (3.3),
we have that (3.8) and (2.17) may not hold either, i.e.,

(3.9) f2°%(x) = DTBpew (& 0,6, f) = f1°°(x) — (K % f)(z) 40, © =m0 + €k,
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as € = 0 (if oy is not generic). On the other hand, experiments in [17] showed that
the generic behavior is sufficiently robust. In other words, even if H@} - ¢ is rational,
but is not too close to an integer, the behavior of the reconstruction is numerically
indistinguishable from the generic one. Numerical stability of DTB,y, is confirmed
also by the experiments in the present paper. Even though the aperture function w
in (3.6) does not satisfy the smoothness assumption 2.2 (AF1), the match between
the reconstruction and prediction is excellent (when zq is generic). Comprehensive
analysis of the numerical stability of DTB,., requires a separate investigation.

4. Beginning of the proof of Theorem 2.7. From this point forward we
consider only the reconstruction of fP.

In this section we (a) rewrite the inversion formula (2.13) as an exponential sum
(4.5); (b) formulate two assertions from which Theorem 2.7 follows (see (4.6), (4.7));
(c) describe the phenomenon of cancellation, which informally explains why the ex-
ponential sum in (4.6) is small (establishing this fact is the most difficult part of the
proof); and (d) identify three distinct settings of the theorem based on the location
of xg relative to S that require separate consideration.

By the linearity of the map f — fI°® given by (2.2) and (2.4), in what follows we
can consider only one domain U and suppose the following.

Assumptions 4.1 (modified assumptions about f). In addition to Assumptions 2.1,
f satisfies the following:

F1'. U is a sufficiently small open neighborhood of some = € S, ie., SNU is
sufficiently short;

F2'. supp(f) C U;

F3'. f=0 in a neighborhood of the endpoints of S N U; and

F4'. if 2o € S or there is a line through z, which is tangent to S, then S has
nonzero curvature at every point x € S.

Even though the reconstruction of fP is the main object of our analysis, we
construct fP from f (more precisely, from fi in (2.1)). This is why Assumptions 4.1
are about f and not about fP.

Since f = 0 outside U, in what follows we assume & = SNU. Also, we may
assume without loss of generality that S is parametrized by [—a,a] 3> s — y(s) € S for
some small a > 0. If xg € S, we assume y(0) = zg.

Throughout the paper we use the following convention. If an inequality involves
an unspecified constant ¢, this means that the inequality holds for some ¢ > 0. If an
inequality (or a string of inequalities) involves multiple unspecified constants ¢, then
the values of ¢ in different places can be different. If some additional information
about the value of ¢ is necessary (e.g., ¢>>1 or ¢ > 0 small), then it is stated.

Following [21], consider the function (see (2.13))

(4.1) Y(g,t) =Y (He')g—jw(i—q—1).

J

Then
V(g t)=v(g+1,t), ¢,tER; P(q,t)=0(t"?), t > 00, ¢ ER;

(42) /1/1(q,t)dtz(), geR.

The last property follows from Assumption 2.3 (IK2) (see (2.6)). By (4.2), we can
represent 1) in terms of its Fourier series:
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= Zzﬁm(t)e(—mq), e(q) := exp(2miq),
(43) T
0= [ wlatetmads= [ () apu(=a = e(ma)in
Introduce the function p(s) := (1+ |s|®)71, s€R.
LEMMA 4.2. One has
(4.4) (G (8)], 107, (8)] < cp(m)(1+12) 7

By the lemma, the Fourier series for ¢ converges absolutely.
From (2.2), (2.13), (4.1) and (4.3), the reconstructed image becomes

e () = Z 3 ( jp>Am(ak7€),

(45) m |ag|<w/2

An(ae) = / i () oy

To prove Theorem 2.7, in (2.13) we should be able to replace the sum with respect to
k by an integral with respect to « and ignore all m # 0 terms (that make up ¥). We
will show that

(4.6) Aa Z Z e <m0_2k : x> A (ag,€)| = O0(e/%1n(1/€)),

€
m£0 ||| <7/2

ap+Aa/2
(4.7) S / Ao (v, €) — Ag(cug, €)|da = O(e/2In(1/e)),

o | <m/2” en—B/2

where © =z + ei. The factor e(mp/e) is dropped because it is independent of k.

From here through the end of section 9 we will be assuming that Assumption 4.1
(F4') applies. This corresponds to cases (A) and (B) in the introduction. Hence we
can use 0 to parametrize S; i.e., s =6, and y(0) satisfies

(4.8) 0-y/(0)=0, 0=~y (0)/1y'(0), R(0)=0-y"(6) >0, 0] <a.

Here R(6) is the radius of curvature of S at y(#). Thus, § points towards the center
of curvature of S. If o € S, then b := 5(0) is the unit vector orthogonal to S at
xg since 29 = y(0). The case when Assumption 4.1 (F4’) does not apply (case (C) in
the introduction) is considered in section 10. By Assumption 4.1 (F3’), f(z)=01in a
neighborhood of y(+a). The requirements on the smallness of a are formulated later
as needed.

All the estimates below are uniform with respect to &, so the Z-dependence of
various quantities is frequently omitted from notation. Transform the expression for
Ay, (cf. (4.5)) by changing variables y — (6, ), where y = y(0) + t6:

(49) (0.6) = /_/H s (ﬁ'(y(?_“) h(e,a)> F(6,1)dtds,
F(0,t):=Af(y(0) +t0)(R(0) — t), h(0,a):= —a- & +tcos(d — a),

where R(0) —t = det(dy/d(&t)) > 0. Recall that R(0) is the radius of curvature of S
at y(#). The dependence of h on £ and i is irrelevant and omitted from notation.
Consider the function
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(4.10) Ri(8,0) :=a - (y(0) — xo).

Change variables 6 = ¢'/20 and t = ¢l in (4.9) and then use (2.10):
(4.11)

ae /2
2 A (a,e) = / / U (€ T R1(0, ) + h(0,a)) F(0,et)x (£, Ho(6; €))dEdd
—ae—1/2 JR

= [ sgn(t b (€1 R1(8, ,Q ,et)dodt,
—/Rg@;/wwm( Ry(0,) + h(0,0)) F(0, f)dddi

where 6 is a function of 6: 6 = ¢'/20, and  is defined in (2.7). Recall that U, =
[u2n,Uon+1] (see Assumption 2.4 (H3), where these intervals are introduced). Here
and in what follows, the interval I used in the construction of U,’s is always I =
[~ae~'/2,ae1/2]. The intervals U, can be closed, open, and half-closed. Since what
kind they are is irrelevant, with some abuse of notation we write them as if they
are closed. The dependence of U,, and u, on ¢ and e is omitted from notation for
simplicity.
In view of (4.5), (4.6), and (4.11) we need to estimate the quantity
N 1/2 - . L _ dp-wp
Wi (t) =€ Z e(—magyg) [g(ak; e (—mady - )], qr:= —
Aalk|<m/2

g(@;m, e t, ) = Z/U U (67 R1(0, ) + h(0, ) F (8, et)dd.

(4.12)

For convenience, we express g as a function of & rather than «. The sum in (4.6)
is bounded by me;éO |W,,,(#)|df. By Assumption 2.4 (H1), Hy is bounded, so the
integral with respect to t is over a bounded set. ~

Throughout the paper we frequently use rescaled variables 9,5 and &, a:

(4.13) a=e %, a=a/Aa, =120, 6=0/Aa.

Whenever an original variable (e.g., «) is used together with its rescaled counterpart
(e.g., & or &) in the same equation or sentence, they are always assumed to be related
according to (4.13). The same applies to 6 and its rescaled versions. The only excep-
tion is Appendix D, where the relationship between 6 and 6 is slightly different from
the one in (4.13).

We distinguish two cases: zp € S and g € S. In the former case, zo = y(0).
The proof of (4.6) is much more difficult than the proof of (4.7), so we discuss the
intuition behind the former. Due to the remark in the paragraph following (4.12),
we just have to show that >, |W,.(f)| satisfies the same estimate as in (4.6).
Summation with respect to m does not bring any complications, so we consider the
sum with respect to k for a fixed m # 0. The factor g(&x;-) is bounded and goes
to zero as & — oo. In addition, the factor e(—mgy) oscillates rapidly with k. If the
product [g(ayg;-)e(—mdy - &)] changes slowly with k& (in an appropriate sense), the
rapidly oscillating exponentials nearly cancel each other out, thereby making |W,, (t)|
small.

An additional phenomenon is that the cancellation does not occur near the points
aj.m, where the derivative of the phase is an integer: md’l-(aj’m) -x9g =75 €Z. The
reason is that near these points e(—mgy) does not oscillate rapidly with k. Hence the
contributions into the sum in (4.12) coming from small neighborhoods of «; ,, should
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be investigated separately. If cancellations do not occur, these contributions are small
only if |g(&; m;-)| are all small. If «; ,, =0 for some j and m, (4.6) may fail because
lg(&;,m = 0;-)| is not small. Fortunately, this does not happen for a generic z¢ due to
the assumption P4 in Definition 2.6 (see the paragraph following (7.2)).

