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NOVEL RESOLUTION ANALYSIS FOR THE RADON TRANSFORM
IN R2 FOR FUNCTIONS WITH ROUGH EDGES*

ALEXANDER KATSEVICH\dagger 

Abstract. Let f be a compactly supported, piecewise C2 function in R2 with a jump across
a sufficiently smooth, non-self-intersecting curve \scrS . Consider a family of modified functions f\mathrm{m}

\epsilon so
that f\mathrm{m}

\epsilon has a jump across a curve \scrS \epsilon . Each \scrS \epsilon is an O(\epsilon )-size perturbation of \scrS , which scales like
O(\epsilon  - 1/2) along \scrS . The functions f\mathrm{m}

\epsilon are obtained by extending continuously the smooth components
of f on either side of \scrS all the way to \scrS \epsilon so that the location of the jump shifts from \scrS to \scrS \epsilon . By
linearity of the Radon transform and its inversion formula, we can consider only the perturbation
f\mathrm{p}
\epsilon := f  - f\mathrm{m}

\epsilon . Let f\mathrm{p}-\mathrm{r}\mathrm{e}\mathrm{c}
\epsilon be the reconstruction of f\mathrm{p}

\epsilon from its discrete Radon transform data using a
filtered backprojection inversion formula, where \epsilon is the data sampling rate. A simple asymptotic (as
\epsilon \rightarrow 0) formula to approximate f\mathrm{p}-\mathrm{r}\mathrm{e}\mathrm{c}

\epsilon in any O(\epsilon )-size neighborhood of \scrS was derived heuristically in
an earlier paper of the author. Numerical experiments revealed that the formula is highly accurate
even for nonsmooth (i.e., only H\"older continuous) \scrS \epsilon . In this paper we provide a full proof of
this result, which says that the magnitude of the error between f\mathrm{p}-\mathrm{r}\mathrm{e}\mathrm{c}

\epsilon and its easily and explicitly
computable approximation is O(\epsilon 1/2 ln(1/\epsilon )). The main assumption is that the level sets of the
function H0(\cdot ; \epsilon ), which parametrizes the perturbation \scrS \rightarrow \scrS \epsilon , are not too dense.

Key words. Radon inversion, resolution, rough edges, fractal boundary
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1. Introduction.

1.1. Local resolution analysis: Original and new. Let f be a compactly
supported, piecewise C2 function in R2, and \scrS be some curve. We assume that f has
a jump discontinuity across \scrS , and f is C2 away from \scrS . Let f \mathrm{r}\mathrm{e}\mathrm{c}\epsilon be a reconstruction
from discrete tomographic data (i.e., discrete values of the appropriately averaged
classical Radon transform of f ; see (2.2) and (2.3)), where \epsilon represents the data
sampling rate. The reconstruction is computed by substituting interpolated data into
a ``continuous"" filtered backprojection (FBP) inversion formula (see (2.4) and (2.5)).
This is always assumed whenever we mention reconstruction in what follows. In many
applications it is important to know the resolution of reconstruction from discrete
data, including medical imaging, materials science, and nondestructive testing.

In [16] the author initiated analysis of resolution, called local resolution analysis
(LRA), by focusing specifically on the behavior of f \mathrm{r}\mathrm{e}\mathrm{c}\epsilon near \scrS . One of the main results
of [16] is the computation of the limit

DTB(\v x;x0, f) = lim
\epsilon \rightarrow 0

f \mathrm{r}\mathrm{e}\mathrm{c}\epsilon (x0 + \epsilon \v x)(1.1)

in a 2D setting under the assumptions that (a) \scrS a sufficiently smooth curve with
nonzero curvature, (b) f has a jump discontinuity across \scrS , (c) x0 \in \scrS is generic, and
(d) \v x is confined to a bounded set. The definition of a generic point in [16] is similar
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4256 ALEXANDER KATSEVICH

in spirit to the one used here (see Definition 2.6) but is more relaxed. It is important
to emphasize that both the size of the neighborhood around x0 and the data sampling
rate go to zero simultaneously in (1.1). The limiting function DTB(\v x;x0, f), which we
call the discrete transition behavior (DTB), contains complete information about the
resolution of reconstruction. The practical use of the DTB is based on the relation

f \mathrm{r}\mathrm{e}\mathrm{c}\epsilon (x0 + \epsilon \v x) =DTB(\v x;x0, f) + error term(\v x,x0, \epsilon , f).(1.2)

When \epsilon > 0 is sufficiently small, the error term is negligible, and DTB(\v x;x0, f), which
is given by a simple formula, is an accurate approximation to f \mathrm{r}\mathrm{e}\mathrm{c}\epsilon . Hence whatever one
wants to know about f \mathrm{r}\mathrm{e}\mathrm{c}\epsilon can be found by looking at an easily accessible DTB(\v x;x0, f).
Numerical experiments reported in [16] demonstrate that the error term in (1.2) is
indeed quite small for realistic values of \epsilon . LRA was extended to much more general
settings in subsequent papers [17, 18, 19, 20].

Functions, which have been investigated in the LRA framework are, for the most
part, nonsmooth across sufficiently smooth surfaces. On the other hand, in many
applications discontinuities of f occur across nonsmooth (rough) surfaces. Examples
include soil and rock imaging, where the surfaces of cracks and pores and boundaries
between adjacent regions with different properties are highly irregular and frequently
simulated by fractals [1, 8, 25, 31, 33, 34, 38].

It was proven in [21] that the original LRA based on (1.1) still works for functions
with jumps across nonsmooth curves (i.e., H\"older continuous with some exponent
\gamma \in (0,1]). Our approach to nonsmooth boundaries is asymptotic. We begin by
picking a compactly supported, piecewise C2 function f , which has a jump across
a sufficiently smooth (C4), non-self-intersecting curve \scrS (exactly as in the original
LRA). Then we construct a family of functions f\mathrm{m}\epsilon , each with a jump across some
curve \scrS \epsilon . Here f\mathrm{m}\epsilon and \scrS \epsilon are modified versions of f and \scrS , respectively, and \scrS \epsilon is
not necessarily smooth. Denote also the perturbation f\mathrm{p}\epsilon := f  - f\mathrm{m}\epsilon . The superscripts
``m"" and ``p"" stand for ``modified"" and ``perturbation,"" respectively.

Let f\ast -\mathrm{r}\mathrm{e}\mathrm{c}\epsilon denote the reconstruction of f\ast \epsilon , where \ast =p, m. Since f\mathrm{m}\epsilon = f  - 
f\mathrm{p}\epsilon , the linearity of the Radon transform and FBP inversion formula imply f\mathrm{m}-\mathrm{r}\mathrm{e}\mathrm{c}

\epsilon =
f \mathrm{r}\mathrm{e}\mathrm{c}\epsilon  - f\mathrm{p}-\mathrm{r}\mathrm{e}\mathrm{c}\epsilon . By construction, f has only smooth boundaries, so we can concentrate
on f\mathrm{p}-\mathrm{r}\mathrm{e}\mathrm{c}\epsilon . We show that under certain assumptions on f\mathrm{p}\epsilon , the error term in (1.2)
goes to zero as \epsilon \rightarrow 0 (with f and f \mathrm{r}\mathrm{e}\mathrm{c}\epsilon replaced by f\mathrm{p}\epsilon and f\mathrm{p}-\mathrm{r}\mathrm{e}\mathrm{c}\epsilon , respectively).
Nevertheless, numerical experiments in [21] demonstrate that this approach is not
entirely satisfactory: a significant mismatch between the reconstruction f\mathrm{p}-\mathrm{r}\mathrm{e}\mathrm{c}\epsilon (x0+\epsilon \v x)
and its approximation DTB(\v x;x0, f

\mathrm{p}
\epsilon ) is observed. This means that the error term in

(1.2) decays slowly as \epsilon \rightarrow 0 when \scrS \epsilon is rough.
To overcome this problem, a new LRA has been developed in [21]. It is based on

allowing the DTB to depend on \epsilon :

f\ast -\mathrm{r}\mathrm{e}\mathrm{c}\epsilon (x0 + \epsilon \v x) =DTBnew(\v x;x0, \epsilon , f
\ast 
\epsilon ) + error term1(\v x,x0, \epsilon , f

\ast 
\epsilon ), \ast =p, m.(1.3)

The idea is that since the new DTB is more flexible (due to its \epsilon -dependence), the error
term in (1.3) can be smaller than the one in (1.2). The new DTB proposed in [21] (see
(2.14)) is given by the convolution of an explicitly computed and suitably scaled kernel
with f\ast \epsilon . Thus, analysis of resolution based on (1.3) is as simple as the one based on
(1.2), and it can be used quite easily to investigate the partial volume effect (PVE),
resolution, and many other properties of reconstruction in the case of rough bound-
aries. PVE arises due to limited resolution when the reconstructed value f\mathrm{m}-\mathrm{r}\mathrm{e}\mathrm{c}

\epsilon (x) at
some point x is not the true value f\mathrm{m}\epsilon (x) but is an average of f\mathrm{m}\epsilon (x\prime ) over all x\prime near
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ANALYSIS OF RESOLUTION 4257

x [6]. PVE is most noticeable near the jumps of f\mathrm{m}\epsilon . It is especially detrimental when
accurate identification of the boundaries between regions in a reconstructed image is
required; see, e.g., subsection 1.2 below. See also section 3. Numerical experiments
presented in [21] show an excellent match between DTBnew(\v x;x0, \epsilon , f

\mathrm{p}
\epsilon ) and the actual

reconstruction f\mathrm{p}-\mathrm{r}\mathrm{e}\mathrm{c}\epsilon (x0 + \epsilon \v x), even when \scrS \epsilon is fractal.
To prove that the new DTB works well for nonsmooth \scrS \epsilon , it is not sufficient to

show that the error term in (1.3) goes to zero as \epsilon \rightarrow 0. We need to establish that
the magnitude of the error is independent of how rough \scrS \epsilon is, i.e., independent of its
H\"older exponent \gamma . This proved to be a difficult task. In [21] it was conjectured that
the error term in (1.3) is O(\epsilon 1/2 ln(1/\epsilon )), and a partial result towards proving this
conjecture was established. In this paper we provide a full proof of the conjecture.

Let \scrI \ni s \rightarrow y(s) \in \scrS , where \scrI is an interval (or a union of intervals), be a
C4(\scrI ), regular parametrization of \scrS . Let \vec{}\theta (s) be a unit vector orthogonal to \scrS at
y(s) (which depends on s continuously). The parametrization of \scrS \epsilon is given by \scrI \ni 
s\rightarrow y(s)+\epsilon H0(\epsilon 

 - 1/2s; \epsilon )\vec{}\theta (s), where H0 defines the perturbation. Then f
\mathrm{m}
\epsilon is obtained

by extending continuously the smooth components of f on either side of \scrS all the way
to \scrS \epsilon so that the location of the jump shifts from \scrS to \scrS \epsilon (see Figure 3). The main
assumption is that the function H0 (more precisely, the family H0(\cdot ; \epsilon )) has level
sets that are not too dense. This assumption does allow fairly nonsmooth H0. For
example, in [21] we construct a function on R, whose level sets are not too dense as
required, which is H\"older continuous with exponent \gamma for any prescribed 0 < \gamma < 1,
but which is not H\"older continuous with any exponent \gamma \prime > \gamma on a dense subset of
R. Our construction ensures that the size of the perturbation is O(\epsilon ) in the direction
normal to \scrS , and the perturbation scales like \epsilon  - 1/2 in the direction tangent to \scrS .

The ideas behind the proof in this paper are quite different from those used in the
original approach [16, 17, 18, 19, 20]. The latter proofs revolve around the smoothness
of the singular support of f . The new proofs are based on cancellations occuring in
certain exponential sums. The assumption about the level sets of H0 is what allows
for the cancellations to occur.

1.2. Practical application of our results. An important application of our
results is in micro--computed tomography (CT) (i.e., CT capable of achieving microm-
eter resolution), which is a valuable tool for the imaging of rock samples extracted
from wells. The reconstructed images are used to investigate properties of the sam-
ples. A collection of numerical methods that determine various rock properties using
digital cores is collectively called digital rock physics (DRP) [7, 36]. Here the term
``digital core"" refers to a digital representation of the rock sample (rock core) obtained
as a result of micro-CT scanning, reconstruction, and image analysis (segmentation
and classification, feature extraction, etc.) [12]. DRP ``is a rapidly advancing tech-
nology that relies on digital images of rocks to simulate multiphysics . . . and predict
properties of complex rocks (e.g., porosity, permeability, compressibility). . . . For the
energy industry, DRP aims to achieve more, cheaper, and faster results as compared
to conventional laboratory measurements"" [36]. Furthermore, ``The simulation of
various rock properties based on three-dimensional digital cores plays an increasingly
important role in oil and gas exploration and development. The accuracy of 3D digital
core reconstruction is important for determining rock properties"" [38] (italic font is
added here).

As stated above, boundaries between regions with different properties inside the
rock are typically rough (see also [4]), i.e., they contain features across a wide range of
scales, including scales below what is accessible with micro-CT. Clearly, the quality

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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4258 ALEXANDER KATSEVICH

of micro-CT images (denoted here f\mathrm{m}-\mathrm{r}\mathrm{e}\mathrm{c}
\epsilon ) stongly affects the accuracy with which

various features of the rock (denoted here f\mathrm{m}\epsilon ) are captured by its digital represen-
tation. This, in turn, strongly affects how accurate numerical simulations based on
the digital rock are. The goal of DRP is to ensure that the physical properties of the
rock computed using the digital core are as close as possible to the actual properties
of the sample. Therefore, effects that degrade the resolution of micro-CT (e.g., due
to finite data sampling) and how these effects manifest themselves in the presence
of rough boundaries require careful investigation. For example, using (3.8) and the
known scan parameters (i.e., the data sampling rate), one can determine how accu-
rately image segmentation based on thresholding of f\mathrm{m}-\mathrm{r}\mathrm{e}\mathrm{c}

\epsilon allows one to recover the
actual boundaries in f\mathrm{m}\epsilon . Once fully understood and quantified, these effects can be
accounted for at the step of image analysis, thereby leading to more accurate digital
rock models and more accurate DRP results.

1.3. Related results. Organization of the paper. To situate the paper in
a more general context, not much is known about how the Radon transform \scrR , its
inverse \scrR  - 1, and adjoint \scrR \ast act on distributions with complicated singularities. Since
\scrR and\scrR \ast are Fourier integral operators, their action on distributions and continuity in
various Lp spaces have been studied in detail (see, e.g., [13, section 2.4], [11, 10, 23],
and references therein). Nevertheless, specifically the case of functions with rough
edges has never been explored to the best of our knowledge. A recent literature
search reveals a small number of works which investigate the Radon transform acting
on random fields [15, 35, 26]. The author did not find any publication on the Radon
transform of characteristic functions of domains with rough boundaries. This appears
to be the first paper that contains a result on the Radon transform of functions with
rough edges.

An alternative way to study resolution of tomographic reconstruction is based on
sampling theory. Applications of the classical sampling theory to Radon inversion are
in papers such as [29, 32, 5], just to name a few. Analysis of sampling for distributions
with semiclassical singularities is in [37, 27]. This line of work determines the sampling
rate required to reliably recover features of a given size and describes aliasing artifacts
if the sampling requirements are violated.

The paper is organized as follows. In section 2 we describe the setting of the prob-
lem, state the definition of a generic point, formulate all the assumptions (including as-
sumptions about the perturbation H0), and formulate the main result (Theorem 2.7).
In section 3 we briefly discuss how DTB\mathrm{n}\mathrm{e}\mathrm{w} can be used in practice. Also, we demon-
strate by numerical experiments that DTBnew(\v x;x0, \epsilon , f

\mathrm{m}
\epsilon ) is indeed a good approxi-

mation to f\mathrm{m}-\mathrm{r}\mathrm{e}\mathrm{c}
\epsilon (x0 + \epsilon \v x) even when \scrS \epsilon is fractal. The fact that DTBnew(\v x;x0, \epsilon , f

\mathrm{p}
\epsilon )

is a good approximation to f\mathrm{p}-\mathrm{r}\mathrm{e}\mathrm{c}\epsilon (x0 + \epsilon \v x) is demonstrated numerically in [21]. The
beginning of the proof is in section 4. We consider three cases:

(A) x0 \in \scrS ;
(B) x0 \not \in \scrS , and there is a line through x0, which is tangent to \scrS ; and
(C) x0 \not \in \scrS , and no line through x0 is tangent to \scrS .

Sections 5--7 contain a nearly complete proof of the theorem in case (A). What is
left is one additional assertion, which is proven in a later section. Likewise, section 8
and section 9 contain a nearly complete proof of the theorem in case (B). The final
assertion of the theorem in cases (A) and (B) is proven in section 10. Originally, in
case (C) the theorem is proven in [21] under the assumption that the curvature of
\scrS is nonzero at every point. Its proof without any restriction on the curvature is in
Appendix D. Proofs of all lemmas and some auxiliary results are in Appendices A--C.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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ANALYSIS OF RESOLUTION 4259

2. Preliminaries. Consider a function f(x), x \in R2 in the plane, and let \scrS be
some curve.

Assumptions 2.1 (properties of the function f).
F1. \scrS is a C4 curve;
F2. f is compactly supported and f \in C2(R2 \setminus \scrS ); and
F3. for each x0 \in \scrS there exist a neighborhood \scrU \ni x0, domains D\pm , and functions

f\pm \in C2(R2) such that

f(x) = \chi D - (x)f - (x) + \chi D+
(x)f+(x), x\in \scrU \setminus \scrS ,

D - \cap D+ =∅, D - \cup D+ = \scrU \setminus \scrS ,
(2.1)

where \chi D\pm are the characteristic functions of D\pm .

Assumptions 2.1 describe a typical function, which has a jump discontinuity across a
smooth curve (see Figure 1).

The discrete tomographic data are given by

\^f\epsilon (\alpha k, pj) :=
1

\epsilon 

\int \int 
R2

w

\biggl( 
pj  - \vec{}\alpha k \cdot y

\epsilon 

\biggr) 
f(y)dy, pj = \=p+ j\Delta p, \alpha k = \=\alpha + k\Delta \alpha ,(2.2)

where w is the detector aperture function, \Delta p= \epsilon , \Delta \alpha = \kappa \epsilon , and \kappa > 0, \=p, \=\alpha , are fixed.
Here and below, \vec{}\alpha and \alpha in the same equation are always related by \vec{}\alpha = (cos\alpha , sin\alpha ).
The same applies to \vec{}\theta = (cos \theta , sin\theta ) and \theta . Sometimes we also use \vec{}\theta \bot = ( - sin\theta , cos\theta ).

If w(p) satisfies certain conditions, in the limit \epsilon \rightarrow 0+ the values \^f\epsilon =0+(\alpha k, pj),
k, j \in Z, represent the discretized (classical) Radon transform that integrates functions
along lines [30]:

\^f(\alpha ,p) :=

\int \int 
R2

\delta (p - \alpha \cdot y)f(y)dy.(2.3)

In reality, line integrals cannot be measured due to the finite resolution of the CT
detector. In parallel beam geometry, which (2.2) describes, for each \alpha k, pj the actual
measurement represents a weighted average of \^f(\alpha k, p) over a small neighborhood
of pj . The size of the neighborhood and the averaging kernel w (also known as the
detector aperture function) depend on the detector. For our purposes, all we need to
assume is that w is some sufficiently smooth, compactly supported, and normalized
function.

Assumptions 2.2 (properties of the aperture function w).
AF1. w is even, and w \in C\lceil \beta \rceil +1

0 (R) (i.e., w is compactly supported, and w(\lceil \beta \rceil +1) \in 
L\infty (R)) for some \beta \geq 3.

AF2. Normalization:
\int 
w(p)dp= 1.

Here \lceil \beta \rceil is the ceiling function, i.e., the integer n such that n - 1<\beta \leq n. The required
value of \beta is stated below in Theorem 2.7. Later we also use the floor function \lfloor \beta \rfloor ,

S

y(s)

θ(s)
D+, f+

D-, f-

y'
y''

x0

Fig. 1. Illustration of a function f discontinuous across \scrS .
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4260 ALEXANDER KATSEVICH

which gives the integer n such that n \leq \beta < n+ 1, and the fractional part function
\{ \beta \} := \beta  - \lfloor \beta \rfloor .

Reconstruction from discrete data is achieved by the formula

f \mathrm{r}\mathrm{e}\mathrm{c}\epsilon (x) = - \Delta \alpha 

2\pi 

\sum 
| \alpha k| \leq \pi /2

1

\pi 

\int \partial p
\sum 

j \varphi 
\Bigl( 

p - pj

\epsilon 

\Bigr) 
\^f\epsilon (\alpha k, pj)

p - \alpha k \cdot x
dp,(2.4)

where \varphi is an interpolation kernel, and the integral is understood in the principal value
sense. Equation (2.4) is a discretized version of the ``continuous"" inversion formula
[30]

f(x) = - 1

2\pi 

\int 
| \alpha | \leq \pi /2

1

\pi 

\int 
\partial p \^f(\alpha ,p)

p - \alpha \cdot x
dpd\alpha .(2.5)

Equations (2.4) and (2.5) describe discrete and continuous FBP-type reconstruction,
respectively [30].

