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FUNCTIONS WITH NONSMOOTH EDGES FROM DISCRETE

RADON TRANSFORM DATA*
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Abstract. Let f\epsilon , 0< \epsilon \leq \epsilon 0, be a family of functions in R2, and f \mathrm{r}\mathrm{e}\mathrm{c}
\epsilon be a reconstruction of f\epsilon 

from its discrete Radon transform data. Here \epsilon is both the data sampling rate and the parameter
of the family. We study the resolution of reconstruction when f\epsilon has a jump discontinuity along a
nonsmooth curve \scrS \epsilon . The assumptions are that (a) \scrS \epsilon is a family of O(\epsilon )-size perturbations of a
smooth curve \scrS , and (b) \scrS \epsilon is H\"older continuous with some exponent \gamma \in (0,1]. Thus the size of the
perturbation \scrS \rightarrow \scrS \epsilon is of the same order of magnitude as the data sampling rate. We compute the
discrete transition behavior (DTB) defined as the limit DTB(\v x) := lim\epsilon \rightarrow 0 f \mathrm{r}\mathrm{e}\mathrm{c}

\epsilon (x0 + \epsilon \v x), where x0 is
generic. We illustrate the DTB by two sets of numerical experiments. In the first set, the perturbation
is a smooth, rapidly oscillating sinusoid, and in the second, a fractal curve. The experiments reveal
that the match between the DTB and reconstruction is worse as \scrS \epsilon gets rougher. This is in agreement
with the proof of the DTB, which suggests that the rate of convergence to the limit is O(\epsilon \gamma /2). We
then propose a new DTB, which exhibits an excellent agreement with reconstructions. Investigation
of this phenomenon requires computing the rate of convergence for the new DTB. This, in turn,
requires completely new approaches. We obtain a partial result along these lines and formulate a
conjecture that the rate of convergence of the new DTB is O(\epsilon 1/2 ln(1/\epsilon )).
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1. Introduction. Action of the Radon transform (and, by extension, its inverse)
on distributions is a topic that has received considerable attention over the years [12,
16, 37]. From a practical perspective, if an object represented by an unknown function
f has singularities (e.g., jumps or edges), it is important to know how well (e.g., with
what resolution) these singularities can be reconstructed when the data are discrete.
Convergence of numerical Radon inversion algorithms for nonsmooth functions has
been studied as well [13, 32, 34, 35]. In these works the discontinuities of the object
are a complicating factor rather than the object of study.

Let \scrS denote the singular support of f . Let \v f be a reconstruction from continuous
data, and \v f\epsilon , the corresponding reconstruction from discrete data, where \epsilon represents
the data sampling rate. In the latter case, interpolated discrete data are substituted
into the ``continuous"" inversion formula. When theoretically exact reconstruction is
desired, \v f \equiv f . Generally, \v f does not coincide with f . For example, one can be
interested in edge-enhanced reconstruction, as in local tomography [11, 37] or when
computing derivatives of f directly from the data [15, 26]. In other cases, e.g., for
more general Radon transforms, an exact inversion formula may not exist. In this case
one usually reconstructs f modulo less singular terms, i.e., f  - \v f is smoother than f .

In [18, 19, 20, 21, 22] the author developed the analysis of reconstruction, called
local resolution analysis , by focusing specifically on the behavior of \v f\epsilon near \scrS . One of
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696 ALEXANDER KATSEVICH

the main results of these papers is the computation of the limit

(1.1) DTB(\v x) := lim
\epsilon \rightarrow 0

\epsilon \kappa \v f\epsilon (x0 + \epsilon \v x)

in a variety of settings. Here x0 \in \scrS is generic (see Definition 2.4 below), \kappa \geq 0 is
selected based on the strength of the singularity of \v f at x0, and \v x is confined to a
bounded set (e.g., to some bounded disk centered at the origin). It is important to
emphasize that both the size of the neighborhood around x0 and the data sampling
rate go to zero simultaneously in (1.1). The limiting function DTB(\v x), which we
call the discrete transition behavior (DTB for short), contains complete information
about the resolution of reconstruction. Formula (1.1) is written for a fixed x0, which
is omitted from the left-hand side for brevity. In a similar fashion, in what follows
we omit the dependence of the DTB on the base point x0. The geometric meaning of
\v x is the rescaled difference between a reconstruction point x and the base point x0:
\v x= (x - x0)/\epsilon .

The practical use of the DTB is based on the relation

(1.2) \v f\epsilon (x0 + \epsilon \v x) = \epsilon  - \kappa DTB(\v x) + error term.

When \epsilon > 0 is sufficiently small, the error term is negligible, and \epsilon  - \kappa DTB(\v x), which is
typically computed by a simple formula, is an accurate approximation to the numerical
reconstruction.

The functions, which have been investigated in the framework of local resolution
analysis so far, are conormal distributions, whose wave front set coincides with the
conormal bundle of a smooth surface. To put it another way, these distributions are
nonsmooth across a smooth surface, and are smooth along it. On the other hand, in
many applications the discontinuities of a sample f occur across nonsmooth (rough)
surfaces. Examples include soil and rock imaging, where the surface of cracks and
pores is highly irregular and frequently simulated by fractals [2, 14, 25, 31, 36, 38, 44].

Micro-CT (i.e., CT capable of achieving micrometer resolution) is an important
tool for imaging of rock samples extracted from the well. As stated in [44], ``The
simulation of various rock properties based on three-dimensional digital cores plays an
increasingly important role in oil and gas exploration and development. The accuracy
of 3D digital core reconstruction is important for determining rock properties."" Here
the term ``digital core"" refers to a digital representation of a rock sample obtained,
for example, as a result of its CT or micro-CT scanning and reconstruction. Accurate
identification of the pore space inside rock samples is of utmost importance because
it contributes to accurate estimation of the amount of hydrocarbon reserves in a
given formation and brings many additional benefits. As stated above, the boundary
between the solid matrix and the pore space is typically rough (see also [7]), i.e., it
contains features across a wide range of scales, including the scales below what is
accessible with micro-CT. Therefore effects that degrade the resolution of micro-CT
(e.g., the partial volume effect due to finite data sampling) and how these effects
manifest themselves in the presence of rough boundaries require careful investigation.
Once fully understood and quantified, these effects can be accounted for to improve
pore space determination when analyzing reconstructed images.

Very little is known about how the Radon transform acts on distributions with
more complicated singularities. A recent literature search reveals a small number of
works, which investigate the Radon transform acting on random fields [17, 40, 27].
For example, the author did not find any publication on the Radon transform of
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ANALYSIS OF RESOLUTION 697

characteristic functions of domains with rough boundaries. This appears to be the
first paper on the Radon transform of functions with rough edges.

In this paper we use local resolution analysis in R2 to study the resolution of
reconstruction for a family of functions f\mathrm{m}\mathrm{o}\mathrm{d}

\epsilon , which have a jump discontinuity across
a nonsmooth curve. Exact reconstruction from the classical Radon transform data is
considered (hence \kappa = 0 in (1.1)).