The above argument applies when zg € S (case (A)). If o € S, and there is a line
through z¢ which is tangent to S (case (B)), then the argument is somewhat similar.
One of the differences between the cases is that the function g is now expressed in
terms of & rather than &. Also, estimates for g(&;-) and its derivative are different
from those for g(a;-).

Recall that (4.6), (4.7) imply Theorem 2.7. Estimates for g(&x;-) and its deriva-
tive in case (A) are obtained in section 6, and the sum with respect to k is estimated
in section 7. This completes the proof of (4.6) in case (A). Likewise, estimates for
g(dg;+) and its derivative in case (B) are obtained in section 8, and the sum with
respect to k is estimated in section 9. This completes the proof of (4.6) in case (B).
The proof of (4.7) in cases (A) and (B) is in section 10. This completes the proof of
Theorem 2.7 in these two cases.

Finally, suppose 29 ¢ S and no line through z( is tangent to S (case (C)). The
statement of Theorem 2.7 in this case is formulated as Lemma 8.1. Its proof is in
Appendix D. The proof is not based on (4.6), (4.7) and does not use the cancellation
property. Instead we prove that that fP°(z) — 0 sufficiently fast for all z in a small
(but finite size) neighborhood of zg directly from (4.5). The proof is based on the
smallness of A,,(«,¢€). Compared with the case (C) in [21], here we do not require that
S have nonzero curvature. Interestingly, even though the proofs of all three cases are
different (see also Remark 9.3), level sets of Hy appear in all of them in an essential
way.

5. Proof of (4.6) in case (A): Preparation. In sections 5-7, o = y(0), so
the function Ry in (5.1) becomes
(5.1) Ry(0,a) =a- (y(0) —y(0)).
The convexity of S and our convention imply that the nonzero vector (y(0) —y(0))/6
rotates counterclockwise as 6 increases from —a to a. Thus, for each 6 € [—a, a] there
is a = Ay(0) € (—m/2,m/2) such that &(A1(0)) - (y(¢) — y(0)) =0, and the function
Aj is injective. By continuity, 4;(0) := 0. Define
(5.2) Q:=ranA;.
Clearly, Q C (—a,a), and the inverse of A4;(0) is sufficiently smooth and well defined
on . In what follows, we need rescaled versions of Ry and Aj:
(5.3) R(0,&):=Ry(0,a)/e, A(0):=A(0)/e/?
For simplicity, the dependence of R and A on ¢ is omitted from notation.

DEFINITION 5.1. We say f(z) < g(x) for x € U CR™ if there exist c1 2 >0 such
that

(5.4) a < f(x)/g(z) <czif g(x) #0 and f(x)=0if g(z) =0
for any x € U.
LEMMA 5.2. One has
(5.5) A0) =60, A(0)=1, |8 <a,|la| <7/2; max ) |A(6)/0] <1,
|6]<ae—1/2
and
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R(é a)xé(A( )— &), OR(0,8) =<0 — &, dsR(0,a)=0(0),

(5.6) s K
&), 2R(0,&), 9;05R(0,a) = O(1), 16] < a,|a| <m/2.

AR,
Then, from (4.11),
(5.7) 2 A (o) /sgn Z/ ’(/Jm R(0,&) + (0, a)) F (0, €et)dodd.

Recall that 6 is a function of § in the arguments of h and F. Clearly,
(5.8) h,F =0(1), 95h,05h,05F = O(e'/?), |0] <a,|a| <m/2,

uniformly with respect to all variables. Here « is a function of &.
Fix some small 6 > 0 and define three sets

(5.9) Ei:=[-6,8], Zo:={0: |A(0) — a| <0}, Bs:=[—ae V2 ae 2]\ (2, UEy)

and the associated functions:
G0y a@mei =Y [ (RE.3)+0(0.0)) FO.)0, 1-1,2.3
n U,NZ;

If o« & Q, we assume Zp = @ and go(G;m,e,t,2) = 0. To simplify notations, the
arguments m, e, t, and & of g; are omitted in what follows, and we write g;(&). In view
of (4.12), g= g1 + g2 + g3-

6. Proof of (4.6) in case (A): Estimates for g; 2 3. Using Lemma 5.2 and
(5.8) and estimating the model integral [(1+ 62((6/2) — &)?)~*dé over various do-
mains, it is straightforward to conclude that

(6.1)  g12(@) =p(m)O(|a@™"), gs(@)=p(m)O(la|™?), & o0, || <7/2.
Similarly, estimating the model integral [|4|(1+ 0%((6/2) — &)?)~'dé implies
(6.2) 0a91.3(@) = p(m)O(la]™!), a— oo, |a| <m/2.

Thus, it remains to estimate Jzgs. We assume a € €2 because go(a) =0 if a € Q.
Change variables § —r = R(6,&) in (5.10) so that 8 = O(r, &):

(6) = N F(0,¢t)
(6.3) Z/ Ym(r+ O ) o "

2N [Tmn;"mx]

R, :=R(Up,&), mman = R(Ail(d —0),a), Tmyx = R(A” 1(6‘ +94),a),

where 0 = 61/2@(7“,64). If R is decreasing in 0 and 7, > Tmx, the domain in (6.3) is
understood as R, N [rmx,rmn] Denote also 7, := R(uy, @) and v, := A(u,). Clearly,
7,’s are the endpoints of R,’s: Ry, = [ron,T2ny1] or Ry = [rany1,720], depending on
whether R(6, @) is increasing or decreasing as a function of 6.

LEMMA 6.1. For a € Q, |&| > ¢, one has
rn X a(A(up) — @), Oarn <—a& if |v,—a|<d;
(64) ’rmn = _d; r7n(l = da 8dr7nn7 a&me = O(l)a
GR(O,6)=a if |AG)—al<d;
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and
(6.5) 9:0(r, ) = — 2af0:4) —O() i 7€ [P Fnal.
05 1(0, ) 0=0(r,a)

In particular, 95R(0,@) # 0 if [A(f) — &| < 6, a € Q, and |@| > ¢, so the change
of variables in (6.3) is justified. Differentiating (6.3) and using (5.8) and Lemma 5.2,
Lemma 6.1 gives

~ p(m) |a 1 12, 1
|0ag2(a)] < c— =5 T tE
al ZM 1+a%(v, — a7 ' [ al

1 1
S| 3. et
n:lv, —&|<é "

Here we have used that €'/24 = O(1). To summarize, we have

l9(&)] < cp(m)(L+1a)7", Jaf <m/2;

N 1 1
(6.7) |0ag(a)| < cp(m) Z T sz | ae;

vy —&| <6
0ag(@) <cp(m)(L+]a)~", ael-m/2,7/2]\Q,
where g is given by (4.12).
7. End of proof of (4.6) in case (A): Summation with respect to k.

7.1. Preliminary results. The goal of this section is to estimate the sum in
(4.12). This is done by breaking up the interval [—7/2,7/2] into a union of smaller
intervals and estimating individually the sums over each of these intervals. The sums
over the smaller intervals are estimated using the partial integration identity (7.7)
and the Kusmin-Landau inequality (7.9). Some of these intervals require special
consideration (e.g., those that contain «; ,, mentioned in the third paragraph following
(4.13)).

Denote

(7.1) d(a) =mergsin(a — ag), H(&)=—ma - xo/e, p=—kKrgsinay,

where zg = r,d(a;). Recall that (4.13) is always assumed. Clearly, ¥'(&) = ¢(a),
#(0) =mu, and = —rbp - 9. Without loss of generality we may assume m >1. We
begin by estimating the top sum in (4.12). There are four cases to consider: m > 1
or m < —1 combined with oy, € [0,7/2] or oy € [-7/2,0]. We will consider only one
case: m > 1 and ay, € [0,7/2]; the other three cases are completely analogous.

Let a. > 0 be the smallest angle such that ¢'(a.) = 0; i.e., a. = a, + (7/2)
(mod 7). Assumption P2 in Definition 2.6 implies a, # 0. Otherwise, bo - 20 = 0,
bo -y’ (0) =0, and x¢ = y(0) imply that the line through the origin and z is tangent
to S. By assumption P4 in Definition 2.6, .. # 7/2. If not, k3 - o = 0 is rational.

Let o, satisfy

(7.2) d(as,m)=s, |s| <mkry, s€(1/2)Z, osm €[0,7/2].

See Figure 8, where as ,, are shown as thick dots for integer values of s (and without
the subscript m). If a. € (0,7/2), then for some s there may be two solutions:
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af LN a|'|1||||£|1'|2||| LN al ar LN ]
0 O Oy Oy O Oy O Ok O /2

F1G. 8. Illustration of the interval [0,7/2] with various angles used in the derivation of the
estimates.

asm € (0,00) and g, € (aw,w/2]. If a, & (0,7/2), there is at most one solution
for each s. Note that the solution(s) may exist only for some of the indicated s. By
assumption P3 in Definition 2.6, k7, is irrational, so o, # o for any s,m. By
assumption P4, ¢(0) is irrational, so o, # 0 for any s, m.