Assumptions 2.3 (properties of the interpolation kernel \varphi ).
IK1. \varphi is even, compactly supported, and its Fourier transform satisfies \~\varphi (\lambda ) =

O(| \lambda |  - (\beta +1)), \lambda \rightarrow \infty ;
IK2. \varphi is exact up to order 1, i.e.,\sum 

j\in Z
jm\varphi (u - j)\equiv um, m= 0,1, u\in R.(2.6)

Here \beta is the same as in Assumption 2.2 (AF1). As is easily seen, Assumption 2.3
(IK2) implies

\int 
\varphi (p)dp = 1. See section IV.D in [2], which shows that \varphi with the

desired properties can be found for any \beta > 0 (i.e., for any regularity of \varphi ).
Let H0(u; \epsilon ), u\in R, be a family of functions defined for all \epsilon > 0 sufficiently small.

We use H0 to parametrize perturbations of \scrS . Define the function

\chi (t, r) :=

\left\{     
1, 0< t\leq r,

 - 1, r\leq t < 0,

0 otherwise.

(2.7)

Assumptions 2.4 (properties of the perturbation function H0). There exist con-
stants c, \rho ,L > 0, which are independent of \epsilon , such that for all \epsilon > 0 sufficiently
small,

H1. | H0(u; \epsilon )| \leq c for all u\in R;
H2. the function (t, u)\rightarrow \chi (t,H0(u; \epsilon )) is measurable in R2; and
H3. for any interval I of any length L\geq L0 the set

U(I, t, \epsilon ) :=\{ u\in I : sgn(t)(H0(u; \epsilon ) - t)\geq 0\} (2.8)

is either empty or a union of no more than \rho L intervals Un, dist(Un1 ,Un2)> 0,
n1 \not = n2, for almost all t \not = 0.

Assumption H2 is informally interpreted as saying that if t > 0 (resp., t < 0), then
H0(u; \epsilon ) \geq t (resp., H0(u; \epsilon ) \leq t) for u in a measurable set for almost all t (and each
\epsilon > 0 sufficiently small). Thus, the meaning of the argument t of \chi in (2.7) is the
value that defines a level set of H0. The meaning of the argument r is the value of

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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H0

u

t

H0(t;ε)
-1

[ ]
a b

Unu2n u2n+1

Fig. 2. Illustration of the level sets of H0 and Assumptions 2.4 (H2, H3). Here I = [a, b].

H0(u; \epsilon ), which is being compared with t. In particular, U(I, t, \epsilon ) can be equivalently
defined as follows:

U(I, t, \epsilon ) =\{ u\in I : sgn(t) = \chi (t,H0(u; \epsilon ))\} 
=\{ u\in I :H0(u; \epsilon )\geq t if t > 0, and H0(u; \epsilon )\leq t if t < 0\} .

(2.9)

Assumption H3 further specifies that this set is just a union of intervals Un, and the
number of Un for any interval I = [a, b], b - a\geq L0 is bounded by \rho (b - a).

Our assumptions allow H0 to be discontinuous. The endpoints of Un are denoted
u2n and u2n+1: Un = [u2n, u2n+1], where the bar denotes closure (see Figure 2). The
distance between the intervals is positve, so un <un+1 for all n. The intervals Un and
the points un depend on t, I, and \epsilon . If H0 is continuous, then for each t and \epsilon > 0 the
collection of un's is simply the level set \{ u\in R :H0(u; \epsilon ) = t\} .

Assumptions 2.4 (H1, H2) imply that
\int 
I

\int 
R | \chi (t,H0(u; \epsilon ))| dtdu is well defined and

bounded for any bounded interval I. By the Fubini theorem, Assumption 2.4 (H3),
and (2.9), \int 

I

\int 
R
g(t, u)\chi (t,H0(u; \epsilon ))dtdu=

\int 
R

\int 
I

g(t, u)\chi (t,H0(u; \epsilon ))dudt

=

\int 
R
sgn(t)

\sum 
n

\int 
Un

g(t, u)dudt
(2.10)

for any sufficiently regular function g. Equation (2.10) is the main reason why we as-
sume 2.4 (H2). In the proof of Theorem 2.7, we integrate over a domain bounded by
the u-axis and the graph of H0(u; \epsilon ). The first integral in (2.10) reflects the most com-
mon way to do that: the outer integral is with respect to u, while inside we integrate
with respect to t between t= 0 and t=H0(u; \epsilon ) (due to the \chi function). However, in
the proof we need to change the order of integration and integrate with respect to t
outside (as is done in the second and third integrals in (2.10)). Assumption 2.4 (H2)
and the Fubini theorem allow us to change the order of integration.

Suppose \scrS is parametrized by \scrI \ni s \rightarrow y(s) \in \scrS , where \scrI is an interval (or a
union of intervals), y \in C4(\scrI ), and | y\prime (s)| \not = 0 for any s \in \scrI . The normal direction to
\scrS at the point y(s) is denoted \vec{}\theta (s) (and the corresponding polar angle is \theta (s)); see
Figure 1. Define

f\mathrm{p}\epsilon (x) := (f+(x) - f - (x))\chi (t,H\epsilon (s)), x= y(s) + t\vec{}\theta (s), H\epsilon (s) := \epsilon H0(\epsilon 
 - 1/2s; \epsilon ).

(2.11)

Consider the modified function f\mathrm{m}\epsilon := f  - f\mathrm{p}\epsilon and the curve \scrS \epsilon parametrized by

\scrI \ni s\rightarrow y(s) +H\epsilon (s)\vec{}\theta (s)\in \scrS \epsilon .(2.12)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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S

Sε

fε
p

y(s)

θ(s)
Hε(s)

D+

D-

fε
m

Fig. 3. Illustration of the perturbations \scrS \rightarrow \scrS \epsilon and fp
\epsilon . The perturbation fp

\epsilon is supported in
the shaded regions.

By Assumption 2.4 (H1), \scrS \epsilon is an O(\epsilon )-size perturbation of \scrS . At the points where
H\epsilon (s) > 0, a small region is removed from D+ and added to D - (see lighter shaded
regions in Figure 3). At the points where H\epsilon (s) < 0, a small region is removed
from D - and added to D+ (see darker shaded regions in Figure 3). Thus, f\mathrm{m}\epsilon (x) is
discontinuous across \scrS \epsilon instead of \scrS .

Let \^f\mathrm{m}\epsilon and \^f\mathrm{p}\epsilon denote the data for f\mathrm{m}\epsilon and f\mathrm{p}\epsilon defined by (2.2), with f replaced
by f\mathrm{m}\epsilon and f\mathrm{p}\epsilon , respectively. Similarly, let f\mathrm{m}-\mathrm{r}\mathrm{e}\mathrm{c}

\epsilon and f\mathrm{p}-\mathrm{r}\mathrm{e}\mathrm{c}\epsilon denote the reconstruction
of f\mathrm{m}\epsilon and f\mathrm{p}\epsilon from the data \^f\mathrm{m}\epsilon and \^f\mathrm{p}\epsilon , respectively. In [16, 18, 20], we obtained
the DTB in the case of a sufficiently smooth \scrS . By linearity of the measurement
process described by (2.2) and the inversion formula (2.4) (which correspond to the
steps f \rightarrow \^f\epsilon and \^f\epsilon \rightarrow f \mathrm{r}\mathrm{e}\mathrm{c}\epsilon , respectively), we can ignore the original function f and
consider the reconstruction of only the perturbation f\mathrm{p}\epsilon : f

\mathrm{p}
\epsilon \rightarrow \^f\mathrm{p}\epsilon \rightarrow f\mathrm{p}-\mathrm{r}\mathrm{e}\mathrm{c}\epsilon .

By (2.2) and (2.4),

f\mathrm{p}-\mathrm{r}\mathrm{e}\mathrm{c}\epsilon (x) = - \Delta \alpha 

2\pi 

1

\epsilon 2

\sum 
| \alpha k| \leq \pi /2

\sum 
j

\scrH \varphi \prime 
\biggl( 
\vec{}\alpha k \cdot x - pj

\epsilon 

\biggr) \int \int 
w

\biggl( 
pj  - \vec{}\alpha k \cdot y

\epsilon 

\biggr) 
f\mathrm{p}\epsilon (y)dy,

(2.13)

where \scrH denotes the Hilbert transform (see the integral with respect to p in (2.5)).
Clearly, f\mathrm{p}-\mathrm{r}\mathrm{e}\mathrm{c}\epsilon can be written as the first integral in (2.10) with some g. In the proof
of Theorem 2.7 below, we will change the order of integration using (2.10) in some
very similar integrals (see (4.11) and (8.6)).

Following [21], replace the sums with respect to k and j with integrals to obtain
the new DTB:

f\mathrm{p}-\mathrm{r}\mathrm{e}\mathrm{c}\epsilon (x)\approx 1

\epsilon 2

\int \int 
K

\biggl( 
x - y

\epsilon 

\biggr) 
f\mathrm{p}\epsilon (y)dy=: DTB\mathrm{n}\mathrm{e}\mathrm{w}(\v x;x0, \epsilon , f

\mathrm{p}
\epsilon ),

K(z) := - 1

2\pi 

\int \pi 

0

(\scrH \varphi \prime \ast w)(\vec{}\alpha \cdot z)d\alpha .
(2.14)

As is easily seen, K is radial and compactly supported.
For a real number s, let \langle s\rangle denote the distance from s to the nearest integer:

\langle s\rangle := minl\in Z | s  - l| = min(\{ s\} ,1  - \{ s\} ). The following definition is in [24, p. 121]
(after a slight modification in the spirit of [28, p. 172]).

Definition 2.5. Let \eta > 0. The irrational number s is said to be of type \eta if for
any \eta 1 > \eta , there exists c(s, \eta 1)> 0 such that

m\eta 1\langle ms\rangle \geq c(s, \eta 1) for any m\in N.(2.15)

The irrational number s is said to be of constant type or badly approximable if there
exists c(s)> 0 such that m\langle ms\rangle \geq c(s) for any m\in N.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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S

S

θ0
θ0 x0
|x0|

Fig. 4. Illustration of the assumptions P1--P4 in Definition 2.6. The red segment of \scrS and the
red dashed line illustrate the situation prohibited by P1. The two blue line segments are involved in
P3 and P4.

See also [28], where the numbers which satisfy (2.15) are called (\eta  - 1)-order Roth
numbers. It is known that \eta \geq 1 for any irrational s. The set of irrationals of each
type \eta \geq 1 is of full measure in the Lebesgue sense, while the class of constant type is
dense in the space of real numbers, but it is of null measure [28].

Definition 2.6. A point x0 \in R2 is said to be generic if the following assumptions
are satisfied:

P1. No line, which is tangent to \scrS at a point where the curvature of \scrS is zero,
passes through x0;

P2. the line through the origin and x0 is not tangent to \scrS ;
P3. \kappa | x0| is irrational and of finite type; and
P4. if x0 \in \scrS , then the number \kappa \vec{}\theta \bot 0 \cdot x0, where \theta \bot 0 is a unit vector tangent to \scrS 

at x0, is irrational and of finite type.

In the rest of the paper we consider only generic points x0.
Definition 2.6 is illustrated by Figure 4. The geometric meaning of assumptions

P1 and P2 is clear. Since \kappa =\Delta \alpha /\Delta p, the units of \kappa are 1/length. Assumptions P3
and P4 imply that the two blue line segments in Figure 4 have irrational lengths when
expressed in the units of 1/\kappa (thereby making the two quantities dimensionless).

The deeper meaning of assumption P4 is that the singularity of f at x0 is in general
position with respect to the data grid (\alpha k, pj). Consider the function p(\alpha ) = \vec{}\alpha \cdot x0,
whose graph is a curve in the Radon (or data) space. Let \theta 0 be a value such that the
line \{ x \in R2 : \vec{}\theta 0 \cdot x = p(\theta 0)\} is tangent to \scrS at x0. This is precisely the line in the
data that ``sees"" the singularity of f at x0. Clearly,

| \kappa \vec{}\theta \bot 0 \cdot x0| = (\Delta \alpha /\Delta p)| dp(\alpha = \theta 0)/d\alpha | = \kappa | p\prime (\theta 0)| .(2.16)

Assumption P4 says that p(\alpha ) has an irrational slope at \alpha = \theta 0 if the scales along
the p- and \alpha -axes are \Delta p and \Delta \alpha , respectively (see (2.2)). This assumption is quite
natural; it and its analogues always appear even when boundaries are sufficiently
smooth [16, 17, 18, 19, 20].

In the case of sufficiently smooth boundaries, we do not need to know the type of
the irrational number \kappa p\prime (\theta 0) since we establish only convergence to zero of the error
term in (1.2). In this paper we establish the rate of convergence of the error term in
(1.3). To quantify this rate we need more information about \kappa p\prime (\theta 0), namely, its type
(see also the second paragraph below).

Similarly, if \theta 1 is a value such that p(\theta 1) = 0, then \kappa | x0| = (\Delta \alpha /\Delta p)| dp(\alpha =
\theta 1)/d\alpha | . Assumption P3 requires that the slope p\prime (\theta 1) be irrational when the p- and
\alpha -axes are scaled the same way as before. This assumption is new. It is imposed

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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4264 ALEXANDER KATSEVICH

only when f\mathrm{p}\epsilon has a jump across a rough curve. Assumption P3 is needed because
the wave front set of f\mathrm{p}\epsilon above x\in \scrS \epsilon contains not only directions perpendicular to \scrS \epsilon 

(which would be the case if \scrS \epsilon were smooth) but many other directions as well. If \scrS \epsilon is
nonsmooth almost everywhere (which is allowed by Assumptions 2.4), it may happen
that \scrS \epsilon \cup (R2\setminus 0)\subset WF (f\mathrm{p}\epsilon ). Reconstruction of such a function is clearly more difficult
than the one with sufficiently smooth boundaries, so an additional assumption makes
sense.

More specifically, we need to know the type of \kappa | x0| (and the type of \kappa \vec{}\theta \bot 0 \cdot x0
if x0 \in \scrS ) in order to control the magnitude of certain exponential sums, which are
central to the proof of Theorem 2.7 (see subsection 7.5 and section 9).

By P4, x0 \not = 0. Clearly, the set of generic x0 is dense in the plane. Let \eta 0 denote
the type of \kappa | x0| if x0 \not \in \scrS , and the larger of the two types (in P3 and P4)---if x0 \in \scrS .
Our main result is the following theorem.

Theorem 2.7. Suppose
1. f satisfies Assumptions 2.1,
2. the detector aperture function w satisfies Assumptions 2.2,
3. the interpolation kernel \varphi satisfies Assumptions 2.3,
4. the perturbation H0 satisfies Assumptions 2.4, and
5. point x0 is generic.

If \beta > \eta 0 + 2, one has

f\mathrm{p}-\mathrm{r}\mathrm{e}\mathrm{c}\epsilon (x0 + \epsilon \v x) =
1

\epsilon 2

\int \int 
K

\biggl( 
(x0 + \epsilon \v x) - y

\epsilon 

\biggr) 
f\mathrm{p}\epsilon (y)dy+O(\epsilon 1/2 ln(1/\epsilon )), \epsilon \rightarrow 0,(2.17)

where K is given by (2.14) and the big-O term is uniform with respect to \v x in any
compact set.

3. Discussion of the practical use of Theorem 2.7. Even though Theo-
rem 2.7 is about the reconstruction of f\mathrm{p}\epsilon , in practice one does not separate the object
being scanned, f\mathrm{m}\epsilon , into its constituent parts. This is usually done only for theoretical
analysis. Therefore, in this section we discuss how to relate (2.17) to the accuracy of
the reconstruction of f\mathrm{m}\epsilon .

By construction (see (2.11) and the following sentence) we can represent f\mathrm{m}\epsilon in
the form f\mathrm{m}\epsilon = f  - f\mathrm{p}\epsilon , where f is piecewise C2 and has jumps across sufficiently
smooth curves (cumulatively denoted \scrS ), and f\mathrm{p}\epsilon is a perturbation of the kind (2.11)
supported between \scrS and some nonsmooth curves (cumulatively denoted \scrS \epsilon ). Thus,
f\mathrm{p}\epsilon may have jumps across both \scrS and \scrS \epsilon .

As was mentioned before, the map f \rightarrow \{ \^f\epsilon (\alpha j , pk)\} j,k\in Z \rightarrow f \mathrm{r}\mathrm{e}\mathrm{c}\epsilon is linear. Hence
f\mathrm{m}-\mathrm{r}\mathrm{e}\mathrm{c}
\epsilon = f \mathrm{r}\mathrm{e}\mathrm{c}\epsilon  - f\mathrm{p}-\mathrm{r}\mathrm{e}\mathrm{c}\epsilon . Pick any generic x0 \in \scrS as in Theorem 2.7. Denote K\epsilon (x) :=
\epsilon  - 2K(x/\epsilon ). The error of the approximation (f\mathrm{p}-\mathrm{r}\mathrm{e}\mathrm{c}\epsilon  - K\epsilon \ast f\mathrm{p}\epsilon )(x0 + \epsilon \v x) is estimated
in Theorem 2.7.

Denote

f0(x;x0) :=

\Biggl\{ 
limt\rightarrow 0+ f(x0 + t\vec{}\theta 0), \vec{}\theta 0 \cdot (x - x0)> 0,

limt\rightarrow 0 - f(x0 + t\vec{}\theta 0), \vec{}\theta 0 \cdot (x - x0)< 0,
(3.1)

where \vec{}\theta 0 is perpendicular to \scrS at x0 (see Figure 5). Thus, f0(x;x0) takes only two
values: one value in each of the half-planes \pm \vec{}\theta 0 \cdot (x - x0)> 0 (assuming x0 is fixed).
It is proven in [20, Theorem 4.7, case \kappa = 0] that the original DTB (1.1) satisfies

DTB(\v x;x0, f)\equiv (K\epsilon \ast f0)(x0 + \epsilon \v x).(3.2)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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S
f

f(x0+0
+θ0)

θ0

f(x0+0
-θ0)

x0

Fig. 5. Construction of the function f0. Red arrows indicate two limiting values of f on each
side of x0. The dashed line is \vec{}\theta 0 \cdot (x - x0) = 0.

The right-hand side of (3.2) is independent of \epsilon because f0(x0+\epsilon \v x;x0) is independent
of \epsilon > 0. In the notation of [20], our case corresponds to theoretically exact recon-
struction, i.e., \v f \equiv f . The statement of the theorem in [20] is not exactly the same
as (3.2) but can be easily seen to be equivalent to it. Also, [20, Theorem 4.7, case
\kappa = 0] asserts that the error f \mathrm{r}\mathrm{e}\mathrm{c}\epsilon (x0+\epsilon \v x) - DTB(\v x;x0, f)\rightarrow 0 as \epsilon \rightarrow 0 when there are
no global artifacts. The rate of convergence is not established in [20], but numerical
experiments in [16] show that the error term is negligible for realistic values of \epsilon .

Observing that \scrS is a C4 curve (so \scrS is locally well approximated by a tangent
line at x0) and thatf is C2 on each side of \scrS (in the sense of (2.1)), it is obvious that
(K\epsilon \ast (f  - f0))(x0 + \epsilon \v x) =O(\epsilon ). Therefore, by (3.2),

| DTB(\v x;x0, f) - DTB\mathrm{n}\mathrm{e}\mathrm{w}(\v x;x0, \epsilon , f)| =O(\epsilon ).(3.3)

This and (2.14) imply that the approximation (f \mathrm{r}\mathrm{e}\mathrm{c}
\epsilon  - K\epsilon \ast f)(x0 + \epsilon \v x) is expected to

be accurate. Our numerical experiments confirm that this is indeed the case.
We experiment with the same fractal phantom as in [21]. Here f is the charac-

teristic function of the disc centered at xc = (0.1,0.2) with radius R = 0.3, and \scrS is
its boundary. The perturbed boundary \scrS \epsilon is given by r(\theta ) =R+ \epsilon H0(\theta /\epsilon 

1/2) in polar
coordinates with the origin at the center of the disc, where

H0(s) = 5

\infty \sum 
n=c

r - \gamma n sin(rns), c= \lfloor logr(\pi )\rfloor , r=
\surd 
12, \gamma = 1/2.(3.4)

The function H0 is a real Weierstrass-type function (see [3]), which is continuous
everywhere and differentiable nowhere and whose graph is a curve whose fractal di-
mension exceeds one [3]. It is well known that H0 is bounded and H\"older continuous
with exponent \gamma .