To construct f\mathrm{m}\mathrm{o}\mathrm{d}
\epsilon , we start with a piecewise C2 function f , which has a jump

discontinuity across a smooth curve \scrS . Let \scrS \epsilon be a family of curves, which are
small perturbations of \scrS . The assumption is that \scrS \epsilon is H\"older continuous with some
exponent \gamma \in (0,1] for all \epsilon > 0 sufficiently small. The perturbation is of size \delta =O(\epsilon ),
and the perturbation scales like O(\epsilon  - 1/2) along \scrS (see the paragraph following (2.8)).
By the size of the perturbation \delta we mean the maximum of dist(x,\scrS \epsilon ) over x \in \scrS .
Then f\mathrm{m}\mathrm{o}\mathrm{d}

\epsilon is obtained by smoothly extending the values of f on either side of \scrS up
to the new curve \scrS \epsilon .

In practice, our assumptions mean that (1) the data sampling rate \epsilon > 0 is suf-
ficiently small, but finite (similarly to (1.2)); (2) the size of the perturbation \delta is
comparable with or less than the data sampling rate (i.e., \delta \lesssim \epsilon ); and (3) the os-
cillations in \scrS \epsilon scale like O(\epsilon  - 1/2) along \scrS . The assumptions about \scrS \epsilon are quite
reasonable. On one hand, they cover the cases \delta \sim \epsilon and \delta \ll \epsilon . On the other hand, if
\delta \gg \epsilon , \scrS \epsilon oscillates slowly, and \scrS \epsilon is sufficiently smooth, then we are essentially in the
situation addressed in [18, 19, 20, 21, 22]. In the remaining cases, \delta \gg \epsilon , and either
\scrS \epsilon oscillates sufficiently fast or \scrS \epsilon is sufficiently rough (or both). These are especially
challenging cases, they are not covered by the existing theory, and require a separate
analysis. When applying our results in practice, the main objects are f\mathrm{m}\mathrm{o}\mathrm{d}

\epsilon and \scrS \epsilon .
The existence of f and \scrS is required only for theoretical analysis.

Due to the linearity of the Radon transform, we can consider f\epsilon := f - f\mathrm{m}\mathrm{o}\mathrm{d}
\epsilon , which

is supported in the narrow domain bounded by \scrS and \scrS \epsilon (see (2.9), Figure 1, and the
paragraph preceding (2.10) below). The reconstruction of f\epsilon (x) from discrete data is
denoted f \mathrm{r}\mathrm{e}\mathrm{c}\epsilon (x). We obtain the DTB by computing the limit of the kind (1.1) (with
\kappa = 0 and \v f\epsilon replaced by f \mathrm{r}\mathrm{e}\mathrm{c}\epsilon ) and illustrate it by two sets of numerical experiments.
In the first set, the perturbation \scrS \rightarrow \scrS \epsilon is a smooth sinusoid with amplitude O(\epsilon )
and period O(\epsilon 1/2). Results of these experiments with \epsilon = \epsilon 1 = 1.2/500 and \epsilon = \epsilon 2 =
1.2/1000 demonstrate a good agreement between the DTB and reconstruction.

The second set involves a fractal perturbation, which is specified in terms of the
Weiertsrass--Mandlebrot function [4, 6]. As before, the magnitude of the perturbation
is O(\epsilon ), and it scales like O(\epsilon 1/2) along \scrS . Its H\"older exponent is \gamma = 1/2. It turns out
that the match between the DTB and reconstruction is now much worse than before
for the same two values \epsilon = \epsilon 1,2. Note that the DTB is an accurate approximation
to the reconstruction only when \epsilon > 0 is sufficiently small. Analysis of the derivation

S

Sε
f

fεD+

D-
y(θ)

Θt

Fig. 1. Illustration of the perturbation \scrS \rightarrow \scrS \epsilon and the function f\epsilon , which is supported in the
shaded region.
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698 ALEXANDER KATSEVICH

of the DTB suggests (but not proves) that the rate of convergence in (1.1) is O(\epsilon \gamma /2)
(which is also the magnitude of the error term in (1.2)). In other words, the rougher
\scrS \epsilon is, the slower the convergence and the larger the error. Therefore, to obtain a good
match when \scrS \epsilon is fractal, a much smaller value \epsilon \ll \epsilon 2 should be used.

Analysis of the reconstruction formula reveals a potentially more accurate expres-
sion for f \mathrm{r}\mathrm{e}\mathrm{c}\epsilon (x0+\epsilon \v x). Even though the DTB was originally defined as the limit in (1.1),
with a slight abuse of notation, any easily computable approximation to f \mathrm{r}\mathrm{e}\mathrm{c}\epsilon (x0+ \epsilon \v x)
will be called a DTB as well and denoted DTB\mathrm{n}\mathrm{e}\mathrm{w}. In particular, DTB\mathrm{n}\mathrm{e}\mathrm{w} may have
a more complicated \epsilon -dependence than the one in (1.1):

(1.3) f \mathrm{r}\mathrm{e}\mathrm{c}\epsilon (x0 + \epsilon \v x) =DTB\mathrm{n}\mathrm{e}\mathrm{w}(\v x, \epsilon ) + error term.

The idea is that by allowing a more general \epsilon -dependence, the error term in (1.3) can
be smaller than the one in (1.2).

Numerical experiments with the new DTB show a perfect match between DTB\mathrm{n}\mathrm{e}\mathrm{w}

and reconstruction for the two values \epsilon = \epsilon 1,2 used before. The two results do not
contradict each other, because the original, less accurate DTB is a small-\epsilon limit of the
new, more accurate DTB (see (7.4)--(7.6)).

Rigorous derivation of DTB\mathrm{n}\mathrm{e}\mathrm{w} is significantly more difficult than that of the
original one. Even the proof of the original DTB (1.1) (see sections 3--5) establishes the
existence of convergence, but not its rate (see the last paragraph in subsection 3.1). To
prove that DTB\mathrm{n}\mathrm{e}\mathrm{w} is indeed more accurate, one needs to estimate its approximation
error (and that of the original DTB). We distinguish two cases: x0 \in \scrS and x0 \not \in \scrS ,
and prove that in the second case, assuming in addition that there is no line through
x0 which is tangent to \scrS , the rate of convergence of DTB\mathrm{n}\mathrm{e}\mathrm{w} is O(\epsilon 1/2 ln(1/\epsilon )). Based
on this result and numerical evidence, we formulate the conjecture that the same rate
holds in the remaining, unproven cases. Our proof of the second case uses different
tools and, at its core, uses a phenomenon different from the one in the proof of the
original DTB. The proof of the remaining cases is difficult, requires entirely new
approaches, and is outside the scope of this paper.

The new DTB (see. (7.3) below) is given by a convolution of an explicitly com-
puted and suitably scaled kernel with f\epsilon . Thus, it can be used quite easily to in-
vestigate partial volume effects and resolution in the case of rough (e.g., fractal)
boundaries. Superficially, this kernel resembles the point spread function (PSF) of
filtered backprojection reconstruction [9, section 12.3]. Nevertheless, its origin, use
(analysis of reconstruction in a neighborhood of a singularity of f\epsilon ), and method of
proof are all completely different from those for the PSF.

To summarize, the main results of the paper are as follows:

1. Derivation of the original DTB for a family of functions f\epsilon with a rough edge
\scrS \epsilon ;

2. numerical demonstration that the accuracy of the original DTB drops as the
curve \scrS \epsilon , across which f\epsilon is discontinuous, becomes less smooth (fractal);

3. a new DTB is proposed, which is shown numerically to be much more accurate
than the original one for fractal \scrS \epsilon ; and

4. a conjecture about the accuracy of the new DTB and its proof in the case
x0 \not \in \scrS under some additional assumptions.