Consider an interval I C [0,7/2] and its rescaled versions:

(7.3) I:=1/Aa)I, I:=e /7.

In view of (4.6) and (4.12), consider the expression

(7.4) Win(I) =€ Y " e(—maq) [g(aw)e (—mdy, - )], qr:= ———
&kei

The dependence of W,,, () on € and # is omitted from notations. The goal is to estimate
the sum 3, o Wi ([0,7/2]). Obviously, W, ([0,7/2]) <>, Wi, (I;) if U;1; = [0,7/2].
From (6.7),

1/e
(7.5) Wi (0,7/2]) S O(e/%)p(m) Y _(1+€/2k) ™" = p(m)O(In(1/e))

k=0

because there are O(1/¢) values oy, € [0,7/2]. Therefore,

(7.6) Y Wallom/2) <On(1/e)) Y plm)=0(eln(1/e))

|m|>ce—1/2 m>ce—1/2

if p(m) = O(Jm|~3) and ¢ > 0. Thus, in what follows, we will assume €'/2|m| < ¢ for
some small ¢ > 0.

Next we investigate the individual W,,,(I) for smaller intervals I. For this we need
a partial integration identity [14, p. 89] (written in a slightly different form):

K> Ko Ko T
(7.7) > Gh)2(k)=G(Ka) Y (k) — / G'(r) Y ®(k)dr,
k=K, k=K K1 k=K

where G(7) is continuously differentiable on the interval [K, K5]. Here and through-
out the paper, Zzzzcl, where cq 2 are not necessarily integers, denotes the sum over
k € [c1,c2]. Hence

K> Ks E’
(7.8) k;(lG(k)q’(k) < (lG(Kz)H-/K1 G (T)d7> L k;ﬁ‘l)(k) :

The following result is also needed [9, p. 7].
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THEOREM 7.1 (Kusmin-Landau inequality). If 9(7) is continuously differen-
tiable, V' (7) is monotonic, and (¥'(1)) > A >0 on an interval I, then there exists ¢ >0
(independent of 9 and I) such that

(7.9) Z e(d(n))| <e/A.

nel
In view of (7.4), (7.7), define
(7.10) G(a) :=g(a)e(—ma - z), (&) :=e(I(a)),
where (&) is defined in (7.1).
LEMMA 7.2. One has, for any b,L. >0, L=0(1), [b,b+ L] C e /3Q,

b+L 1 .
(7.11) /b n;w;ggl_'_d(wda O((1+b)™Y).

COROLLARY 7.3. One has, for any b,L. >0, L=0(1), b+ L <e '/?1/2,

b+L
(7.12) | 10s0(@)da = pmo(a+5) )

The assertion is obvious because (a) the second term in brackets in (6.7) is O(a~?)
and (b) by (6.7), 059(&) satisfies the same estimate as in (7.11) if & ¢ ¢~ 1/2Q (with
p(m) accounted for).

Pick any interval I C [0,7/2] such that |I| = O(1). From (7.10),

(7.13) /\G’ |da<c/ (19a9(@)] + €2 mllg(a)] ) da.
Also, by (6.7) and (7.12),

G(ao)| = g(do)| = p(m)O((1 + o)),

(7.14) /|g )| dé, /|8ag Yda = p(m)O((1 + ap) ) for any aq € I.
Hence
(7.15) I;{Ylea?(\G(d)\ + / |G (&)]da = p(m)O((1 + &)~ ") for any ag € 1,

where we have used that €!/2m < c.

We suppose that oo = «, is a local maximum of ¢(«). The case when «, is a local
minimum is analogous.

Let [0, ] be the shortest interval such that ¢(cy) is an integer, i.c., ¢(ay) € Z
and ¢(a) ¢ Z for any a € [0,c5). Similarly, let [a, ] be the shortest interval
centered at a, such that ¢(ay) = ¢(a,) € Z and ¢(a) € Z for any « € (ay, o). Clearly,

d(ag) = () = |(ay)]. Set
(7.16) 10 = [0,7/2)\ ([0, ] U [ew, o))

Thus, W,,,([0,7/2]) < Wi (1)) + Wi ([0, ap]) + Wi (Jeu, o))
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7.2. Towards estimation of W,,, (I(?)). In this subsection we assume a; < oy,
ie., [¢(0)] < |o(ax)], because otherwise 19 = @, and W, (I(?) =0.

Pick any interval I := [ag,a0] C I(® (if one exists) such that 2¢(a;2) € Z,
|p(az) — d(a1)| = 1/2, and 2¢(a) € Z for any « € (a1, a2). By construction, ¢(«) is
monotone on I. Let j be the integer value in the pair ¢(a1), ¢(a2), ie., a1 =, or
a2 =, (see (7.2)). The other value in the pairis j —1/2 or j +1/2.

Generically, one has

(7.17) |cos(ay — az )| < | cos(ag — ag)].

The only exceptions are the two cases when [a,as] is close to a,: as = a; and
a1 = a,. In these cases one of the expressions in (7.17) can be arbitrarily close to zero
(as m — 00), while the other can stay away from zero. If s = oy, then ¢(ag) =j and
olay) =35 —1/2. If a1 = ap., then ¢(a1) =5 and ¢(as) = j — 1/2. Therefore, when
m>1,

|cos(aq — ay)| > |cos(aym — ag)| if ajm=ay,

7.18
(7.18) |cos(ag — ay)| > | cos(ay m — ag)| if ajm = .

Clearly, as — oy = O(m~/?). Away from a neighborhood of ., this difference is
actually O(1/m). To cover all the cases, we use a more conservative estimate.
Subdivide I into N subintervals of length =<1 (see Figure 8):
I=ul7)
(7.19) Lo ) ) o
I=U, " [&jm+nL,&jm+ n+1)L], &jm+ NL=as if a1 =a;m.

[CNijm — (TL + 1)Ladj,m — TLL}, dj,m —NL= O~[1 if Qg = ajym,

Clearly, an — a; > ¢/(¢7*/?m), so the requirement ¢~/?m < ¢ implies ay — a1 > c.
Hence we can choose N=1and L=ds —&; if @2 — a1 <1, and N = [&2 — &1 | and
L= (as —61)/N if Gz — a1 > 1.

One has
|sina —sina| > (o — a1) min(| cosaq |, | cosasl), a € a1, as),

7.20
(7.20) |sinag — sina| > (@ — o) min(| cosaq |, | cosasl), a € oy, as),

for any a3 < a9 such that sina # 0 on the interval (a1,as). The statement is
immediate in view of the mean value theorem and the monotonicity of cosa on the
interval [aq, as]. R
By construction, j is the integer closest to ¥'(&) if & € I:
(7.21) (0'(a)) = [9'() — j| = 9'(&) = 9" (&ym)| if &€ 1.
From (7.17), (7.18), (7.20), and (7.21),
>

(V' (&)) c(el/QnL)m/irm\ cos(Qjm — )| = cel/zn((mng)2 - j2)l/2
o

7.22
(7.22) if a€lajm—(n+1)L, 0, —nlL] or &€ [Gjm+nL, ., + (n+1)L].

This follows from the top inequality in (7.20) if oy = @, and from the bottom one
if Q2 = 04 m- AISO7

(7.23) a>caj, ifael

Indeed, notice that & > &, if a1 = &, m. If @2 = a1, then it suffices to assume that
m > 1 is large enough. From a, # 0, a. € [0,¢] for some ¢ > 0. By construction,
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[¢(e1) = (0)] > 0.5, |¢(az) — ¢(0)] > 1, and [P(ar2) — ()| =1/2. If m> 1, (7.23)
is obvious if ag > ¢, and it follows from the mean value theorem if [a1, cg] C [0,¢].

The partial integration identity (7.7) and the Kusmin-Landau inequality (7.9)
imply

w. (I)<cel/2 (m) 2 + e/ il
SO P G @ (mrg)? — j2)12 £

gcﬂ(m) <1+ - In(1/(em)) ) -1

mkrg )2 — j2)1/2

The first term in parentheses on the first line in (7.24) bounds the contribution from
the subinterval [&;,m — L, & m] O [&] m,&;jm + L] (depending on the case), which is
adjacent to &; .. Since ¢(a; m)=j, we cannot use the Kusmin-Landau inequality, so
Wi (+) for this subinterval is estimated directly from (7.4) using the top line in (6.7)
and (7.23).

Clearly, I® can be represented as a union of intervals I = [y, az] of the kind
considered in this subsection. Summing the estimates in (7.24) for all T ¢ I to
obtain a bound for W,,(I(?)) is done in subsection 7.5 below. Therefore, it is left to
consider Wy, ([aq, o) and W, ([0, ay]).

7.3. Estimation of W, ([ai, ar]). Suppose first that . € (0,7/2). Since .
is a local maximum, ¢(«) is increasing on [y, o] and decreasing on [, a,]. When
m > 1 is sufficiently large, we have 0 < oy < i < a0 < /2.

Suppose oy > 0 (see Appendix C if this does not hold). Then & < e '/? if
& € [ay, ar]. Split [&y, ] into N = | &, — ay] subintervals of length L < 1:

(7.24)

®j,m

(7.25) [, &) =UN"g [dr +nLl,d + (n+1)L], &+ NL=ad..
Since &, — & < [{mkry,}/(em)]'/?
(7.26) cl(mery) /(em)]V? < @, — ay < ¢/(em)'/?.