We set

\epsilon =\Delta p= 1.2/(Np  - 1), \Delta \alpha = \pi /N\alpha , N\alpha =Np  - 1,

and consider two values, Np = 501 and Np = 1001. Results of the experiments with
Np = 501 and Np = 1001 are shown in Figures 6 and 7, respectively. In each of the
experiments we consider two points x0 \in \scrS :

x0 = xc  - R\vec{}\theta 0, \theta 0 = 0.33\pi ,0.49\pi 

and reconstruct f\mathrm{m}-\mathrm{r}\mathrm{e}\mathrm{c}
\epsilon (x):

1. inside a region of interest (ROI), which is a square centered at x0 with side
length 100\epsilon ; and

2. along a segment of the line through x0 and perpendicular to \scrS : x= x0+\epsilon h\vec{}\theta 0,
| h| \leq 15.

In (2.4) we use the Keys interpolation kernel [22, 2]

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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Fig. 6. ROI in the fractal phantom of [21], Np = 501. Top row: \theta 0 = 0.33\pi , bottom row:
\theta 0 = 0.49\pi . Left to right: density plot of the reconstructed ROI with the location of the profile
shown, WL= 0, WW = 0.1; density plot of the reconstructed ROI, WL= 1, WW = 0.1; profiles of
the ideal edge (red), reconstructed edge (green), and predicted edge (or DTBnew, blue). Values of h
are on the horizontal axis.
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Fig. 7. ROI in the fractal phantom of [21], Np = 1001. Top row: \theta 0 = 0.33\pi , bottom row:
\theta 0 = 0.49\pi . Left to right: density plot of the reconstructed ROI with the location of the profile
shown, WL= 0, WW = 0.1; density plot of the reconstructed ROI, WL= 1, WW = 0.1; profiles of
the ideal edge (red), reconstructed edge (green), and predicted edge (or DTBnew, blue). Values of h
are on the horizontal axis.
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\varphi (t) = 3B3(t+ 2) - (B2(t+ 2) +B2(t+ 1)),(3.5)

where Bn is the cardinal B-spline of degree n supported on [0, n+1]. Thus, supp(\varphi ) =
[ - 2,2]. As the detector aperture function we take

w(p) = 1/\Delta p if | p| \leq \Delta p/2 and w(p) = 0 if | p| >\Delta p/2.(3.6)

Density plots of the reconstructed ROIs are shown in the left and center panels of
Figure 6 and Figure 7. In the left panels, window level (WL)=0 and window width
(WW)=0.1. In the center panels, WL=0 and WW=0.1. This means that only the
values in the range | f\mathrm{m}-\mathrm{r}\mathrm{e}\mathrm{c}

\epsilon (x) - WL| \leq WW/2 are shown accurately. Values outside
the window are changed as follows. If f\mathrm{m}-\mathrm{r}\mathrm{e}\mathrm{c}

\epsilon (x)<WL - WW/2 at some pixel x, then
the value is replaced by WL - WW/2. Similarly, if f\mathrm{m}-\mathrm{r}\mathrm{e}\mathrm{c}

\epsilon (x)>WL+WW/2, then the
value is replaced by WL+WW/2. This is done in order to better see small artifacts
that might be invisible if the full window with WW\sim 1 were used.

In all density plots, a lighter shade of grey stands for a smaller reconstructed
value. Thus, in the left panels grey color stands for pixel values around 0 and white
color for pixel values above 0.05. In the middle panels, black color stands for pixel
values below 0.95 and grey color for pixel values around 1.

The reconstructed profiles of f\mathrm{m}-\mathrm{r}\mathrm{e}\mathrm{c}
\epsilon (x0+\epsilon \v x) (using (2.2) and (2.4) with f replaced

by f\mathrm{m}\epsilon ), along with the predicted reconstruction

DTB\mathrm{n}\mathrm{e}\mathrm{w}(\v x;x0, \epsilon , f
\mathrm{m}
\epsilon ) = (K\epsilon \ast f\mathrm{m}\epsilon )(x0 + \epsilon \v x),(3.7)

and the ideal edge f\mathrm{m}\epsilon (x0 + \epsilon \v x) are shown in the right panels. Here \v x= h\vec{}\theta , | h| \leq 15.
On the vertical axis are the values of the three functions and on the horizontal axis
the values of h. The locations of the profiles are shown in the left panels. As expected,
we see an excellent match between f\mathrm{m}-\mathrm{r}\mathrm{e}\mathrm{c}

\epsilon and DTB\mathrm{n}\mathrm{e}\mathrm{w}.
In summary, our discussion and experiments show that for realistically small

values \epsilon > 0, we have an accurate approximation

f\mathrm{m}-\mathrm{r}\mathrm{e}\mathrm{c}
\epsilon (x)\approx DTBnew(\v x;x0, \epsilon , f

\mathrm{m}
\epsilon ) = (K\epsilon \ast f\mathrm{m}\epsilon )(x), x= x0 + \epsilon \v x, x0 \in \scrS ,(3.8)

where K is a radial, compactly supported, and easily computable kernel (2.14). Equa-
tion (3.8) provides a simple, easy to use relationship between the unknown object f\mathrm{m}\epsilon 
and the actual reconstruction from discrete data f\mathrm{m}-\mathrm{r}\mathrm{e}\mathrm{c}

\epsilon in a neighborhood of \scrS \epsilon (the
jump of f\mathrm{m}\epsilon ). Using (3.8), one can answer any question one might have about the
reconstruction, e.g., what the resolution of the reconstruction is for a given class of
objects f\mathrm{m}\epsilon , how accurately the location of the jump of f\mathrm{m}\epsilon can be determined by
thresholding f\mathrm{m}-\mathrm{r}\mathrm{e}\mathrm{c}

\epsilon , and many others.
Theoretical estimation of the approximation accuracy f \mathrm{r}\mathrm{e}\mathrm{c}\epsilon  - K\epsilon \ast f (i.e., when

only smooth boundaries are present) as well as numerical analysis of resolution, seg-
mentation accuracy, and other applied questions in the presence of rough boundaries
are beyond the scope of the paper and will be the subject of future work.

Consider now the reconstruction of only f . Suppose x0 \in \scrS is not generic. Recall
that assumption P3 in Definition 2.6 is not needed when boundaries are sufficiently
smooth. Thus, we assume that assumption P4 is violated for the selected x0. Numer-
ical experiments in [17] with the Radon transform in R3 demonstrate that in this case
it may happen that f \mathrm{r}\mathrm{e}\mathrm{c}\epsilon (x0+ \epsilon \v x) - DTB(\v x;x0, f) \not \rightarrow 0 as \epsilon \rightarrow 0. Hence it is reasonable
to expect that the same phenomenon occurs in R2 as well. In this case, due to (3.3),
we have that (3.8) and (2.17) may not hold either, i.e.,

f \mathrm{r}\mathrm{e}\mathrm{c}\epsilon (x) - DTBnew(\v x;x0, \epsilon , f) = f \mathrm{r}\mathrm{e}\mathrm{c}\epsilon (x) - (K\epsilon \ast f)(x) \not \rightarrow 0, x= x0 + \epsilon \v x,(3.9)
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4268 ALEXANDER KATSEVICH

as \epsilon \rightarrow 0 (if x0 is not generic). On the other hand, experiments in [17] showed that
the generic behavior is sufficiently robust. In other words, even if \kappa \vec{}\theta \bot 0 \cdot x0 is rational,
but is not too close to an integer, the behavior of the reconstruction is numerically
indistinguishable from the generic one. Numerical stability of DTB\mathrm{n}\mathrm{e}\mathrm{w} is confirmed
also by the experiments in the present paper. Even though the aperture function w
in (3.6) does not satisfy the smoothness assumption 2.2 (AF1), the match between
the reconstruction and prediction is excellent (when x0 is generic). Comprehensive
analysis of the numerical stability of DTB\mathrm{n}\mathrm{e}\mathrm{w} requires a separate investigation.

4. Beginning of the proof of Theorem 2.7. From this point forward we
consider only the reconstruction of f\mathrm{p}\epsilon .

In this section we (a) rewrite the inversion formula (2.13) as an exponential sum
(4.5); (b) formulate two assertions from which Theorem 2.7 follows (see (4.6), (4.7));
(c) describe the phenomenon of cancellation, which informally explains why the ex-
ponential sum in (4.6) is small (establishing this fact is the most difficult part of the
proof); and (d) identify three distinct settings of the theorem based on the location
of x0 relative to \scrS that require separate consideration.

By the linearity of the map f \rightarrow f \mathrm{r}\mathrm{e}\mathrm{c}\epsilon given by (2.2) and (2.4), in what follows we
can consider only one domain U and suppose the following.

Assumptions 4.1 (modified assumptions about f). In addition to Assumptions 2.1,
f satisfies the following:

F1\prime . U is a sufficiently small open neighborhood of some x \in \scrS , i.e., \scrS \cap U is
sufficiently short;

F2\prime . supp(f)\subset U ;
F3\prime . f \equiv 0 in a neighborhood of the endpoints of \scrS \cap U ; and
F4\prime . if x0 \in \scrS or there is a line through x0 which is tangent to \scrS , then \scrS has

nonzero curvature at every point x\in \scrS .
Even though the reconstruction of f\mathrm{p}\epsilon is the main object of our analysis, we

construct f\mathrm{p}\epsilon from f (more precisely, from f\pm in (2.1)). This is why Assumptions 4.1
are about f and not about f\mathrm{p}\epsilon .

Since f \equiv 0 outside U , in what follows we assume \scrS = \scrS \cap U . Also, we may
assume without loss of generality that \scrS is parametrized by [ - a,a]\ni s\rightarrow y(s)\in \scrS for
some small a> 0. If x0 \in \scrS , we assume y(0) = x0.

Throughout the paper we use the following convention. If an inequality involves
an unspecified constant c, this means that the inequality holds for some c > 0. If an
inequality (or a string of inequalities) involves multiple unspecified constants c, then
the values of c in different places can be different. If some additional information
about the value of c is necessary (e.g., c\gg 1 or c > 0 small), then it is stated.

Following [21], consider the function (see (2.13))

\psi (q, t) :=
\sum 
j

(\scrH \varphi \prime )(q - j)w(j  - q - t).(4.1)

Then

\psi (q, t) = \psi (q+ 1, t), q, t\in R; \psi (q, t) =O(t - 2), t\rightarrow \infty , q \in R;\int 
\psi (q, t)dt\equiv 0, q \in R.

(4.2)

The last property follows from Assumption 2.3 (IK2) (see (2.6)). By (4.2), we can
represent \psi in terms of its Fourier series:
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ANALYSIS OF RESOLUTION 4269

\psi (q, t) =
\sum 
m

\~\psi m(t)e( - mq), e(q) := exp(2\pi iq),

\~\psi m(t) =

\int 1

0

\psi (q, t)e(mq)dq=

\int 
R
(\scrH \varphi \prime )(q)w( - q - t)e(mq)dq.

(4.3)

Introduce the function \rho (s) := (1 + | s| \beta ) - 1, s\in R.

Lemma 4.2. One has

| \~\psi m(t)| , | \~\psi \prime 
m(t)| \leq c\rho (m)(1 + t2) - 1.(4.4)

By the lemma, the Fourier series for \psi converges absolutely.
From (2.2), (2.13), (4.1), and (4.3), the reconstructed image becomes

f\mathrm{p}-\mathrm{r}\mathrm{e}\mathrm{c}\epsilon (x) = - \Delta \alpha 

2\pi 

\sum 
m

\sum 
| \alpha k| \leq \pi /2

e

\biggl( 
 - m\vec{}\alpha k \cdot x - \=p

\epsilon 

\biggr) 
Am(\alpha k, \epsilon ),

Am(\alpha , \epsilon ) := \epsilon  - 2

\int \int 
\~\psi m

\biggl( 
\vec{}\alpha \cdot (y - x)

\epsilon 

\biggr) 
f\mathrm{p}\epsilon (y)dy.

(4.5)

To prove Theorem 2.7, in (2.13) we should be able to replace the sum with respect to
k by an integral with respect to \alpha and ignore all m \not = 0 terms (that make up \psi ). We
will show that

\Delta \alpha 
\sum 
m\not =0

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
\sum 

| \alpha k| \leq \pi /2

e

\biggl( 
 - m\vec{}\alpha k \cdot x

\epsilon 

\biggr) 
Am(\alpha k, \epsilon )

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| =O(\epsilon 1/2 ln(1/\epsilon )),(4.6)

\sum 
| \alpha k| \leq \pi /2

\int \alpha k+\Delta \alpha /2

\alpha k - \Delta \alpha /2

| A0(\alpha , \epsilon ) - A0(\alpha k, \epsilon )| d\alpha =O(\epsilon 1/2 ln(1/\epsilon )),(4.7)

where x= x0 + \epsilon \v x. The factor e(m\=p/\epsilon ) is dropped because it is independent of k.
From here through the end of section 9 we will be assuming that Assumption 4.1

(F4\prime ) applies. This corresponds to cases (A) and (B) in the introduction. Hence we
can use \theta to parametrize \scrS ; i.e., s\equiv \theta , and y(\theta ) satisfies

\vec{}\theta \cdot y\prime (\theta )\equiv 0, \vec{}\theta \bot = - y\prime (\theta )/| y\prime (\theta )| , \scrR (\theta )\equiv \vec{}\theta \cdot y\prime \prime (\theta )> 0, | \theta | \leq a.(4.8)

Here \scrR (\theta ) is the radius of curvature of \scrS at y(\theta ). Thus, \vec{}\theta points towards the center
of curvature of \scrS . If x0 \in \scrS , then \vec{}\theta 0 := \vec{}\theta (0) is the unit vector orthogonal to \scrS at
x0 since x0 = y(0). The case when Assumption 4.1 (F4\prime ) does not apply (case (C) in
the introduction) is considered in section 10. By Assumption 4.1 (F3\prime ), f(x)\equiv 0 in a
neighborhood of y(\pm a). The requirements on the smallness of a are formulated later
as needed.

All the estimates below are uniform with respect to \v x, so the \v x-dependence of
various quantities is frequently omitted from notation. Transform the expression for
Am (cf. (4.5)) by changing variables y\rightarrow (\theta , t), where y= y(\theta ) + t\vec{}\theta :

Am(\alpha , \epsilon ) =
1

\epsilon 2

\int a

 - a

\int H\epsilon (\theta )

0

\~\psi m

\biggl( 
\vec{}\alpha \cdot (y(\theta ) - x0)

\epsilon 
+ h(\theta ,\alpha )

\biggr) 
F (\theta , t)dtd\theta ,

F (\theta , t) :=\Delta f(y(\theta ) + t\vec{}\theta )(\scrR (\theta ) - t), h(\theta ,\alpha ) := - \alpha \cdot \v x+ \^t cos(\theta  - \alpha ),

(4.9)

where \scrR (\theta ) - t=det(dy/d(\theta , t))> 0. Recall that \scrR (\theta ) is the radius of curvature of \scrS 
at y(\theta ). The dependence of h on \^t and \v x is irrelevant and omitted from notation.

Consider the function
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4270 ALEXANDER KATSEVICH

R1(\theta ,\alpha ) := \vec{}\alpha \cdot (y(\theta ) - x0).(4.10)

Change variables \theta = \epsilon 1/2\~\theta and t= \epsilon \^t in (4.9) and then use (2.10):

\epsilon 1/2Am(\alpha , \epsilon ) =

\int a\epsilon  - 1/2

 - a\epsilon  - 1/2

\int 
R
\~\psi m

\bigl( 
\epsilon  - 1R1(\theta ,\alpha ) + h(\theta ,\alpha )

\bigr) 
F (\theta , \epsilon \^t)\chi (\^t,H0(\~\theta ; \epsilon ))d\^td\~\theta 

=

\int 
R
sgn(\^t)

\sum 
n

\int 
Un

\~\psi m

\bigl( 
\epsilon  - 1R1(\theta ,\alpha ) + h(\theta ,\alpha )

\bigr) 
F (\theta , \epsilon \^t)d\~\theta d\^t,

(4.11)

where \theta is a function of \~\theta : \theta = \epsilon 1/2\~\theta , and \chi is defined in (2.7). Recall that Un =
[u2n, u2n+1] (see Assumption 2.4 (H3), where these intervals are introduced). Here
and in what follows, the interval I used in the construction of Un's is always I =
[ - a\epsilon  - 1/2, a\epsilon  - 1/2]. The intervals Un can be closed, open, and half-closed. Since what
kind they are is irrelevant, with some abuse of notation we write them as if they
are closed. The dependence of Un and un on \^t and \epsilon is omitted from notation for
simplicity.

In view of (4.5), (4.6), and (4.11) we need to estimate the quantity

Wm(\^t) := \epsilon 1/2
\sum 

\Delta \alpha | k| \leq \pi /2

e ( - mqk) [g(\~\alpha k; \cdot )e ( - m\vec{}\alpha k \cdot \v x)] , qk :=
\vec{}\alpha k \cdot x0
\epsilon 

,

g(\~\alpha ;m,\epsilon , \^t, \v x) :=
\sum 
n

\int 
Un

\~\psi m

\bigl( 
\epsilon  - 1R1(\theta ,\alpha ) + h(\theta ,\alpha )

\bigr) 
F (\theta , \epsilon \^t)d\~\theta .

(4.12)

For convenience, we express g as a function of \~\alpha rather than \alpha . The sum in (4.6)
is bounded by

\int \sum 
m\not =0 | Wm(\^t)| d\^t. By Assumption 2.4 (H1), H0 is bounded, so the

integral with respect to \^t is over a bounded set.
Throughout the paper we frequently use rescaled variables \~\theta , \^\theta and \~\alpha , \^\alpha :

\~\alpha = \epsilon  - 1/2\alpha , \^\alpha = \alpha /\Delta \alpha , \~\theta = \epsilon  - 1/2\theta , \^\theta = \theta /\Delta \alpha .(4.13)

Whenever an original variable (e.g., \alpha ) is used together with its rescaled counterpart
(e.g., \^\alpha or \~\alpha ) in the same equation or sentence, they are always assumed to be related
according to (4.13). The same applies to \theta and its rescaled versions. The only excep-
tion is Appendix D, where the relationship between \theta and \~\theta is slightly different from
the one in (4.13).

We distinguish two cases: x0 \in \scrS and x0 \not \in \scrS . In the former case, x0 = y(0).
The proof of (4.6) is much more difficult than the proof of (4.7), so we discuss the
intuition behind the former. Due to the remark in the paragraph following (4.12),
we just have to show that

\sum 
m\not =0 | Wm(\^t)| satisfies the same estimate as in (4.6).

Summation with respect to m does not bring any complications, so we consider the
sum with respect to k for a fixed m \not = 0. The factor g(\~\alpha k; \cdot ) is bounded and goes
to zero as \~\alpha \rightarrow \infty . In addition, the factor e( - mqk) oscillates rapidly with k. If the
product [g(\~\alpha k; \cdot )e( - m\vec{}\alpha k \cdot \v x)] changes slowly with k (in an appropriate sense), the
rapidly oscillating exponentials nearly cancel each other out, thereby making | Wm(\^t)| 
small.

An additional phenomenon is that the cancellation does not occur near the points
\alpha j,m, where the derivative of the phase is an integer: m\vec{}\alpha \bot (\alpha j,m) \cdot x0 = j \in Z. The
reason is that near these points e( - mqk) does not oscillate rapidly with k. Hence the
contributions into the sum in (4.12) coming from small neighborhoods of \alpha j,m should
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ANALYSIS OF RESOLUTION 4271

be investigated separately. If cancellations do not occur, these contributions are small
only if | g(\~\alpha j,m; \cdot )| are all small. If \alpha j,m = 0 for some j and m, (4.6) may fail because
| g(\~\alpha j,m = 0; \cdot )| is not small. Fortunately, this does not happen for a generic x0 due to
the assumption P4 in Definition 2.6 (see the paragraph following (7.2)).

The above argument applies when x0 \in \scrS (case (A)). If x0 \not \in \scrS , and there is a line
through x0 which is tangent to \scrS (case (B)), then the argument is somewhat similar.
One of the differences between the cases is that the function g is now expressed in
terms of \^\alpha rather than \~\alpha . Also, estimates for g(\^\alpha ; \cdot ) and its derivative are different
from those for g(\~\alpha ; \cdot ).

Recall that (4.6), (4.7) imply Theorem 2.7. Estimates for g(\~\alpha k; \cdot ) and its deriva-
tive in case (A) are obtained in section 6, and the sum with respect to k is estimated
in section 7. This completes the proof of (4.6) in case (A). Likewise, estimates for
g(\^\alpha k; \cdot ) and its derivative in case (B) are obtained in section 8, and the sum with
respect to k is estimated in section 9. This completes the proof of (4.6) in case (B).
The proof of (4.7) in cases (A) and (B) is in section 10. This completes the proof of
Theorem 2.7 in these two cases.