Sampling theory is an alternative approach to investigate the resolution of tomo-
graphic reconstruction when f is bandlimited. Applications of the sampling theory
to the classical Radon transform are in papers such as [29, 33, 10]. Sampling for dis-
tributions with semiclassical singularities is developed in [41, 28]. The goals of these
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ANALYSIS OF RESOLUTION 699

approaches are to determine the sampling rate required to reliably recover features
of a given size and to describe aliasing artifacts if the sampling requirements are vi-
olated. Thus, the problem settings and the types of results obtained using sampling
theory are different from those of the local resolution analysis.

The paper is organized as follows. In section 2, we describe the problem setup,
state the relevant result from our earlier paper [18] as Theorem 2.5, and formulate
the first result of this paper---a formula for the original DTB (1.1)---as Theorem
2.6. Section 3 contains most of the proof of the theorem. In section 4 we compute
the original DTB explicitly and consider two theoretical examples. In the first one
the perturbation is a constant function along \scrS , and we recover the result of [18].
In the second example we consider a fractal perturbation specified in terms of a
Weiertsrass--Mandlebrot function. The fact that the perturbed boundary \scrS \epsilon does not
create nonlocal artifacts is proven in section 5, thereby finishing the proof of Theorem
2.6. Numerical experiments with the original DTB are in section 6, where oscillatory
and fractal perturbations of \scrS are considered. In section 7 we describe DTB\mathrm{n}\mathrm{e}\mathrm{w} and
present numerical experiments with the new formula. The experiments demonstrate
improved accuracy for fractal \scrS \epsilon . We formulate a conjecture about the accuracy of
DTB\mathrm{n}\mathrm{e}\mathrm{w}, and state Lemma 7.1 about the magnitude of error when x0 \not \in \scrS . The proof of
the lemma is in Appendix C. Let H0(s) be the function that describes the perturbation
\scrS \rightarrow \scrS \epsilon (after appropriate rescaling, see (2.8)). The additional assumption in Lemma
7.1 (compared with Theorem 2.6) is that the level sets of H0, i.e., the sets H - 1

0 (\^t),
are not too dense for almost all \^t \in H0(R). In Appendix D we construct a function
on R, whose level sets are not too dense as required for the lemma, which is H\"older
continuous with exponent \gamma for any prescribed 0 < \gamma < 1, but which is not H\"older
continuous with any exponent \gamma \prime >\gamma on a dense subset of R. Another example is the
Cantor staircase function [24], which also satisfies all the assumptions, is described at
the end of section 7. The proofs of two auxiliary lemmas are in Appendices A and B.

2. Preliminaries. Consider a compactly supported function f(x) on the plane,
x \in R2. Set \scrS := \{ x \in R2 : f \not \in C2(U) for any open U \ni x\} . Obviously, \scrS is a closed
set.

Assumptions 2.1 (function f).

f1. For each x0 \in \scrS , which is not an endpoint of \scrS , there exist a neighborhood
U \ni x0, open sets D\pm , and functions f\pm \in C2(R2) such that

f(x) = \chi D - (x)f - (x) + \chi D+
(x)f+(x), x\in U \setminus \scrS ,

D - \cap D+ =∅, D - \cup D+ =U \setminus \scrS ,(2.1)

where \chi D\pm are the characteristic functions of D\pm ,
f2. For each x0 \in \scrS there exists a neighborhood U \ni x0 such that \scrS \cap U is a C4

curve with nonzero curvature at every point.

Assumption 2.1.f2 implies that the curve \scrS is a union of finitely many sufficiently
smooth, convex segments. By assumption 2.1.f1, locally f(x)\equiv f - (x) on one side of
\scrS (x\in D - ), and f(x)\equiv f+(x), on the other side (x \in D+). In general, f - (x) \not = f+(x),
x \in \scrS , so f may have a discontinuity across \scrS . Since we require that f\pm \in C2(R2),
f - (x) and f+(x) are well-defined for x\in D+ and x\in D - , respectively.

The discrete tomographic data are given by

(2.2) \^f\epsilon (\alpha k, pj) :=
1

\epsilon 

\int \int 
w

\biggl( 
pj  - \vec{}\alpha k \cdot y

\epsilon 

\biggr) 
f(y)dy, pj = \=p+ j\Delta p, \alpha k = \=\alpha + k\Delta \alpha ,

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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700 ALEXANDER KATSEVICH

where w is a detector aperture function, \Delta p= \epsilon , \Delta \alpha = \kappa \epsilon , and \kappa > 0, \=p, \=\alpha , are fixed.
Here and below, \vec{}\alpha and \alpha in the same equation are always related by \vec{}\alpha = (cos\alpha , sin\alpha ).
The same applies to \vec{}\Theta = (cos \theta , sin\theta ) and \theta .

Assumptions 2.2 (aperture function w).

AF1. w is even and w \in C2
0 (R) (i.e., w is compactly supported, and w\prime \prime \in L\infty (R));

and
AF2.

\int 
w(p)dp= 1.

Hence, the data (2.2) represent the integrals of f along thin strips, and their
width (=O(\epsilon )) is determined by \epsilon and the support of w. This is in contrast with the
ideal case, where w is the Dirac \delta -function, and the data represent line integrals of f .

Reconstruction from discrete data is achieved by the formula

(2.3) f \mathrm{r}\mathrm{e}\mathrm{c}\epsilon (x) = - \Delta \alpha 

2\pi 

\sum 

| \alpha k| \leq \pi /2

1

\pi 

\int \partial p
\sum 

j \varphi 
\Bigl( 

p - pj

\epsilon 

\Bigr) 
\^f\epsilon (\alpha k, pj)

p - \alpha k \cdot x
dp,

where \varphi is an interpolation kernel. This is a discretized version of the classical filtered
backprojection inversion formula for the Radon transform in R2 [30]). The integral
with respect to p, which is understood in the principal value sense, is the filtering step
(the Hilbert transform), while the external sum is a quadrature rule corresponding to
the backprojection integral.

Assumptions 2.3 (interpolation kernel \varphi ).

IK1. \varphi is even and \varphi \in C2
0 (R);

IK2. \varphi is exact up to order 1, i.e.

(2.4)
\sum 

j\in Z
jm\varphi (u - j)\equiv um, m= 0,1, u\in R.

As is easily seen, assumption 2.3.IK2 implies
\int 
\varphi (p)dp= 1.

Definition 2.4 (see [18]). A point x0 \in R2 is generic if

1. No line through x0 is tangent to \scrS at a point where the curvature of \scrS is zero.
2. If x0 \in \scrS , the quantity \kappa x0 \cdot \vec{}\tau is irrational, where \vec{}\tau is a unit tangent vector

to \scrS at x0.