Applying (7.15) to each of the subintervals in (7.25) gives the estimate p(m)O((1+
&)~ 1) = p(m)O(e/?). Also,

(#(6)) > min ( L )1 {¢<a*>}>

, we have

a*—dl

(7.27)
> min (cn(em(m/ﬁrw>)1/2, <mf€rz>) , @€d+nL,a+ (n+1)L).
Completely analogous estimates hold for [é,a,] if a, <7/2 (see also Appendix C).
Therefore,
1/2 1 N-1 1

€ + Z 4
(em)Y/2(mury) — (m{mrry))/2 “= n
1 In(1/(em))
merg)  (m{merg))t/?

Wi ([ar, ar]) < cet/2p(m) (1 +
(7.28)

1/2 ~ ~
SCE/[)(m) <m1/2< ),OZ*—O[[>]_.

The first term in parentheses on the first line in (7.28) corresponds to the subinterval
[é4, &y + L], since ¢(&y) € Z and its contribution is estimated directly from (7.4) using
the top line in (6.7).

If &, — @ < 1, we can estimate W, ([az,]) directly from (7.4). There are
O(e'/?) terms in the sum; each of them is O(a; ') = O(¢'/?), so

(7.29) Wi (Jou, o)) < ce*/?p(m), d, —ay < 1.
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7.4. Estimation of W,, ([0, ]). Since o, is a local maximum, ¢(«) is in-
creasing on [0, ). If there is no a € (0,a,) such that ¢(«) € Z, then o; < 0, and
this case is addressed in Appendix C. Therefore, in this subsection we assume that
o(aj, m) = j1, where ji :=[¢(0)] for some a;, m € (0,a,). Clearly, af = aj, m.

Split [0, &;, ] into N = |&;, ] intervals of length L <1:

(7.30) 0,6, .m] =UN_J[nL, (n +1)L], NL=Gj, m if &, m > 2.
Since &, m =< (1 — {mu})/(€!/?>m), we have
(7.31) c{mp)/(€/2m) < &, m < ¢/('*m).

Applying (7.15) to the interval I, = (ke'/2)~[nL, (n + 1)L] gives

(7.32) max |G(&))| +/f G/ (4)|dé = p(m)O((1 +n)~Y).

ael,

By the bottom line in (7.20),

(7.33)  j1—(a) > (N = (n+ 1)) L(msr,) min(] cos(—az)|, | cos(aj, m — o))
if @ € [nL,(n+ 1)L]; therefore

(7.34) (9(&)) > min ({mu}, e 2m(N — (n+ 1))) ,ael,,

because | cos(—ay)|, | cos(ay, m — ay)| < 1. Combining the inequalities, using (7.31),
and simplifying give

-
—— +
Qjym  {mp} £ 1+n

(7.35) LN~ L
tam ; A+n)(N—(nt 1)))
. ce1/2p(m)m +1n (1/(e1/?m)) G2

(mu)

The first term in parentheses on the first line in (7.35) bounds the contribution from
the last subinterval Iy_; = [}, m — L, &}, m]. Since ¢(aj, m) = j1, we cannot use the
Kusmin-Landau inequality, so Wy, (Iny_1) is estimated directly from (7.4) using the
top line in (6.7). From these two equations we get also

(736) Wm([07aj17m]) < Cp(m)7 djhm <2.

7.5. Combining all the estimates. We begin by summing (7.24) over all the
intervals I = [ay,az] C I in order to finish estimating W,,,(I(?)). The analysis in
subsection 7.2 shows that W, (I) admits the same bound (7.24) regardless of whether
Q1 = @, O Qg = Q. Hence we need to sum the right-hand side of (7.24) over all
integers j € ¢(1(?). Recall that a;,, denote the angles such that ¢(a; ) = j (see
(7.2)). We need to distinguish two cases: 0 < o, < min(ay,7/2) and o, < ajm <
m/2. The latter case may occur only if o, <m/2.

First, suppose 0 < & mm < min(ay,7/2). Denote ji := [¢(0)], jo := [¢(as)]. Then

(7.37) ajm = [(mp) + (G = J1)l/ (mere), 1 <G < jo,
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and
Wnllag,ail) < cetptm) | (s (14 UL o (1 mp/tom) )

(7.38) VS (1+ In(1/(em) )]

_ 1/2 — \1/2
Pl R Al ml/2(mery = j)

The first term in brackets corresponds to j = ji, the second term to j = jy, and the
sum to all j; <j <jo. If jo — j1 =1, the sum is assumed to be zero.

If g > 7/2, Wi, ([ap, 7/2]) is assumed instead of Wi, ([avf, oy]). Clearly, mkry—j >
1if j1 < j < jo. Simplifying and keeping only the dominant terms, we have

m+In(l/(em)) - In(1/(em)) ) .

(myp) m/2(mer,)1/2

139 Wallagal < om) (

If a, <7/2 and o, < ajm < 7/2, then & < €172, 50 (7.24) gives

In(1
(7.40) Won ([, 7/2]) <ce/?p(m) <m + %Z”)) (mrrg) 12 & ml/zD '
m
Here we used that there are O(m) distinct values of j. Clearly, the estimate in (7.39)
dominates the one in (7.40). This implies that W,,(I(?)) satisfies the estimate in
(7.39).
We have

(7.41) p(m) =0(m=), m— oo, (mpu), (m|ze|) >c,m™", meN,

for any n > ny and some ¢,, > 0 (see conditions P3, P4 in Definition 2.6). By summing
each of the estimates (7.28) (contribution of [y, &;]), (7.35) (contribution of [0, af]),
and (7.39) (contribution of 1(®)) with respect to m from 1 to oo, we see that the dom-
inating term is €'/2>°°°_ p(m)m/(mu) (cf. (7.35) and (7.39)). The series converges
it 5>mno+ 2.

Next consider special cases. Comparing (7.29) and (7.36), we see that the latter
grows faster as m — oco. From (7.31) and (7.36),

(7.42)
Z Wi ([0, 0, m]) <c Z p(m) = 0(6(671)/(2(%1))) — 0(61/2)
m>1,&;,,m<2 m>1
(mp)/(e'/?m)<c
it 6>ny+2.

The contribution of the exceptional cases that take place for finitely many m (see
Appendix C) is of order O(e'/?In(1/¢)). Hence we proved that

(7.43) > Win([=7/2,7/2]) = O(e"/? In(1/€)) if B> o + 2.

1<|m|<O0(e=1/2)

Given that ¢ is confined to a bounded interval and (7.43) is uniform with respect
to ¢ (see the paragraph following (4.12)), we prove (4.6) in the case xg € S.
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8. Proof of (4.6) in case (B): Preparation.

8.1. Preliminaries. Now we consider the case 2o ¢ S. On a high level, our
approach is similar to the one in case (A). In section 8 we show after several sim-
plifications that the analogue of g(&) decays sufficiently fast with its derivative (see
Lemma 8.6). In section 9 we break up the sum with respect to ay, in (4.6) into smaller
sums and use the same methods as in section 7 to estimate the latter. Adding all the
estimates and summing with respect to m # 0 proves (4.6).

The following result is proven in [21].

LEMMA 8.1. Pick xo € S such that no line through xo, which intersects S, is
tangent to S. This includes the endpoints of S, in which case the one-sided tangents
to S are considered. Under the assumptions of Theorem 2.7, one has

(8.1) fPree(z) = O(e /2 In(1/€)), € =0,
uniformly with respect to x in a sufficiently small neighborhood of xg.

To make this paper self-contained, a slightly simplified proof of the lemma is in
Appendix D. By the above lemma and a partition of unity, only a small neighborhood
of a point of tangency can be considered. Therefore, in this section also we can assume
that S is as short (a > 0 as small) as we like.

In this section we use R; in its original form (see (4.10)),

(8.2) Ry(0,a) =a- (y(0) — o),

because zg # y(0). Let o = Ay(0): [—a,a] — [—7/2,7/2] be the function such that
a(A1(0)) - (y(0) —x) =0. Suppose, for example, that z¢ is on the side of S for which
A;1(6) > 0. The case when A4;(6) <0 is analogous. In contrast with section 5, A; is
now quadratic near § = 0. In what follows we need rescaled versions of the functions
R1 and All

(8.3) R(0,4):= Ri(0,a)/e, A(B):=A1(0)/Ac.

As usual, the dependence of R and A on € is omitted from notation for simplicity.
LEMMA 8.2. One has

(8.4) A(0) < 0%, 9;A(0) =<0, |0] <a,

and

(©5) R(0,&) < A(0) — &, 95R(0,&) <0 — ke'/?a, d5R(0,4) =O0(1),

OZR(0,6)=0(1), 9505R(0,6) = O(e'/?), |0 < a,|a| < 7/2.