Finally, suppose x0 \not \in \scrS and no line through x0 is tangent to \scrS (case (C)). The
statement of Theorem 2.7 in this case is formulated as Lemma 8.1. Its proof is in
Appendix D. The proof is not based on (4.6), (4.7) and does not use the cancellation
property. Instead we prove that that f\mathrm{p}-\mathrm{r}\mathrm{e}\mathrm{c}\epsilon (x)\rightarrow 0 sufficiently fast for all x in a small
(but finite size) neighborhood of x0 directly from (4.5). The proof is based on the
smallness of Am(\alpha , \epsilon ). Compared with the case (C) in [21], here we do not require that
\scrS have nonzero curvature. Interestingly, even though the proofs of all three cases are
different (see also Remark 9.3), level sets of H0 appear in all of them in an essential
way.

5. Proof of (4.6) in case (A): Preparation. In sections 5--7, x0 = y(0), so
the function R1 in (5.1) becomes

R1(\theta ,\alpha ) = \vec{}\alpha \cdot (y(\theta ) - y(0)) .(5.1)

The convexity of \scrS and our convention imply that the nonzero vector (y(\theta ) - y(0))/\theta 
rotates counterclockwise as \theta increases from  - a to a. Thus, for each \theta \in [ - a,a] there
is \alpha = \scrA 1(\theta ) \in ( - \pi /2, \pi /2) such that \vec{}\alpha (\scrA 1(\theta )) \cdot (y(\theta ) - y(0)) \equiv 0, and the function
\scrA 1 is injective. By continuity, \scrA 1(0) := 0. Define

\Omega := ran\scrA 1.(5.2)

Clearly, \Omega \subset ( - a,a), and the inverse of \scrA 1(\theta ) is sufficiently smooth and well defined
on \Omega . In what follows, we need rescaled versions of R1 and \scrA 1:

R(\~\theta , \~\alpha ) :=R1(\theta ,\alpha )/\epsilon , \scrA (\~\theta ) :=\scrA 1(\theta )/\epsilon 
1/2.(5.3)

For simplicity, the dependence of R and \scrA on \epsilon is omitted from notation.

Definition 5.1. We say f(x)\asymp g(x) for x \in U \subset Rn if there exist c1,2 > 0 such
that

c1 \leq f(x)/g(x)\leq c2 if g(x) \not = 0 and f(x) = 0 if g(x) = 0(5.4)

for any x\in U .

Lemma 5.2. One has

\scrA (\~\theta )\asymp \~\theta , \scrA \prime (\~\theta )\asymp 1, | \theta | \leq a, | \alpha | \leq \pi /2; max
| \~\theta | \leq a\epsilon  - 1/2

| \scrA (\~\theta )/\~\theta | < 1,(5.5)

and
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4272 ALEXANDER KATSEVICH

R(\~\theta , \~\alpha )\asymp \~\theta (\scrA (\~\theta ) - \~\alpha ), \partial \~\theta R(
\~\theta , \~\alpha )\asymp \~\theta  - \~\alpha , \partial \~\alpha R(\~\theta , \~\alpha ) =O(\~\theta ),

\partial 2\~\alpha R(
\~\theta , \~\alpha ), \partial 2\~\theta R(

\~\theta , \~\alpha ), \partial \~\theta \partial \~\alpha R(\~\theta , \~\alpha ) =O(1), | \theta | \leq a, | \alpha | \leq \pi /2.
(5.6)

Then, from (4.11),

\epsilon 1/2Am(\alpha , \epsilon ) =

\int 
R
sgn(\^t)

\sum 
n

\int 
Un

\~\psi m

\Bigl( 
R(\~\theta , \~\alpha ) + h(\theta ,\alpha )

\Bigr) 
F (\theta , \epsilon \^t)d\~\theta d\^t.(5.7)

Recall that \theta is a function of \~\theta in the arguments of h and F . Clearly,

h,F =O(1), \partial \~\theta h,\partial \~\alpha h,\partial \~\theta F =O(\epsilon 1/2), | \theta | \leq a, | \alpha | \leq \pi /2,(5.8)

uniformly with respect to all variables. Here \alpha is a function of \~\alpha .
Fix some small \delta > 0 and define three sets

\Xi 1 := [ - \delta , \delta ], \Xi 2 := \{ \~\theta : | \scrA (\~\theta ) - \~\alpha | \leq \delta \} , \Xi 3 := [ - a\epsilon  - 1/2, a\epsilon  - 1/2] \setminus (\Xi 1 \cup \Xi 2)(5.9)

and the associated functions:

gl(\~\alpha ;m,\epsilon , \^t, \v x) :=
\sum 
n

\int 
Un\cap \Xi l

\~\psi m

\Bigl( 
R(\~\theta , \~\alpha ) + h(\theta ,\alpha )

\Bigr) 
F (\theta , \epsilon \^t)d\~\theta , l= 1,2,3.(5.10)

If \alpha \not \in \Omega , we assume \Xi 2 = ∅ and g2(\~\alpha ;m,\epsilon , \^t, \v x) = 0. To simplify notations, the
arguments m,\epsilon , \^t, and \v x of gl are omitted in what follows, and we write gl(\~\alpha ). In view
of (4.12), g= g1 + g2 + g3.

6. Proof of (4.6) in case (A): Estimates for \bfitg 1,2,3. Using Lemma 5.2 and
(5.8) and estimating the model integral

\int 
(1 + \~\theta 2((\~\theta /2)  - \~\alpha )2) - 1d\~\theta over various do-

mains, it is straightforward to conclude that

g1,2(\~\alpha ) = \rho (m)O(| \~\alpha |  - 1), g3(\~\alpha ) = \rho (m)O(| \~\alpha |  - 2), \~\alpha \rightarrow \infty , | \alpha | \leq \pi /2.(6.1)

Similarly, estimating the model integral
\int 
| \~\theta | (1 + \~\theta 2((\~\theta /2) - \~\alpha )2) - 1d\~\theta implies

\partial \~\alpha g1,3(\~\alpha ) = \rho (m)O(| \~\alpha |  - 1), \~\alpha \rightarrow \infty , | \alpha | \leq \pi /2.(6.2)

Thus, it remains to estimate \partial \~\alpha g2. We assume \alpha \in \Omega because g2(\~\alpha ) = 0 if \alpha \not \in \Omega .
Change variables \~\theta \rightarrow r=R(\~\theta , \~\alpha ) in (5.10) so that \~\theta =\Theta (r, \~\alpha ):

g2(\~\alpha ) =
\sum 
n

\int 
Rn\cap [r\mathrm{m}\mathrm{n},r\mathrm{m}\mathrm{x}]

\~\psi m(r+ h(\theta ,\alpha ))
F (\theta , \epsilon \^t)

| (\partial \~\theta R)(\Theta (r, \~\alpha ), \~\alpha )| 
dr,

Rn :=R(Un, \~\alpha ), r\mathrm{m}\mathrm{n} :=R(\scrA  - 1(\~\alpha  - \delta ), \~\alpha ), r\mathrm{m}\mathrm{x} :=R(\scrA  - 1(\~\alpha + \delta ), \~\alpha ),

(6.3)

where \theta = \epsilon 1/2\Theta (r, \~\alpha ). If R is decreasing in \~\theta and r\mathrm{m}\mathrm{n} > r\mathrm{m}\mathrm{x}, the domain in (6.3) is
understood as Rn \cap [r\mathrm{m}\mathrm{x}, r\mathrm{m}\mathrm{n}]. Denote also rn :=R(un, \~\alpha ) and vn :=\scrA (un). Clearly,
rn's are the endpoints of Rn's: Rn = [r2n, r2n+1] or Rn = [r2n+1, r2n], depending on
whether R(\~\theta , \~\alpha ) is increasing or decreasing as a function of \~\theta .

Lemma 6.1. For \alpha \in \Omega , | \~\alpha | \geq c, one has

rn \asymp \~\alpha (\scrA (un) - \~\alpha ), \partial \~\alpha rn \asymp  - \~\alpha if | vn  - \~\alpha | \leq \delta ;

rmn \asymp  - \~\alpha , rmx \asymp \~\alpha , \partial \~\alpha rmn, \partial \~\alpha rmx =O(1),

\partial \~\theta R(
\~\theta , \~\alpha )\asymp \~\alpha if | \scrA (\~\theta ) - \~\alpha | \leq \delta ;

(6.4)
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and

\partial \~\alpha \Theta (r, \~\alpha ) = - \partial \~\alpha R(\~\theta , \~\alpha )

\partial \~\theta R(
\~\theta , \~\alpha )

\bigm| \bigm| \bigm| \bigm| \bigm| 
\~\theta =\Theta (r,\~\alpha )

=O(1) if r \in [rmn, rmx].(6.5)

In particular, \partial \~\theta R(
\~\theta , \~\alpha ) \not = 0 if | \scrA (\~\theta ) - \~\alpha | \leq \delta , \alpha \in \Omega , and | \~\alpha | \geq c, so the change

of variables in (6.3) is justified. Differentiating (6.3) and using (5.8) and Lemma 5.2,
Lemma 6.1 gives

| \partial \~\alpha g2(\~\alpha )| \leq c
\rho (m)

| \~\alpha | 

\left[  \sum 
n:| vn - \~\alpha | \leq \delta 

| \~\alpha | 
1 + \~\alpha 2(vn  - \~\alpha )2

+
1

| \~\alpha | 2
+ \epsilon 1/2 +

1

| \~\alpha | 

\right]  
\leq c\rho (m)

\left[  \sum 
n:| vn - \~\alpha | \leq \delta 

1

1 + \~\alpha 2(vn  - \~\alpha )2
+

1

\~\alpha 2

\right]  .
(6.6)

Here we have used that \epsilon 1/2\~\alpha =O(1). To summarize, we have

| g(\~\alpha )| \leq c\rho (m)(1 + | \~\alpha | ) - 1, | \alpha | \leq \pi /2;

| \partial \~\alpha g(\~\alpha )| \leq c\rho (m)

\left[  \sum 
n:| vn - \~\alpha | \leq \delta 

1

1 + \~\alpha 2(vn  - \~\alpha )2
+

1

1+ \~\alpha 2

\right]  , \alpha \in \Omega ;

| \partial \~\alpha g(\~\alpha )| \leq c\rho (m)(1 + | \~\alpha | ) - 1, \alpha \in [ - \pi /2, \pi /2] \setminus \Omega ,

(6.7)

where g is given by (4.12).

7. End of proof of (4.6) in case (A): Summation with respect to \bfitk .

7.1. Preliminary results. The goal of this section is to estimate the sum in
(4.12). This is done by breaking up the interval [ - \pi /2, \pi /2] into a union of smaller
intervals and estimating individually the sums over each of these intervals. The sums
over the smaller intervals are estimated using the partial integration identity (7.7)
and the Kusmin--Landau inequality (7.9). Some of these intervals require special
consideration (e.g., those that contain \alpha j,m mentioned in the third paragraph following
(4.13)).

Denote

\phi (\alpha ) =m\kappa rx sin(\alpha  - \alpha x), \vargamma (\^\alpha ) = - m\vec{}\alpha \cdot x0/\epsilon , \mu = - \kappa rx sin\alpha x,(7.1)

where x0 = rx\vec{}\alpha (\alpha x). Recall that (4.13) is always assumed. Clearly, \vargamma \prime (\^\alpha ) \equiv \phi (\alpha ),
\phi (0) =m\mu , and \mu = - \kappa \theta \bot 0 \cdot x0. Without loss of generality we may assume m\geq 1. We
begin by estimating the top sum in (4.12). There are four cases to consider: m \geq 1
or m \leq  - 1 combined with \alpha k \in [0, \pi /2] or \alpha k \in [ - \pi /2,0]. We will consider only one
case: m\geq 1 and \alpha k \in [0, \pi /2]; the other three cases are completely analogous.

Let \alpha \ast > 0 be the smallest angle such that \phi \prime (\alpha \ast ) = 0; i.e., \alpha \ast = \alpha x + (\pi /2)
(mod \pi ). Assumption P2 in Definition 2.6 implies \alpha \ast \not = 0. Otherwise, \vec{}\theta 0 \cdot x0 = 0,
\vec{}\theta 0 \cdot y\prime (0) = 0, and x0 = y(0) imply that the line through the origin and x0 is tangent
to \scrS . By assumption P4 in Definition 2.6, \alpha \ast \not = \pi /2. If not, \kappa \theta \bot 0 \cdot x0 = 0 is rational.

Let \alpha s,m satisfy

\phi (\alpha s,m) = s, | s| \leq m\kappa rx, s\in (1/2)Z, \alpha s,m \in [0, \pi /2].(7.2)

See Figure 8, where \alpha s,m are shown as thick dots for integer values of s (and without
the subscript m). If \alpha \ast \in (0, \pi /2), then for some s there may be two solutions:
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0 π/2
... ... ...

I

αjαj-1αj +111
αj 0

αj0
αj α*αj+1

α2α1 αlαf αr

Fig. 8. Illustration of the interval [0, \pi /2] with various angles used in the derivation of the
estimates.

\alpha s,m \in (0, \alpha \ast ) and \alpha s,m \in (\alpha \ast , \pi /2]. If \alpha \ast \not \in (0, \pi /2), there is at most one solution
for each s. Note that the solution(s) may exist only for some of the indicated s. By
assumption P3 in Definition 2.6, \kappa rx is irrational, so \alpha s,m \not = \alpha \ast for any s,m. By
assumption P4, \phi (0) is irrational, so \alpha s,m \not = 0 for any s,m.

Consider an interval I \subset [0, \pi /2] and its rescaled versions:

\^I := (1/\Delta \alpha )I, \~I := \epsilon  - 1/2I.(7.3)

In view of (4.6) and (4.12), consider the expression

Wm(I) := \epsilon 1/2

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
\sum 
\~\alpha k\in \~I

e ( - mqk) [g(\~\alpha k)e ( - m\vec{}\alpha k \cdot \v x)]

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| , qk := \vec{}\alpha k \cdot x0
\epsilon 

.(7.4)

The dependence ofWm(I) on \epsilon and \^t is omitted from notations. The goal is to estimate
the sum

\sum 
m\not =0Wm([0, \pi /2]). Obviously, Wm([0, \pi /2])\leq 

\sum 
jWm(Ij) if \cup jIj = [0, \pi /2].

From (6.7),

Wm([0, \pi /2])\leq O(\epsilon 1/2)\rho (m)

1/\epsilon \sum 
k=0

(1 + \epsilon 1/2k) - 1 = \rho (m)O(ln(1/\epsilon ))(7.5)

because there are O(1/\epsilon ) values \alpha k \in [0, \pi /2]. Therefore,\sum 
| m| \geq c\epsilon  - 1/2

Wm([0, \pi /2])\leq O(ln(1/\epsilon ))
\sum 

m\geq c\epsilon  - 1/2

\rho (m) =O(\epsilon ln(1/\epsilon ))(7.6)

if \rho (m) = O(| m|  - 3) and c > 0. Thus, in what follows, we will assume \epsilon 1/2| m| \leq c for
some small c > 0.

Next we investigate the individualWm(I) for smaller intervals I. For this we need
a partial integration identity [14, p. 89] (written in a slightly different form):

K2\sum 
k=K1

G(k)\Phi (k) =G(K2)

K2\sum 
k=K1

\Phi (k) - 
\int K2

K1

G\prime (\tau )
\tau \sum 

k=K1

\Phi (k)d\tau ,(7.7)

where G(\tau ) is continuously differentiable on the interval [K1,K2]. Here and through-
out the paper,

\sum c2
k=c1

, where c1,2 are not necessarily integers, denotes the sum over
k \in [c1, c2]. Hence\bigm| \bigm| \bigm| \bigm| \bigm| 

K2\sum 
k=K1

G(k)\Phi (k)

\bigm| \bigm| \bigm| \bigm| \bigm| \leq 
\Biggl( 
| G(K2)| +

\int K2

K1

| G\prime (\tau )| d\tau 

\Biggr) 
max

k\prime \in [K1,K2]

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
k\prime \sum 

k=K1

\Phi (k)

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| .(7.8)

The following result is also needed [9, p. 7].
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ANALYSIS OF RESOLUTION 4275

Theorem 7.1 (Kusmin--Landau inequality). If \vargamma (\tau ) is continuously differen-
tiable, \vargamma \prime (\tau ) is monotonic, and \langle \vargamma \prime (\tau )\rangle \geq \lambda > 0 on an interval \^I, then there exists c > 0
(independent of \vargamma and \^I) such that\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 

\sum 
n\in \^I

e(\vargamma (n))

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \leq c/\lambda .(7.9)

In view of (7.4), (7.7), define

G(\^\alpha ) := g(\~\alpha )e ( - m\vec{}\alpha \cdot \v x) , \Phi (\^\alpha ) := e(\vargamma (\^\alpha )),(7.10)

where \vargamma (\^\alpha ) is defined in (7.1).

Lemma 7.2. One has, for any b,L\geq 0, L=O(1), [b, b+L]\subset \epsilon  - 1/2\Omega ,\int b+L

b

\sum 
n:| vn - \~\alpha | \leq \delta 

1

1 + \~\alpha 2(vn  - \~\alpha )2
d\~\alpha =O((1 + b) - 1).(7.11)

Corollary 7.3. One has, for any b,L\geq 0, L=O(1), b+L\leq \epsilon  - 1/2\pi /2,\int b+L

b

| \partial \~\alpha g(\~\alpha )| d\~\alpha = \rho (m)O((1 + b) - 1).(7.12)

The assertion is obvious because (a) the second term in brackets in (6.7) is O(\~\alpha  - 2)
and (b) by (6.7), \partial \~\alpha g(\~\alpha ) satisfies the same estimate as in (7.11) if \~\alpha \not \in \epsilon  - 1/2\Omega (with
\rho (m) accounted for).

Pick any interval I \subset [0, \pi /2] such that | \~I| =O(1). From (7.10),\int 
\^I

| G\prime (\^\alpha )| d\^\alpha \leq c

\int 
\~I

\Bigl( 
| \partial \~\alpha g(\~\alpha )| + \epsilon 1/2| m| | g(\~\alpha )| 

\Bigr) 
d\~\alpha .(7.13)

Also, by (6.7) and (7.12),

| G(\^\alpha 0)| = | g(\~\alpha 0)| = \rho (m)O((1 + \~\alpha 0)
 - 1),\int 

\~I

| g(\~\alpha )| d\~\alpha ,
\int 
\~I

| \partial \~\alpha g(\~\alpha )| d\~\alpha = \rho (m)O((1 + \~\alpha 0)
 - 1) for any \alpha 0 \in I.

(7.14)

Hence

max
\^\alpha \in \^I

| G(\^\alpha )| +
\int 
\^I

| G\prime (\^\alpha )| d\^\alpha = \rho (m)O((1 + \~\alpha 0)
 - 1) for any \alpha 0 \in I,(7.15)

where we have used that \epsilon 1/2m\leq c.
We suppose that \alpha = \alpha \ast is a local maximum of \phi (\alpha ). The case when \alpha \ast is a local

minimum is analogous.
Let [0, \alpha f ] be the shortest interval such that \phi (\alpha f ) is an integer, i.e., \phi (\alpha f ) \in Z

and \phi (\alpha ) \not \in Z for any \alpha \in [0, \alpha f ). Similarly, let [\alpha l, \alpha r] be the shortest interval
centered at \alpha \ast such that \phi (\alpha l) = \phi (\alpha r)\in Z and \phi (\alpha ) \not \in Z for any \alpha \in (\alpha l, \alpha r). Clearly,
\phi (\alpha l) = \phi (\alpha r) = \lfloor \phi (\alpha \ast )\rfloor . Set

I(0) := [0, \pi /2] \setminus ([0, \alpha f ]\cup [\alpha l, \alpha r]).(7.16)

Thus, Wm([0, \pi /2])\leq Wm(I(0)) +Wm([0, \alpha f ]) +Wm([\alpha l, \alpha r]).
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4276 ALEXANDER KATSEVICH

7.2. Towards estimation of \bfitW \bfitm (\bfitI (0)). In this subsection we assume \alpha f <\alpha l,
i.e., \lceil \phi (0)\rceil \leq \lfloor \phi (\alpha \ast )\rfloor , because otherwise I(0) =∅, and Wm(I(0)) = 0.

Pick any interval I := [\alpha 1, \alpha 2] \subset I(0) (if one exists) such that 2\phi (\alpha 1,2) \in Z,
| \phi (\alpha 2) - \phi (\alpha 1)| = 1/2, and 2\phi (\alpha ) \not \in Z for any \alpha \in (\alpha 1, \alpha 2). By construction, \phi (\alpha ) is
monotone on I. Let j be the integer value in the pair \phi (\alpha 1), \phi (\alpha 2), i.e., \alpha 1 = \alpha j,m or
\alpha 2 = \alpha j,m (see (7.2)). The other value in the pair is j  - 1/2 or j + 1/2.

