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RESOLUTION OF 2 DIMENSIONAL RECONSTRUCTION OF
FUNCTIONS WITH NONSMOOTH EDGES FROM DISCRETE
RADON TRANSFORM DATA"
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Abstract. Let fe, 0 < e <o, be a family of functions in R%, and fI°° be a reconstruction of fe
from its discrete Radon transform data. Here € is both the data sampling rate and the parameter
of the family. We study the resolution of reconstruction when fe has a jump discontinuity along a
nonsmooth curve Se. The assumptions are that (a) Se is a family of O(e€)-size perturbations of a
smooth curve S, and (b) Se is Holder continuous with some exponent v € (0,1]. Thus the size of the
perturbation S — S¢ is of the same order of magnitude as the data sampling rate. We compute the
discrete transition behavior (DTB) defined as the limit DTB(Z) := lim._0 ff*(zo + €&), where zg is
generic. We illustrate the DTB by two sets of numerical experiments. In the first set, the perturbation
is a smooth, rapidly oscillating sinusoid, and in the second, a fractal curve. The experiments reveal
that the match between the DTB and reconstruction is worse as Se gets rougher. This is in agreement
with the proof of the DTB, which suggests that the rate of convergence to the limit is O(e7/2). We
then propose a new DTB, which exhibits an excellent agreement with reconstructions. Investigation
of this phenomenon requires computing the rate of convergence for the new DTB. This, in turn,
requires completely new approaches. We obtain a partial result along these lines and formulate a
conjecture that the rate of convergence of the new DTB is O(e'/2In(1/e)).

Key words. Radon inversion, resolution, fractals, discrete data
MSC codes. 44A12, 65R10, 94A12
DOI. 10.1137/21M1466712

1. Introduction. Action of the Radon transform (and, by extension, its inverse)
on distributions is a topic that has received considerable attention over the years [12,
16, 37]. From a practical perspective, if an object represented by an unknown function
f has singularities (e.g., jumps or edges), it is important to know how well (e.g., with
what resolution) these singularities can be reconstructed when the data are discrete.
Convergence of numerical Radon inversion algorithms for nonsmooth functions has
been studied as well [13, 32, 34, 35]. In these works the discontinuities of the object
are a complicating factor rather than the object of study.

Let S denote the singular support of f. Let f be a reconstruction from continuous
data, and f, the corresponding reconstruction from discrete data, where € represents
the data sampling rate. In the latter case, interpolated discrete data are substituted
into the “continuous” inversion formula. When theoretically exact reconstruction is
desired, f = f. Generally, f does not coincide with f. For example, one can be
interested in edge-enhanced reconstruction, as in local tomography [11, 37] or when
computing derivatives of f directly from the data [15, 26]. In other cases, e.g., for
more general Radon transforms, an exact inversion formula may not exist. In this case
one usually reconstructs f modulo less singular terms, i.e., f — f is smoother than f.

In [18, 19, 20, 21, 22] the author developed the analysis of reconstruction, called
local resolution analysis, by focusing specifically on the behavior of f. near S. One of
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the main results of these papers is the computation of the limit

(1.1) DTB(%) := lim €" f.(zo + €Z)
e—0
in a variety of settings. Here xzo € S is generic (see Definition 2.4 below), x > 0 is
selected based on the strength of the singularity of f at zo, and & is confined to a
bounded set (e.g., to some bounded disk centered at the origin). It is important to
emphasize that both the size of the neighborhood around xy and the data sampling
rate go to zero simultaneously in (1.1). The limiting function DTB(%), which we
call the discrete transition behavior (DTB for short), contains complete information
about the resolution of reconstruction. Formula (1.1) is written for a fixed zg, which
is omitted from the left-hand side for brevity. In a similar fashion, in what follows
we omit the dependence of the DTB on the base point xy. The geometric meaning of
Z is the rescaled difference between a reconstruction point x and the base point xg:
F=(x—xp)/e.
The practical use of the DTB is based on the relation

(1.2) fe(zo + €x) = e "DTB(&) + error term.

When € > 0 is sufficiently small, the error term is negligible, and e "*DTB(&), which is
typically computed by a simple formula, is an accurate approximation to the numerical
reconstruction.

The functions, which have been investigated in the framework of local resolution
analysis so far, are conormal distributions, whose wave front set coincides with the
conormal bundle of a smooth surface. To put it another way, these distributions are
nonsmooth across a smooth surface, and are smooth along it. On the other hand, in
many applications the discontinuities of a sample f occur across nonsmooth (rough)
surfaces. Examples include soil and rock imaging, where the surface of cracks and
pores is highly irregular and frequently simulated by fractals [2, 14, 25, 31, 36, 38, 44].

Micro-CT (i.e., CT capable of achieving micrometer resolution) is an important
tool for imaging of rock samples extracted from the well. As stated in [44], “The
simulation of various rock properties based on three-dimensional digital cores plays an
increasingly important role in oil and gas exploration and development. The accuracy
of 3D digital core reconstruction is important for determining rock properties.” Here
the term “digital core” refers to a digital representation of a rock sample obtained,
for example, as a result of its CT or micro-CT scanning and reconstruction. Accurate
identification of the pore space inside rock samples is of utmost importance because
it contributes to accurate estimation of the amount of hydrocarbon reserves in a
given formation and brings many additional benefits. As stated above, the boundary
between the solid matrix and the pore space is typically rough (see also [7]), i.e., it
contains features across a wide range of scales, including the scales below what is
accessible with micro-CT. Therefore effects that degrade the resolution of micro-CT
(e.g., the partial volume effect due to finite data sampling) and how these effects
manifest themselves in the presence of rough boundaries require careful investigation.
Once fully understood and quantified, these effects can be accounted for to improve
pore space determination when analyzing reconstructed images.

Very little is known about how the Radon transform acts on distributions with
more complicated singularities. A recent literature search reveals a small number of
works, which investigate the Radon transform acting on random fields [17, 40, 27].
For example, the author did not find any publication on the Radon transform of
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characteristic functions of domains with rough boundaries. This appears to be the
first paper on the Radon transform of functions with rough edges.

In this paper we use local resolution analysis in R? to study the resolution of
reconstruction for a family of functions f™°9, which have a jump discontinuity across
a nonsmooth curve. Exact reconstruction from the classical Radon transform data is
considered (hence k=0 in (1.1)).

To construct f™°d we start with a piecewise C2 function f, which has a jump
discontinuity across a smooth curve S§. Let S be a family of curves, which are
small perturbations of S. The assumption is that S, is Holder continuous with some
exponent v € (0,1] for all € > 0 sufficiently small. The perturbation is of size 6 = O(e),
and the perturbation scales like O(e~'/2) along S (see the paragraph following (2.8)).
By the size of the perturbation § we mean the maximum of dist(z,S.) over x € S.
Then f™°d is obtained by smoothly extending the values of f on either side of S up
to the new curve S,.

In practice, our assumptions mean that (1) the data sampling rate e > 0 is suf-
ficiently small, but finite (similarly to (1.2)); (2) the size of the perturbation ¢ is
comparable with or less than the data sampling rate (i.e., § < €); and (3) the os-
cillations in S, scale like O(e_l/ 2) along S. The assumptions about S, are quite
reasonable. On one hand, they cover the cases § ~ ¢ and § < e. On the other hand, if
0> €, S, oscillates slowly, and S, is sufficiently smooth, then we are essentially in the
situation addressed in [18, 19, 20, 21, 22]. In the remaining cases, 6 > €, and either
S, oscillates sufficiently fast or S, is sufficiently rough (or both). These are especially
challenging cases, they are not covered by the existing theory, and require a separate
analysis. When applying our results in practice, the main objects are f™°¢ and S..
The existence of f and § is required only for theoretical analysis.

Due to the linearity of the Radon transform, we can consider f, := f— f™°4  which
is supported in the narrow domain bounded by S and S, (see (2.9), Figure 1, and the
paragraph preceding (2.10) below). The reconstruction of f(x) from discrete data is
denoted fI*°(x). We obtain the DTB by computing the limit of the kind (1.1) (with
k=0 and f. replaced by free) and illustrate it by two sets of numerical experiments.
In the first set, the perturbation & — S, is a smooth sinusoid with amplitude O(e)
and period O(e'/?). Results of these experiments with ¢ = ¢; = 1.2/500 and € = e; =
1.2/1000 demonstrate a good agreement between the DTB and reconstruction.

The second set involves a fractal perturbation, which is specified in terms of the
Weiertsrass—-Mandlebrot function [4, 6]. As before, the magnitude of the perturbation
is O(¢), and it scales like O(e!/?) along S. Tts Holder exponent is v = 1/2. It turns out
that the match between the DTB and reconstruction is now much worse than before
for the same two values € = €1 2. Note that the DTB is an accurate approximation
to the reconstruction only when € > 0 is sufficiently small. Analysis of the derivation

D, 1\ _J:
S

I s »0)
D.

Fic. 1. Illustration of the perturbation S — Se and the function fe, which is supported in the
shaded region.
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of the DTB suggests (but not proves) that the rate of convergence in (1.1) is O(e?/?)
(which is also the magnitude of the error term in (1.2)). In other words, the rougher
S. is, the slower the convergence and the larger the error. Therefore, to obtain a good
match when S, is fractal, a much smaller value € < €5 should be used.