Our definition includes condition 1, because in [18] \scrS is allowed to have zero
curvature at isolated points. Here we assume that the curvature of \scrS is nonzero at
every point (Assumption 2.1.f2), so condition 1 is satisfied automatically. Consider
the function p(\alpha ) = \vec{}\alpha \cdot x0, whose graph is a curve in the Radon space. Let \alpha 0 be a
value such that the line \{ x \in R2 : \vec{}\alpha 0 \cdot x = p(\alpha 0)\} is tangent to \scrS at x0. As is easily
seen, | \kappa x0 \cdot \vec{}\tau | = (\Delta \alpha /\Delta p)| dp(\alpha = \alpha 0)/d\alpha | . Hence, this quantity is dimensionless.
Condition 2 says that p(\alpha ) has an irrational slope at \alpha = \alpha 0 if the scales along the p-
and \alpha -axes are \Delta p and \Delta \alpha , respectively (see (2.2)).

Pick a generic point x0 \in \scrS . Let \vec{}\Theta 0 be the unit normal to \scrS at x0, which points
from x0 towards the center of curvature of \scrS at x0. We will call the side of \scrS where \vec{}\Theta 0

points ``positive,"" and the opposite side, ``negative."" Without loss of generality, we can
assume in (2.1) that D+ is on the positive side of \scrS , and D - is on the negative side.
We formulate here the relevant result from [18] (a more general result is established
in [20]).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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ANALYSIS OF RESOLUTION 701

Theorem 2.5 ([18, 20]). Let (a) f satisfy Assumptions 2.1; (b) detector aperture
function w satisfy Assumptions 2.2; and (c) interpolation kernel \varphi satisfy Assumptions
2.3. Suppose x0 \in \scrS is generic, and let \vec{}\Theta 0 be the positive unit normal to \scrS at x0.
If f\mathrm{o}\mathrm{r}\mathrm{i}\mathrm{g}\epsilon is the reconstruction of the original, unperturbed f from the data (2.2) using
(2.3), then

(2.5) lim
\epsilon \rightarrow 0

f\mathrm{o}\mathrm{r}\mathrm{i}\mathrm{g}\epsilon (x0 + \epsilon \v x) = const + (f+(x0) - f - (x0))
\int \vec{}\Theta 0\cdot \v x

 - \infty 
(\varphi \ast w)(r)dr,

where f\pm (x0) are the same as in (2.1). If x0 \not \in \scrS is generic, then

(2.6) lim
\epsilon \rightarrow 0

f\mathrm{o}\mathrm{r}\mathrm{i}\mathrm{g}\epsilon (x0 + \epsilon \v x) = const.

The constants on the right in (2.5), (2.6) may depend on x0, but they are independent
of \v x.

Note that the goal of local resolution analysis is to study the resolution of recon-
struction of singularities of f . Any component of the reconstruction, which is locally
constant in the limit as \epsilon \rightarrow 0, is not relevant for our approach and is absorbed by the
constants in (2.5), (2.6).

The result in [18] is formulated in the ideal case with w equal to the \delta -function.
In [20, section 6] it is described how to account for a finite detector aperture. Hence
the above theorem is stated with w, which satisfies Assumptions 2.2.

Now we describe a family of perturbations \scrS \rightarrow \scrS \epsilon . Pick any small open set U
such that \scrS \cap U is a single, short curve segment. Suppose \scrS \cap U is parametrized by
I \ni \theta \rightarrow y(\theta )\in \scrS \cap U for some interval I. Here y \in C4(I), and y(\theta ) is the point where
the line \{ x\in R2 : (x - y(\theta )) \cdot \vec{}\Theta = 0\} is tangent to \scrS .

Let H\epsilon (s), s \in R, be a family of functions defined for all 0 < \epsilon \leq \epsilon 0, where \epsilon 0 is
sufficiently small, with the following properties,

(2.7) sup
s\in R,0<\epsilon \leq \epsilon 0

| \epsilon  - 1H\epsilon (s)| <\infty and sup
s\in R,h\not =0,0<\epsilon \leq \epsilon 0

| H\epsilon (s+ \epsilon 1/2h) - H\epsilon (s)| 
\epsilon | h| \gamma <\infty 

for some \gamma , 0<\gamma \leq 1. It is convenient to introduce the normalized function

(2.8) H0(s) := \epsilon  - 1H\epsilon (\epsilon 
1/2s).

The dependence of H0 on \epsilon is omitted from notation for simplicity. In terms of H0 we
have H\epsilon (s) = \epsilon H0(s/\epsilon 

1/2). Assumptions in (2.7) mean that H0 is uniformly bounded
and uniformly H\"older continuous with exponent \gamma . Define also

f\epsilon (x) =

\left\{ 
  
  

\Delta f(x), 0< t<H\epsilon (\theta ),

 - \Delta f, H\epsilon (\theta )< t< 0,

0, in all other cases,

\Delta f(x) :=f+(x) - f - (x), x= y(\theta ) + t\vec{}\Theta , \theta \in I.

(2.9)

As is easily seen, f\mathrm{m}\mathrm{o}\mathrm{d}
\epsilon (x) := f(x) - f\epsilon (x) is a function, in which \scrS is locally modified

by H\epsilon ; see Figure 1. At the points where H\epsilon (\theta ) > 0, a small region is removed from
D+ and added to D - (thereby extending f - to the region that was formerly part
of D+). At the points where H\epsilon (\theta ) < 0, a small region is removed from D - and
added to D+ (thereby extending f+ to the region that was formerly part of D - ). The
magnitude of the perturbation is O(\epsilon ). Let \scrS \epsilon denote the perturbed boundary. Thus,
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702 ALEXANDER KATSEVICH

f\mathrm{m}\mathrm{o}\mathrm{d}
\epsilon (x) is discontinuous across \scrS \epsilon instead of \scrS . Globally, the perturbed function
f\mathrm{m}\mathrm{o}\mathrm{d}
\epsilon (x) and the curve \scrS \epsilon are obtained by stitching together local perturbations. In
this construction, the functions H\epsilon and f\pm may vary from place to place (but the
latter are \epsilon -independent).

In Theorem 2.5 we obtained the DTB in the case of a sufficiently smooth \scrS . By
linearity, we can ignore the original function f and consider the reconstruction of only
the perturbation f\epsilon . This follows, because the inversion formula (2.3) is linear, and
the resolution of the reconstruction of f is described in Theorem 2.5.

Introduce the notation

\chi H(t) :=

\Biggl\{ 
1, 0\leq t\leq H,

0, t \not \in [0,H]
if H > 0, and \chi H(t) :=

\Biggl\{ 
 - 1, H \leq t\leq 0,

0, t \not \in [H,0]
if H < 0.

(2.10)

Let f \mathrm{r}\mathrm{e}\mathrm{c}\epsilon denote the reconstrution of only the perturbation f\epsilon (2.9). The first result
in this paper is as follows.

Theorem 2.6. Let

(a) f satisfy Assumptions 2.1;
(b) the detector aperture function w satisfy Assumptions 2.2;
(c) the interpolation kernel \varphi satisfy Assumptions 2.3; and
(d) in a neighborhood of any x0 \in \scrS , local perturbations H\epsilon satisfy (2.7).