Generically, one has

| cos(\alpha 1  - \alpha x)| \asymp | cos(\alpha 2  - \alpha x)| .(7.17)

The only exceptions are the two cases when [\alpha 1, \alpha 2] is close to \alpha \ast : \alpha 2 = \alpha l and
\alpha 1 = \alpha r. In these cases one of the expressions in (7.17) can be arbitrarily close to zero
(as m\rightarrow \infty ), while the other can stay away from zero. If \alpha 2 = \alpha l, then \phi (\alpha 2) = j and
\phi (\alpha 1) = j  - 1/2. If \alpha 1 = \alpha r, then \phi (\alpha 1) = j and \phi (\alpha 2) = j  - 1/2. Therefore, when
m\gg 1,

| cos(\alpha 1  - \alpha x)| > | cos(\alpha j,m  - \alpha x)| if \alpha j,m = \alpha l,

| cos(\alpha 2  - \alpha x)| > | cos(\alpha j,m  - \alpha x)| if \alpha j,m = \alpha r.
(7.18)

Clearly, \alpha 2  - \alpha 1 = O(m - 1/2). Away from a neighborhood of \alpha \ast , this difference is
actually O(1/m). To cover all the cases, we use a more conservative estimate.

Subdivide \~I into N subintervals of length \asymp 1 (see Figure 8):

\~I =\cup N - 1
n=0 [\~\alpha j,m  - (n+ 1)L, \~\alpha j,m  - nL], \~\alpha j,m  - NL= \~\alpha 1 if \alpha 2 = \alpha j,m,

\~I =\cup N - 1
n=0 [\~\alpha j,m + nL, \~\alpha j,m + (n+ 1)L], \~\alpha j,m +NL= \~\alpha 2 if \alpha 1 = \alpha j,m.

(7.19)

Clearly, \~\alpha 2  - \~\alpha 1 \geq c/(\epsilon  - 1/2m), so the requirement \epsilon  - 1/2m \leq c implies \~\alpha 2  - \~\alpha 1 \geq c.
Hence we can choose N = 1 and L= \~\alpha 2  - \~\alpha 1 if \~\alpha 2  - \~\alpha 1 < 1, and N = \lfloor \~\alpha 2  - \~\alpha 1\rfloor and
L= (\~\alpha 2  - \~\alpha 1)/N if \~\alpha 2  - \~\alpha 1 \geq 1.

One has

| sin\alpha  - sin\alpha 1| \geq (\alpha  - \alpha 1)min(| cos\alpha 1| , | cos\alpha 2| ), \alpha \in [\alpha 1, \alpha 2],

| sin\alpha 2  - sin\alpha | \geq (\alpha 2  - \alpha )min(| cos\alpha 1| , | cos\alpha 2| ), \alpha \in [\alpha 1, \alpha 2],
(7.20)

for any \alpha 1 < \alpha 2 such that sin\alpha \not = 0 on the interval (\alpha 1, \alpha 2). The statement is
immediate in view of the mean value theorem and the monotonicity of cos\alpha on the
interval [\alpha 1, \alpha 2].

By construction, j is the integer closest to \vargamma \prime (\^\alpha ) if \^\alpha \in \^I:

\langle \vargamma \prime (\^\alpha )\rangle = | \vargamma \prime (\^\alpha ) - j| = | \vargamma \prime (\^\alpha ) - \vargamma \prime (\^\alpha j,m)| if \^\alpha \in \^I.(7.21)

From (7.17), (7.18), (7.20), and (7.21),

\langle \vargamma \prime (\^\alpha )\rangle \geq c(\epsilon 1/2nL)m\kappa rx| cos(\alpha j,m  - \alpha x)| = c\epsilon 1/2n((m\kappa rx)
2  - j2)1/2

if \~\alpha \in [\~\alpha j,m  - (n+ 1)L, \~\alpha j,m  - nL] or \~\alpha \in [\~\alpha j,m + nL, \~\alpha j,m + (n+ 1)L].
(7.22)

This follows from the top inequality in (7.20) if \alpha 1 = \alpha j,m and from the bottom one
if \alpha 2 = \alpha j,m. Also,

\~\alpha \geq c\~\alpha j,m if \alpha \in I.(7.23)

Indeed, notice that \~\alpha \geq \~\alpha j,m if \alpha 1 = \alpha j,m. If \alpha 2 = \alpha j,m, then it suffices to assume that
m\gg 1 is large enough. From \alpha \ast \not = 0, \alpha \ast \not \in [0, c\prime ] for some c\prime > 0. By construction,
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ANALYSIS OF RESOLUTION 4277

| \phi (\alpha 1) - \phi (0)| > 0.5, | \phi (\alpha 2) - \phi (0)| > 1, and | \phi (\alpha 2) - \phi (\alpha 1)| = 1/2. If m\gg 1, (7.23)
is obvious if \alpha 2 > c

\prime , and it follows from the mean value theorem if [\alpha 1, \alpha 2]\subset [0, c\prime ].
The partial integration identity (7.7) and the Kusmin--Landau inequality (7.9)

imply

Wm(I)\leq c\epsilon 1/2\rho (m)

\Biggl( 
\epsilon  - 1/2

\~\alpha j,m
+

\epsilon  - 1/2

\~\alpha j,m((m\kappa rx)2  - j2)1/2

N\sum 
n=1

1

n

\Biggr) 

\leq c
\rho (m)

\~\alpha j,m

\biggl( 
1 +

ln(1/(\epsilon m))

((m\kappa rx)2  - j2)1/2

\biggr) 
.

(7.24)

The first term in parentheses on the first line in (7.24) bounds the contribution from
the subinterval [\~\alpha j,m  - L, \~\alpha j,m] or [\~\alpha j,m, \~\alpha j,m + L] (depending on the case), which is
adjacent to \~\alpha j,m. Since \phi (\alpha j,m) = j, we cannot use the Kusmin--Landau inequality, so
Wm(\cdot ) for this subinterval is estimated directly from (7.4) using the top line in (6.7)
and (7.23).

Clearly, I(0) can be represented as a union of intervals I = [\alpha 1, \alpha 2] of the kind
considered in this subsection. Summing the estimates in (7.24) for all I \subset I(0) to
obtain a bound for Wm(I(0)) is done in subsection 7.5 below. Therefore, it is left to
consider Wm([\alpha l, \alpha r]) and Wm([0, \alpha f ]).

7.3. Estimation of \bfitW \bfitm ([\bfitalpha \bfitl ,\bfitalpha \bfitr ]). Suppose first that \alpha \ast \in (0, \pi /2). Since \alpha \ast 
is a local maximum, \phi (\alpha ) is increasing on [\alpha l, \alpha \ast ] and decreasing on [\alpha \ast , \alpha r]. When
m\gg 1 is sufficiently large, we have 0<\alpha l <\alpha \ast <\alpha r \leq \pi /2.

Suppose \alpha l > 0 (see Appendix C if this does not hold). Then \~\alpha \asymp \epsilon  - 1/2 if
\~\alpha \in [\~\alpha l, \~\alpha r]. Split [\~\alpha l, \~\alpha \ast ] into N = \lfloor \~\alpha \ast  - \~\alpha l\rfloor subintervals of length L\asymp 1:

[\~\alpha l, \~\alpha \ast ] =\cup N - 1
n=0 [\~\alpha l + nL, \~\alpha l + (n+ 1)L], \~\alpha l +NL= \~\alpha \ast .(7.25)

Since \~\alpha \ast  - \~\alpha l \asymp [\{ m\kappa rx\} /(\epsilon m)]1/2, we have

c[\langle m\kappa rx\rangle /(\epsilon m)]1/2 \leq \~\alpha \ast  - \~\alpha l \leq c/(\epsilon m)1/2.(7.26)

Applying (7.15) to each of the subintervals in (7.25) gives the estimate \rho (m)O((1+
\~\alpha \ast )

 - 1) = \rho (m)O(\epsilon 1/2). Also,

\langle \vargamma \prime (\^\alpha )\rangle \geq min

\biggl( 
nL

\~\alpha \ast  - \~\alpha l
\{ \phi (\alpha \ast )\} ,1 - \{ \phi (\alpha \ast )\} 

\biggr) 
\geq min

\Bigl( 
cn(\epsilon m\langle m\kappa rx\rangle )1/2, \langle m\kappa rx\rangle 

\Bigr) 
, \~\alpha \in [\~\alpha l + nL, \~\alpha l + (n+ 1)L].

(7.27)

Completely analogous estimates hold for [\~\alpha \ast , \~\alpha r] if \alpha r \leq \pi /2 (see also Appendix C).
Therefore,

Wm([\alpha l, \alpha r])\leq c\epsilon 1/2\rho (m)

\Biggl( 
1 +

\epsilon 1/2

(\epsilon m)1/2\langle m\kappa rx\rangle 
+

1

(m\langle m\kappa rx\rangle )1/2
N - 1\sum 
n=1

1

n

\Biggr) 

\leq c\epsilon 1/2\rho (m)

\biggl( 
1

m1/2\langle m\kappa rx\rangle 
+

ln(1/(\epsilon m))

(m\langle m\kappa rx\rangle )1/2

\biggr) 
, \~\alpha \ast  - \~\alpha l \geq 1.

(7.28)

The first term in parentheses on the first line in (7.28) corresponds to the subinterval
[\~\alpha l, \~\alpha l+L], since \phi (\~\alpha l)\in Z and its contribution is estimated directly from (7.4) using
the top line in (6.7).

If \~\alpha \ast  - \~\alpha l < 1, we can estimate Wm([\alpha l, \alpha r]) directly from (7.4). There are
O(\epsilon  - 1/2) terms in the sum; each of them is O(\~\alpha  - 1

\ast ) =O(\epsilon 1/2), so

Wm([\alpha l, \alpha r])\leq c\epsilon 1/2\rho (m), \~\alpha \ast  - \~\alpha l < 1.(7.29)
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4278 ALEXANDER KATSEVICH

7.4. Estimation of \bfitW \bfitm ([0,\bfitalpha \bfitf ]). Since \alpha \ast is a local maximum, \phi (\alpha ) is in-
creasing on [0, \alpha \ast ]. If there is no \alpha \in (0, \alpha \ast ) such that \phi (\alpha ) \in Z, then \alpha l < 0, and
this case is addressed in Appendix C. Therefore, in this subsection we assume that
\phi (\alpha j1,m) = j1, where j1 := \lceil \phi (0)\rceil for some \alpha j1,m \in (0, \alpha \ast ). Clearly, \alpha f = \alpha j1,m.

Split [0, \~\alpha j1,m] into N = \lfloor \~\alpha j1,m\rfloor intervals of length L\asymp 1:

[0, \~\alpha j1,m] =\cup N - 1
n=0 [nL, (n+ 1)L], NL= \~\alpha j1,m if \~\alpha j1,m \geq 2.(7.30)

Since \~\alpha j1,m \asymp (1 - \{ m\mu \} )/(\epsilon 1/2m), we have

c\langle m\mu \rangle /(\epsilon 1/2m)\leq \~\alpha j1,m \leq c/(\epsilon 1/2m).(7.31)

Applying (7.15) to the interval \^In = (\kappa \epsilon 1/2) - 1[nL, (n+ 1)L] gives

max
\^\alpha \in \^In

| G(\^\alpha )| +
\int 
\^In

| G\prime (\^\alpha )| d\^\alpha = \rho (m)O((1 + n) - 1).(7.32)

By the bottom line in (7.20),

j1  - \phi (\alpha )\geq \epsilon 1/2(N  - (n+ 1))L(m\kappa rx)min(| cos( - \alpha x)| , | cos(\alpha j1,m  - \alpha x)| )(7.33)

if \~\alpha \in [nL, (n+ 1)L]; therefore

\langle \vargamma \prime (\^\alpha )\rangle \geq min
\Bigl( 
\{ m\mu \} , c\epsilon 1/2m(N  - (n+ 1))

\Bigr) 
, \^\alpha \in \^In,(7.34)

because | cos( - \alpha x)| , | cos(\alpha j1,m  - \alpha x)| \asymp 1. Combining the inequalities, using (7.31),
and simplifying give

Wm([0, \alpha j1,m])\leq c\epsilon 1/2\rho (m)

\biggl( 
\epsilon  - 1/2

\~\alpha j1,m
+

1

\{ m\mu \} 

N - 2\sum 
n=0

1

1 + n

+
1

\epsilon 1/2m

N - 2\sum 
n=0

1

(1 + n)(N  - (n+ 1))

\biggr) 
\leq c\epsilon 1/2\rho (m)

m+ ln
\bigl( 
1/(\epsilon 1/2m)

\bigr) 
\langle m\mu \rangle 

, \~\alpha j1,m \geq 2.

(7.35)

The first term in parentheses on the first line in (7.35) bounds the contribution from
the last subinterval \~IN - 1 = [\~\alpha j1,m  - L, \~\alpha j1,m]. Since \phi (\alpha j1,m) = j1, we cannot use the
Kusmin--Landau inequality, so Wm(IN - 1) is estimated directly from (7.4) using the
top line in (6.7). From these two equations we get also

Wm([0, \alpha j1,m])\leq c\rho (m), \~\alpha j1,m < 2.(7.36)

7.5. Combining all the estimates. We begin by summing (7.24) over all the
intervals I = [\alpha 1, \alpha 2] \subset I(0) in order to finish estimating Wm(I(0)). The analysis in
subsection 7.2 shows that Wm(I) admits the same bound (7.24) regardless of whether
\alpha 1 = \alpha j,m or \alpha 2 = \alpha j,m. Hence we need to sum the right-hand side of (7.24) over all
integers j \in \phi (I(0)). Recall that \alpha j,m denote the angles such that \phi (\alpha j,m) = j (see
(7.2)). We need to distinguish two cases: 0 < \alpha j,m \leq min(\alpha l, \pi /2) and \alpha r \leq \alpha j,m <
\pi /2. The latter case may occur only if \alpha \ast <\pi /2.

First, suppose 0<\alpha j,m \leq min(\alpha l, \pi /2). Denote j1 := \lceil \phi (0)\rceil , j0 := \lfloor \phi (\alpha \ast )\rfloor . Then

\alpha j,m \geq [\langle m\mu \rangle + (j  - j1)]/(m\kappa rx), j1 \leq j \leq j0,(7.37)
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ANALYSIS OF RESOLUTION 4279

and

Wm([\alpha f , \alpha l])\leq c\epsilon 1/2\rho (m)

\biggl[ 
m

\langle m\mu \rangle 

\biggl( 
1 +

ln(1/(\epsilon m))

m

\biggr) 
+

\biggl( 
1 +

ln(1/(\epsilon m))

m1/2\langle m\kappa rx\rangle 1/2

\biggr) 
+

j0 - 1\sum 
j=j1+1

m

j  - j1

\biggl( 
1 +

ln(1/(\epsilon m))

m1/2(m\kappa rx  - j)1/2

\biggr) \biggr] 
.

(7.38)

The first term in brackets corresponds to j = j1, the second term to j = j0, and the
sum to all j1 < j < j0. If j0  - j1 = 1, the sum is assumed to be zero.

If \alpha l >\pi /2,Wm([\alpha f , \pi /2]) is assumed instead ofWm([\alpha f , \alpha l]). Clearly,m\kappa rx - j \geq 
1 if j1 < j < j0. Simplifying and keeping only the dominant terms, we have

Wm([\alpha f , \alpha l])\leq c\epsilon 1/2\rho (m)

\biggl( 
m+ ln(1/(\epsilon m))

\langle m\mu \rangle 
+

ln(1/(\epsilon m))

m1/2\langle m\kappa rx\rangle 1/2

\biggr) 
.(7.39)

If \alpha r <\pi /2 and \alpha r <\alpha j,m \leq \pi /2, then \~\alpha j,m \asymp \epsilon  - 1/2, so (7.24) gives

Wm([\alpha r, \pi /2])\leq c\epsilon 1/2\rho (m)

\biggl( 
m+

ln(1/(\epsilon m))

m1/2

\Bigl[ 
\langle m\kappa rx\rangle  - 1/2 +m1/2

\Bigr] \biggr) 
.(7.40)

Here we used that there are O(m) distinct values of j. Clearly, the estimate in (7.39)
dominates the one in (7.40). This implies that Wm(I(0)) satisfies the estimate in
(7.39).

We have

\rho (m) =O(m - \beta ), m\rightarrow \infty , \langle m\mu \rangle , \langle m| x0| \rangle \geq c\eta m
 - \eta , m\in N,(7.41)

for any \eta > \eta 0 and some c\eta > 0 (see conditions P3, P4 in Definition 2.6). By summing
each of the estimates (7.28) (contribution of [\alpha l, \alpha r]), (7.35) (contribution of [0, \alpha f ]),
and (7.39) (contribution of I(0)) with respect to m from 1 to \infty , we see that the dom-
inating term is \epsilon 1/2

\sum \infty 
m=1 \rho (m)m/\langle m\mu \rangle (cf. (7.35) and (7.39)). The series converges

if \beta > \eta 0 + 2.
Next consider special cases. Comparing (7.29) and (7.36), we see that the latter

grows faster as m\rightarrow \infty . From (7.31) and (7.36),

\sum 
m\geq 1,\~\alpha j1,m<2

Wm([0, \alpha j1,m])\leq c
\sum 
m\geq 1

\langle m\mu \rangle /(\epsilon 1/2m)\leq c

\rho (m) =O(\epsilon (\beta  - 1)/(2(\eta +1))) =O(\epsilon 1/2)

(7.42)

if \beta \geq \eta 0 + 2.
The contribution of the exceptional cases that take place for finitely many m (see

Appendix C) is of order O(\epsilon 1/2 ln(1/\epsilon )). Hence we proved that\sum 
1\leq | m| \leq O(\epsilon  - 1/2)

Wm([ - \pi /2, \pi /2]) =O(\epsilon 1/2 ln(1/\epsilon )) if \beta > \eta 0 + 2.(7.43)

Given that \^t is confined to a bounded interval and (7.43) is uniform with respect
to \^t (see the paragraph following (4.12)), we prove (4.6) in the case x0 \in \scrS .
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4280 ALEXANDER KATSEVICH

8. Proof of (4.6) in case (B): Preparation.

8.1. Preliminaries. Now we consider the case x0 \not \in \scrS . On a high level, our
approach is similar to the one in case (A). In section 8 we show after several sim-
plifications that the analogue of g(\~\alpha ) decays sufficiently fast with its derivative (see
Lemma 8.6). In section 9 we break up the sum with respect to \alpha k in (4.6) into smaller
sums and use the same methods as in section 7 to estimate the latter. Adding all the
estimates and summing with respect to m \not = 0 proves (4.6).

The following result is proven in [21].

Lemma 8.1. Pick x0 \not \in \scrS such that no line through x0, which intersects \scrS , is
tangent to \scrS . This includes the endpoints of \scrS , in which case the one-sided tangents
to \scrS are considered. Under the assumptions of Theorem 2.7, one has

f\mathrm{p}-\mathrm{r}\mathrm{e}\mathrm{c}\epsilon (x) =O(\epsilon 1/2 ln(1/\epsilon )), \epsilon \rightarrow 0,(8.1)

uniformly with respect to x in a sufficiently small neighborhood of x0.

To make this paper self-contained, a slightly simplified proof of the lemma is in
Appendix D. By the above lemma and a partition of unity, only a small neighborhood
of a point of tangency can be considered. Therefore, in this section also we can assume
that \scrS is as short (a> 0 as small) as we like.

In this section we use R1 in its original form (see (4.10)),

R1(\theta ,\alpha ) = \vec{}\alpha \cdot (y(\theta ) - x0) ,(8.2)

because x0 \not = y(0). Let \alpha = \scrA 1(\theta ): [ - a,a] \rightarrow [ - \pi /2, \pi /2] be the function such that
\vec{}\alpha (\scrA 1(\theta )) \cdot (y(\theta ) - x0)\equiv 0. Suppose, for example, that x0 is on the side of \scrS for which
\scrA 1(\theta ) \geq 0. The case when \scrA 1(\theta ) \leq 0 is analogous. In contrast with section 5, \scrA 1 is
now quadratic near \theta = 0. In what follows we need rescaled versions of the functions
R1 and A1:

R(\~\theta , \^\alpha ) :=R1(\theta ,\alpha )/\epsilon , \scrA (\~\theta ) :=\scrA 1(\theta )/\Delta \alpha .(8.3)

As usual, the dependence of R and \scrA on \epsilon is omitted from notation for simplicity.