Analysis of the reconstruction formula reveals a potentially more accurate expres-
sion for fI*°(zo+ei). Even though the DTB was originally defined as the limit in (1.1),
with a slight abuse of notation, any easily computable approximation to fI°¢(xzq+ ek)
will be called a DTB as well and denoted DTB,ey. In particular, DTB,,, may have
a more complicated e-dependence than the one in (1.1):

(1.3) 220 + €2) = DTBpew(Z, €) + error term.

The idea is that by allowing a more general e-dependence, the error term in (1.3) can
be smaller than the one in (1.2).

Numerical experiments with the new DTB show a perfect match between DTB ¢y
and reconstruction for the two values € = €; 2 used before. The two results do not
contradict each other, because the original, less accurate DTB is a small-¢ limit of the
new, more accurate DTB (see (7.4)—(7.6)).

Rigorous derivation of DTByey is significantly more difficult than that of the
original one. Even the proof of the original DTB (1.1) (see sections 3-5) establishes the
existence of convergence, but not its rate (see the last paragraph in subsection 3.1). To
prove that DTB,, is indeed more accurate, one needs to estimate its approximation
error (and that of the original DTB). We distinguish two cases: z¢ € S and zg &€ S,
and prove that in the second case, assuming in addition that there is no line through
o which is tangent to S, the rate of convergence of DTB ey is O(e'/21n(1/e€)). Based
on this result and numerical evidence, we formulate the conjecture that the same rate
holds in the remaining, unproven cases. Our proof of the second case uses different
tools and, at its core, uses a phenomenon different from the one in the proof of the
original DTB. The proof of the remaining cases is difficult, requires entirely new
approaches, and is outside the scope of this paper.

The new DTB (see. (7.3) below) is given by a convolution of an explicitly com-
puted and suitably scaled kernel with f.. Thus, it can be used quite easily to in-
vestigate partial volume effects and resolution in the case of rough (e.g., fractal)
boundaries. Superficially, this kernel resembles the point spread function (PSF) of
filtered backprojection reconstruction [9, section 12.3]. Nevertheless, its origin, use
(analysis of reconstruction in a neighborhood of a singularity of f.), and method of
proof are all completely different from those for the PSF.

To summarize, the main results of the paper are as follows:

1. Derivation of the original DTB for a family of functions f. with a rough edge
Se;

2. numerical demonstration that the accuracy of the original DTB drops as the
curve S, across which f, is discontinuous, becomes less smooth (fractal);

3. anew DTB is proposed, which is shown numerically to be much more accurate
than the original one for fractal S,; and

4. a conjecture about the accuracy of the new DTB and its proof in the case
xo € S under some additional assumptions.

Sampling theory is an alternative approach to investigate the resolution of tomo-
graphic reconstruction when f is bandlimited. Applications of the sampling theory
to the classical Radon transform are in papers such as [29, 33, 10]. Sampling for dis-
tributions with semiclassical singularities is developed in [41, 28]. The goals of these
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approaches are to determine the sampling rate required to reliably recover features
of a given size and to describe aliasing artifacts if the sampling requirements are vi-
olated. Thus, the problem settings and the types of results obtained using sampling
theory are different from those of the local resolution analysis.

The paper is organized as follows. In section 2, we describe the problem setup,
state the relevant result from our earlier paper [18] as Theorem 2.5, and formulate
the first result of this paper—a formula for the original DTB (1.1)—as Theorem
2.6. Section 3 contains most of the proof of the theorem. In section 4 we compute
the original DTB explicitly and consider two theoretical examples. In the first one
the perturbation is a constant function along S, and we recover the result of [18].
In the second example we consider a fractal perturbation specified in terms of a
Weiertsrass—Mandlebrot function. The fact that the perturbed boundary S, does not
create nonlocal artifacts is proven in section 5, thereby finishing the proof of Theorem
2.6. Numerical experiments with the original DTB are in section 6, where oscillatory
and fractal perturbations of S are considered. In section 7 we describe DTByey, and
present numerical experiments with the new formula. The experiments demonstrate
improved accuracy for fractal S.. We formulate a conjecture about the accuracy of
DTB,ew, and state Lemma 7.1 about the magnitude of error when ¢ € S. The proof of
the lemma is in Appendix C. Let Hy(s) be the function that describes the perturbation
S — S, (after appropriate rescaling, see (2.8)). The additional assumption in Lemma
7.1 (compared with Theorem 2.6) is that the level sets of Hy, i.e., the sets Hy *(f),
are not too dense for almost all £ € Ho(R). In Appendix D we construct a function
on R, whose level sets are not too dense as required for the lemma, which is Holder
continuous with exponent ~ for any prescribed 0 < v < 1, but which is not Holder
continuous with any exponent 4’ >~ on a dense subset of R. Another example is the
Cantor staircase function [24], which also satisfies all the assumptions, is described at
the end of section 7. The proofs of two auxiliary lemmas are in Appendices A and B.

2. Preliminaries. Consider a compactly supported function f(x) on the plane,
v €R2 Set S:={x €R?: f ¢ C?*(U) for any open U > z}. Obviously, S is a closed
set.

Assumptions 2.1 (function f).

f1. For each xg € S, which is not an endpoint of S, there exist a neighborhood
U > xg, open sets D, and functions fy € C%(R?) such that

f@)=xp_(@)f-(2)+ xp, (2)f+(2), z€U\S,

(2.1)
D_NDy=2, D_UD,=U\S,

where xp, are the characteristic functions of D,
2. For each xy € S there exists a neighborhood U > zg such that SNU is a C*
curve with nonzero curvature at every point.

Assumption 2.1.f2 implies that the curve S is a union of finitely many sufficiently
smooth, convex segments. By assumption 2.1.f1, locally f(x)= f_(x) on one side of
S (xeD_), and f(x)= fi(z), on the other side (x € D). In general, f_(x)# fi(z),
r €8, so f may have a discontinuity across S. Since we require that fy € C?(R?),
f-(x) and fy(z) are well-defined for x € Dy and x € D_, respectively.

The discrete tomographic data are given by

Oé . _
(2.2)  felar,p;) // (pj b y) fy)dy, pj=p+jAp, ar, =a+kAa,
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where w is a detector aperture function, Ap =€, Aa = ke, and k>0, p, &, are fixed.
Here and below, & and « in the same equation are always related by & = (cos , sin ).
The same applies to © = (cos#,siné) and 6.

Assumptions 2.2 (aperture function w).

AF1. w is even and w € C3(R) (i.e., w is compactly supported, and w” € L= (R));
and
AF2. [w(p)dp=1.

Hence, the data (2.2) represent the integrals of f along thin strips, and their
width (= O(e)) is determined by € and the support of w. This is in contrast with the
ideal case, where w is the Dirac d-function, and the data represent line integrals of f.

Reconstruction from discrete data is achieved by the formula

N v pj)fe(ak’p])dp,

— O T
T larl<n/2 k

where ¢ is an interpolation kernel. This is a discretized version of the classical filtered
backprojection inversion formula for the Radon transform in R? [30]). The integral
with respect to p, which is understood in the principal value sense, is the filtering step
(the Hilbert transform), while the external sum is a quadrature rule corresponding to
the backprojection integral.

Assumptions 2.3 (interpolation kernel ).

IK1. ¢ is even and ¢ € CZ(R);
IK2. ¢ is exact up to order 1, i.e.

(2.4) Z] plu—j)=u™, m=0,1, ueR.
JEZ

As is easily seen, assumption 2.3.IK2 implies [ ¢(p)dp =1.
DEFINITION 2.4 (see [18]). A point xo € R? is generic if

1. No line through xq is tangent to S at a point where the curvature of S is zero.
2. If xg € S, the quantity kxq - T is irrational, where T is a unit tangent vector
to S at xg.

Our definition includes condition 1, because in [18] S is allowed to have zero
curvature at isolated points. Here we assume that the curvature of S is nonzero at
every point (Assumption 2.1.f2), so condition 1 is satisfied automatically. Consider
the function p(a) = @ - xg, whose graph is a curve in the Radon space. Let ag be a
value such that the line {x € R? : & - = = p(ap)} is tangent to S at zg. As is easily
seen, |kxo - 7| = (Aa/Ap)|dp(a = ap)/dal. Hence, this quantity is dimensionless.
Condition 2 says that p(«) has an irrational slope at a = «y if the scales along the p-
and a-axes are Ap and Aa, respectively (see (2.2)).

Pick a generic point g € S. Let @0 be the unit normal to S at xg, which points
from zg towards the center of curvature of S at zo. We will call the side of S where éo
points “positive,” and the opposite side, “negative.” Without loss of generality, we can
assume in (2.1) that Dy is on the positive side of S, and D_ is on the negative side.
We formulate here the relevant result from [18] (a more general result is established
in [20]).
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THEOREM 2.5 ([18, 20]). Let (a) f satisfy Assumptions 2.1; (b) detector aperture
function w satisfy Assumptions 2.2; and (c) interpolation kernel ¢ satisfy Assumptions
2.3. Suppose xg € S is generic, and let O, be the positive unit normal to S at xq.
If fo1& s the reconstruction of the original, unperturbed f from the data (2.2) using
(2.3), then B

8-

(25) i £ (a0 + e2) = const + (£ (o) — f-(w0) [ (pw)(r)dr,

— 00

where fi(xo) are the same as in (2.1). If xog € S is generic, then
(2.6) lim fo"8 (g + €Z) = const.
e—0

The constants on the right in (2.5), (2.6) may depend on xzq, but they are independent
of Z.

Note that the goal of local resolution analysis is to study the resolution of recon-
struction of singularities of f. Any component of the reconstruction, which is locally
constant in the limit as € — 0, is not relevant for our approach and is absorbed by the
constants in (2.5), (2.6).