Suppose x0 \in \scrS is generic, and let \theta 0 be the angle such that \vec{}\Theta 0 is the positive unit
normal to \scrS at x0. Set H0 := H\epsilon (\theta 0)/\epsilon . If f \mathrm{r}\mathrm{e}\mathrm{c}\epsilon is the reconstruction of f\epsilon from the
data (2.2) (with f = f\epsilon ) using (2.3), then

(2.11) lim
\epsilon \rightarrow 0

\Bigl[ 
f \mathrm{r}\mathrm{e}\mathrm{c}\epsilon (x0 + \epsilon \v x) - \Delta f(x0)(\varphi \ast w \ast \chi H0

)(\vec{}\Theta 0 \cdot \v x)
\Bigr] 
= 0,

where \Delta f is the same as in (2.9). If x0 \not \in \scrS is generic, then

(2.12) lim
\epsilon \rightarrow 0

f \mathrm{r}\mathrm{e}\mathrm{c}\epsilon (x0 + \epsilon \v x) = 0.

Even though smooth extensions of f+ into D - and of f - into D+ are not unique,
this nonuniqueness is irrelevant. The statement of Theorem 2.6 does not use the
values of the extensions. It involves only \Delta f (x), x\in \scrS , which is the jump of f across
\scrS and is determined uniquely. This observation is similar in spirit to the remark that
follows Theorem 2.5.

Comparing and combining (2.5) and (2.11) we see that a nonsmooth perturbation
in f\mathrm{m}\mathrm{o}\mathrm{d}

\epsilon (x) leads to the following two effects:

1. Local shifting of the reconstructed boundary x0 \rightarrow x0 +H\epsilon (\theta 0)\vec{}\Theta 0, and
2. the DTB retains its structure of the 1 dimensional (1D) convolution of the

ideal edge response (step function with the jump at \vec{}\Theta 0 \cdot x0 +H\epsilon (\theta 0)) with
\varphi \ast w.

3. Beginning of the proof of Theorem 2.6. Pick a generic x0 \in \scrS . By
Assumptions 2.1, linearity, and the appropriate choice of coordinates we can consider
only one domain U \ni x0 and assume that

1. \scrS (= \scrS \cap U) is sufficiently short and parametrized by [ - a,a] \ni \theta \rightarrow y(\theta ) for
some small a> 0;

2. x0 = y(0), so \vec{}\Theta 0 = (1,0);
3. R(\theta ) = \vec{}\Theta \cdot y\prime \prime (\theta )> 0, | \theta | \leq a;
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ANALYSIS OF RESOLUTION 703

4. supp(f)\subset U ;
5. f \equiv 0 in a neighborhood of the endpoints of \scrS .

Recall that \vec{}\Theta 0 is the unit positive normal to \scrS at x0, and R(\theta ) is the radius of curva-
ture of \scrS at y(\theta ). By assumptions 1 and 5 above, f(x)\equiv 0 in a neighborhood of y(\pm a).
Using Assumption 2.1.f2 and that \scrS is sufficiently short (i.e., 0<a\ll 1) we have

1. y(\theta ) is a regular parametrization with y \in C4([ - a,a]) (i.e., bounded deriva-
tives up to the fourth order);

2. \scrS satisfies

(3.1)
max| \theta | \leq a | \vec{}\Theta \cdot y\prime \prime \prime (\theta )| 

min| \theta | \leq aR(\theta )
a\ll 1;

3. there exists c > 0 such that

(3.2) \vec{}\Theta \cdot (x0  - y(\theta ))\geq c\theta 2, | \theta | \leq a;

4. no line \{ x\in R2 : \vec{}\alpha \cdot x= p\} is tangent to \scrS if a< | \alpha | \leq \pi /2.
Additional requirements on the smallness of a will be formulated later as needed.

Pick some A\gg 1 and define

(3.3) \Omega 1 := \{ \alpha : | \alpha | \leq A\epsilon 1/2\} , \Omega 2 := [ - a,a] \setminus \Omega 1, \Omega 3 := [ - \pi /2, \pi /2] \setminus [ - a,a].

Let f (j) denote the reconstruction obtained by the formula in (2.3) with \alpha k restricted

to \Omega j , j = 1,2,3. The first term is split into two: f (1) = f
(1)
1 + f

(1)
2 , where f

(1)
1 is the

leading singular term of f (1). The term f
(1)
1 is defined following (3.7) below.

The result in Theorem 2.6 involves the limit of f \mathrm{r}\mathrm{e}\mathrm{c}\epsilon (x0 + \epsilon \v x) as \epsilon \rightarrow 0. Of the
three functions f (j) that make up f \mathrm{r}\mathrm{e}\mathrm{c}\epsilon , two depend on the new parameter A \gg 1.
The logic of our proof is based on computing the double limit limA\rightarrow \infty lim\epsilon \rightarrow 0 f

(j),
j = 1,2. It is important that A is fixed when the limit as \epsilon \rightarrow 0 is computed.

3.1. Estimation of \bfitf 
(1)
1 . Substitute (2.9) into (2.2):

\^f\epsilon (\alpha ,p) =
1

\epsilon 

\int a

 - a

\int H\epsilon (\theta )

0

w

\Biggl( 
p - \vec{}\alpha \cdot (y(\theta ) + t\vec{}\Theta )

\epsilon 

\Biggr) 
F (\theta , t)dtd\theta 

=

\int a

 - a

\int \epsilon  - 1H\epsilon (\theta )

0

w

\biggl( 
\^P  - \vec{}\alpha \cdot y(\theta ) - y(\alpha )

\epsilon 
 - \^t cos(\theta  - \alpha )

\biggr) 
F (\theta , \epsilon \^t)d\^td\theta ,

F (\theta , t) :=\Delta f(y(\theta ) + t\vec{}\Theta )(R(\theta ) - t), \^P :=
p - \vec{}\alpha \cdot y(\alpha )

\epsilon 
.

(3.4)

Here R(\theta ) - t=det(dy/d(\theta , t)). We assume that \epsilon is sufficiently small, and R(\theta ) - t > 0
on the domain of integration. Denote

(3.5) \~\alpha := \alpha /\epsilon 1/2, \nu := \theta  - \alpha , \~\nu := \nu /\epsilon 1/2.

Generally, throughout the paper a hat above a variable denotes rescaling of the original
variable by a factor of \epsilon , and a tilde above a variable denotes rescaling by a factor of
\epsilon 1/2. For example, \^p= p/\epsilon and \~\alpha = \alpha /\epsilon 1/2. Then

\^f\epsilon (\alpha ,p) = \epsilon 1/2g(\alpha , \^P ),

g(\alpha , \^p) :=

\int \~\nu +

\~\nu  - 

\int \epsilon  - 1H\epsilon (\alpha +\epsilon 1/2\~\nu )

0

w

\biggl( 
\^p - \vec{}\alpha \cdot y(\alpha + \epsilon 1/2\~\nu ) - y(\alpha )

\epsilon 
 - \^t cos(\epsilon 1/2\~\nu )

\biggr) 

\times F (\alpha + \epsilon 1/2\~\nu , \epsilon \^t)d\^td\~\nu 
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704 ALEXANDER KATSEVICH

=

\int \~\nu +

\~\nu  - 

\int H0(\~\alpha +\~\nu )

0

w

\biggl( 
\^p - 

\biggl( 
\vec{}\alpha \cdot y\prime \prime (\alpha )\~\nu 2

2
+
O(\epsilon 3/2| \~\nu | 3)

\epsilon 

\biggr) 
 - \^t
\bigl( 
1 +O(\epsilon \~\nu 2)

\bigr) \biggr) 

\times 
\Bigl( 
\Delta f(y(\alpha ))R(\alpha ) +O(\epsilon 1/2| \~\nu | ) +O(\epsilon )

\Bigr) 
d\^td\~\nu ,(3.6)

where \~\nu \pm = (\pm a - \alpha )/\epsilon 1/2. In this subsection, | \alpha | =O(\epsilon 1/2), so R(\alpha ) - R(0) =O(\epsilon 1/2),
and we can replace \vec{}\alpha \cdot y\prime \prime (\alpha ) = R(\alpha ) with R0 = R(0) in the argument of w. The
corresponding error term is O(\epsilon 1/2\~\nu 2). A similar argument holds for the product
\Delta f(y(\alpha ))R(\alpha ), and the corresponding error term is O(\epsilon 1/2).