The proofs of this and all other lemmas in this section are in Appendix B. From
(4.9),
ae"1/2
A= [ [ D (RO.0) 4 h(6.)) F(6. b Ho0:))dicd
(8.6) o IR
- / sgn(f) > / Do (R(é, &) + h(&,a)) F(0,)ddds.
R —Ju,

Clearly,
(87) th:O(]-)v aéhvaéF:O(El/2)v aﬁh:O(e)a ‘0| §a7|a| S’]T/Qa
uniformly with respect to all variables. By (8.6),
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A (aye) :e_l/z/sgn(f)g(d;m,e,f, #)df,
R

59 g@m,e i i)=Y /U . (R(j ) +h(0,a)) F (8, ¢f)dd.

As usual, the arguments m, e, t, and & of g are omitted in what follows, and we write
g9(&).

Our goal is to estimate the sum in (4.6). To do that we first simplify the sum by
reducing the range of indices k& and simplifying the expression for A,,. Note that we
no longer assume m > 1.

8.2. Simplification of the sum (4.6). From (8.4)—(8.7) and (4.4), it is easy
to obtain g(&) = p(m)O(|&|3/?), & — —oo. This implies

(8.9) Aad ) > Am(aw ol =0(?)

for any fixed &, > 0. The meaning of a, here is different from that in section 7.
Similarly to (5.2), introduce the set © =ranA; (with Q = (1/Aa)Q according to our
usual convention). We will show that the sum over ay € [0,7/2] \ Q makes only a
negligible contribution to fP™¢. By (8.9), the contribution of negative ay and any
finite number of aj > 0 can be ignored. Introduce the variable 7:

(8.10) & = Ay + 7, Ay :=max(A(—ae /?), A(ae™1/?)).

Clearly, Q =ranA = [0, Apyx].
LEMMA 8.3. One has
(8.11) Aad " > |Ap(ak,€)| = O(eln(1/e)).
m &g >Amx
LEMMA 8.4. One has
(812) gi(@)=3" / v U (B0.8) + h(0.0)) F(O.cl)dI = p(m)O(@~")
n TIR(0,a)[>66"2
as & — +oo for any 6 >0 as small as we like.
Equation (8.12) implies
(8.13) Aaz Z AW (€)= O(e/? In(1/€)),
m & €[& , Amx]
(1)

where A, is obtained by the top line in (8.8) with g replaced by g;.
The only remaining contribution to fP*° comes from

(814)  p@=Y[ ., (R( j,&) + h(0, a)) F(0,ed)dd, &€ .
n Y\R(0,6)|<661/?
A simple calculation shows that go(&) = O(&~1/2?), & — co. By (8.4) and (8.5),
- AN @) =0(a"? /A (A1) =0(1), 0-6(a)=0("?),

8.15 . e
(8.15) O(a) =2 A7Y(a), & — 00, G €, |R(0,d)] <sal/?.

Copyright (©) by SIAM. Unauthorized reproduction of this article is prohibited.



Downloaded 09/18/23 to 68.205.98.33 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

4282 ALEXANDER KATSEVICH

Despite the fact that A~ is two-valued, (8.15) holds regardless of whether § >0 and
ranA~! C [0,00) or # < 0 and ranA~! C (—o0,0]. Hence by (4.4) we can replace
F(0,et) and h(0,a) with F(0(&),et) and h(©(&), ), respectively, in (8.14):

92() = g5 (&) + g5 (&) + p(m)O((¢/@)'/?), a €,

(B16)  (a) = F(O(A), )Y / visoier. Om (R(0.6)+ h(©(@), ) db.
n " |R(6,a)|<sal/?

The superscript '+’ is taken if ranA~! = [0,00) and '~ if ranA~! = (—00,0]. The
same convention is assumed in what follows. In particular, the domain of integration
in (8.16) is a subset of (0,00) when g5 is computed and a subset of (—00,0) when g
is computed. Omitting the big-O term in (8.16) leads to

B17)  Aad > AR (k€)= (AT (ak,€) + AT (ak, )| = O(e"/?),

m &y €[Gx , Amx]

where A%i) are obtained by the top line in (8.8) with g replaced by gQi, respectively.
Due to this simplification, we can consider

(8.18) @) =Py / ciooier, U (RE.6)+ 1) di,
m T|R(6,a)|<sat/?

where F = F(O(@),el), h=h(O(a), ) are uniformly bounded and independent of 6.
As was done before, set r, (&) := R(up,d&). By shifting the index of w,, if necessary,
we may suppose that ug is the smallest nonnegative wu,,. This means that u, > 0 if
n >0 and u, <0 if n < 0. In this case, u, < n if |u,| > ¢ by Assumption 2.4 (H3).
Changing variables 0—r= R(é, &) gives

dr
i;o |,,|7<65111/2 |(95R)(0, )|

where 6 is a function of 7 and & As usual, +n >0 in gj and —n >0 — in g;. The
change of variables is justified because (0 R)(A,&) # 0 on the integration domain.
Indeed, 6 is bounded away from zero on the domain, and the following result holds.

LEMMA 8.5. One has
(8.20) (O3R)(0,6) =<0 if |R(0,4)| <0a"? &€ [, Amx.

Further simplification is achieved by replacing 6 with A~1(@&) in the argument of
JzR. From (8.5) and (8.15),

95 (&) =gy (&) +p(m)0(0?_1),
(8.21) git(d) [(8;R)(A-1(&), a)] Z /reR m(r+h)dr

in>0 Ir|<sat/?

F=F(6(a).el), h=h(O(a),cd).

Neglecting the big-O term in (8.21) leads to a term of magnitude O(e'/?1In(1/¢)) in
fep—reC.

Copyright (©) by SIAM. Unauthorized reproduction of this article is prohibited.



Downloaded 09/18/23 to 68.205.98.33 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

ANALYSIS OF RESOLUTION 4283

Here is a summary of what we obtained so far:

Ao DT Aokl =0(?),

m Gy €[&* ;Amx]

)
Aad Y Am(ar,e) = (Al (ak,€) + Ay (ax, €)= O(e/* In(1/e)),

m Gp€ [&* ;Amx]

where (cf. (8.8))

(8.22

(8.23) A (a,e) = 6_1/2/gf(é¢;m,e,f,i‘)d£
R

The first line in (8.22) follows from (8.9) and (8.11). The second line follows from
(8.13), (8.17), and the comment following (8.21).
Finally, we need the following result.

LEMMA 8.6. One has

(8.24) 95 (@) < eplm) (62 (14 (@) ™ +071),
el/2
(5.25) g @) < eptm) (s 5 )

where & € [Q, Amx|, and

(8.26) Trin (&) == irI’rlli>Ilo |A(uy) — @l.

To clarify, in the estimate for g;f, the minimum in (8.26) is over n >0 and in the
estimate for g, over n <0.

9. End of proof of (4.6) in case (B): Summation with respect to k.
Denote vy, := A(uy,) and consider the intervals

9.1) Vo = [Vn=0.5,Un+05],n >0, Vy, :=[Unt0.5,Vn—05],n <0,
' Un10.5:= (Un +Vny1)/2, nE€Z.

Since the function .A(f) in section 8 and section 9 is different from the one in
sections 5-7, the v,,’s in (9.1) are different from the v,’s in sections 5-7.

Clearly, the estimates in Lemma 8.6 increase if extra points are (formally) added
to the list of w,’s. If u, ¥% n (i.e., there are too few w,’s), we can always add more
points to the u,’s and enumerate them so that the enlarged collection satisfies u,, < n.
This property is assumed in what follows.

LEMMA 9.1. IfV,, C [Gx, Amx], one has
(92) Un XTL2, ‘Vn| = |Un+045 - Un—OAS‘ = |’/l|, QX Uy, Tmin(d) = ‘Un - d| if 6 €V,
The proof of the lemma is immediate using Lemma 8.2, (9.1), and that u,, <n.

LEMMA 9.2. For all V;, such that V,, C [éx, Amx], one has, as n — oo,

(9.3) 193 (vnt1/2)| = p(M)O(n~?)

and

(9-4) /Igf(@)\dd:/)(m)O(\nl’lhllnl),/V\%gff(@)ld&:p(m)O(lnl’l)-

n
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Arguing similarly to (7.5), (7.6), equation (9.4) implies

O(e=1/2)
(9.5) el/? Z |AE (o, €)] < p(m) Z n~Hnn = p(m)O(In*(1/¢)).
G €[, Amx] n=1

Here we used Lemma 9.1 and the following two arguments. (i) Since &, > 0 can be
taken as large as we want, we can select &, = d*(f, €) so that (a) ¢; < &, < ¢o for
some fixed ¢; 2 > 0 and all t and € > 0 and (b) d. = v,10.5 for some n. (i) If v,
is the last of the v,’s in the interval [d., Amx], the sum over dy € [vy,, Amx] can be
estimated directly. By (9.2), Apx — G = O(Arln/f ), so the number of the additional
ay’s is O(Arln/f) By (8.24), gi (&) = p(m)O(A;&/Z), dk € [Un,; Amx). Therefore the
contribution of [vy,, Amx] is O(p(m)), which is absorbed by the right-hand side of
(9.5).
From (9.5),

(9.6) Ao 32 3 Mn(anel =0
[m|>1In(1/€) & €[Ax , Amx]

if p(m)=0(|m|=3). Thus, in what follows, we will assume |m| <In(1/e).