Lemma 8.2. One has

\scrA (\~\theta )\asymp \~\theta 2, \partial \~\theta \scrA (\~\theta )\asymp \~\theta , | \theta | \leq a,(8.4)

and

R(\~\theta , \^\alpha )\asymp \scrA (\~\theta ) - \^\alpha , \partial \~\theta R(
\~\theta , \^\alpha )\asymp \~\theta  - \kappa \epsilon 1/2 \^\alpha , \partial \^\alpha R(\~\theta , \^\alpha ) =O(1),

\partial 2\~\theta R(
\~\theta , \^\alpha ) =O(1), \partial \~\theta \partial \^\alpha R(\~\theta , \^\alpha ) =O(\epsilon 1/2), | \theta | \leq a, | \alpha | \leq \pi /2.

(8.5)

The proofs of this and all other lemmas in this section are in Appendix B. From
(4.9),

\epsilon 1/2Am(\alpha , \epsilon ) =

\int a\epsilon  - 1/2

 - a\epsilon  - 1/2

\int 
R
\~\psi m

\Bigl( 
R(\~\theta , \^\alpha ) + h(\theta ,\alpha )

\Bigr) 
F (\theta , \epsilon \^t)\chi (\^t,H0(\~\theta ; \epsilon ))d\^td\~\theta 

=

\int 
R
sgn(\^t)

\sum 
n

\int 
Un

\~\psi m

\Bigl( 
R(\~\theta , \^\alpha ) + h(\theta ,\alpha )

\Bigr) 
F (\theta , \epsilon \^t)d\~\theta d\^t.

(8.6)

Clearly,

h,F =O(1), \partial \~\theta h,\partial \~\theta F =O(\epsilon 1/2), \partial \^\alpha h=O(\epsilon ), | \theta | \leq a, | \alpha | \leq \pi /2,(8.7)

uniformly with respect to all variables. By (8.6),
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ANALYSIS OF RESOLUTION 4281

Am(\alpha , \epsilon ) = \epsilon  - 1/2

\int 
R
sgn(\^t)g(\^\alpha ;m,\epsilon , \^t, \v x)d\^t,

g(\^\alpha ;m,\epsilon , \^t, \v x) :=
\sum 
n

\int 
Un

\~\psi m

\Bigl( 
R(\~\theta , \^\alpha ) + h(\theta ,\alpha )

\Bigr) 
F (\theta , \epsilon \^t)d\~\theta .

(8.8)

As usual, the arguments m,\epsilon , \^t, and \v x of g are omitted in what follows, and we write
g(\^\alpha ).

Our goal is to estimate the sum in (4.6). To do that we first simplify the sum by
reducing the range of indices k and simplifying the expression for Am. Note that we
no longer assume m\geq 1.

8.2. Simplification of the sum (4.6). From (8.4)--(8.7) and (4.4), it is easy
to obtain g(\^\alpha ) = \rho (m)O(| \^\alpha |  - 3/2), \^\alpha \rightarrow  - \infty . This implies

\Delta \alpha 
\sum 
m

\sum 
\^\alpha k\leq \^\alpha \ast 

| Am(\alpha k, \epsilon )| =O(\epsilon 1/2)(8.9)

for any fixed \^\alpha \ast > 0. The meaning of \alpha \ast here is different from that in section 7.
Similarly to (5.2), introduce the set \Omega = ran\scrA 1 (with \^\Omega = (1/\Delta \alpha )\Omega according to our
usual convention). We will show that the sum over \alpha k \in [0, \pi /2] \setminus \Omega makes only a
negligible contribution to f\mathrm{p}-\mathrm{r}\mathrm{e}\mathrm{c}\epsilon . By (8.9), the contribution of negative \alpha k and any
finite number of \alpha k > 0 can be ignored. Introduce the variable \tau :

\^\alpha =\scrA \mathrm{m}\mathrm{x} + \tau , \scrA \mathrm{m}\mathrm{x} :=max(\scrA ( - a\epsilon  - 1/2),\scrA (a\epsilon  - 1/2)).(8.10)

Clearly, \^\Omega = ran\scrA = [0,\scrA \mathrm{m}\mathrm{x}].

Lemma 8.3. One has

\Delta \alpha 
\sum 
m

\sum 
\^\alpha k>\scrA \mathrm{m}\mathrm{x}

| Am(\alpha k, \epsilon )| =O(\epsilon ln(1/\epsilon )).(8.11)

Lemma 8.4. One has

g1(\^\alpha ) :=
\sum 
n

\int 
\~\theta \in Un

| R(\~\theta ,\^\alpha )| \geq \delta \^\alpha 1/2

\~\psi m

\Bigl( 
R(\~\theta , \^\alpha ) + h(\theta ,\alpha )

\Bigr) 
F (\theta , \epsilon \^t)d\~\theta = \rho (m)O(\^\alpha  - 1)(8.12)

as \^\alpha \rightarrow +\infty for any \delta > 0 as small as we like.

Equation (8.12) implies

\Delta \alpha 
\sum 
m

\sum 
\^\alpha k\in [\^\alpha \ast ,\scrA \mathrm{m}\mathrm{x}]

| A(1)
m (\alpha k, \epsilon )| =O(\epsilon 1/2 ln(1/\epsilon )),(8.13)

where A
(1)
m is obtained by the top line in (8.8) with g replaced by g1.

The only remaining contribution to f\mathrm{p}-\mathrm{r}\mathrm{e}\mathrm{c}\epsilon comes from

g2(\^\alpha ) :=
\sum 
n

\int 
\~\theta \in Un

| R(\~\theta ,\^\alpha )| <\delta \^\alpha 1/2

\~\psi m

\Bigl( 
R(\~\theta , \^\alpha ) + h(\theta ,\alpha )

\Bigr) 
F (\theta , \epsilon \^t)d\~\theta , \^\alpha \in \^\Omega .(8.14)

A simple calculation shows that g2(\^\alpha ) =O(\^\alpha  - 1/2), \^\alpha \rightarrow \infty . By (8.4) and (8.5),

\~\theta  - \scrA  - 1(\^\alpha ) =O(\^\alpha 1/2/\scrA \prime (\scrA  - 1(\^\alpha ))) =O(1), \theta  - \Theta (\^\alpha ) =O(\epsilon 1/2),

\Theta (\^\alpha ) := \epsilon 1/2\scrA  - 1(\^\alpha ), \^\alpha \rightarrow \infty , \^\alpha \in \^\Omega , | R(\~\theta , \^\alpha )| < \delta \^\alpha 1/2.
(8.15)
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4282 ALEXANDER KATSEVICH

Despite the fact that \scrA  - 1 is two-valued, (8.15) holds regardless of whether \theta > 0 and
ran\scrA  - 1 \subset [0,\infty ) or \theta < 0 and ran\scrA  - 1 \subset ( - \infty ,0]. Hence by (4.4) we can replace
F (\theta , \epsilon \^t) and h(\theta ,\alpha ) with F (\Theta (\^\alpha ), \epsilon \^t) and h(\Theta (\^\alpha ), \alpha ), respectively, in (8.14):

g2(\^\alpha ) = g+2 (\^\alpha ) + g - 2 (\^\alpha ) + \rho (m)O((\epsilon /\^\alpha )1/2), \^\alpha \in \^\Omega ,

g\pm 2 (\^\alpha ) = F (\Theta (\^\alpha ), \epsilon \^t)
\sum 
n

\int 
\pm \~\theta >0,\~\theta \in Un,

| R(\~\theta ,\^\alpha )| <\delta \^\alpha 1/2

\~\psi m

\Bigl( 
R(\~\theta , \^\alpha ) + h(\Theta (\^\alpha ), \alpha )

\Bigr) 
d\~\theta .(8.16)

The superscript \prime +\prime is taken if ran\scrA  - 1 = [0,\infty ) and \prime  - \prime if ran\scrA  - 1 = ( - \infty ,0]. The
same convention is assumed in what follows. In particular, the domain of integration
in (8.16) is a subset of (0,\infty ) when g+2 is computed and a subset of ( - \infty , 0) when g - 2
is computed. Omitting the big-O term in (8.16) leads to

\Delta \alpha 
\sum 
m

\sum 
\^\alpha k\in [\^\alpha \ast ,\scrA \mathrm{m}\mathrm{x}]

| A(1)
m (\alpha k, \epsilon ) - (A(2+)

m (\alpha k, \epsilon ) +A(2 - )
m (\alpha k, \epsilon ))| =O(\epsilon 1/2),(8.17)

where A
(2\pm )
m are obtained by the top line in (8.8) with g replaced by g\pm 2 , respectively.

Due to this simplification, we can consider

g\pm 3 (\^\alpha ) := F
\sum 
n

\int 
\pm \~\theta >0,\~\theta \in Un,

| R(\~\theta ,\^\alpha )| <\delta \^\alpha 1/2

\~\psi m

\Bigl( 
R(\~\theta , \^\alpha ) + h

\Bigr) 
d\~\theta ,(8.18)

where F = F (\Theta (\^\alpha ), \epsilon \^t), h= h(\Theta (\^\alpha ), \alpha ) are uniformly bounded and independent of \~\theta .
As was done before, set rn(\^\alpha ) := R(un, \^\alpha ). By shifting the index of un if necessary,
we may suppose that u0 is the smallest nonnegative un. This means that un \geq 0 if
n \geq 0 and un < 0 if n < 0. In this case, un \asymp n if | un| \geq c by Assumption 2.4 (H3).
Changing variables \~\theta \rightarrow r=R(\~\theta , \^\alpha ) gives

g\pm 3 (\^\alpha ) := F
\sum 
\pm n>0

\int 
r\in Rn

| r| \leq \delta \^\alpha 1/2

\~\psi m(r+ h)
dr

| (\partial \~\theta R)(\~\theta , \^\alpha )| 
,(8.19)

where \~\theta is a function of r and \^\alpha . As usual, +n > 0 in g+4 and  - n > 0 -- in g - 4 . The
change of variables is justified because (\partial \~\theta R)(

\~\theta , \^\alpha ) \not = 0 on the integration domain.
Indeed, \~\theta is bounded away from zero on the domain, and the following result holds.

Lemma 8.5. One has

(\partial \~\theta R)(
\~\theta , \^\alpha )\asymp \~\theta if | R(\~\theta , \^\alpha )| < \delta \^\alpha 1/2, \^\alpha \in [\^\alpha \ast ,\scrA \mathrm{m}\mathrm{x}].(8.20)

Further simplification is achieved by replacing \~\theta with \scrA  - 1(\^\alpha ) in the argument of
\partial \~\theta R. From (8.5) and (8.15),

g\pm 3 (\^\alpha ) =g
\pm 
4 (\^\alpha ) + \rho (m)O(\^\alpha  - 1),

g\pm 4 (\^\alpha ) :=
F

| (\partial \~\theta R)(\scrA  - 1(\^\alpha ), \^\alpha )| 
\sum 
\pm n>0

\int 
r\in Rn

| r| \leq \delta \^\alpha 1/2

\~\psi m(r+ h)dr,

F =F (\Theta (\^\alpha ), \epsilon \^t), h= h(\Theta (\^\alpha ), \epsilon \^\alpha ).

(8.21)

Neglecting the big-O term in (8.21) leads to a term of magnitude O(\epsilon 1/2 ln(1/\epsilon )) in
f\mathrm{p}-\mathrm{r}\mathrm{e}\mathrm{c}\epsilon .
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ANALYSIS OF RESOLUTION 4283

Here is a summary of what we obtained so far:

\Delta \alpha 
\sum 
m

\sum 
\^\alpha k \not \in [\^\alpha \ast ,\scrA \mathrm{m}\mathrm{x}]

| Am(\alpha k, \epsilon )| =O(\epsilon 1/2),

\Delta \alpha 
\sum 
m

\sum 
\^\alpha k\in [\^\alpha \ast ,\scrA \mathrm{m}\mathrm{x}]

| Am(\alpha k, \epsilon ) - (A+
m(\alpha k, \epsilon ) +A - 

m(\alpha k, \epsilon ))| =O(\epsilon 1/2 ln(1/\epsilon )),
(8.22)

where (cf. (8.8))

A\pm 
m(\alpha , \epsilon ) := \epsilon  - 1/2

\int 
R
g\pm 4 (\^\alpha ;m,\epsilon , \^t, \v x)d\^t.(8.23)

The first line in (8.22) follows from (8.9) and (8.11). The second line follows from
(8.13), (8.17), and the comment following (8.21).

Finally, we need the following result.

Lemma 8.6. One has

| g\pm 4 (\^\alpha )| \leq c\rho (m)
\Bigl( 
\^\alpha  - 1/2 (1 + rmin(\^\alpha ))

 - 1
+ \^\alpha  - 1

\Bigr) 
,(8.24)

| \partial \^\alpha g
\pm 
4 (\^\alpha )| \leq c\rho (m)

\biggl( 
1

\^\alpha 1/2(1 + r2min(\^\alpha ))
+
\epsilon 1/2

\^\alpha 

\biggr) 
,(8.25)

where \^\alpha \in [\^\alpha \ast ,\scrA \mathrm{m}\mathrm{x}], and

rmin(\^\alpha ) := min
\pm n>0

| \scrA (un) - \^\alpha | .(8.26)

To clarify, in the estimate for g+4 , the minimum in (8.26) is over n> 0 and in the
estimate for g - 4 over n< 0.

9. End of proof of (4.6) in case (B): Summation with respect to \bfitk .
Denote vn :=\scrA (un) and consider the intervals

Vn := [vn - 0.5, vn+0.5], n > 0, Vn := [vn+0.5, vn - 0.5], n < 0,

vn+0.5 := (vn + vn+1)/2, n\in Z.
(9.1)

Since the function \scrA (\~\theta ) in section 8 and section 9 is different from the one in
sections 5--7, the vn's in (9.1) are different from the vn's in sections 5--7.

Clearly, the estimates in Lemma 8.6 increase if extra points are (formally) added
to the list of un's. If un \not \asymp n (i.e., there are too few un's), we can always add more
points to the un's and enumerate them so that the enlarged collection satisfies un \asymp n.
This property is assumed in what follows.

Lemma 9.1. If Vn \subset [\^\alpha \ast ,\scrA \mathrm{m}\mathrm{x}], one has

vn \asymp n2, | Vn| = | vn+0.5  - vn - 0.5| \asymp | n| ; \^\alpha \asymp vn, rmin(\^\alpha ) = | vn  - \^\alpha | if \^\alpha \in Vn.(9.2)

The proof of the lemma is immediate using Lemma 8.2, (9.1), and that un \asymp n.

Lemma 9.2. For all Vn such that Vn \subset [\^\alpha \ast ,\scrA \mathrm{m}\mathrm{x}], one has, as n\rightarrow \infty ,

| g\pm 4 (vn+1/2)| = \rho (m)O(n - 2)(9.3)

and \int 
Vn

| g\pm 4 (\^\alpha )| d\^\alpha = \rho (m)O(| n|  - 1 ln | n| ),
\int 
Vn

| \partial \^\alpha g
\pm 
4 (\^\alpha )| d\^\alpha = \rho (m)O(| n|  - 1).(9.4)
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4284 ALEXANDER KATSEVICH

Arguing similarly to (7.5), (7.6), equation (9.4) implies

\epsilon 1/2
\sum 

\^\alpha k\in [\^\alpha \ast ,\scrA \mathrm{m}\mathrm{x}]

| A\pm 
m(\alpha k, \epsilon )| \leq \rho (m)

O(\epsilon  - 1/2)\sum 
n=1

n - 1 lnn= \rho (m)O(ln2(1/\epsilon )).(9.5)

Here we used Lemma 9.1 and the following two arguments. (i) Since \^\alpha \ast > 0 can be
taken as large as we want, we can select \^\alpha \ast = \^\alpha \ast (\^t, \epsilon ) so that (a) c1 \leq \^\alpha \ast \leq c2 for
some fixed c1,2 > 0 and all \^t and \epsilon > 0 and (b) \^\alpha \ast = vn+0.5 for some n. (ii) If vnl

is the last of the vn's in the interval [\^\alpha \ast ,\scrA \mathrm{m}\mathrm{x}], the sum over \^\alpha k \in [vnl
,\scrA \mathrm{m}\mathrm{x}] can be

estimated directly. By (9.2), \scrA \mathrm{m}\mathrm{x}  - \^\alpha \ast = O(\scrA 1/2
\mathrm{m}\mathrm{x} ), so the number of the additional

\^\alpha k's is O(\scrA 1/2
\mathrm{m}\mathrm{x} ). By (8.24), g\pm 4 (\^\alpha ) = \rho (m)O(\scrA  - 1/2

\mathrm{m}\mathrm{x} ), \^\alpha k \in [vnl
,\scrA \mathrm{m}\mathrm{x}]. Therefore the

contribution of [vnl
,\scrA \mathrm{m}\mathrm{x}] is O(\rho (m)), which is absorbed by the right-hand side of

(9.5).
From (9.5),

\Delta \alpha 
\sum 

| m| \geq \mathrm{l}\mathrm{n}(1/\epsilon )

\sum 
\^\alpha k\in [\^\alpha \ast ,\scrA \mathrm{m}\mathrm{x}]

| A\pm 
m(\alpha k, \epsilon )| =O(\epsilon 1/2)(9.6)

if \rho (m) =O(| m|  - 3). Thus, in what follows, we will assume | m| \leq ln(1/\epsilon ).

Let \alpha 
(0)
m be the smallest positive root of the equation | \phi (\alpha )  - \phi (0)| = \langle \phi (0)\rangle /2.

Recall that the function \phi depends on m. By (7.41) and the restriction on m (recall
that \phi (0) =m\mu ),

\langle m\mu \rangle \geq c(ln(1/\epsilon )) - \eta , \^\alpha (0)
m \geq c(\epsilon ln\eta (1/\epsilon )) - 1,(9.7)

for any \eta > \eta 0. Find n such that \^\alpha 
(0)
m \in Vn and set \^\alpha m := vn+0.5. By construction and

(9.2),

0< \^\alpha m  - \^\alpha (0)
m =O(v1/2n ) =O((\^\alpha (0)

m )1/2) =O(\epsilon  - 1/2);(9.8)

therefore \alpha m  - \alpha 
(0)
m =O(\epsilon 1/2).

In this section we use only two intervals:

\^I1 := [\^\alpha \ast , \^\alpha m], \^I2 := [\^\alpha m,\scrA \mathrm{m}\mathrm{x}], m \not = 0.(9.9)

Since \^\alpha \ast =O(1), due to (9.7) we can assume \^\alpha m \geq \^\alpha \ast . The derivations for g
\pm 
4 are the

same, so we drop the superscript. Similarly to (7.4), define

Wm(I) :=\epsilon 1/2
\bigm| \bigm| \bigm| \bigm| \sum 
\^\alpha k\in \^I

e ( - mqk) [g4(\^\alpha k)e ( - m\vec{}\alpha k \cdot \v x)]
\bigm| \bigm| \bigm| \bigm| .(9.10)

The dependence of Wm(I) on \epsilon and \^t is omitted from notations.
Following the method in section 7, we use the partial integration identity (7.8)

and the Kusmin--Landau inequality (7.9). The definitions of \Phi and \vargamma are the same as
before, and the definition of G (cf. (7.10)) is modified slightly:

G(\^\alpha ) := g4(\^\alpha )e ( - m\vec{}\alpha \cdot \v x) .(9.11)

We begin by applying (7.8) to the first interval, so we select [K1,K2] as the
interval such that k \in [K1,K2] is equivalent to \^\alpha k \in \^I1. By (9.7) and the choice of

\alpha 
(0)
m , \alpha m,

\^\alpha m \geq c\langle m\mu \rangle /(\epsilon | m| ), \langle \vargamma \prime (\^\alpha )\rangle \geq c\langle m\mu \rangle , \^\alpha \in \^I1, m \not = 0.(9.12)
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ANALYSIS OF RESOLUTION 4285

From (9.11), \int 
\^I1

| G\prime (\^\alpha )| d\^\alpha \leq c

\int 
\^I1

(| \partial \^\alpha g4(\^\alpha )| + \epsilon | m| | g4(\^\alpha )| )d\^\alpha .(9.13)

Our construction ensures that \^I1 =\cup Vn, where the union is taken over all Vn \subset \^I1.
There are N =O((\^\alpha 

(0)
m )1/2) intervals Vn such that Vn \subset \^I1. By (9.3), (9.4),

| G(K2)| \leq c| g4(vN+0.5)| \leq c\rho (m)N - 2,\int 
\^I1

| g4(\^\alpha )| d\^\alpha \leq c\rho (m)
N\sum 

n=1

O(n - 1 lnn) = \rho (m)O(ln2N),

\int 
\^I1

| \partial \^\alpha g4(\^\alpha )| d\^\alpha \leq c\rho (m)
N\sum 

n=1

n - 1 = \rho (m)O(lnN).