The result in [18] is formulated in the ideal case with w equal to the é-function.
In [20, section 6] it is described how to account for a finite detector aperture. Hence
the above theorem is stated with w, which satisfies Assumptions 2.2.

Now we describe a family of perturbations & — S.. Pick any small open set U
such that SN U is a single, short curve segment. Suppose S NU is parametrized by
I560—y(0)eSNU for some interval I. Here y € C*(I), and y() is the point where
the line {z € R2: (x — y(6)) - © =0} is tangent to S.

Let H.(s), s € R, be a family of functions defined for all 0 < € < ¢y, where ¢ is
sufficiently small, with the following properties,

H, 1/2p) — H,
(2.7) sup  |e 'H.(s)| < oo and sup [Hels+e"h) () <00
SER,0<e<e0 SER,h£0,0<e<eq e|h|

for some 7, 0 <~ <1. It is convenient to introduce the normalized function
(2.8) Ho(s) =€ “H.(¢*/%s).

The dependence of Hy on € is omitted from notation for simplicity. In terms of Hy we
have H,(s) = eHy(s/e'/?). Assumptions in (2.7) mean that Hy is uniformly bounded
and uniformly Hélder continuous with exponent . Define also

Af(x), 0<t<HH),
felx)=4 —Af, H.(0)<t<O,

0, in all other cases,

Af(x)=f(z) = f-(2), 2=y(0) +16, Ol

(2.9)

As is easily seen, fm°4(z) := f(x) — f.(z) is a function, in which S is locally modified
by H.; see Figure 1. At the points where H.(#) > 0, a small region is removed from
D, and added to D_ (thereby extending f_ to the region that was formerly part
of D.). At the points where H(6) < 0, a small region is removed from D_ and
added to Dy (thereby extending f to the region that was formerly part of D_). The
magnitude of the perturbation is O(e). Let S, denote the perturbed boundary. Thus,
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fmod(x) is discontinuous across S, instead of S. Globally, the perturbed function
fmed(x) and the curve S. are obtained by stitching together local perturbations. In
this construction, the functions H, and fi may vary from place to place (but the
latter are e-independent).

In Theorem 2.5 we obtained the DTB in the case of a sufficiently smooth S. By
linearity, we can ignore the original function f and consider the reconstruction of only
the perturbation f.. This follows, because the inversion formula (2.3) is linear, and
the resolution of the reconstruction of f is described in Theorem 2.5.

Introduce the notation

(2.10)
0<t<H, —~1, H<t<0,

xm(t) = {0’ t g [0.H] if H>0, and xp(t):= {0’ t ¢ [H.0] it H<0.

Let fr°¢ denote the reconstrution of only the perturbation f. (2.9). The first result
in this paper is as follows.

THEOREM 2.6. Let

(a) f satisfy Assumptions 2.1;

(b) the detector aperture function w satisfy Assumptions 2.2;

(c) the interpolation kernel ¢ satisfy Assumptions 2.3; and

(d) in a neighborhood of any xg € S, local perturbations H, satisfy (2.7).
Suppose xg € S is generic, and let 6y be the angle such that C:)o is the positive unit
normal to S at xg. Set Hy := H(0y)/e. If fr° is the reconstruction of f. from the
data (2.2) (with f = f.) using (2.3), then

(21) tim [ 2% ( + ) — A (o) (g w s i, ) (60 - 5)] =0
where Af is the same as in (2.9). If zo € S is generic, then

. rec SN\
(2.12) ll_r}l(l) f2(zo +€2) =0.

Even though smooth extensions of f into D_ and of f_ into D, are not unique,
this nonuniqueness is irrelevant. The statement of Theorem 2.6 does not use the
values of the extensions. It involves only Af(z), z € S, which is the jump of f across
S and is determined uniquely. This observation is similar in spirit to the remark that
follows Theorem 2.5.

Comparing and combining (2.5) and (2.11) we see that a nonsmooth perturbation
in fmed(x) leads to the following two effects:

1. Local shifting of the reconstructed boundary xqg — o + He(ﬁo)éo, and

2. the DTB retains its structure of the 1 dimensional (1D) convolution of the
ideal edge response (step function with the jump at O - ¢ + He(6p)) with
©*w.

3. Beginning of the proof of Theorem 2.6. Pick a generic xyp € S. By
Assumptions 2.1, linearity, and the appropriate choice of coordinates we can consider
only one domain U 2 zy and assume that

1. S(=SNU) is sufficiently short and parametrized by [—a,a] 2 0 — y(0) for
some small a > 0;

2. 20 =y(0), s0 69 = (1,0);

3. R(0)=0©-y"(0) >0, |0] <a
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4. supp(f) C U;

5. f=0 in a neighborhood of the endpoints of S.
Recall that O is the unit positive normal to S at zo, and R(6) is the radius of curva-
ture of S at y(). By assumptions 1 and 5 above, f(x) =0 in a neighborhood of y(+a).
Using Assumption 2.1.f2 and that S is sufficiently short (i.e., 0 <a < 1) we have

1. y(#) is a regular parametrization with y € C*([—a,a]) (i.e., bounded deriva-
tives up to the fourth order);
2. S satisfies

maX|9‘§a|(§-y’”(9)|

3.1 - a1
(3:1) min g <q R(0)

3. there exists ¢ > 0 such that
(3.2) 6 - (zo —y(0)) > cb?, |0 <a;

4. no line {x € R?: @ - x = p} is tangent to S if a < |a| < 7/2.
Additional requirements on the smallness of a will be formulated later as needed.
Pick some A>> 1 and define

(3.3) O :={a: o < Ael/Q}, Oy :=[—a,a]\ 1, Q3:=[-7/2,7/2]\ [—a,a].
Let ) denote the reconstruction obtained by the formula in (2.3) with ay, restricted
to Q;, 7 =1,2,3. The first term is split into two: f(1) = f(l) + f(l) where fl(l) is the
leading singular term of (V). The term fl(l) is defined following (3.7) below.

The result in Theorem 2.6 involves the limit of fI°(z¢ + €Z) as € — 0. Of the
three functions f) that make up f'*°, two depend on the new parameter A > 1.

The logic of our proof is based on computing the double limit lim 4_,sc lime_,o £,
j=1,2. It is important that A is fixed when the limit as ¢ — 0 is computed.

3.1. Estimation of fl(l). Substitute (2.9) into (2.2):

) /_/H <(0) <p a-(y (9)+t9)>F(e,t)dtd9

(3.4) :/_ /0 s (p _g YO =) G- a)) F(6, ef)dids,

€

F(0,8) =Af(y(0) + 18)(R(O) — 1), Pre LT Y

€

Here R(0)—t =det(dy/d(0,t)). We assume that e is sufficiently small, and R(6)—¢ >0
on the domain of integration. Denote

(3.5) a=a/e? vi=0—aqa, 0:=v/e'/?

Generally, throughout the paper a hat above a variable denotes rescaling of the original
variable by a factor of €, and a tilde above a variable denotes rescaling by a factor of
€'/2. For example, p=p/e and & = a/e'/2. Then

fela,p) = €%g(a, P
(a, P) / / oy w (]3 —a- yat e?) — y(a) - fcos(el/Qf/)>
F(

€

o+ /20, ef)didp
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B / /OHD<&+ﬂ>w <ﬁ <&~y/’2(a)ﬂ2 N o<63/:|a|3)> i +O(€ﬁz))>
(3.6) X (A Fy(a))R(a) + O(V/2[p]) + 0(6)) dido,

where 74 = (a—a)/e!/2. In this subsection, |a| = O(e!/?), so R(a)— R(0) = O(¢'/?),
and we can replace @ - y” (o) = R(a) with Ry = R(0) in the argument of w. The
corresponding error term is O(e'/252). A similar argument holds for the product
Af(y(a))R(a), and the corresponding error term is O(e'/?).

Let us look at the leading term of g, which is obtained by neglecting all the big-O
terms and extending the integral with respect to o to all of R:

Ho(a u)
(3.7) gi(a,p) :== Af(zo Ro// : — (Ro/2)7” — ) didp,

where & and Hj are the same as in (3.5) and (2.8), respectively. The subscript
signifies that g; is the leading term of g. By definition, substitution of the resulting
approximation f.(a,p) ~ €'/2g,(a, P) into (2.3) (with P as in (3.4)) and restricting
the sum to ay, € )y gives f;

“l”

LEMMA 3.1. Fiz any 6, 0< 6 <1/2. For some ¢ and any « € (—a,a) one has

(3.8) g«(a,p) =0 for p<e,
(3.9) g, 9) = 0(p~""?), p— +o0,
and

(310)  gulep+ AB) — gule,5) = O (18615~ /2 if |A| = O("), p— +oc.

The above assertions hold for both g. =g and g. = g;. The big-O terms in (3.9) and
(3.10) are uniform with respect to o € (—a,a) and € >0 sufficiently small.

A proof of the lemma is in Appendix A. Substitute the data (2.2) into the inversion
formula (2.3) and use (3.4), (3.6):

72/ g dpfe(a,pj)
=Y () (T’—j)g(a,j—af—ﬁ)

J

(3.11)

where H is the Hilbert transform. In this subsection we approximate g ~ g; and
introduce

(3.12) Uy(a,p,q) =Y _(He') (6~ 5) g1 5 — q).
J

Recall that we continue using the convention that « and & are related as in (3.5).

Even though ¥; depends on € via g; and Hy (see (3.7)), this dependence is omitted
from notation for simplicity. All the properties of ¥; to be established below are
uniform with respect to ¢ and &. Clearly, ¥;(&,p —n,q — n) = ¥,;(&,p,q) for any
nez.