Let !y be the smallest positive root of the equation |p(a) — @(0)| = (#(0))/2.
Recall that the function ¢ depends on m. By (7.41) and the restriction on m (recall
that ¢(0) =mp),

(9.7) (mp) > e(In(1/€))™, a9 > ¢(eln(1/€)) 71,

for any n > 1. Find n such that dS,‘P €V, and set &, := v, +0.5. By construction and
(9.2),
(9.8) 0< =60 = O(vl/2) = 0((a)1/2) = (e~ 2);
therefore a, — oty = O(e}/2).
In this section we use only two intervals:

(9.9) Iy := [6uy, G, Iy := G, Amx], m #0.

Since . = O(1), due to (9.7) we can assume Gy, > d,. The derivations for gi are the
same, so we drop the superscript. Similarly to (7.4), define

(9_10) Wm(I) 2261/2

Y e(=ma) [ga(an)e (—mdy - &)]|.
(kaEf
The dependence of W,,(I) on € and # is omitted from notations.
Following the method in section 7, we use the partial integration identity (7.8)

and the Kusmin-Landau inequality (7.9). The definitions of ® and ¥ are the same as
before, and the definition of G (cf. (7.10)) is modified slightly:

(9.11) G(&) :=ga(@)e(—ma - 7).
We begin by applying (7.8) to the first interval, so we select [Ky,Ks| as the
interval such that k € [K7, K] is equivalent to & € I1. By (9.7) and the choice of

0
Oégn), am>

(9.12) G = clmp)/(elml),  (9'(a)) > elmp), a € L, mA0.
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From (9.11),
(9.13) J 16 @na<e [ (@ag@] + dmllga(@)) da.

Our construction ensures that I 1 = UV,,, where the union is taken over all V,, C I 1.
There are N = O((@Sﬁ))l/z) intervals V;, such that V,, C I;. By (9.3), (9.4),

|G(K2)| < clga(vno. 5)| <cp(m)N~2,

/ |ga(a)|dé& < ep(m ZO “nn) = p(m)O(In® N),

(9.14)
N
| 10a94(a)lda < cp(m ) n” )O(In N).
Hence
(9.15) WMM+[KNMM p(m)O( ).

Here we have used that |m| < In(1/e) implies ejm|In N < 1 for € > 0 sufficiently
small. For the same reason we can assume N > 1. By (9.12), (9.15), (7.8), and the
Kusmin-Landau inequality,

e2p(m) ( (mp)
(9.16) Wi(l)<c ) In < p ) , m=#0.

The sum over the remaining V,, C fg, N <n< 0(6*1/2), can be estimated easily
without utilizing exponential sums. By construction, the left endpoint of I, coincides
with v, 405 for some n. As was established following (9.5), the contribution of &y
beyond the last V;, C I5 is O(p(m)). Therefore Lemma 9.2 implies

Xnﬂwrw/m4|w<czp/m4\w+m<»

Grpels VaCla
(9.17) O(e~*'%)
<cp(m) Y n'Inn<cep(m)(in®(e /%) — In*(N))
n=N

= p(m)O (In(1/€) In(|m|/(mpu))) .

With some abuse of notation, in the two integrals on the top line above, we integrate
the upper bound for g4 obtained in (8.24) (with & replaced by v, by Lemma 9.1).
This bound has better monotonicity properties (i.e., it can be made monotone within
V., on each side of v,,). Otherwise, we would not be able to estimate the sum in terms
of an integral. We also used that dj41 —éap =1.

Thus

(9.18) Wi (I2) = p(m) In(|m| / (mps))O(e/* In(1/€)), m #0.

Comparing (9.16) and (9.18) with (7.39), we see that the case xg & S gives no ad-
ditional restrictions on p(m). Similarly to the end of section 7, we use here that
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the estimates (9.16) and (9.18) are uniform with respect to ¢ and  is confined to a
bounded interval.

Remark 9.3. Note that the order of operations in the proof of Lemma 8.1 (see
Appendix D) is as follows:

(9.19) Z(.H/(.)dmzf(.)da
In sections 4-9 the order is different:
(9.20) /(-)d§—> > ) —>Z/(-)d£.

10. Proof of (4.7) in cases (A) and (B). Here we prove (4.7). Begin with
the case 2o = y(0), which is case (A). By (4.11), (4.12),

ap+Aa/2 o
S / Ao, ) — Ao(ak,e)|da§0(61/2)/J€(t)dt,
(10.1) |ag| <2 ” k= Be/2

J.(8) = max Oa Ada, Ada:= ke 172
(t) a,c%/zddklﬁd/? g(a)|

As is seen from (6.7), the only term that requires careful estimation is given by

JW (1) :=Aa &, vy,
W(t):=0a Y S, Z g1(&,vp),
(10.2) o €42 nilv, —&|<s

91(@,vy) = [1+ v} (v, — @) -

Here we used that 1+ a?(v, — @)? < 1+ v2 (v, — @)? if |v, — @] < 6. Replacing the
inner sum with a larger sum over n : |v, — &| < 260 (using that 6 + (Aa/2) < 24), we
can write

M (£ < AG A
(10.3) JOB<aa Y > . ar?KXAa/Zgl(a,vn).

[n|<O(e=1/2) k:|v, —ap | <26

Since 9z g1 (G, v,) <0, & > vy,

Z max  g1(&,v,) < Z g1 (vn + EAG,v,)

a—ap|<Aa/2
kron <dn<vn 26 O OkISAG/ 0<kAG<25

1/00 (@o)da<e(1+ Lt
AG J,, TOIC= T ARG o))

The same argument applies to the left of v,, so by (9.2)

(10.5) JO@H < > (0 + A+ =00,

In|<O(e=1/2)

(10.4)

Consider now the remaining terms in (6.7). Define similarly to (10.2):

It =0a Y ‘&_&%%&/2(1 + &%),
ap e -

IO @) =00 > max (14 |a))~"

ar€[—m/2,7/2]\Q |&—ak|<A&/2

(10.6)
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Arguing analogously to (10.4), (10.5), we get Je(l)(f) =0(1),1=2,3. When estimating
J) we use that the summation is over ay, which satisfy ¢ < |ag| < /2. Combining
with (10.5) and substituting into (10.2) lead to J. = O(e!/?).

Suppose now zy € S, which is case (B). It is obvious that the continuous analogue
of (8.22) works for m =0:

/ Ao (v, €)[da = O(/2),

(10.7) (G Ams]

/ |Ag(a,€) — (Aar(oz,e) + Aj (a,€))|da = O<€1/2 In(1/e)).
AE[Gx , Amx]

Hence it remains to estimate

ap+Aa/2
(10.8) JE= ) / |AE (,€) — AT (g, €)|da.
AR E[Gn Amy] Y R TR/
By (8.23),
(10.9)
£ o 1/2 + /N7 £ .  da 1
sEel [JEOd EH= Y 3 max [0sg(@)]+0(0)

Vi Cl6, Amx]| Gk EVn

Here O(1) is the contribution of & beyond the last V,, C [Gu, Amx] (see the argument
following (9.5)). Clearly, we can assume &, > 1/2. By (8.25), (8.26), and (9.2), it is
easy to see that

1 61/2
(10.10) ~max |dagf(a)]| <c ( — + ) ,
akze;/ amarl=1/2 akze;/ v (14 (v — @x)2)  Vn
Arguing similarly to (10.4), we conclude that the left-hand side of (10.10) is bounded
by the same estimate as the integral of [949: (&)| in (9.4). Combining (10.8)(10.10)
gives the desired result:

O(e™/?)
(10.11) JE<ce? YT T =0(e/In(1/e)).
n=1

Appendix A. Proofs of lemmas in sections 4-7.

A.1. Proof of Lemma 4.2. By Assumption 2.2 (AF1), @w(A\) = O(]\|~([F1+1),
A — 00, where w(A) is the Fourier transform of w. If ¢ is restricted to any compact

—~—

set, the estimate for ), holds because (H¢')(\), w(\) = O(p()\)) (cf. Assumption 2.3
(IK1)) implies

(A1)
‘/Iul@(u)w(u—A)e"(’*‘”tdu S/Iu@(u)u?(u—A)\du=0(p(k))7k=2ﬂm—>00-

If |t| > ¢ for some ¢> 1 sufficiently large, integrate by parts [3] times and use that
(A2) max|(9/9q) PH(He ) (@w(—q—1)| = O(t™?), t— o0.

The argument works because (H¢')(q) is smooth in a neighborhood of any ¢ such
that w(—q —t) #0.

The estimate for z/;;n follows by differentiating (4.3) and applying the above ar-
gument with w replaced by w’. The argument still works because w’ € C(EB ! (R) (by
Assumption 2.2 (AF1)).

Copyright (©) by SIAM. Unauthorized reproduction of this article is prohibited.