Let us look at the leading term of g, which is obtained by neglecting all the big-O
terms and extending the integral with respect to \~\nu to all of R:

(3.7) gl(\alpha , \^p) :=\Delta f(x0)R0

\int 

R

\int H0(\~\alpha +\~\nu )

0

w
\bigl( 
\^p - (R0/2)\~\nu 

2  - \^t
\bigr) 
d\^td\~\nu ,

where \~\alpha and H0 are the same as in (3.5) and (2.8), respectively. The subscript ``l""
signifies that gl is the leading term of g. By definition, substitution of the resulting
approximation \^f\epsilon (\alpha ,p) \approx \epsilon 1/2gl(\alpha , \^P ) into (2.3) (with \^P as in (3.4)) and restricting

the sum to \alpha k \in \Omega 1 gives f
(1)
1 .

Lemma 3.1. Fix any \delta , 0< \delta < 1/2. For some c and any \alpha \in ( - a,a) one has

(3.8) g\ast (\alpha , \^p)\equiv 0 for \^p < c,

(3.9) g\ast (\alpha , \^p) =O(\^p - 1/2), \^p\rightarrow +\infty ,

and

g\ast (\alpha , \^p+\Delta \^p) - g\ast (\alpha , \^p) =O
\Bigl( 
| \Delta \^p| \gamma \^p - (1+\gamma )/2

\Bigr) 
if | \Delta \^p| =O(\^p\delta ), \^p\rightarrow +\infty .(3.10)

The above assertions hold for both g\ast = g and g\ast = gl. The big-O terms in (3.9) and
(3.10) are uniform with respect to \alpha \in ( - a,a) and \epsilon > 0 sufficiently small.

A proof of the lemma is in Appendix A. Substitute the data (2.2) into the inversion
formula (2.3) and use (3.4), (3.6):

1

\pi 

\sum 

j

\int \partial p\varphi 
\Bigl( 

p - pj

\epsilon 

\Bigr) 

p - \alpha \cdot x dp \^f\epsilon (\alpha ,pj)

= \epsilon  - 1/2
\sum 

j

(\scrH \varphi \prime )

\biggl( 
\alpha \cdot x - \=p

\epsilon 
 - j

\biggr) 
g

\biggl( 
\alpha , j  - \alpha \cdot y - \=p

\epsilon 

\biggr) 
,

(3.11)

where \scrH is the Hilbert transform. In this subsection we approximate g \approx gl and
introduce

\Psi l(\~\alpha , \^p, q) :=
\sum 

j

(\scrH \varphi \prime ) (\^p - j)gl(\alpha , j  - q).(3.12)

Recall that we continue using the convention that \alpha and \~\alpha are related as in (3.5).
Even though \Psi l depends on \epsilon via gl and H0 (see (3.7)), this dependence is omitted

from notation for simplicity. All the properties of \Psi l to be established below are
uniform with respect to \epsilon and \~\alpha . Clearly, \Psi l(\~\alpha , \^p  - n, q  - n) = \Psi l(\~\alpha , \^p, q) for any
n\in Z.

We need the asymptotics of \Psi l(\~\alpha , \^p, q) as \^p  - q \rightarrow \infty . By the invariance of \Psi l

with respect to integer shifts, we can assume that q is confined to a bounded set, e.g.,
q \in [0,1) and \^p\rightarrow \infty . The following result is proven in Appendix B.
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ANALYSIS OF RESOLUTION 705

Lemma 3.2. One has

\Psi l(\~\alpha , \^p, q) =

\Biggl\{ 
O(| \^p|  - 3/2), \^p\rightarrow  - \infty ,

O(\^p - (1+\delta )/2), \^p\rightarrow +\infty ,
\delta =

\gamma 

\gamma + 1
, | \~\alpha | < \epsilon  - 1/2a, q \in [0,1),(3.13)

where the big-O terms are uniform with respect to \~\alpha , q in the indicated sets and \epsilon > 0
sufficiently small.

From (3.4), (3.6), (3.7), (3.11), and (3.12), the leading term of the reconstruction
is given by

f
(1)
1 (x0 + \epsilon \v x) = - 1

2\pi 

\Delta \alpha 

\epsilon 1/2

\sum 

\alpha k\in \Omega 1

\Psi l

\biggl( 
\alpha k

\epsilon 1/2
,
\vec{}\alpha k \cdot x - \=p

\epsilon 
,
\vec{}\alpha k \cdot y(\alpha k) - \=p

\epsilon 

\biggr) 

= - \kappa \epsilon 1/2

2\pi 

\sum 

\alpha k\in \Omega 1

\Psi l

\biggl( 
\alpha k

\epsilon 1/2
, \vec{}\alpha k \cdot \v x+

\vec{}\alpha k \cdot (x0  - y(\alpha k))

\epsilon 
+ qk, qk

\biggr) 
,

qk :=

\biggl\{ 
\vec{}\alpha k \cdot y(\alpha k) - \=p

\epsilon 

\biggr\} 
.

(3.14)

Here \{ r\} := r - \lfloor r\rfloor denotes the fractional part of r, and \lfloor r\rfloor is the floor function, i.e.
the largest integer not exceeding r.

Lemma 3.3. One has:

\Psi l(\~\alpha +\Delta \~\alpha , \^p, q) - \Psi l(\~\alpha , \^p, q) =O(| \Delta \~\alpha | \gamma ), \Delta \~\alpha \rightarrow 0,

\Psi l(\~\alpha , \^p+\Delta \^p, q) - \Psi l(\~\alpha , \^p, q) =O(| \Delta \^p| \mu ), \Delta \^p\rightarrow 0,

\Psi l(\~\alpha , \^p, q+\Delta q) - \Psi l(\~\alpha , \^p, q) =O(| \Delta q| ), \Delta q\rightarrow 0,

(3.15)

for any \mu < 1. The big-O terms are uniform with respect to \~\alpha \in \epsilon  - 1/2( - a,a), \^p and q
confined to any bounded set, and \epsilon > 0 sufficiently small.

Proof. The first line follows from (2.7), (3.7), (3.12), and the fact that \scrH \varphi \prime (t) =
O(t - 2), t\rightarrow \infty .