We need the asymptotics of U;(&,p,q) as p — g — oo. By the invariance of ¥,
with respect to integer shifts, we can assume that ¢ is confined to a bounded set, e.g.,
q€10,1) and p — co. The following result is proven in Appendix B.
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LEMMA 3.2. One has

ooy (Ip|=3/%), p—>—o00, . 7 ~ —1/2
(313) W[(O{,p,g) - {O(ﬁ(1+6)/2)’ ﬁ_>+oo, (5— my |Ol‘ <€ a/7 qe [0’ 1))

where the big-O terms are uniform with respect to &, q in the indicated sets and € >0
sufficiently small.

From (3.4), (3.6), (3.7), (3.11), and (3.12), the leading term of the reconstruction
is given by

(1) 1 Aa ap  Ay-x—p Ay -y(or)—p
i (I0+€Z)——%617 l(el/ga p ) B
R €0
kel/? ar . ap-(xo—ylag
(3.14) = o z;l‘l’l<€1/2,ak-fﬂ+ ( c ( ))+Qk,%>7
ap€efdy

€

0" ::{&k : 3/(0%)—1?} '

Here {r}:=r — |r] denotes the fractional part of r, and |r] is the floor function, i.e.
the largest integer not exceeding r.

LEMMA 3.3. One has:

\Ijl(d + A&7ﬁ7 Q) - \Ill(&7ﬁ7 q) :O(|AO~L|‘Y), Aa — 07
(3.15) Vi(a,p+ Ap,q) — Vi(a,p,q) =O(|Ap|"), Ap— 0,
\Ijl(d7ﬁ7q + Ag) - \Ill(d7ﬁ7 Q) :O(|Aq|)7 Aq — 07

for any p< 1. The big-O terms are uniform with respect to & € e~ Y/?(—a,a), p and q
confined to any bounded set, and € >0 sufficiently small.

Proof. The first line follows from (2.7), (3.7), (3.12), and the fact that He'(t) =
O(t=2), t — oo0.

To prove the second line, note that the pseudodifferential operator HJ/0t €
Sio(R x R) and ¢ € C3(R), so H¢' € CH(R), where C5(R), s > 0, denotes the
Holder—Zygmund space (see item 2 in Remark 6.4 and Theorem 6.19 in [1]). Since
CHR) c C¥(R) for any p € (0,1), and the latter space consists of functions that are
Holder continuous with exponent p (e.g., see Theorem 6.1 in [1]), we get that

[At/(1+%),  [t] = ca,

3.16 Ho' (t+ At) —HO' (H)] <
(3.16) [/ (¢ + At) 30()|_01{|At|u7|t|<62

for some ¢ 2 >0 and all |A¢t| sufficiently small. The desired assertion now follows.
The third line follows by replacing ¢ with ¢ + Ag in (3.12) and then in (3.7),

subtracting ¥;(a,p,q) from ¥;(&,p,q + Ag), and then using that w is compactly

supported. O

By (3.14) and the second line in Lemma 3.3,

2w el/2’ 2
aR €N

1/2 R Rn o2
11 10t =—"5 5 (60 a+ PR can) w0

We can use Lemma 3.3, because the arguments of ¥; remain bounded when aj € 1.
With &y, := ak/el/z, we have Ad = ke'/2. Using that zg is generic and following the
same approach as in [18] lead to (condition 2 in Definition 2.4 is essential in this step)
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(3.18) lim (f( (2o + ) +—/ / v, (a S - x+%a ta, q)dqd&>0.
<A

The double integral in (3.18) does not necessarily have a limit as € — 0, since the
dependence of Hy and ¥; on € (see (3.7) and (3.12)) can be complicated.

Note that the argument in this subsection establishes the limit in (3.18), but it
does not say anything about the rate of convergence.

3.2. Estimation of fz(l). Recall that f2(1) is the less singular part of f(1): f2(1) =
f® ffl(l), where fl(l) is the leading singular term of f(!) and is defined following (3.7).
Define (cf. (3.6) and (3.7))

(319) Ag(()é,ﬁ) ::g(avﬁ) _gl(aaﬁ)'

Note that g; (and, therefore, Ag) is not compactly supported in p, even though ¢
is compactly supported. However, inserting in (3.7) the same limits 74 as in (3.6),
introduces only a small error:

Ho(a+u
(3.20)  gi(a,p) — Af(zo) RO/ / — (Ro/2)7” — 1) dido = O(e'/?).

The big-O term in (3.20) is uniform with respect to & in compact subsets of (—a,a).
The latter condition ensures that 7. = O(e~'/2). In this subsection we assume that
a € Q4, so the estimate (3.20) is indeed uniform. Since w € CZ(R) and F € C?([—a,a] x
[—9,0]) for some § > 0, we have from (3.6), the paragraph following (3.6), and (3.20)

gl <e {ml/? [/2[p] + e Help)*?] . e<Ipl<c/e,

(3.21) /2, [l <cor[p|=c/e

<ce!2(|p +1)

for some ¢ > 0, which may have different values in different places. Here we have used
that in (3.6), c; <0?/|p| < cq if |p| > ¢3 for some ¢123 > 0.
Define similarly to (3.12):

(3:22) AW(@p,q) =3 (M) (b= j) Aglesj = q).
Substitute (3.21) into (3.22):

av@pg< Y 2Py ORI+

— 3 —
(3.23) o LTI oty TR
=0(eY?1n(1/¢)),

assuming that p in (3.23) is confined to a bounded set, e.g., |p| < c¢. Here ¢ > 0 can
be any fixed number. The restriction on p is justified, since ay € Q1. Indeed, (3.3),
(3.14), and (3.17), imply that |p| < (Rp/2)A% when A > 1. Clearly, the estimate
(3.23) is uniform with respect to p € [—¢,c], a € Q; (i.e., |a] < A), ¢ €[0,1), and all
€ > 0 sufficiently small. Recall that A > 1 is fixed when computing the limit as e — 0.
Summing over all ay, € Q1 similarly to (3.14), yields

(3.24) V(o +ex)=e/2 3 OV In(1/e)) = O(eV*In(1/e)).

lak|€Q
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3.3. Estimation of f(?). Recall that f(®) is the reconstruction obtained by
(2.3) with ay, restricted to Qs (see (3.3)). From (3.6), we get, similarly to (3.14),

K L. ap(zo—yla
f(Q)(xOJrei"):fel/Q% Z \Il(ozk,ak~:1:+ ke 06 y k))Jqu,qk),
(3.25) o€

V(e p,q) = _(He') (p— ) gl j —q),

J

and the g are defined in (3.14). By Lemma 3.1, ¥ also satisfies (3.13). By (3.2),

L. A (o —ylag
|f P (o + €2)| < ere!/? Y \IJ(ak,akw—s— ko 06 ylon)) +qk,qk)‘
(3.26) e
* o0
< 0261/2 Z (k26)—(1+6)/2 < 03/ .’17_(1+6)d$20(14_6)
k>A/el/2 A

for § defined in (3.13) and some c¢; 2,3. Consequently,

(3.27) lim lim f® (20 + ex) = 0.

A—oc0e—=0

3.4. Estimation of f(). Following our convention, the third term f®) is the
reconstruction obtained by (2.3) with ay restricted to Q3. By construction, a € 23
implies that « - y'(0) # 0, |8] < a. Hence, we can express 6 in terms of s by solving
s=a-y(#). Suppose, for example, that o -y'(f) > 0. The case when this expression
is negative is completely analogous. From the first line in (3.4) we find

(3.28)

a-y(a) e TH (0(s))
fela,ep) = ’ / w (13 - tcos(6(s) — a)) F(0(s),et)dt 0 (s)ds
yJo

ay(—a €
e YH (0(e3)) . .
= 6// w (p—§—tcos(f(ed) — ) ) di Fy (€8)ds + O(€),
RJO
Fi(s):=F(0(s),0)0(s),

where F' is defined in (3.4).

Strictly speaking, ds/df can approach zero (i.e., 6'(s) — oo) when o — a™ and
0 —a” or @ — —a~ and § — —a™. However, f(z) =0 in a neighborhood of y(+a),
so 0'(s) is bounded on the support of F((s),et). Additionally, this allows us to (i)
extend Fi(s) from [a-y(—a),a-y(a)] to R by zero without reducing the smoothness
of Fy, and (ii) integrate with respect to § over R.

Using (2.7) and that w is compactly supported, replace § with p in the arguments
of § and Fy in the last integral in (3.28):

(3.29)
. e H(6(cp))
fe(a,ep) = e// P w (p— & —tcos(f(ep) — o) ) dE Fy(ep)ds + O (' T0/2)
0
= eF1(ep)Ho (671/29(613)) + O(€1+(v/2)).