Downloaded 09/18/23 to 68.205.98.33 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

4288 ALEXANDER KATSEVICH

A.2. Proof of Lemma 5.2. To prove (5.5) we write

a3 a0 L a0 (0 + 1 0)072) + 06%) =0

Differentiating with respect to 6 and setting 8 =0 gives
(A4) O - y/'(0)A1(0) + o - " (0)(1/2) =0

Hence A} (0) =1/2 (because @+ - y/(a) + @ - y”"(e) =0), and the desired properties of
A follow by rescaling § — 6 and A; — A.
By the choice of coordinates,

(A.5) a-(y(0) —y(0)) /(6(A(0) — a))

is a sufficiently smooth positive function of (a, ) € [-7/2,7/2] X [—a,a]. The pos-
itivity follows from the following statements: (i) S is convex; (ii) by construction,
a@+(0)-y'(0) <0 and &@(0) - y”(0) > 0; and (iii) &@- (y(8) — y(0)) has first order zero at
0=0if «#0 and at A;(0) =« if @,0 # 0. Rescaling 6 — 6 and o — & proves the first
property in (5.6).

The rest of (5.6) follows by differentiating &@- (y(6) —y(0)), using that &@-y'(a) =0,
and rescaling.

A.3. Proof of Lemma 6.1. Suppose |a@| > c¢. Assuming |A;(0) — a| < d¢'/2,

where 6 > 0 is sufficiently small, the properties (see (5.5))

(A.6) A1(6)=0,  max|A1(6)/68] <1

imply 6 < a, 8/a > ¢ for some ¢ > 1, and 6§R(§, &) = & (see (5.6)). Also, differenti-
ating Ry in (5.1) we get 0, R1(0,a) < —0 and, hence, 8&R(§, @) =< —a&. The properties
of 7, now follow immediately by rescaling and setting 6 = u,,. The magnitudes of 7y
and 7y, follow as well because A(é) — @& =46 for the corresponding 6.

Denote B(a) :=.A"1(&). To prove the statement about a7 mn, darmx we need to
show that 95 R(B(& +48),&) = O(1). Using that (i) 050;R,02R, and B’ are all O(1)
(see (5.6); B’ = O(1) follows from A’ = O(1)) and (ii) R(B(&+4),a+46) =0, it is
easy to see that the desired assertion holds.

To prove (6.5) we differentiate R(O(r,a),a) =0 and use that 93R(,&) < & and
daR(0,a) =< —a.

A.4. Proof of Lemma 7.2. Any v, such that |v, —a| < § for some a € [b,b+ L]
satisfies b— 0 < v, <b+ L+ . By Lemma 5.2, u, and v, satisfy qualitatively the
same assumptions (see Assumption 2.4 (H3)). Since L = O(1), there are finitely many
such v,. Also, 1+ a&2(v, —@)? <1+ b%(v, — @)% Let A denote the expression on the
left side of (7.11). Then

da
(A7) A< Z /—Nzo(l/b)7 b—s oo
b—8<v, <b+L+5 7R L+ 0%(vy, — &)?

Appendix B. Proofs of lemmas in section 8 and section 9.

B.1. Proof of Lemma 8.2. Using that 6, - 3/(0) =0 and 6 - (y(0) — z¢) =0, it
is easy to see that the right-hand side of the identity

(B.1) sin(A1(0)) = o - (y(0) — x0) /|y (6) — o]
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and its first derivative are zero at 6 = 0. Also, its second derivative at 8 = 0 equals
Go -y (0)/|y(0) — zo|. By our choice of coordinates, this expression is positive. The
properties in (8.4) now follow from the properties of sin~!(¢) and by rescaling.

To prove the first property in (8.5), consider the function R;(0,a)/(A1(0) — )
and note that @(A;(6)) is the only unit vector with |a| < 7/2 orthogonal to y(8) — xo.
Recall that @ is sufficiently short, so A;([—a,a]) C [-7/2,7/2]. This function is
clearly sufficiently smooth on [—a,a] x [—7/2,7/2]. The ratio is positive because (i)
S is convex, (ii) G - y”(0) > 0 (cf. the proof of Lemma 5.2) and A;(f) > 0 by the
assumption about xg (see the paragraph following (8.2)), and (iii) R;(6,«) has a root
of first order at o = .A4;(6), 6 #0. Rescaling 6 — 6 and a — &, we finish the proof.

Differentiating R; and using that & - y'(«) =0, we find

(B.2) DpR1(0,0) =<0 —a; 3R1(0,a),090,R1(0,),05R1(0,0) = O(1).

Rescaling the variables proves the rest of (8.5).
B.2. Proof of Lemma 8.3. By (8.5),

—1/2

B3)  lg(ns )l <eplm) [ " !

_——dd, 7>0.
—ae=1/2 14 (7 + (Amx — A(0)))?

By construction, Amx — A(f) > 0. By (8.4), we can change variables r = A(0)
(separately on (—ae~'/2 0] and [0,ae~'/2)). Then df/dr < 4+r~1/? and

1
147+ Ay —7)2rt/2

Amx
BA)  [9(Amx )| < cp(m) /0 : dr, 7> 0.

Here we used that 1+ 2% < (1 +2)?, 2 > 0. Since Auyyx < 1/¢, we obtain

Ams/2 Ame/2
(B5) / ()dTSCAI;i W 10(63/2), T>O,
0 0 r
and
Amx Amx/2 d 1/2
(B.6) / ()dr < c.A;}(/Q/ L < 7>0.
Av /2 0 I+7+7) 1+7

Consequently, the sum in (8.11) is bounded by

1/2
1/2 Z 32, € _
(B?) Ce |:6 / + 1—|—]€:| —O(eln(l/e))
0<k<O(1/e)

B.3. Proof of Lemma 8.4. By Lemma 8.2, there exists §' > 0 such that for any
0 <a<m7/2, one has

(B.8) {10] <a:|R(0,&)| > 64"2} C {|0] < a:|A(0) — 4 > §'a/?}.

This implies

(B.9) @I <eotm) [ v (L (AG) - @)1
|A(B)—a|>8'a"/?
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Again by Lemma 8.2, on the sets 6 > 0 and 6 < 0 we can change variables 6§ — = A(f),
where df/dr =< +|r|~1/2, to obtain

(B.10) |91(&)] < cp(m) 1+ (r— &)%)~ V2.

r>0
|r—a|>6"at/?

By an easy calculation,

o0 dr a—o'at/? dr
B.11 - Y ~—1 ,
( ) /d+5'a1/2 (r—a)2ri/2’ /0 (& —r)2rl/2 @)

and the lemma is proven.
B.4. Proof of Lemma 8.5. By (8.5), we need to establish that |e!/24/6]| < ¢ for

some sufficiently small ¢ > 0. Given that 8, &, satisfy the conditions in (8.20), (8.4)
and (8.5) imply

(B 12) 61/2@ 61/264 . 61/264
. — | < — ~ < C17% =
0 mln\R(é,&)Kédl/z ‘0| (057025041/2)1/2
for some c; 2 > 0. Squaring both sides gives
€a? €q? o
B.13 - 1 =c .
( ) 02 _cl&—025d1/2 611—02(6/d1/2)

Given that o € Q, Q can be made as small as we like (by selecting a > 0 small),
& > @, and &, can be made as large as we like, (8.20) is proven.

B.5. Proof of Lemma 8.6. We will consider only g; (i.e., n > 0), since esti-
mating g, is completely analogous. For simplicity, the superscript + is omitted.

By Lemma 8.2 and Lemma 8.5, 9;R < 6 and A~1(&) < &/2, so the coefficient
in front of the integral in (8.21) is O(a&~'/2). Suppose first that one of the intervals
Ry, = [rang, T2ne+1] contains zero. Then ra,, <0< rg,,+1 and

T2ng+1 T2ng © ~
(B.14) J ::/ Y (r+ h)dr = — (/ +/ > Y (7 + h)dr.
T2ang -0 Tang+1

Therefore, by (4.4),

cp(m)
B.15 J< - .
(B-19) = T i (lran, + Al Iramer1 + A

If either ryp, < —861/2 or Tong+1 > 5&1/2, then the corresponding limit is replaced by

either —8a'/2 or §&'/2, as needed. If both Ton, and Top,4+1 exceed the limits, then
J=0(&a"1/?). By Lemma 8.2, r, < v, — &, v, = A(u,), and (8.24) is proven.

Recall that w, > 0 if n > 0. Then u, =< n and, by Lemma 8.2, v,, < n?. This
implies that, on average, the distance between consecutive v,, increases as n — co. In
turn, this means that v, — & stays bounded for a progressively smaller fraction of &
as & — co. Since the term h is uniformly bounded, it can be omitted from (B.15) to
better reflect the essence of the estimate.