To prove the second line, note that the pseudodifferential operator \scrH \partial /\partial t \in 
S1
1,0(R \times R) and \varphi \in C2

0 (R), so \scrH \varphi \prime \in C1
\ast (R), where Cs

\ast (R), s > 0, denotes the
H\"older--Zygmund space (see item 2 in Remark 6.4 and Theorem 6.19 in [1]). Since
C1

\ast (R)\subset C\mu 
\ast (R) for any \mu \in (0,1), and the latter space consists of functions that are

H\"older continuous with exponent \mu (e.g., see Theorem 6.1 in [1]), we get that

(3.16) | \scrH \varphi \prime (t+\Delta t) - \scrH \varphi \prime (t)| \leq c1

\Biggl\{ 
| \Delta t| /(1 + t2), | t| \geq c2,

| \Delta t| \mu , | t| \leq c2

for some c1,2 > 0 and all | \Delta t| sufficiently small. The desired assertion now follows.
The third line follows by replacing q with q + \Delta q in (3.12) and then in (3.7),

subtracting \Psi l(\~\alpha , \^p, q) from \Psi l(\~\alpha , \^p, q + \Delta q), and then using that w is compactly
supported.

By (3.14) and the second line in Lemma 3.3,

(3.17) f
(1)
1 (x0 + \epsilon \v x) = - \kappa \epsilon 

1/2

2\pi 

\sum 

\alpha k\in \Omega 1

\Psi l

\biggl( 
\alpha k

\epsilon 1/2
, \vec{}\Theta 0 \cdot \v x+

R0

2

\alpha 2
k

\epsilon 
+ qk, qk

\biggr) 
+O(\epsilon \mu /2).

We can use Lemma 3.3, because the arguments of \Psi l remain bounded when \alpha k \in \Omega 1.
With \~\alpha k := \alpha k/\epsilon 

1/2, we have \Delta \~\alpha = \kappa \epsilon 1/2. Using that x0 is generic and following the
same approach as in [18] lead to (condition 2 in Definition 2.4 is essential in this step)
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706 ALEXANDER KATSEVICH

(3.18) lim
\epsilon \rightarrow 0

\Biggl( 
f
(1)
1 (x0 + \epsilon \v x) +

1

2\pi 

\int 

| \~\alpha | \leq A

\int 1

0

\Psi l

\biggl( 
\~\alpha , \vec{}\Theta 0 \cdot \v x+

R0

2
\~\alpha 2 + q, q

\biggr) 
dqd\~\alpha 

\Biggr) 
= 0.

The double integral in (3.18) does not necessarily have a limit as \epsilon \rightarrow 0, since the
dependence of H0 and \Psi l on \epsilon (see (3.7) and (3.12)) can be complicated.

Note that the argument in this subsection establishes the limit in (3.18), but it
does not say anything about the rate of convergence.

3.2. Estimation of \bfitf 
(1)
2 . Recall that f

(1)
2 is the less singular part of f (1): f

(1)
2 =

f (1) - f (1)1 , where f
(1)
1 is the leading singular term of f (1) and is defined following (3.7).

Define (cf. (3.6) and (3.7))

(3.19) \Delta g(\alpha , \^p) := g(\alpha , \^p) - gl(\alpha , \^p).

Note that gl (and, therefore, \Delta g) is not compactly supported in \^p, even though g
is compactly supported. However, inserting in (3.7) the same limits \~\nu \pm as in (3.6),
introduces only a small error:

(3.20) gl(\alpha , \^p) - \Delta f(x0)R0

\int \~\nu +

\~\nu  - 

\int H0(\~\alpha +\~\nu )

0

w
\bigl( 
\^p - (R0/2)\~\nu 

2  - \^t
\bigr) 
d\^td\~\nu =O(\epsilon 1/2).

The big-O term in (3.20) is uniform with respect to \alpha in compact subsets of ( - a,a).
The latter condition ensures that \~\nu \pm = O(\epsilon  - 1/2). In this subsection we assume that
\alpha \in \Omega 1, so the estimate (3.20) is indeed uniform. Since w \in C2

0 (R) and F \in C2([ - a,a]\times 
[ - \delta , \delta ]) for some \delta > 0, we have from (3.6), the paragraph following (3.6), and (3.20)

| \Delta g(\alpha , \^p)| \leq c

\Biggl\{ 
| \^p|  - 1/2

\bigl[ 
\epsilon 1/2| \^p| + \epsilon  - 1(\epsilon | \^p| )3/2

\bigr] 
, c\leq | \^p| \leq c/\epsilon ,

\epsilon 1/2, | \^p| \leq c or | \^p| \geq c/\epsilon 

\leq c\epsilon 1/2(| \^p| + 1)

(3.21)

for some c > 0, which may have different values in different places. Here we have used
that in (3.6), c1 \leq \~\nu 2/| \^p| \leq c2 if | \^p| \geq c3 for some c1,2,3 > 0.

Define similarly to (3.12):

(3.22) \Delta \Psi (\~\alpha , \^p, q) :=
\sum 

j

(\scrH \varphi \prime ) (\^p - j)\Delta g(\alpha , j  - q).

Substitute (3.21) into (3.22):

| \Delta \Psi (\~\alpha , \^p, q)| \leq 
\sum 

| j| \geq O(\epsilon  - 1)

O(\epsilon 1/2)

1 + (\^p - j)2
+

\sum 

| j| \leq O(\epsilon  - 1)

O(\epsilon 1/2)(| j| + 1)

1 + (\^p - j)2

=O(\epsilon 1/2 ln(1/\epsilon )),

(3.23)

assuming that \^p in (3.23) is confined to a bounded set, e.g., | \^p| \leq c. Here c > 0 can
be any fixed number. The restriction on \^p is justified, since \alpha k \in \Omega 1. Indeed, (3.3),
(3.14), and (3.17), imply that | \^p| \lesssim (R0/2)A

2 when A \gg 1. Clearly, the estimate
(3.23) is uniform with respect to \^p \in [ - c, c], \alpha \in \Omega 1 (i.e., | \~\alpha | \leq A), q \in [0,1), and all
\epsilon > 0 sufficiently small. Recall that A\gg 1 is fixed when computing the limit as \epsilon \rightarrow 0.
Summing over all \alpha k \in \Omega 1 similarly to (3.14), yields

(3.24) f
(1)
2 (x0 + \epsilon \v x) = \epsilon 1/2

\sum 

| \alpha k| \in \Omega 1

O(\epsilon 1/2 ln(1/\epsilon )) =O(\epsilon 1/2 ln(1/\epsilon )).
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ANALYSIS OF RESOLUTION 707

3.3. Estimation of \bfitf (2). Recall that f (2) is the reconstruction obtained by
(2.3) with \alpha k restricted to \Omega 2 (see (3.3)). From (3.6), we get, similarly to (3.14),

f (2)(x0 + \epsilon \v x) = - \epsilon 1/2
\kappa 

2\pi 

\sum 

\alpha k\in \Omega 2

\Psi 

\biggl( 
\alpha k, \vec{}\alpha k \cdot \v x+

\vec{}\alpha k \cdot (x0  - y(\alpha k))

\epsilon 
+ qk, qk

\biggr) 
,

\Psi (\alpha , \^p, q) :=
\sum 

j

(\scrH \varphi \prime ) (\^p - j)g(\alpha , j  - q),
(3.25)

and the qk are defined in (3.14). By Lemma 3.1, \Psi also satisfies (3.13). By (3.2),

| f (2)(x0 + \epsilon \v x)| \leq c1\epsilon 
1/2

\sum 

\alpha k\in \Omega 2

\bigm| \bigm| \bigm| \bigm| \Psi 
\biggl( 
\alpha k, \vec{}\alpha k \cdot \v x+

\vec{}\alpha k \cdot (x0  - y(\alpha k))

\epsilon 
+ qk, qk

\biggr) \bigm| \bigm| \bigm| \bigm| 

\leq c2\epsilon 
1/2

\sum 

k\geq A/\epsilon 1/2

(k2\epsilon ) - (1+\delta )/2 \leq c3

\int \infty 

A

x - (1+\delta )dx=O(A - \delta )
(3.26)

for \delta defined in (3.13) and some c1,2,3. Consequently,

(3.27) lim
A\rightarrow \infty 

lim
\epsilon \rightarrow 0

f (2)(x0 + \epsilon \v x) = 0.