Substitute (3.29) into (2.3) and sum over j:
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%Z('le) (p _pj) (6F1(pj)Ho (6’1/20(13]')) + 0(61+("’/2))>

€

(3.30) = I.(a,p) + O("/?),
)= Y00 (222 ) o) o (2000

J

Since _;(H¢')(p — j) =0, we have

(3.31) Llonp) =D (Hy) (H) (Fa(py)Ho(/20(p,)) = Fa(p)Ho(7/20(p)) )
and

(332 |L@p)l <} (1+G-))" [kl% —p)+ Hﬂ;p'p] =0(7?),

where p= (p—p)/e. The second term in brackets is written as a fraction, because Fy
is bounded. Writing it in a more conventional form ¢|j — p| would cause the series in
the upper bound to diverge. The above estimate is uniform with respect to a € Qs
p € R, and € > 0 sufficiently small. Summing over a4, in the inversion formula we find

(3.33) fO(@)=cAa D I(ag,d-z)+0(/?) =0(?).
ap€Q3

4. Computing the DTB. Examples. Since A > 1 can be arbitrarily large,
(3.18), (3.24), (3.27), and (3.33) imply

lim (fgeC(xo +ei) — I(Gy -:z,e)) =0,

e—0

(4.1) 1
I(h,e):= —%/R/O 0, (d,h + (Ro/2)a” + q,q) dgda,

where U; is defined in (3.12), and Ry is the radius of curvature of S at g = y(0).
Recall that the dependence of I(h,€) on € comes from the dependence of Hy on €, and
H, appears in the definition of ¥; (see (3.12)). By Lemma 3.2, the double integral
above is absolutely convergent. Therefore,

1
I(h,e):=—— lim J(h,e1),

T e1—0T

(4.2) 1 B
J(h,€e1) ;:/ / ¥, (d,h + (Ro/2)a* + q,q) e % dgda.
rRJo

By (3.7) and (3.12), the double integral in (4.2) transforms to the following expression:

J(h,e1)=C (He') (h+ (Ro/2)a* — q) emard”
(4.3) / /RQ

Ho(&+7)
x// w (g — (Ro/2)7* — ) dididgdé, C:=Af(zo)Ro.
RJO

We inserted an exponential factor in (4.2), since the quadruple integral in (4.3) would
otherwise not be absolutely convergent. Simplifying and changing variables u = a+v,
v=a— U, gives
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Hy (x+z7) ~2 A
J(h,e1)=C / / (He' *w) (h+ (Ro/2)(6° — %) — ) e % didida
(4.4) R2 J0

- % // (M w* Xz u) (h+ (Ro/2)uv) e~ 1@+ A dudu.
R2

See (2.10) for the definition of x .
Represent the integrand in terms of its Fourier transform and integrate with
respect to v:

(h 61 _77/// ‘)\|§0 XHg )()\)e—iA(h+(R0/2)uv)

x e~ (W) /44y dpd

(45) C 47T 1/2 ‘)\Rouz
X exp (_()\Ro)u2> due_i)‘}LdA7
461

where tildes above functions denote the 1D Fourier transform:
(4.6) ?(A) :/cp(:c)ei)‘mdx.

The double integral in (4.5) converges absolutely, since @(\) = O(A72), X — co.
Changing the variable s =u/ ei/ 2, we get by dominated convergence:

i J(h,e1) = (i 1/2/ [AlB(A 2(0)(N)

(4.7) xexp( /\[ZO 52>d e~ M)\
__ ¢ (NN Y ) e Mdn
__R70 R@( ) ( )XHO(O)( )e .

An integrable upper bound is c|A||@()\)|exp(—(ARgs)?/4) € L*(R?) for some ¢ > 0.
Recall that ¢(\) € L*(R) due to assumption 2.3(IK1). Finally,

C w0 (h) = Af(x0) (0 % w % Xa10(0)) (h).

(4.8) I(h,e) = o

Ezample 1. Constant width layer. Suppose Hy(0) = H is a constant. In this case
H.(0) =€cH, and (2.5) and (2.11) are consistent with each other. Indeed, let us return
to the situation in the remark following (2.9), where f. modifies the original function
f. Application of (2.5) to fmod = f — f. gives (2.5), where O, - & is replaced with
©p - & — H. This is precisely what we get by subtracting (2.11) from (2.5).

Ezxample 2. Fractal boundary. Suppose that H. is given by

oo

He(s)::el_(W/Q) Z r~"o(r"s),

n=ng(e)

0<y<1, r>1, $(0)=0, no(e) =c— [(1/2)log, €|, c€Z,

(4.9)

where ¢ € Cf(R), i.e., ¢ is bounded and Hélder continuous with exponent 8, v < 8 < 1.
By (2.8),
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oo

Hy(s) :=e= /2 Z r(re /2 s)
= Z pY () (e g) g = {(1/2)1og, €}

n=c

The function Hj is a real Weierstrass-type function (see [6]), which is continuous
everywhere, differentiable nowhere, and its graph is a curve whose fractal dimension
exceeds one [6]. See also [3] for a slightly less general case, where ¢ is Z-periodic. It is
well known that Hy is bounded and Hoélder continuous with exponent . From this,
both properties in (2.7) follow immediately. Thus, our approach allows the analysis
of reconstruction of functions with singularities along rough (e.g., fractal) curves.

5. Remote singularities. End of the proof of Theorem 2.6. In this section
we pick zg ¢ S and show that the reconstruction of f, from discrete data does not
create artifacts in a neighborhood of zq (i.e., there are no nonlocal artifacts there) as
long as xg is generic.

Without loss of generality, we may suppose that zq satisfies (zo — y(0)) - 69 =0,
but xg # y(0). We can still use Lemma 3.2, because it deals only with tomographic
data and is independent of the reconstruction point. If zg € S, then Af and Ry in
(3.7) are computed at the point of tangency y(0). Recall that, by Lemma 3.1, ¥
satisfies Lemma 3.2 as well. Now, the function © - (zg — y(6)) has a root of first order
at # =0 (by condition 1 in the definition of a generic point), so

1D (@0 + €2) + £ (20 + €2)|

< cielf? Z

(5.1) lak|<a
O(e™ 1)
< 0261/2 Z p—(140)/2 20(65/2).

k=1

o (ak’&k P Qg - (xo — y(@k))
€

+QI€7qk)‘

Here § is the same as in (3.13), ¥ is defined in (3.25), and the g;’s are defined in
(3.14). In this argument we assume that a > 0 is sufficiently small. How small a
should be depends on the distance |zg — y(0)|. This distance depends only on the
properties of f, e.g., the geometry of S, and, therefore, is fixed for any given f. So a
sufficiently small a > 0 can be selected and then held fixed throughout the proof.

The reconstruction at o ¢ S combines contributions of two types: (1) from
a neighborhood of each point of tangency (e.g., like y(0)), and (2) from all other
segments of §. The latter segments have the property that no line through xg is
tangent to them. In this section we proved that contributions of the first type are
O(€e%/?). The estimate of £ in (3.33) does not depend on the location of xg, so it
applies in the case zo € S as well. Using the linearity of the Radon transform and a
partition of unity type of argument, (3.33) yields that the sum of all contributions of
the second type is of order O(¢?/2). Hence fr**(zo+eZ) — 0 as € — 0 if 29 ¢ S, which
proves (2.12). Combining with the results in section 4 (see (4.1) and (4.8)), we finish
the proof of (2.11). Theorem 2.6 is proven.

6. Numerical experiments I. Our first experiment is with an oscillatory per-
turbation. The perturbed boundary S, oscillates around a curve S, which is the
boundary of the disk centered at x. = (0.1,0.2) with radius R =0.3. The equation of
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F1G. 2. Entire oscillatory phantom, v =1. Left column: Np = 501; right column: Np = 1001.
Top row: originals; bottom row: reconstructions.

Sc is 7(0) = R + 2ecos(0.716/¢'/2) in polar coordinates with the origin at the center
of the disk. Here

EZAp:1.2/(Np—1), A9=7T/N9, NgZNp—l.

Obviously, the perturbation satisfies (2.7) with v =1. The phantoms (i.e., the density
plots of f.(z)) with N, =501 and N, = 1001 are shown in Figure 2.
We use the Keys interpolation kernel [23, 5]

(6.1) o(t) =3B3(t +2) — (Ba(t +2) + Ba(t + 1)),

where B, is the cardinal B-spline of degree n supported on [0,n + 1]. The kernel is a
piecewise-cubic polynomial, and ¢, ¢’ are continuous, hence, p € C2(R).

We use this opportunity to correct the typo in [18, eq. (6.1)]. The interpolating
kernel used in the numerical experiments reported in [18] was not the cubic B-spline,
but the Keys kernel (6.1).

Reconstructions of a region of interest (ROI) are shown in Figures 3 and 4. The
ROI is centered at the point on the boundary of the disk

xo =z, — R(cos(a),sin(«)), a=0.327.

The ROI is a square with side length 100¢ centered at zy. In Figure 3, N, =501, and
in Figure 4, N, = 1001. In this and all other figures, the gray color stands for pixel
value 0, black color for pixel value (-1), and white color for pixel value 1. Notice that
the ROI scales linearly with e. Since the period of oscillations of S, scales like €!/2,
the ROI contains fewer periods of S, as € decreases. Figures 3 and 4 demonstrate a
good match between the DTBs (cf. Theorem 2.6) and reconstructions.

Our second experiment is with a phantom with a fractal perturbation. The
fractal boundary S, is around the same disk as above. The equation of S, now is
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exact profile ——
reconstructed profile

. . N | 77‘
. / |
‘ |

F1G. 3. ROI in the oscillatory phantom, vy =1, o= 0.32w, Np =501. Left panel: reconstruction;
middle panel: ground truth with the location of the profile shown; right panel: profiles along the line
indicated in the middle panel.

exact profile ——
reconstructed profile

. . N | /
A | k

Fic. 4. ROI in the oscillatory phantom, vy =1, a =0.32w, Np = 1001. Left panel: reconstruc-
tion; middle panel: ground truth with the location of the profile shown; right panel: profiles along
the line indicated in the middle panel.