Contribution of all remaining intervals located on one side of zero [ran,7an4+1] C
(Fong+1, 6&1/2}, n>ng, and [ron, Tont1] C [=06Y/2, r9,,), 0 < n < ng, can be estimated
in a similar fashion:

(B.16) > /

n>ngo

wm(”h)\d?“é/m o+ ) dr < — 2

T2n+41
| ;
2n T2ng41 1 + T2n0+1

and the same way for the other set of intervals. This proves (8.24).
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To prove (8.25), we first collect some useful results, which follow from Lemma 8.2:
(B.17) s A" @) = 0(a™Y?), Barn = O(1).
Differentiating g4(&) in (8.21) and using (8.5), (8.7), and (B.17) gives
Dagi (&)

(B.18) _ 2 1 11 efr, e
=P @) @ T a2, @ T a Tar)

and the desired result follows by keeping only the dominant terms. Here we have
used that e& = O(1), and there are finitely many n such that [ro,,72,4+1] intersects
the set |r| < d&'/2. The last claim is proven by finding all u, = n? that satisfy
a—8at?2< Alu,) <a—+ 8'a1/2 for some &' > 0.

B.6. Proof of Lemma 9.2. We consider only g;; the proof for g; is analogous.
By Lemma 9.1, & <w, if @ €V,,. Also, at the right endpoint of V,,, by (8.24)

(BA9)  1gf (tns1/2)|  cp(m) (v 20+ (i = va)) " 051 ) = p(m)O(n~2),
By Lemma 8.6, with & =v,, + 7, & € V,,,
(B.20) g7 @) < ep(m) (v 21+ 7)7 401

(B.21) Dagf (@)] < cp(m) (v /214 72) 7+ /20 )

if Up—1/2 > Q. Then

o oM qr
[ lai@da < cptm) </ | s 10<n>> — p(m)O(n™" Inn),
) n

(B.22
/V 9agif (@)[dé < ep(m) (v;1/20(1) + €/20,70(n) ) = p(m)O(n ")

because n = O(e~/?), and the lemma is proven.

Appendix C. Analysis of exceptional cases. Consider now possible viola-
tions of the inequalities 0 < a; < e < . < 7/2 (see the beginning of subsection 7.2
and subsection 7.3). A violation may happen only for finitely many m. If oy <0 (i.e.,
the interval (¢(0), ¢(c.)) does not contain an integer), we consider the interval [0, c,]
instead of [y, a.]. The analogues of (7.25)—(7.27) become

N =0(a,) =0(e7V2); [0,a.] = UV [nL, (n+1)L], & = NL;

(C.1) o ]
(9'(&) > min ((mer,), (mp)), o € [0,a].

The analogue of (7.28) is (cf. (7.15))

€'2p(m) e 1
min ({mkr,), (mpu)) T;) 1+(N—-(n+1))L

(C.2) W ([0,0n]) <c =0(e?n(1/¢)).

Here we have used that the number of different values of m for which a; <0 and the
above estimate applies is finite.
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If . > 7/2 (which implies (¢(7/2)) > 0), we consider the interval o, 7/2] instead
of [, ar]. The analogue of (C.1) becomes

N=O( ),
(C.3) [Ge, € Y27 /2) = UN-Méw + L, dw 4+ (n+1)L), G + NL=¢"27/2,
(¥ (&)) >min ((mkry), (d(m/2))), a€ |as,n/2].
The analogue of (C.2) is
e'/2p(m)
min ((mkrz), (¢(7/2)))

Here we used that & = O(e'/?) if a > a,.

This completes the analysis of the case a. < 7/2. If a, > 7/2, then oy > 7/2 when
m > 1 is sufficiently large. Hence the only relevant case is when a; < /2. As before,
this happens for finitely many m. If a; > 0, the interval we should consider is [ay, 7/2].
In this case, the estimates in (7.28), (7.29) still hold (some of the terms in the sum
are not necessary). Given that m is bounded, the estimates imply W, ([ay,7/2]) =
O(e*?1In(1/€)). If oy < 0, the relevant interval is [0,7/2]. Arguing similarly to
(C.1), (C.2), it is obvious that W,,([0,7/2]) = O(e'/?In(1/e)).

Appendix D. Proof of Lemma 8.1. Pick any x sufficiently close to xy. All the
estimates below are uniform with respect to « in a small (but fixed) size neighborhood,
so the z-dependence of various quantities is omitted from notation. Since S is not
necessarily convex, the parametrization is not by the normal direction but is some
regular y(s) € C* (cf. Assumption 2.1 (F1)).

Let €2 be the set of all a € [—7/2,7/2] such that the lines {y € R?: (y —x)-a=0}
intersect S. Let s = B(a), a € Q, be determined by solving (y(s) —x) - & = 0.
By using a partition of unity, if necessary, we can assume that (a) S is short, (b)
the solution is unique for each a € Q, and (c¢) © is an interval. By assumption,
the intersection is transverse for any a € Q (up to the endpoints). Hence |B'(«)| =

ly(B(aw)) — z|/|& -y (B(a))| and
(D.1) 0 <min|d-y'(B(a))], 0 <min |B'(a)] < max|B'(a)| < oo.

(C.4) Win([ow, m/2]) < ¢ =0("?).

Transform the expression for A,, (cf. (4.5)) similarly to (4.9):

D2) A [ a / % (5‘@("”)‘“”) + h(f,s,a)> F(s, eb)dids,

€

where h and F are defined similarly to (4.9):
(D.3) F(s,t) :=Af(y(0) + t0)(R(0) —t), h(f,s,a):=tcos(d —a), 6 =0(s).

Note that in this section we assume m € Z, i.e., the case m = 0 is included. Since &
is absorbed by x, the term « - & is no longer a part of h. Clearly,

(D.4) Ap(a,€) =p(m)0(e), a €—7/2,7/2]\Q, meZ.

Next, consider the case o € Q. Setting §=(s—B(a))/e'/?, (D.2) becomes

D3 A, 1/2// (H (y(S)—Ey(B(a))) +h(£’s7a))

X F(s,el)dids, s=B(a)+e/?5 acQ, mel.
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Due to (4.4), we can integrate with respect to § over any fixed neighborhood of 0:

A (aye)

) e 1H(s) 5 a- a A
oo =2 [ [ (U 0 4 (B + 0

x (F(B(a), 0) + 0(61/2)) did3 + p(m)O(Y?), e, meZ,

for some 6 > 0 sufficiently small. Using (4.4) it is easy to see that the terms O(e'/?)
and O(3?) can be omitted from the argument of 1), without changing the error
term:

A (a,€)

@ §  pHo(e V2B(a)+55¢) _ s m ol (Bla R -
(D.7) :W/_é/o T (Wé—kh(ub’(a),a)) dids

€l/2

+ p(m)O(e?), a eQ, meZ.

By (D.1), @-%'(B()) is bounded away from zero on Q. By the last equation in
(4.2), [t (f)dt =0, m € Z, so we can replace the lower limit of the inner integral
in (D.7) with any value independent of §. Again, we use here that the contribution
to the integral with respect to § of the domain outside (—4,6) is of the same magni-
tude as the error term in (D.7). We choose the lower limit to be Hy(e~'/2B(a);e).
Hence

A (0,0 < plm) {0(6_1/2)/5 |Ho(v+§;6)*Ho(v;6)|d§+0(€1/2) ’

—5 1+(§2/€)
v=eY2B(a), aeQ, meZ.

(D.8)

Neglecting the O(e'/?) term in (D.8) (the last term inside the brackets) leads to a
term of magnitude O(e!/?) in fP™°. Accounting for (D.4) in a similar fashion, (4.5)
and (D.8) imply

5 .
resta) =0 ) [ 150 a0

g(8,€):= Z ‘Ho(vk + 55€) — Ho(Uk;E)’, v =€ V2B(ag).

ap €N

(D.9)

Define similarly to (2.7):

1, t1 <t<tyority <t<ty,
0  otherwise.

(D.10) Xta,to (t) 1= {

Clearly,
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(D.ll) 9(5’6): Z /XHO(Uk;G),Ho(ﬂkJré;E)(f)th:/N(fvgve)dﬂ

aR €N

where N(£,3,¢€) is the number of ay, € Q such that either Ho(vg;e€) <t < Ho(vy, + 5;¢€)
or Hy(vy + 8;¢) <t < Hy(vg;€). By Assumption 2.4 (H3), N is finite for almost all 7.
Our argument implies that the values of the index k counted by the function N (£, 3, ¢)
are such that the closed interval with the endpoints v, and v + § contains at least
one u, € Hy'(f;¢). By Assumption 2.4 (H3), the number of u, € H, *(f;¢) on any
interval of length O(¢~1/2) is O(¢~1/2) uniformly in # for almost all £. The summation
in (D.11) is over oy, € ©2, so we look only for u,, such that dist(u,,e /2B(Q)) < |5 <.

Fix any n. By (D.1) and the definition of s; in (D.9), there are no more than
14 O(e=1/2|3|) values of k such that |vj, — u,| < |3|. Hence N(f,5,¢) = O(e~'/?)(1 +
¢~1/2|3]). Using that the range of Hy is bounded (cf. Assumption 2.4 (H1)), the
integral with respect to ¢ in (D.11) is over a compact set, so

(D.12) 9(3,€)=0(e V3 (14 V2)3)).

Substituting (D.12) into (D.9), we finish the proof:

P _ ~
(D.13) fPrec(z) =0(1) /,5 mdé +O(e/2) = O(e 2 In(1/e€)).
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