(9.14)

Hence

| G(K2)| +
\int 
\^I1

| G\prime (\^\alpha )| d\^\alpha = \rho (m)O(lnN).(9.15)

Here we have used that | m| \leq ln(1/\epsilon ) implies \epsilon | m| lnN < 1 for \epsilon > 0 sufficiently
small. For the same reason we can assume N \geq 1. By (9.12), (9.15), (7.8), and the
Kusmin--Landau inequality,

Wm(I1)\leq c
\epsilon 1/2\rho (m)

\langle m\mu \rangle 
ln

\biggl( 
\langle m\mu \rangle 
\epsilon | m| 

\biggr) 
, m \not = 0.(9.16)

The sum over the remaining Vn \subset \^I2, N \leq n \leq O(\epsilon  - 1/2), can be estimated easily
without utilizing exponential sums. By construction, the left endpoint of \^I2 coincides
with vn+0.5 for some n. As was established following (9.5), the contribution of \^\alpha k

beyond the last Vn \subset \^I2 is O(\rho (m)). Therefore Lemma 9.2 implies\sum 
\^\alpha k\in \^I2

| g4(\^\alpha k)| \leq c

\int 
\^I2

| g4(\^\alpha )| d\^\alpha \leq c
\sum 

Vn\subset \^I2

\int 
Vn

| g4(\^\alpha )| d\^\alpha +O(\rho (m))

\leq c\rho (m)

O(\epsilon  - 1/2)\sum 
n=N

n - 1 lnn\leq c\rho (m)(ln2(\epsilon  - 1/2) - ln2(N))

= \rho (m)O (ln(1/\epsilon ) ln(| m| /\langle m\mu \rangle )) .

(9.17)

With some abuse of notation, in the two integrals on the top line above, we integrate
the upper bound for g4 obtained in (8.24) (with \^\alpha replaced by vn by Lemma 9.1).
This bound has better monotonicity properties (i.e., it can be made monotone within
Vn on each side of vn). Otherwise, we would not be able to estimate the sum in terms
of an integral. We also used that \^\alpha k+1  - \^\alpha k = 1.

Thus

Wm(I2) = \rho (m) ln(| m| /\langle m\mu \rangle )O(\epsilon 1/2 ln(1/\epsilon )), m \not = 0.(9.18)

Comparing (9.16) and (9.18) with (7.39), we see that the case x0 \not \in \scrS gives no ad-
ditional restrictions on \rho (m). Similarly to the end of section 7, we use here that
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4286 ALEXANDER KATSEVICH

the estimates (9.16) and (9.18) are uniform with respect to \^t and \^t is confined to a
bounded interval.

Remark 9.3. Note that the order of operations in the proof of Lemma 8.1 (see
Appendix D) is as follows: \sum 

\alpha k

(\cdot )\rightarrow 
\int 
(\cdot )d\^t\rightarrow 

\sum 
m

\int 
(\cdot )d\~\theta .(9.19)

In sections 4--9 the order is different:\int 
(\cdot )d\~\theta \rightarrow 

\sum 
\alpha k

(\cdot )\rightarrow 
\sum 
m

\int 
(\cdot )d\^t.(9.20)

10. Proof of (4.7) in cases (A) and (B). Here we prove (4.7). Begin with
the case x0 = y(0), which is case (A). By (4.11), (4.12),

J\epsilon :=
\sum 

| \alpha k| \leq \pi /2

\int \alpha k+\Delta \alpha /2

\alpha k - \Delta \alpha /2

| A0(\alpha , \epsilon ) - A0(\alpha k, \epsilon )| d\alpha \leq O(\epsilon 1/2)

\int 
J\epsilon (\^t)d\^t,

J\epsilon (\^t) :=
\sum 

| \alpha k| \leq \pi /2

max
| \~\alpha  - \~\alpha k| \leq \Delta \~\alpha /2

| \partial \~\alpha g(\~\alpha )| \Delta \~\alpha , \Delta \~\alpha := \kappa \epsilon 1/2.
(10.1)

As is seen from (6.7), the only term that requires careful estimation is given by

J (1)
\epsilon (\^t) :=\Delta \~\alpha 

\sum 
\alpha k\in \Omega 

max
| \~\alpha  - \~\alpha k| \leq \Delta \~\alpha /2

\sum 
n:| vn - \~\alpha | \leq \delta 

g1(\~\alpha ,vn),

g1(\~\alpha ,vn) :=
\bigl[ 
1 + v2n(vn  - \~\alpha )2

\bigr]  - 1
.

(10.2)

Here we used that 1 + \~\alpha 2(vn  - \~\alpha )2 \asymp 1 + v2n(vn  - \~\alpha )2 if | vn  - \~\alpha | \leq \delta . Replacing the
inner sum with a larger sum over n : | vn  - \~\alpha k| \leq 2\delta (using that \delta + (\Delta \alpha /2)\leq 2\delta ), we
can write

J (1)
\epsilon (\^t)\leq \Delta \~\alpha 

\sum 
| n| \leq O(\epsilon  - 1/2)

\sum 
k:| vn - \~\alpha k| \leq 2\delta 

max
| \~\alpha  - \~\alpha k| \leq \Delta \~\alpha /2

g1(\~\alpha ,vn).(10.3)

Since \partial \~\alpha g1(\~\alpha ,vn)< 0, \~\alpha > vn,\sum 
k:vn\leq \~\alpha k\leq vn+2\delta 

max
| \~\alpha  - \~\alpha k| \leq \Delta \~\alpha /2

g1(\~\alpha ,vn)\leq 
\sum 

0\leq k\Delta \~\alpha \leq 2\delta 

g1(vn + k\Delta \~\alpha ,vn)

\leq 1 +
1

\Delta \~\alpha 

\int \infty 

vn

g1(\~\alpha ,vn)d\~\alpha \leq c

\biggl( 
1 +

1

\Delta \~\alpha (1 + | vn| )

\biggr) 
.

(10.4)

The same argument applies to the left of vn, so by (9.2)

J (1)
\epsilon (\^t)\leq 

\sum 
| n| \leq O(\epsilon  - 1/2)

\Bigl( 
O(\epsilon 1/2) + (1 + n2) - 1

\Bigr) 
=O(1).(10.5)

Consider now the remaining terms in (6.7). Define similarly to (10.2):

J (2)
\epsilon (\^t) :=\Delta \~\alpha 

\sum 
\alpha k\in \Omega 

max
| \~\alpha  - \~\alpha k| \leq \Delta \~\alpha /2

(1 + \~\alpha 2) - 1,

J (3)
\epsilon (\^t) :=\Delta \~\alpha 

\sum 
\alpha k\in [ - \pi /2,\pi /2]\setminus \Omega 

max
| \~\alpha  - \~\alpha k| \leq \Delta \~\alpha /2

(1 + | \~\alpha | ) - 1.
(10.6)
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ANALYSIS OF RESOLUTION 4287

Arguing analogously to (10.4), (10.5), we get J
(l)
\epsilon (\^t) =O(1), l= 2,3. When estimating

J
(3)
\epsilon we use that the summation is over \alpha k, which satisfy c\leq | \alpha k| \leq \pi /2. Combining

with (10.5) and substituting into (10.2) lead to J\epsilon =O(\epsilon 1/2).
Suppose now x0 \not \in \scrS , which is case (B). It is obvious that the continuous analogue

of (8.22) works for m= 0:\int 
\^\alpha \not \in [\^\alpha \ast ,\scrA \mathrm{m}\mathrm{x}]

| A0(\alpha , \epsilon )| d\alpha =O(\epsilon 1/2),\int 
\^\alpha \in [\^\alpha \ast ,\scrA \mathrm{m}\mathrm{x}]

| A0(\alpha , \epsilon ) - (A+
0 (\alpha , \epsilon ) +A - 

0 (\alpha , \epsilon ))| d\alpha =O(\epsilon 1/2 ln(1/\epsilon )).

(10.7)

Hence it remains to estimate

J\pm 
\epsilon :=

\sum 
\^\alpha k\in [\^\alpha \ast ,\scrA \mathrm{m}\mathrm{x}]

\int \alpha k+\Delta \alpha /2

\alpha k - \Delta \alpha /2

| A\pm 
0 (\alpha , \epsilon ) - A\pm 

0 (\alpha k, \epsilon )| d\alpha .(10.8)

By (8.23),

J\pm 
\epsilon \leq c\epsilon 1/2

\int 
J\pm 
\epsilon (\^t)d\^t, J\pm 

\epsilon (\^t) :=
\sum 

Vn\subset [\^\alpha \ast ,\scrA \mathrm{m}\mathrm{x}]

\sum 
\^\alpha k\in Vn

max
| \^\alpha  - \^\alpha k| \leq 1/2

\bigm| \bigm| \partial \^\alpha g
\pm 
4 (\^\alpha )

\bigm| \bigm| +O(1).

(10.9)

Here O(1) is the contribution of \^\alpha k beyond the last Vn \subset [\^\alpha \ast ,\scrA \mathrm{m}\mathrm{x}] (see the argument
following (9.5)). Clearly, we can assume \^\alpha \ast > 1/2. By (8.25), (8.26), and (9.2), it is
easy to see that\sum 

\^\alpha k\in Vn

max
| \^\alpha  - \^\alpha k| \leq 1/2

\bigm| \bigm| \partial \^\alpha g
\pm 
4 (\^\alpha )

\bigm| \bigm| \leq c
\sum 

\^\alpha k\in Vn

\Biggl( 
1

v
1/2
n (1 + (vn  - \^\alpha k)2)

+
\epsilon 1/2

vn

\Biggr) 
.(10.10)

Arguing similarly to (10.4), we conclude that the left-hand side of (10.10) is bounded
by the same estimate as the integral of | \partial \^\alpha g

\pm 
4 (\^\alpha )| in (9.4). Combining (10.8)--(10.10)

gives the desired result:

J\pm 
\epsilon \leq c\epsilon 1/2

O(\epsilon  - 1/2)\sum 
n=1

n - 1 =O(\epsilon 1/2 ln(1/\epsilon )).(10.11)

Appendix A. Proofs of lemmas in sections 4--7.

A.1. Proof of Lemma 4.2. By Assumption 2.2 (AF1), \~w(\lambda ) =O(| \lambda |  - (\lceil \beta \rceil +1)),
\lambda \rightarrow \infty , where \~w(\lambda ) is the Fourier transform of w. If t is restricted to any compact

set, the estimate for \~\psi m holds because (̃\scrH \varphi \prime )(\lambda ), \~w(\lambda ) =O(\rho (\lambda )) (cf. Assumption 2.3
(IK1)) implies

\bigm| \bigm| \bigm| \bigm| \int | \mu | \~\varphi (\mu ) \~w(\mu  - \lambda )ei(\mu  - \lambda )td\mu 

\bigm| \bigm| \bigm| \bigm| \leq \int | \mu \~\varphi (\mu ) \~w(\mu  - \lambda )| d\mu =O(\rho (\lambda )), \lambda = 2\pi m\rightarrow \infty .

(A.1)

If | t| \geq c for some c\gg 1 sufficiently large, integrate by parts \lceil \beta \rceil times and use that

max
q

| (\partial /\partial q)\lceil \beta \rceil ((\scrH \varphi \prime )(q)w( - q - t))| =O(t - 2), t\rightarrow \infty .(A.2)

The argument works because (\scrH \varphi \prime )(q) is smooth in a neighborhood of any q such
that w( - q - t) \not = 0.

The estimate for \~\psi \prime 
m follows by differentiating (4.3) and applying the above ar-

gument with w replaced by w\prime . The argument still works because w\prime \in C\lceil \beta \rceil 
0 (R) (by

Assumption 2.2 (AF1)).
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4288 ALEXANDER KATSEVICH

A.2. Proof of Lemma 5.2. To prove (5.5) we write

\vec{}\alpha (\scrA 1(\theta )) \cdot 
y(\theta ) - y(0)

\theta 
\equiv \vec{}\alpha (\scrA 1(\theta )) \cdot 

\bigl( 
y\prime (0) + y\prime \prime (0)(\theta /2) +O(\theta 2)

\bigr) 
\equiv 0.(A.3)

Differentiating with respect to \theta and setting \theta = 0 gives

\vec{}\theta \bot 0 \cdot y\prime (0)\scrA \prime 
1(0) +

\vec{}\theta 0 \cdot y\prime \prime (0)(1/2) = 0.(A.4)

Hence \scrA \prime 
1(0) = 1/2 (because \vec{}\alpha \bot \cdot y\prime (\alpha ) + \vec{}\alpha \cdot y\prime \prime (\alpha )\equiv 0), and the desired properties of

\scrA follow by rescaling \theta \rightarrow \~\theta and \scrA 1 \rightarrow \scrA .
By the choice of coordinates,

\vec{}\alpha \cdot (y(\theta ) - y(0))/(\theta (\scrA (\theta ) - \alpha ))(A.5)

is a sufficiently smooth positive function of (\alpha ,\theta ) \in [ - \pi /2, \pi /2] \times [ - a,a]. The pos-
itivity follows from the following statements: (i) \scrS is convex; (ii) by construction,
\vec{}\alpha \bot (0) \cdot y\prime (0)< 0 and \vec{}\alpha (0) \cdot y\prime \prime (0)> 0; and (iii) \vec{}\alpha \cdot (y(\theta ) - y(0)) has first order zero at
\theta = 0 if \alpha \not = 0 and at \scrA 1(\theta ) = \alpha if \alpha ,\theta \not = 0. Rescaling \theta \rightarrow \~\theta and \alpha \rightarrow \~\alpha proves the first
property in (5.6).

The rest of (5.6) follows by differentiating \vec{}\alpha \cdot (y(\theta ) - y(0)), using that \vec{}\alpha \cdot y\prime (\alpha )\equiv 0,
and rescaling.

A.3. Proof of Lemma 6.1. Suppose | \~\alpha | \geq c. Assuming | \scrA 1(\theta )  - \alpha | \leq \delta \epsilon 1/2,
where \delta > 0 is sufficiently small, the properties (see (5.5))

\scrA 1(\theta )\asymp \theta , max
| \theta | \leq a

| \scrA 1(\theta )/\theta | < 1,(A.6)

imply \theta \asymp \alpha , \theta /\alpha \geq c\prime for some c\prime > 1, and \partial \~\theta R(
\~\theta , \~\alpha )\asymp \~\alpha (see (5.6)). Also, differenti-

ating R1 in (5.1) we get \partial \alpha R1(\theta ,\alpha )\asymp  - \theta and, hence, \partial \~\alpha R(\~\theta , \~\alpha )\asymp  - \~\alpha . The properties
of rn now follow immediately by rescaling and setting \~\theta = un. The magnitudes of r\mathrm{m}\mathrm{n}

and r\mathrm{m}\mathrm{x} follow as well because \scrA (\~\theta ) - \~\alpha =\pm \delta for the corresponding \~\theta .
Denote B(\~\alpha ) :=\scrA  - 1(\~\alpha ). To prove the statement about \partial \~\alpha r\mathrm{m}\mathrm{n}, \partial \~\alpha r\mathrm{m}\mathrm{x} we need to

show that \partial \~\alpha R(B(\~\alpha \pm \delta ), \~\alpha ) =O(1). Using that (i) \partial \~\alpha \partial \~\theta R,\partial 
2
\~\alpha R, and B

\prime are all O(1)
(see (5.6); B\prime = O(1) follows from A\prime = O(1)) and (ii) R(B(\~\alpha \pm \delta ), \~\alpha \pm \delta ) \equiv 0, it is
easy to see that the desired assertion holds.

To prove (6.5) we differentiate R(\Theta (r, \~\alpha ), \~\alpha )\equiv 0 and use that \partial \~\theta R(
\~\theta , \~\alpha )\asymp \~\alpha and

\partial \~\alpha R(\~\theta , \~\alpha )\asymp  - \~\alpha .

A.4. Proof of Lemma 7.2. Any vn such that | vn - \~\alpha | \leq \delta for some \~\alpha \in [b, b+L]
satisfies b - \delta \leq vn \leq b+ L+ \delta . By Lemma 5.2, un and vn satisfy qualitatively the
same assumptions (see Assumption 2.4 (H3)). Since L=O(1), there are finitely many
such vn. Also, 1+ \~\alpha 2(vn  - \~\alpha )2 \asymp 1+ b2(vn  - \~\alpha )2. Let A denote the expression on the
left side of (7.11). Then

A\leq 
\sum 

b - \delta \leq vn\leq b+L+\delta 

\int 
R

d\~\alpha 

1 + b2(vn  - \~\alpha )2
=O(1/b), b\rightarrow \infty .(A.7)

Appendix B. Proofs of lemmas in section 8 and section 9.

B.1. Proof of Lemma 8.2. Using that \vec{}\theta 0 \cdot y\prime (0) = 0 and \vec{}\theta 0 \cdot (y(0) - x0) = 0, it
is easy to see that the right-hand side of the identity

sin(\scrA 1(\theta )) = \vec{}\theta 0 \cdot (y(\theta ) - x0)/| y(\theta ) - x0| (B.1)
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ANALYSIS OF RESOLUTION 4289

and its first derivative are zero at \theta = 0. Also, its second derivative at \theta = 0 equals
\vec{}\theta 0 \cdot y\prime \prime (0)/| y(0) - x0| . By our choice of coordinates, this expression is positive. The
properties in (8.4) now follow from the properties of sin - 1(t) and by rescaling.

To prove the first property in (8.5), consider the function R1(\theta ,\alpha )/(\scrA 1(\theta )  - \alpha )
and note that \vec{}\alpha (\scrA 1(\theta )) is the only unit vector with | \alpha | <\pi /2 orthogonal to y(\theta ) - x0.
Recall that a is sufficiently short, so \scrA 1([ - a,a]) \subset [ - \pi /2, \pi /2]. This function is
clearly sufficiently smooth on [ - a,a]\times [ - \pi /2, \pi /2]. The ratio is positive because (i)
\scrS is convex, (ii) \vec{}\theta 0 \cdot y\prime \prime (0) > 0 (cf. the proof of Lemma 5.2) and \scrA 1(\theta ) \geq 0 by the
assumption about x0 (see the paragraph following (8.2)), and (iii) R1(\theta ,\alpha ) has a root
of first order at \alpha =\scrA 1(\theta ), \theta \not = 0. Rescaling \theta \rightarrow \~\theta and \alpha \rightarrow \^\alpha , we finish the proof.

Differentiating R1 and using that \vec{}\alpha \cdot y\prime (\alpha )\equiv 0, we find

\partial \theta R1(\theta ,\alpha )\asymp \theta  - \alpha ; \partial 2\theta R1(\theta ,\alpha ), \partial \theta \partial \alpha R1(\theta ,\alpha ), \partial \alpha R1(\theta ,\alpha ) =O(1).(B.2)

Rescaling the variables proves the rest of (8.5).

B.2. Proof of Lemma 8.3. By (8.5),

| g(\scrA \mathrm{m}\mathrm{x} + \tau )| \leq c\rho (m)

\int a\epsilon  - 1/2

 - a\epsilon  - 1/2

1

1 + (\tau + (\scrA \mathrm{m}\mathrm{x}  - \scrA (\~\theta )))2
d\~\theta , \tau > 0.(B.3)

By construction, \scrA \mathrm{m}\mathrm{x}  - \scrA (\~\theta ) \geq 0. By (8.4), we can change variables r = \scrA (\~\theta )
(separately on ( - a\epsilon  - 1/2,0] and [0, a\epsilon  - 1/2)). Then d\~\theta /dr\asymp \pm r - 1/2 and

| g(\scrA \mathrm{m}\mathrm{x} + \tau )| \leq c\rho (m)

\int \scrA \mathrm{m}\mathrm{x}

0

1

(1 + \tau +\scrA \mathrm{m}\mathrm{x}  - r)2r1/2
dr, \tau > 0.(B.4)

Here we used that 1 + x2 \asymp (1 + x)2, x\geq 0. Since \scrA \mathrm{m}\mathrm{x} \asymp 1/\epsilon , we obtain\int \scrA \mathrm{m}\mathrm{x}/2

0

(\cdot )dr\leq c\scrA  - 2
\mathrm{m}\mathrm{x}

\int \scrA \mathrm{m}\mathrm{x}/2

0

dr

r1/2
=O(\epsilon 3/2), \tau > 0,(B.5)

and \int \scrA \mathrm{m}\mathrm{x}

\scrA \mathrm{m}\mathrm{x}/2

(\cdot )dr\leq c\scrA  - 1/2
\mathrm{m}\mathrm{x}

\int \scrA \mathrm{m}\mathrm{x}/2

0

dr

(1 + \tau + r)2
\leq c

\epsilon 1/2

1 + \tau 
, \tau > 0.(B.6)

Consequently, the sum in (8.11) is bounded by

c\epsilon 1/2
\sum 

0\leq k\leq O(1/\epsilon )

\biggl[ 
\epsilon 3/2 +

\epsilon 1/2

1 + k

\biggr] 
=O(\epsilon ln(1/\epsilon )).(B.7)

B.3. Proof of Lemma 8.4. By Lemma 8.2, there exists \delta \prime > 0 such that for any
0<\alpha \leq \pi /2, one has

\{ | \theta | \leq a : | R(\~\theta , \^\alpha )| \geq \delta \^\alpha 1/2\} \subset \{ | \theta | \leq a : | \scrA (\~\theta ) - \^\alpha | \geq \delta \prime \^\alpha 1/2\} .(B.8)

This implies

| g1(\^\alpha )| \leq c\rho (m)

\int 
| \~\theta | \leq a\epsilon  - 1/2

| \scrA (\~\theta ) - \^\alpha | \geq \delta \prime \^\alpha 1/2

(1 + (\scrA (\~\theta ) - \^\alpha )2) - 1d\~\theta .(B.9)
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4290 ALEXANDER KATSEVICH

Again by Lemma 8.2, on the sets \~\theta > 0 and \~\theta < 0 we can change variables \~\theta \rightarrow r=\scrA (\~\theta ),
where d\~\theta /dr\asymp \pm | r|  - 1/2, to obtain

| g1(\^\alpha )| \leq c\rho (m)

\int 
r>0

| r - \^\alpha | \geq \delta \prime \^\alpha 1/2

(1 + (r - \^\alpha )2) - 1r - 1/2dr.(B.10)

By an easy calculation,\int \infty 

\^\alpha +\delta \prime \^\alpha 1/2

dr

(r - \^\alpha )2r1/2
,

\int \^\alpha  - \delta \prime \^\alpha 1/2

0

dr

(\^\alpha  - r)2r1/2
=O(\^\alpha  - 1),(B.11)

and the lemma is proven.