7(0) = R+ eHo(0/€*/?) in polar coordinates with the origin at the center of the disk,
where

(6.2) Hy(s)=5 Zr"m sin(r"s), ¢= |log,(n)], r=v12, y=1/2.

n=c

The phantoms with N, =501 and N, =1001 are shown in Figure 5.

Comparing Figure 3 with Figure 6 and Figure 4 with Figure 7, we see that the
convergence of the reconstruction to the DTB in Theorem 2.6 is slower for smaller
values of 7. The convergence is the fastest for the globally smooth boundary (close
to the zero coordinate in the plots on the right in Figures 3, 4, 6, and 7), slower when
v =1, and the slowest, when v=0.5.

7. New DTB. Numerical experiments II. By (2.2) and (2.3) we can write
the reconstruction in the form

1) £ =-ge 3 Yo (B [fo (B0

lagl|<m/2 J

Arguing formally, the sums with respect to k and j in the limit as ¢ — 0 become
integrals, and we get

tig (o) - 5 [ 1 (22) sewan) =o.

1

K(z):= —%/0 (He' xw)(a@ - z)da.

(7.2)
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FiG. 4. ROI in the oscillatory phantom, v =1, o = 0.32m, Np = 1001. Left panel: reconstruc-
tion, middle panel: ground truth with the location of the profile shown, right panel: profiles along
the line indicated in the middle panel.
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i 55 IPhamiarm witth & Jrdad bomimay, = 1/3. Left ealumn: = B0 miglt: «Juimik:
Mo, =1001. Top row: ground triuth ioHSmR Kes: rtecoRsuetion Global artifacts dre ot visible.
predicted profile —— :/,“’7 — /\\\‘
‘c( “‘ t the
‘;I “\ 1aller
| ‘close
/) |, and
\ write
‘ |
|
- S
Fie: G B, the ﬁa%tﬁah =: 1//%; =301 Left columm: veconstruction. midde
colm: ground truih Wi ’i’h% %%%% % o ikt colum: Broes 4long the bing

hdeaed ' Yhe THddte Ramel T9p o & é §# battom row: &_ PLE-
Write (7.2) in the form of (1.3):

reconstructed profile
predicted profile ——

——
/

() o ﬁ%

(7.3)
Z,€) + error term. ‘
H “
Obvio supported. ThlS follows because K(a,t) =
* W 1s radial, compactly supported, and even (i.e., in the range of the Radon
@ ) % y pPp ) \ B S

adon transfgrm of Ko

/ exact profile ——
reconstructed profile
pmdlcted profile ——
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Fi1G. 7. ROIin the fractal phantom, v = 1/2, Np = 1001. Left column: reconstruction, middle

column: ground truth with the location of the profile shown, right column: profiles along the line
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exact profile ——
reconstructed profile
predicted profile ——

Fi1a. 6. ROI in the fractal phantom, v = 1/2, Np = 501. Left column: reconstruction, middle
colummn: ground truth with the location of the profile shown, right column: profiles along the line

Mdkcated in the middle panel. Top AdEXANDBBK doktIaY Folt o = 0.497.

exact profile ——
reconstructed profile
predicted profile ——

exact profile —— |
reconstructed profile
predicted profile ——

Fig. 7. ROI in the fraetal phantem, %= 1/2; Ny =1001. Left eslumn: reconstruetion; middle
eolwmm: ground truth with the leeation of the profile shewn; Fight eslumn: profiles along the line
indieated in the middle panel: Top row: &= 0I8F, Buwriom mow: @=004%r.

Argwingséermnatlyy Bicisumy votinprenadit hd arg to mmbbedimibater toid desome
inkegzadtutivgl Bfréebnstruction from discrete data. Also, (7.2), if it is correct, implies
the result proven earlier, Intu1t1ve13[ —0 the boundaries,S and S, become locally
flat, and we get Thﬁ@r nf'2:6z Yo ;5? rouily) staat similarly to (3.4),

(73)

K(2) -
DTB e (i, €) = 1 ] )H@)) F(6,1)dtdo
Write (7.2) in the f(e)r

a/e 1H (59)
DT}é (/é - 7 xof(ff e 69) thG ;y (e, ef)didd,
(7.3) K € ) ‘

where F' is the sé}rffé(ﬁg Iﬁf@éff %ri];@éw}f & E))fh;%g%t%%orted, it is clear that 6 is

confined to a bounded set, and

Ho(et/? e) . .
(7.5)  DTByew(#,¢) = F(0,0) / / :z— (9 (O)~|—t@0))dtd0+0(e),

where Hy(e'/26) = Hy(0) + O(e7/2), and we used that zo = y(0). Using that F(0,0) =
Af(zo)Ro and |y’ (0)| = Ry, we compute

—

Hy (0 . . R .
(7.6)  DTBuew(i€) = Af(z0) / / K(@O,@O.fc—t) dédd + 0(/?).
RJO

Recalling that K= o * w, the assertion follows.

Moreover, the local convergence of Se to a flat line segment (which is described
in terms of the convergence Hy(e*/20) — Hy(0)) is slower the lower the value of 7 is,
which matches the observations in section 6. Thus, (7.3) has the potential to be a more
accurate result than that given in Theorem 2.6. Our numerical experiments confirm
this conjecture. We implemented the kernel K (z) and convolved it with f. to compute
DTB,ew for the same two values of €. The graphs along the same line segments as in
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In terms or the convergence fig(€'~0) — f1g(U)) 1s slower the lower the value oI 7y
is, which matches the observations in section 6. Thus, (7.3) has the potential to be
a more accurate result than that given in Theorem 2.6. Our numerical experiments
confirm this conjecture. We implemented the kernel K(z) and convolved it with f,
to compute DTB,,,, for the same two values of e. The graphs along the same line
segments as in Figure 6 and Figure 7 are shown in Figure 8 and Figure 9, respectively.

By comparing the profiles ‘X?\IieLeYtsl@ ‘rphtfullast&%%%%ﬁlgmﬁcantly more accurateﬁgfm

the former.

act
constracted
predicted pr

k]
2::

act profile
nst Ldp ofile
redicted profile ——

8 i re 6 /25 Np- 505017, Jeft;, o ht:
@ %Fﬁrs REL @h@ﬁi&&f%%%?ﬁgbgﬂﬂé%% %S \%IC% 50201 7 T 8337 g

act
d
ed

—1—':—'1

ofile
ofile
ofile

cEE

recor
predicte

ex:
reconstructe

rofile
df
predicted profile

ﬁ'c—.:

F1d19. ROTGH, et phaheoriowf Hidtisere, % = 53,/ N,Np 10000 Leflefts - 63883 Fighight:
o :QL(H@;AQTF .

Fl%ureP@%ﬁat%lgxdém%% %‘Eg}%y%l%ﬁ’dtb rﬁé@&éﬁ&%ﬁﬁ%ﬁ&h{g% Vﬁ}gep%%ﬁ%gzes
Bad APRh&tRA kRS Srithi it 9@&? 5Cadk Qfénb%& etmsr%é mtegrals in
a@ﬁ@%%&ﬁw&ﬁtw e, Theetihaly e Dedd e d; ke $he% f?@nb&@eeei@ £
m@émed 75,5010y Riegdhe kerngh A o8 CoPRAGHR SHRR GG JAriReb]

739t %%hafélc%%%&ﬁﬁ]t&ﬁﬁkf@‘?% e@fgpaﬁ ROw 0. ATFSIAR. OPYSsliha STRgUIRptY
exgﬁ{sfe g psement L gl Rertadd o@ﬁ O Bp SEESAISIARES 0. &)n%légm
nop&ﬁigﬂ}eﬁ&?ﬂo%%%rﬂ{ﬁ%%ﬁé S%ﬁ%ﬁt gmﬁ%% orilagholdsfor frmeponstlesarik
acSSUMNide B SRmPRSPRod el (7 u‘ilﬁo‘iangHB?“i%@ adahevenddbsesapg ghihi
ORPRE M SSEHATNS %ﬁfgge%mg% f DB RS &ﬁ&nﬂlﬂ%&%‘ﬁ%ﬁe@c%ﬁéﬁwe
se&?&&lfz theykate o ROBVSEEERGE 1 87 -%) coft ?fm&l&tsn% oot eup e ical
paPeils: Tequires eitabliships o%e rggﬁﬁe%ﬂgetﬁé&gm}fés (@i toththibted cgetpitine
abBWie fhat: fhe l)thE%%ﬁ%g?F ethﬁm(’tt% O%n%gm lete explanation of our numerical,
results HEEYS TLESDSH ASTIRHR A I by ihepasting, thay (M (g
suf% jﬁa%othgﬂ&gé[eyss P&%&%ﬁpﬁﬁﬂ%é‘%?ﬁle&n 61 satisfies thls assumptlon Consider

hﬁeff’glwéos.%rengthen assumption 2.3.IK1 by requesting that @(A\) = O(|\|73), A —
co(7¥he Keys mterpolatl@qube)rnelggﬂé )gtistigs this gssygpption. Consider the

function

(7 Fpen Wg,1):= D _(He) g~ Hwlj —q-1).
(g t) =g+ 1,1), gt €R; P(g,t) = Ot %), t = 00, ¢ €R,

7.8

i) 1/;( t)dt =0, ¢ € R.
+1,8), ¢,t€R, o <R,
e)he last p operty gllows )ro%n assumptlon 2. 3(0 I§{2 ), (20?1 7% By (7.8), we can
resent ) i s =its EoRrier series:

The last propellé}t(y fo lowgztom ag lgmptlg)he? IKQG}élge 3 , We can repre-

set )in terms of its Fous jier series:

In(®) = [ vla.0cmayda = [ () @w(-q - elma)ds
0 R
Due to the assumptions that ¢, w € CZ(R) and @(A) = O(]A|~3) we have
(7.10) [P ()] < e(14+m?) 7M1 4+17)7"
Opath 6@ bR RN sHeR AL fepvsasetiphsoh ey -altidresk HroHmbigsiricted

to any compact set, the result follows because (H¢')(A), w(A) = O(A72) implies
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= m(t)e(—ma), e(q) :=exp(2rig),

(7.9) "

:/ w(q,t)e(mq)dq=/(H@’)(Q)w(—q—t)e(mq)dq-
0 R

Due to the assumptions that ¢, w € C3(R) and @(\) = O(|]A|73) we have
(7.10) [m ()] < e(1+m?) " (1 +¢%)"

for some ¢, so the Fourier series for v converges absolutely. Indeed, if ¢ is restricted

to any compact set, the result follows because (H¢')(A),w(\) = O(A~2) implies

(7.11)
‘/I/w W(p— N~ ”tdu‘ /Imp (i — A)|dp=O0(A"?), A = 27m — oo

If |¢| > ¢ for some ¢ > 1 sufficiently large, integrate by parts twice and use that
(7.12) max|(9/0)*(He') ()w(—q = )| = O(t™%), ¢ = oo,

Differentiation by parts works, because (H¢')(g) is smooth in a neighborhood of any
g such that w(—q —t) #0.
From (7.1), (7.7), and (7.9), the reconstructed image becomes

Je<(@) = ZZ ) Am{o )y D= D,

lag|<m/2

qk:=@7 A //w( SO0 wan

Suppose first that o = y(0). To obtain (7.2), we should be able to replace the sum
with respect to k by an integral with respect to « and ignore all m # 0 terms. The
results in sections 3 and 5 suggest that the rate in (2.11) is O(e?/?); cf. (3.33). Thus,
to establish that the new DTB is more accurate, we need to show that

Aa Z Z —mqy) Am (o, €) = 0(67/2)

m#0 k

) (e

x fe(y)dy = o(/?).

(7.13)

Suppose now g # y(0), which is equivalent to assuming xo € S. In this case f is
smooth near xg, so we should expect that DTB(%, €) =0 for all € > 0 sufficiently small.
Since K (z) is compactly supported, [[ K ((z—y)/€)fe(y)dy =0 for all € > 0 sufficiently
small and all x sufficiently close to x(, precisely as expected. Hence, there is no need
to single out the term m = 0 (which previously gave the only nonzero contribution)
n (7.13), because the entire sum should go to zero sufficiently fast as e — 0. The
following lemma states that this is indeed the case. Its proof is in Appendix C.
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LEMMA 7.1. Pick xo € S such that no line through xo, which intersects S, is
tangent to S. This includes the endpoints of S, in which case the one-sided tangents
to S are considered. Suppose the level sets of Hy are not too dense, i.e., there ezist
p, Lo > 0 independent of t and € such that any open interval of any length L > Ly
contains mo more than pL points from Hgl(f) for almost all t and all 0 < € < €.
Under the assumptions of Theorem 2.6, one has

(7.15) frec(z) = O(e/?1In(1/e€)), € =0,

uniformly with respect to x in a sufficiently small neighborhood of xg.

Using numerical evidence and the above lemma as a guide, we state the following
conjecture.

CONJECTURE 7.2. Pick any generic xg. Suppose the level sets of Hy are not too
dense, as defined in Lemma 7.1. Under the assumptions of Theorem 2.6, one has

(7.16) £ (o + i) = // (W“ )fe( )dy + O(e/2In(1/e)), €0,

where the big-O term is uniform with respect to & in any compact set.

To prove the conjecture one has to consider the case o € S as well as the case
xo €S, when a line through z( is tangent to S.

The assumptions in Lemma 7.1 and the conjecture are not vacuous in the following
sense. If Hy is Holder continuous, and its level sets H; '(f) are not too dense, as
defined in Lemma 7.1, this does not imply that Hy is Lipschitz continuous. In (D.1)
we present an example of a function on [0,00) (the Schwarz function [42]), which is
strictly monotonically increasing, locally Holder continuous with exponent ~ € (0, 1),
and is not locally Holder continuous with any exponent 4’ >+ on any interval. Using
this function as a building block, one can create a wide range of perturbations Hy,
which satisfy all the assumptions in Lemma 7.1. Due to the limited smoothness of such
an Hy, the derivation in section 3, section 5 for the original DTB cannot guarantee
convergence faster than O(¢?/?), which is slower than the conjectured rate.

Another interesting class of perturbations with limited smoothness, to which
Lemma 7.1 applies, can be constructed using the Cantor staircase c(x): [0,1] — [0,1]
[24]. Let C C [0,1] be the Cantor set. Then c is increasing, the range of ¢ is [0, 1],
¢([0,1]\ C) consists of dyadic reals (i.e., numbers of the form j2=™, j € Z, m € N),
and C cannot contain any interval of nonzero length. Hence, for almost all € [0,1]
(i.e., for £ not a dyadic real), the level set c¢~'(#) consists of a single number. The
Cantor function is Hélder continuous with exponent v = log2/log3, and no higher
exponent works [8, Proposition 10.1].

Our numerical experiments show that even when the level sets of a function
become infinitely dense (see [39, 43] regarding level sets of the Weirstrass function),
DTByey still appears to exhibit rapid convergence faster than O(e/2).

Appendix A. Proof of Lemma 3.1. We prove the lemma in the more com-
plicated case g. = g. The case g. = g; is proven along the same lines, but many of the
steps are simpler. Throughout this section, by ¢ we denote various positive constants
whose value in different places is different. Pick any a € (—a,a). Introduce

(A1) () =a- (yla+v)—y(a)), |afla+v|<a.
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The dependence of ¢ on « is irrelevant and omitted from notation. Since 1*) (v) =
a-y®(a+v), k=1,2, we easily get from (3.1) the following properties:

(A.2) P(0)=v"(0)=0, ¢'(v)/v>¢, and ¥ (v) > cif |al,|a+ V| <a.
Therefore, by (3.6)
(A.3) g(a,p) =0 for p< —c

for some ¢ independent of a € (—a,a).

Suppose now p — +00. Since w is compactly supported and Hy is bounded, we can
find ¢ > 0 sufficiently large and independent of p, €, so that the domain of integration
with respect to v in (3.6) is contained inside the union of two nonintersecting intervals,
whose endpoints are computed by solving

(A.4) Y(eV?0) =€e(p £ ).

The positive pair of solutions Di 5 > 0 determines one interval, the negative pair
Uy 5 <0, the other, and the two intervals are bounded away from zero. By (A.2), we

get that
(A.5) ‘d[e—lw(el/%)]/dﬂ‘ >, e o, il
Hence, again by (A.2), 7 — it = O(e'/2 /|9 (e /?0F)]) = O(p~'/?). The statement

(3.9) follows because the mtegrand in (3.6) is uniformly bounded.
To prove the last assertion of the lemma, set g = g% + ¢, where

. ) pHo(G+D) e -
(A.6) g" (a,p) :/0 /0 w (p —(e/*D) — tcos(e 1/))
x F(a+ e'/?0, ef)didp,

e 2% (a—a

& = e Y2qa, and g~ is defined similarly by integrating over (e~/?(—a — «),0] with

respect to 7. First, we consider g*, so # > 0. Introduce the variable § = ¢ (e!/?7) /e. By
(A.5), ’(8) is uniformly bounded for all € > 0 small enough whenever § is bounded
away from zero. To indicate the dependence of 7(§) on € we write 7(5). Change
variables 7 = 7.(§) in (A.6):

Hy( a+y)
(A7) g7 (a,p) // fsftcos( 125 )) Fa+ €20, et)di vl (5)ds,
U =0,(3

Here we extended the integration with respect to § to R. Even though 7/(5) is not
defined for § > 0 sufficiently large, this is irrelevant because F'(-) =0 for such §. Using
the argument following (3.28), such an extension does not affect the smoothness of F.
Changing the lower limit does not change the integral either, because w is compactly
suported and p — +oo. Similarly,

Hy( a+1/)
- /25
(A8) (o, p+ Ap) // 5 —tcos(e 1/))

x F oz—|—el/21/ et)dtu (§+ Ap)ds, v="r.(5+ Ap).
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As before, from (A.2) we obtain
(A.9) 7P ) =0 (527F), p oo, k=0,1,2,

uniformly in e.
By (A.9), dropping Ap in the argument of 7, in the argument of Hy in the upper
limit of the inner integral in (A.8) leads to an error of magnitude

(A.10) =720 ((|1251/6"/2)7) .

Recall that Ap = O(p°), 6 < 1/2, p — +oo. Dropping Ap in 7, which is located
in the arguments of w and F, leads to an error of magnitude (e/p)'/20(|Ap|/p*/?).
Dropping Ap from 7! leads to an error of magnitude O(|Ap|/p>/2).

Under our assumptions v < 1 and § < 1/2, so all the error terms are dominated by
(A.10). Subtracting (A.7) from (A.8) we prove that g™ (a,p) satisfies the estimate in
(3.10). Similar arguments and similar estimates hold for g~ (o, p) as well, and (3.10)
is proven.

Appendix B. Proof of Lemma 3.2. Using that (H¢')(t) = O(t~2), t — oo,
we obtain for some ¢ using (3.8), (3.9),

A 1 1
(B1) [y(a@.p.q)l<ec >
j>

CA1al=3/2Y A
T Eiappe - O, p=—o0 g €[0,1).