B.4. Proof of Lemma 8.5. By (8.5), we need to establish that | \epsilon 1/2\^\alpha /\~\theta | \leq c for
some sufficiently small c > 0. Given that \~\theta , \^\alpha , satisfy the conditions in (8.20), (8.4)
and (8.5) imply \bigm| \bigm| \bigm| \bigm| \epsilon 1/2 \^\alpha \~\theta 

\bigm| \bigm| \bigm| \bigm| \leq \epsilon 1/2 \^\alpha 

min| R(\~\theta ,\^\alpha )| <\delta \^\alpha 1/2 | \~\theta | 
\leq c1

\epsilon 1/2\^\alpha 

(\^\alpha  - c2\delta \^\alpha 1/2)1/2
(B.12)

for some c1,2 > 0. Squaring both sides gives

\epsilon \^\alpha 2

\~\theta 2
\leq c21

\epsilon \^\alpha 2

\^\alpha  - c2\delta \^\alpha 1/2
= c21

\alpha 

1 - c2(\delta /\^\alpha 1/2)
.(B.13)

Given that \alpha \in \Omega , \Omega can be made as small as we like (by selecting a > 0 small),
\^\alpha \geq \^\alpha \ast , and \^\alpha \ast can be made as large as we like, (8.20) is proven.

B.5. Proof of Lemma 8.6. We will consider only g+4 (i.e., n > 0), since esti-
mating g - 4 is completely analogous. For simplicity, the superscript + is omitted.

By Lemma 8.2 and Lemma 8.5, \partial \~\theta R \asymp \~\theta and \scrA  - 1(\^\alpha ) \asymp \^\alpha 1/2, so the coefficient
in front of the integral in (8.21) is O(\^\alpha  - 1/2). Suppose first that one of the intervals
Rn0

= [r2n0
, r2n0+1] contains zero. Then r2n0

\leq 0\leq r2n0+1 and

J :=

\int r2n0+1

r2n0

\~\psi m(r+ h)dr= - 

\Biggl( \int r2n0

 - \infty 
+

\int \infty 

r2n0+1

\Biggr) 
\~\psi m(r+ h)dr.(B.14)

Therefore, by (4.4),

J \leq c\rho (m)

1 +min(| r2n0 + h| , | r2n0+1 + h| )
.(B.15)

If either r2n0
< - \delta \^\alpha 1/2 or r2n0+1 > \delta \^\alpha 

1/2, then the corresponding limit is replaced by
either  - \delta \^\alpha 1/2 or \delta \^\alpha 1/2, as needed. If both r2n0 and r2n0+1 exceed the limits, then
J =O(\^\alpha  - 1/2). By Lemma 8.2, rn \asymp vn  - \^\alpha , vn =\scrA (un), and (8.24) is proven.

Recall that un > 0 if n > 0. Then un \asymp n and, by Lemma 8.2, vn \asymp n2. This
implies that, on average, the distance between consecutive vn increases as n\rightarrow \infty . In
turn, this means that vn  - \^\alpha stays bounded for a progressively smaller fraction of \^\alpha 
as \^\alpha \rightarrow \infty . Since the term h is uniformly bounded, it can be omitted from (B.15) to
better reflect the essence of the estimate.

Contribution of all remaining intervals located on one side of zero [r2n, r2n+1] \subset 
(r2n0+1, \delta \^\alpha 

1/2], n> n0, and [r2n, r2n+1]\subset [ - \delta \^\alpha 1/2, r2n0
), 0\leq n< n0, can be estimated

in a similar fashion:\sum 
n>n0

\int r2n+1

r2n

| \~\psi m(r+ h)| dr\leq 
\int \infty 

r2n0+1

| \~\psi m(r+ h)| dr\leq c\rho (m)

1 + r2n0+1
,(B.16)

and the same way for the other set of intervals. This proves (8.24).
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ANALYSIS OF RESOLUTION 4291

To prove (8.25), we first collect some useful results, which follow from Lemma 8.2:

\partial \^\alpha \scrA  - 1(\^\alpha ) =O(\^\alpha  - 1/2), \partial \^\alpha rn =O(1).(B.17)

Differentiating g4(\^\alpha ) in (8.21) and using (8.5), (8.7), and (B.17) gives

\partial \^\alpha g
\pm 
4 (\^\alpha )

\leq c\rho (m)

\biggl( \biggl( 
\epsilon 1/2

\^\alpha 
+

1

\^\alpha 3/2

\biggr) 
1

1 + r\mathrm{m}\mathrm{i}\mathrm{n}(\^\alpha )
+

1

\^\alpha 1/2

1

1 + r2\mathrm{m}\mathrm{i}\mathrm{n}(\^\alpha )
+
\epsilon 1/2

\^\alpha 
+

\epsilon 

\^\alpha 1/2

\biggr) 
,

(B.18)

and the desired result follows by keeping only the dominant terms. Here we have
used that \epsilon \^\alpha = O(1), and there are finitely many n such that [r2n, r2n+1] intersects
the set | r| \leq \delta \^\alpha 1/2. The last claim is proven by finding all un \asymp n2 that satisfy
\^\alpha  - \delta \prime \^\alpha 1/2 \leq \scrA (un)\leq \^\alpha + \delta \prime \^\alpha 1/2 for some \delta \prime > 0.

B.6. Proof of Lemma 9.2. We consider only g+4 ; the proof for g
 - 
4 is analogous.

By Lemma 9.1, \^\alpha \asymp vn if \^\alpha \in Vn. Also, at the right endpoint of Vn, by (8.24)

| g+4 (vn+1/2)| \leq c\rho (m)
\Bigl( 
v - 1/2
n (1 + (vn+1  - vn))

 - 1 + v - 1
n

\Bigr) 
= \rho (m)O(n - 2).(B.19)

By Lemma 8.6, with \^\alpha = vn + \tau , \^\alpha \in Vn,

| g+4 (\^\alpha )| \leq c\rho (m)
\Bigl( 
v - 1/2
n (1 + \tau ) - 1 + v - 1

n

\Bigr) 
,(B.20)

| \partial \^\alpha g
+
4 (\^\alpha )| \leq c\rho (m)

\Bigl( 
v - 1/2
n (1 + \tau 2) - 1 + \epsilon 1/2v - 1

n

\Bigr) 
(B.21)

if vn - 1/2 \geq \^\alpha \ast . Then\int 
Vn

| g+4 (\^\alpha )| d\^\alpha \leq c\rho (m)

\Biggl( 
v - 1/2
n

\int O(n)

0

d\tau 

1 + \tau 
+ v - 1

n O(n)

\Biggr) 
= \rho (m)O(n - 1 lnn),\int 

Vn

| \partial \^\alpha g
+
4 (\^\alpha )| d\^\alpha \leq c\rho (m)

\Bigl( 
v - 1/2
n O(1) + \epsilon 1/2v - 1

n O(n)
\Bigr) 
= \rho (m)O(n - 1)

(B.22)

because n=O(\epsilon  - 1/2), and the lemma is proven.

Appendix C. Analysis of exceptional cases. Consider now possible viola-
tions of the inequalities 0 < \alpha l < \alpha \ast < \alpha r \leq \pi /2 (see the beginning of subsection 7.2
and subsection 7.3). A violation may happen only for finitely many m. If \alpha l < 0 (i.e.,
the interval (\phi (0), \phi (\alpha \ast )) does not contain an integer), we consider the interval [0, \alpha \ast ]
instead of [\alpha l, \alpha \ast ]. The analogues of (7.25)--(7.27) become

N =O(\~\alpha \ast ) =O(\epsilon  - 1/2); [0, \~\alpha \ast ] =\cup N - 1
n=0 [nL, (n+ 1)L], \~\alpha \ast =NL;

\langle \vargamma \prime (\^\alpha )\rangle \geq min(\langle m\kappa rx\rangle , \langle m\mu \rangle ) , \alpha \in [0, \alpha \ast ].
(C.1)

The analogue of (7.28) is (cf. (7.15))

Wm([0, \alpha \ast ])\leq c
\epsilon 1/2\rho (m)

min (\langle m\kappa rx\rangle , \langle m\mu \rangle )

N - 1\sum 
n=0

1

1 + (N  - (n+ 1))L
=O(\epsilon 1/2 ln(1/\epsilon )).(C.2)

Here we have used that the number of different values of m for which \alpha l < 0 and the
above estimate applies is finite.
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4292 ALEXANDER KATSEVICH

If \alpha r >\pi /2 (which implies \langle \phi (\pi /2)\rangle > 0), we consider the interval [\alpha \ast , \pi /2] instead
of [\alpha \ast , \alpha r]. The analogue of (C.1) becomes

N =O(\epsilon  - 1/2),

[\~\alpha \ast , \epsilon 
 - 1/2\pi /2] =\cup N - 1

n=0 [\~\alpha \ast + nL, \~\alpha \ast + (n+ 1)L], \~\alpha \ast +NL= \epsilon  - 1/2\pi /2,

\langle \vargamma \prime (\^\alpha )\rangle \geq min(\langle m\kappa rx\rangle , \langle \phi (\pi /2)\rangle ) , \alpha \in [\alpha \ast , \pi /2].

(C.3)

The analogue of (C.2) is

Wm([\alpha \ast , \pi /2])\leq c
\epsilon 1/2\rho (m)

min (\langle m\kappa rx\rangle , \langle \phi (\pi /2)\rangle )
=O(\epsilon 1/2).(C.4)

Here we used that \~\alpha =O(\epsilon  - 1/2) if \alpha \geq \alpha \ast .
This completes the analysis of the case \alpha \ast <\pi /2. If \alpha \ast >\pi /2, then \alpha l >\pi /2 when

m\gg 1 is sufficiently large. Hence the only relevant case is when \alpha l <\pi /2. As before,
this happens for finitely many m. If \alpha l > 0, the interval we should consider is [\alpha l, \pi /2].
In this case, the estimates in (7.28), (7.29) still hold (some of the terms in the sum
are not necessary). Given that m is bounded, the estimates imply Wm([\alpha l, \pi /2]) =
O(\epsilon 1/2 ln(1/\epsilon )). If \alpha l < 0, the relevant interval is [0, \pi /2]. Arguing similarly to
(C.1), (C.2), it is obvious that Wm([0, \pi /2]) =O(\epsilon 1/2 ln(1/\epsilon )).

Appendix D. Proof of Lemma 8.1. Pick any x sufficiently close to x0. All the
estimates below are uniform with respect to x in a small (but fixed) size neighborhood,
so the x-dependence of various quantities is omitted from notation. Since \scrS is not
necessarily convex, the parametrization is not by the normal direction but is some
regular y(s)\in C4 (cf. Assumption 2.1 (F1)).

Let \Omega be the set of all \alpha \in [ - \pi /2, \pi /2] such that the lines \{ y \in R2 : (y - x) \cdot \vec{}\alpha = 0\} 
intersect \scrS . Let s = \scrB (\alpha ), \alpha \in \Omega , be determined by solving (y(s)  - x) \cdot \vec{}\alpha = 0.
By using a partition of unity, if necessary, we can assume that (a) \scrS is short, (b)
the solution is unique for each \alpha \in \Omega , and (c) \Omega is an interval. By assumption,
the intersection is transverse for any \alpha \in \Omega (up to the endpoints). Hence | \scrB \prime (\alpha )| =
| y(\scrB (\alpha )) - x| /| \vec{}\alpha \cdot y\prime (\scrB (\alpha ))| and

0<min
\alpha \in \Omega 

| \vec{}\alpha \cdot y\prime (\scrB (\alpha ))| , 0<min
\alpha \in \Omega 

| \scrB \prime (\alpha )| \leq max
\alpha \in \Omega 

| \scrB \prime (\alpha )| <\infty .(D.1)

Transform the expression for Am (cf. (4.5)) similarly to (4.9):

Am(\alpha , \epsilon ) =
1

\epsilon 

\int a

 - a

\int \epsilon  - 1H\epsilon (s)

0

\~\psi m

\biggl( 
\vec{}\alpha \cdot (y(s) - x)

\epsilon 
+ h(\^t, s,\alpha )

\biggr) 
F (s, \epsilon \^t)d\^tds,(D.2)

where h and F are defined similarly to (4.9):

F (s, t) :=\Delta f(y(\theta ) + t\vec{}\theta )(\scrR (\theta ) - t), h(\^t, s,\alpha ) := \^t cos(\theta  - \alpha ), \theta = \theta (s).(D.3)

Note that in this section we assume m \in Z, i.e., the case m = 0 is included. Since \v x
is absorbed by x, the term \alpha \cdot \v x is no longer a part of h. Clearly,

Am(\alpha , \epsilon ) = \rho (m)O(\epsilon ), \alpha \in [ - \pi /2, \pi /2] \setminus \Omega , m\in Z.(D.4)

Next, consider the case \alpha \in \Omega . Setting \~s= (s - \scrB (\alpha ))/\epsilon 1/2, (D.2) becomes

Am(\alpha , \epsilon ) = \epsilon  - 1/2

\int \int \epsilon  - 1H\epsilon (s)

0

\~\psi m

\biggl( 
\vec{}\alpha \cdot (y(s) - y(\scrB (\alpha )))

\epsilon 
+ h(\^t, s,\alpha )

\biggr) 
\times F (s, \epsilon \^t)d\^td\~s, s=\scrB (\alpha ) + \epsilon 1/2\~s, \alpha \in \Omega , m\in Z.

(D.5)
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ANALYSIS OF RESOLUTION 4293

Due to (4.4), we can integrate with respect to \~s over any fixed neighborhood of 0:

Am(\alpha , \epsilon )

= \epsilon  - 1/2

\int \delta 

 - \delta 

\int \epsilon  - 1H\epsilon (s)

0

\~\psi m

\biggl( 
\vec{}\alpha \cdot y\prime (\scrB (\alpha ))

\epsilon 1/2
\~s+O(\~s2) + h(\^t,\scrB (\alpha ), \alpha ) +O(\epsilon 1/2)

\biggr) 
\times 
\Bigl( 
F (\scrB (\alpha ),0) +O(\epsilon 1/2)

\Bigr) 
d\^td\~s+ \rho (m)O(\epsilon 1/2), \alpha \in \Omega , m\in Z,

(D.6)

for some \delta > 0 sufficiently small. Using (4.4) it is easy to see that the terms O(\epsilon 1/2)
and O(\~s2) can be omitted from the argument of \~\psi m without changing the error
term:

Am(\alpha , \epsilon )

=
F (\scrB (\alpha ),0)

\epsilon 1/2

\int \delta 

 - \delta 

\int H0(\epsilon 
 - 1/2\scrB (\alpha )+\~s;\epsilon )

0

\~\psi m

\biggl( 
\vec{}\alpha \cdot y\prime (\scrB (\alpha ))

\epsilon 1/2
\~s+ h(\^t,\scrB (\alpha ), \alpha )

\biggr) 
d\^td\~s

+ \rho (m)O(\epsilon 1/2), \alpha \in \Omega , m\in Z.

(D.7)

By (D.1), \vec{}\alpha \cdot y\prime (\scrB (\alpha )) is bounded away from zero on \Omega . By the last equation in
(4.2),

\int 
\~\psi m(\^t)d\^t = 0, m \in Z, so we can replace the lower limit of the inner integral

in (D.7) with any value independent of \~s. Again, we use here that the contribution
to the integral with respect to \~s of the domain outside ( - \delta , \delta ) is of the same magni-
tude as the error term in (D.7). We choose the lower limit to be H0(\epsilon 

 - 1/2\scrB (\alpha ); \epsilon ).
Hence

| Am(\alpha , \epsilon )| \leq \rho (m)

\biggl[ 
O(\epsilon  - 1/2)

\int \delta 

 - \delta 

\bigm| \bigm| H0(v+ \~s; \epsilon ) - H0(v; \epsilon )
\bigm| \bigm| 

1 + (\~s2/\epsilon )
d\~s+O(\epsilon 1/2)

\biggr] 
,

v= \epsilon  - 1/2\scrB (\alpha ), \alpha \in \Omega , m\in Z.
(D.8)

Neglecting the O(\epsilon 1/2) term in (D.8) (the last term inside the brackets) leads to a
term of magnitude O(\epsilon 1/2) in f\mathrm{p}-\mathrm{r}\mathrm{e}\mathrm{c}\epsilon . Accounting for (D.4) in a similar fashion, (4.5)
and (D.8) imply

f\mathrm{p}-\mathrm{r}\mathrm{e}\mathrm{c}\epsilon (x) =O(\epsilon 1/2)

\int \delta 

 - \delta 

g(\~s, \epsilon )

1 + (\~s2/\epsilon )
d\~s+O(\epsilon 1/2),

g(\~s, \epsilon ) :=
\sum 
\alpha k\in \Omega 

\bigm| \bigm| H0(vk + \~s; \epsilon ) - H0(vk; \epsilon )
\bigm| \bigm| , vk := \epsilon  - 1/2\scrB (\alpha k).

(D.9)

Define similarly to (2.7):

\chi t1,t2(t) :=

\Biggl\{ 
1, t1 \leq t\leq t2 or t2 \leq t\leq t1,

0 otherwise.
(D.10)

Clearly,
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4294 ALEXANDER KATSEVICH

g(\~s, \epsilon ) =
\sum 
\alpha k\in \Omega 

\int 
\chi H0(vk;\epsilon ),H0(vk+\~s;\epsilon )(\^t)d\^t=

\int 
N(\^t, \~s, \epsilon )d\^t,(D.11)

where N(\^t, \~s, \epsilon ) is the number of \alpha k \in \Omega such that either H0(vk; \epsilon )\leq \^t\leq H0(vk + \~s; \epsilon )
or H0(vk + \~s; \epsilon )\leq \^t\leq H0(vk; \epsilon ). By Assumption 2.4 (H3), N is finite for almost all \^t.
Our argument implies that the values of the index k counted by the function N(\^t, \~s, \epsilon )
are such that the closed interval with the endpoints vk and vk + \~s contains at least
one un \in H - 1

0 (\^t; \epsilon ). By Assumption 2.4 (H3), the number of un \in H - 1
0 (\^t; \epsilon ) on any

interval of length O(\epsilon  - 1/2) is O(\epsilon  - 1/2) uniformly in \^t for almost all \^t. The summation
in (D.11) is over \alpha k \in \Omega , so we look only for un such that dist(un, \epsilon 

 - 1/2\scrB (\Omega ))\leq | \~s| \leq \delta .
Fix any n. By (D.1) and the definition of sk in (D.9), there are no more than

1 +O(\epsilon  - 1/2| \~s| ) values of k such that | vk  - un| \leq | \~s| . Hence N(\^t, \~s, \epsilon ) =O(\epsilon  - 1/2)(1 +
\epsilon  - 1/2| \~s| ). Using that the range of H0 is bounded (cf. Assumption 2.4 (H1)), the
integral with respect to \^t in (D.11) is over a compact set, so

g(\~s, \epsilon ) =O(\epsilon  - 1/2)(1 + \epsilon  - 1/2| \~s| ).(D.12)

Substituting (D.12) into (D.9), we finish the proof:

f\mathrm{p}-\mathrm{r}\mathrm{e}\mathrm{c}\epsilon (x) =O(1)

\int \delta 

 - \delta 

1 + \epsilon  - 1/2| \~s| 
1 + (\~s2/\epsilon )

d\~s+O(\epsilon 1/2) =O(\epsilon 1/2 ln(1/\epsilon )).(D.13)
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