Fix any §, 0 < < 1/2. Similarly to (B.1), we can show that

(B.2) > (M) (=) ailej —q) = O(p~/*), p— +o0, g€ 0,1).
li—B|>p°

Split the remaining sum into two:

> (M) (h— i) gila,i—q)

|7—-p|<p?
(B.3) = > (He)(p—9) (@i — ) — (@, p— q))
l7—pl<p?
+alap—q) D> (He)(B—j)=: 51+ S

|7—-p|<p?
Clearly, H¢'(t) = O(t=2), t — oo. Combining with (2.7), (3.9), and (3.10), we find
(B4) 51=0 (0= 2712) ST () ) =0 (5CTDT2) | ps o
li—pl<p’
Moreover, by the exactness of ¢ (assumption 2.3.1K2),
(B.5) > @ r=i)A0onlyif [r—(p—p) <cor|r—(p+p") <c
|7—-p|<p?
for some c. Hence,
(B6) =0 (p"21+5") ) =0 (572 H), ps 400, g€ [0,1).
Combining (B.2), (B.3), (B.4), and (B.6) gives
BI) W50l =06 /2), 5= (v/2)/(7+1), p—>+50, ¢€ [0,1).

The choice of § in (B.7) satisfies 0 < < 1/2 and provides the fastest guaranteed rate
of decay of ¥;. Combining (B.1) and (B.7) (and replacing § with 6/2 for notational
convenience) proves the lemma.
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Appendix C. Proof of Lemma 7.1. Pick any z sufficiently close to xy. All the
estimates below are uniform with respect to x in a small (but fixed) size neighborhood,
so the xz-dependence of various quantities is omitted from the notation.

Let €2 be the set of all « € [—7/2,7/2] such that the lines {y € R?: (y —x)-a=0}
intersect S. Let 6§ = O(«), a € Q, be determined by solving (y(f) —z) - & = 0. By
using a partition of unity, if necessary, we can assume that S is short and the solution
is unique. By assumption, the intersection is transverse for any o € Q (up to the
endpoints). Hence |©'(a)| = |y(©(«)) — z|/|d - ¥/ (O(«))| and

. - 7 . / !
(C.1) 0<min|a 3/ (6(a))l, 0<min[6(a)| < max|&/(a)] < oc.

Transform the expression for A,, (cf. (7.13)) similarly to (3.4),
1 o e TH(0) _ = o A o
(C2) A, (a,e)= 7/ / U, (oz(y(@)m) +tcos(d — a)> F(0,et)dtdd,
€ —aJo €

where F is the same as in (3.4), and v, is introduced in (7.9). Clearly,
(C.3) Ap(a,e)=(1+m?)"10(e), a€[—m/2,7/2]\ Q.
Next, consider the case a € Q2. Setting 6 = (0 — ©(«))/e*/2, (C.2) becomes

o (0r6) —e1/2 / / ””9 (d-(yw)6y<@<a>>>+fcos(9_a))

x F(6,et)didd, 6=0(a)+e%0, acq.

(C.4)

Due to (7.10), we can integrate with respect to 0 over any fixed neighborhood of 0,

(C5)
Am(a,

—1/2/ / o (0_" y'(@<o‘)>e+0(92)+£cos(@(a)—a)+0(e”2>>

c1/2
x (F(@(a), )+0(el/2)) dfdf + (1+m?) "L O(e/?),
0=0(a)+€7%0, acQ,
for some § > 0 sufficiently small. Here we have used that
(C.6) Um (), U (1) = (L4 m?) 1 O(72), t— o0,

which follows from (7.7) and (7.9). Using (C.6) it is easy to see that the terms O(e!/?)
and 0(92) can be omitted from the argument of 1,,, without changing the error term:

(C.7)
A (a e)

Ho(e™1/20(a)+0) a-v' (O
~ Y @)~ 4 .
- 61/2 / / Um (65/2())9+tcos(®(a) — a)) dtdé
1/2), a e

-y’(@(a)) is bounded away from zero on . By the last equation in (7.8),
0 for all m, so we can replace the lower limit of the inner integral in
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(C.7) with any value independent of f. Again, we use here that the contribution to
the integral with respect to € of the domain outside (—d,0) is of the same magnitude
as the error term in (C.7). We choose the lower limit to be Hy(e~/20(a)). Hence

A (0, ) <(1+m?)~! [0<e—1/2>/6 [Hofs +6) — Ho(s)

1/2
-5 1+ (62/¢) 40+0(!)),

(C.8)
s=c"120(a), a € Q.
Neglecting the O(e'/?) term in (C.8) (the last term inside the brackets) leads to a

term of magnitude O(¢'/2) in fr°¢. Accounting for (C.3) in a similar fashion, (7.13)
and (C.8) imply

02
g(0,€) := Z |Ho(sk +6) — Hy(s k)| ski= e 120(ay).

apeN

4
rec _ 1/2 ( ’ ) do 19) 61/2
oy @m0 [ 250,

If we use only the smoothness of Hy (cf. (2.7)), the most we can say is that each
term in the sum is O(|0]"), so g(6,€) = O(e~'|0]7). However, the structure of the sum
allows us to exploit the assumption that the level sets of Hy are not too dense, and
this leads to a better estimate.

Define, similarly to (2.10),

I, tist<tyority<t<ty,

0, otherwise.

(C]-O) Xt1,t2 (t) = {

Clearly,

(C.11) =2 /XHo(sk ) Ho(sx-+8) dt_/N

ap €

where N(t 0 e) is the number of oy, € Q such that either Ho(sy) <t < Ho(sg + 9) or
Ho(sk +6)< i< Hy(sk). By the assumption in Lemma 7.1 about the level sets of Hy,

N is finite for almost all £. Our argument implies that the values of the index k counted
by the function N (, 0 ,€) are such that the closed interval with the endpoints sy, and
s -+ 0 contains at least one u, € H, (f). By assumption, the number of un € Hy 0
on any interval of length O(e~1/2) is O(¢~'/?) uniformly in f for almost all . Fix any
n. By (C.1) and the definition of s in (C.9), there are no more than 1+ O~(e_1/2|§|)
values of k such that |sp —u,| < |]. Hence N(£,0,¢) = O(e~Y/?)(1 + ¢ /2|0|). Using
that the range of Hy is bounded (cf. (2.7)), the integral with respect to  in (C.11) is
over a compact set, so

(C.12) g(0,¢) =0(c7V2)(1 + e 1/2)9)).

Substituting (C.12) into (C.9), we finish the proof:

172
(C.13) £ (z) = 0(1) / 5 M A0 + O(e"/2) = O(/2n(1/e)).

The estimate in (C.13) is better than O(¢?/2) if v < 1; cf. (3.33). The latter is the
corresponding result in the original approach in subsection 3.4 (no line through z with
the unit normal in Q3 tangent to §). This result can be rederived using the approach
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in this section. Indeed, as mentioned above, (2.7) implies g(,€) = O(e~*|4|"), and we
compute, similarly to (C.13),
g |§|7 -
(C.14) frec(z) = 0(6-1/2)/ ———df
—s 1+(02/¢)
Hence a truly novel mechanism (e.g., based on a consideration of the level sets of Hy)
is needed to establish the faster decay rates in (7.14).

+O0(?)=0(?), 0<y < 1.

Appendix D. Example of a monotone, Hoélder continuous function,
which is nondifferentiable in a dense set. Set

(D.1) Ho(s) =Y _¢(2")/3", (s):= 5] + {s}7,

n=0

where 0 < < 1. Obviously, the series above converges absolutely for any fixed s, and
Hj is strictly monotonically increasing.
Next we show that Hy is locally Holder continuous with exponent . We have

(D.2) [p(s2) — w(s1)] < emax(|s2 — s1]7,[s2 — s1]), $1,82 >0,

for some c. The case |s3 —s1| > 1 is obvious, so we assume |s3 — s1| < 1 and show that
©(s2) —p(s1) = O(|s2 — s1|7). Clearly, it suffices to consider the case sy =n—1+rq,
S$3 =n+ 1z, where 0 <71 2 < 1. We will show that

(D.3) (n+ry)—(n—14+r])<Q+4re2—mr)".

The case 14 > ry is obvious (and should not be considered anyway, because sy —s1 > 1
in this case), so we assume ro =71 — h, where 0 <h <ry. Then (D.3) becomes

(D.4) (ri—h)Y+1—r7 <(1—h)".

Differentiating the left-hand side we see that it is increasing as a function of ry € [h, 1].
Setting r1 =1 shows that the inequality holds.
Pick any h > 0 and consider the difference

(D5) Ho(s+h)~Ho(s)=| > + Y P2 (s 4+ M) = 0("s) _ g g,

3”
n>0:2"h<l n:2"h>1
By (D.2),

(D.6) [Su|<ch? Y 23 <ceh?, |So|<ch Y 2"/3" <ch,
n>0:2"h<1 n:2"h>1

which proves Holder continuity. Here ¢ denote various constants, which can be differ-
ent in different places.

Finally we show that Hy(s) is not Holder continuous with any exponent +' > v
on any interval. Pick any j,m € N and set s = j27™. Pick any h € (0,27™). Using
that ¢ is increasing gives

Ho(s +h) = Ho(s) _ 927 (s+h) —o(2™s) _ (G+@"h)) =G _ oy
h’)/l = 3mh,.y/ 3mhfy/ bl

and the desired assertion follows because dyadic reals are dense in R.

(D.7)
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