3.4. Estimation of \bfitf (3). Following our convention, the third term f (3) is the
reconstruction obtained by (2.3) with \alpha k restricted to \Omega 3. By construction, \alpha \in \Omega 3

implies that \alpha \cdot y\prime (\theta ) \not = 0, | \theta | \leq a. Hence, we can express \theta in terms of s by solving
s= \alpha \cdot y(\theta ). Suppose, for example, that \alpha \cdot y\prime (\theta )> 0. The case when this expression
is negative is completely analogous. From the first line in (3.4) we find

\^f\epsilon (\alpha , \epsilon \^p) =

\int \alpha \cdot y(a)

\alpha \cdot y( - a)

\int \epsilon  - 1H\epsilon (\theta (s))

0

w
\Bigl( 
\^p - s

\epsilon 
 - \^t cos(\theta (s) - \alpha )

\Bigr) 
F (\theta (s), \epsilon \^t)d\^t \theta \prime (s)ds

= \epsilon 

\int 

R

\int \epsilon  - 1H\epsilon (\theta (\epsilon \^s))

0

w
\bigl( 
\^p - \^s - \^t cos(\theta (\epsilon \^s) - \alpha )

\bigr) 
d\^tF1(\epsilon \^s)d\^s+O(\epsilon 2),

F1(s) :=F (\theta (s),0)\theta 
\prime (s),

(3.28)

where F is defined in (3.4).
Strictly speaking, ds/d\theta can approach zero (i.e., \theta \prime (s) \rightarrow \infty ) when \alpha \rightarrow a+ and

\theta \rightarrow a - or \alpha \rightarrow  - a - and \theta \rightarrow  - a+. However, f(x) \equiv 0 in a neighborhood of y(\pm a),
so \theta \prime (s) is bounded on the support of F (\theta (s), \epsilon \^t). Additionally, this allows us to (i)
extend F1(s) from [\alpha \cdot y( - a), \alpha \cdot y(a)] to R by zero without reducing the smoothness
of F1, and (ii) integrate with respect to \^s over R.

Using (2.7) and that w is compactly supported, replace \^s with \^p in the arguments
of \theta and F1 in the last integral in (3.28):

\^f\epsilon (\alpha , \epsilon \^p) = \epsilon 

\int \int \epsilon  - 1H\epsilon (\theta (\epsilon \^p))

0

w
\bigl( 
\^p - \^s - \^t cos(\theta (\epsilon \^p) - \alpha )

\bigr) 
d\^tF1(\epsilon \^p)d\^s+O(\epsilon 1+(\gamma /2))

= \epsilon F1(\epsilon \^p)H0

\Bigl( 
\epsilon  - 1/2\theta (\epsilon \^p)

\Bigr) 
+O(\epsilon 1+(\gamma /2)).

(3.29)

Substitute (3.29) into (2.3) and sum over j:
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708 ALEXANDER KATSEVICH

1

\epsilon 

\sum 

j

(\scrH \varphi \prime )

\biggl( 
p - pj
\epsilon 

\biggr) \Bigl( 
\epsilon F1(pj)H0

\Bigl( 
\epsilon  - 1/2\theta (pj)

\Bigr) 
+O(\epsilon 1+(\gamma /2))

\Bigr) 

= I\epsilon (\alpha ,p) +O(\epsilon \gamma /2),

I\epsilon (\alpha ,p) :=
\sum 

j

(\scrH \varphi \prime )

\biggl( 
p - pj
\epsilon 

\biggr) 
F1(pj)H0

\Bigl( 
\epsilon  - 1/2\theta (pj)

\Bigr) 
.

(3.30)

Since
\sum 

j(\scrH \varphi \prime )(\^p - j)\equiv 0, we have

I\epsilon (\alpha ,p) =
\sum 

j

(\scrH \varphi \prime )

\biggl( 
p - pj
\epsilon 

\biggr) \Bigl( 
F1(pj)H0

\bigl( 
\epsilon  - 1/2\theta (pj)

\bigr) 
 - F1(p)H0

\bigl( 
\epsilon  - 1/2\theta (p)

\bigr) \Bigr) 
(3.31)

and

(3.32) | I\epsilon (\alpha ,p)| \leq c
\sum 

j

(1 + (\^p - j)
2
) - 1

\biggl[ 
| \epsilon 1/2(j  - \^p)| \gamma + \epsilon | j  - \^p| 

1 + \epsilon | j  - \^p| 

\biggr] 
=O(\epsilon \gamma /2),

where \^p= (p - \=p)/\epsilon . The second term in brackets is written as a fraction, because F1

is bounded. Writing it in a more conventional form \epsilon | j  - \^p| would cause the series in
the upper bound to diverge. The above estimate is uniform with respect to \alpha \in \Omega 3,
p\in R, and \epsilon > 0 sufficiently small. Summing over \alpha k in the inversion formula we find

(3.33) f (3)(x) = c\Delta \alpha 
\sum 

\alpha k\in \Omega 3

I\epsilon (\alpha k, \vec{}\alpha k \cdot x) +O(\epsilon \gamma /2) =O(\epsilon \gamma /2).

4. Computing the DTB. Examples. Since A \gg 1 can be arbitrarily large,
(3.18), (3.24), (3.27), and (3.33) imply

lim
\epsilon \rightarrow 0

\Bigl( 
f \mathrm{r}\mathrm{e}\mathrm{c}\epsilon (x0 + \epsilon \v x) - I(\vec{}\Theta 0 \cdot \v x, \epsilon )

\Bigr) 
= 0,

I(h, \epsilon ) := - 1

2\pi 

\int 

R

\int 1

0

\Psi l

\bigl( 
\~\alpha ,h+ (R0/2)\~\alpha 

2 + q, q
\bigr) 
dqd\~\alpha ,

(4.1)

where \Psi l is defined in (3.12), and R0 is the radius of curvature of \scrS at x0 = y(0).
Recall that the dependence of I(h, \epsilon ) on \epsilon comes from the dependence of H0 on \epsilon , and
H0 appears in the definition of \Psi l (see (3.12)). By Lemma 3.2, the double integral
above is absolutely convergent. Therefore,

I(h, \epsilon ) := - 1

2\pi 
lim

\epsilon 1\rightarrow 0+
J(h, \epsilon 1),

J(h, \epsilon 1) :=

\int 

R

\int 1

0

\Psi l

\bigl( 
\~\alpha ,h+ (R0/2)\~\alpha 

2 + q, q
\bigr) 
e - \epsilon 1 \~\alpha 

2

dqd\~\alpha .

(4.2)

By (3.7) and (3.12), the double integral in (4.2) transforms to the following expression:

J(h, \epsilon 1) = C

\int \int 

R2

(\scrH \varphi \prime )
\bigl( 
h+ (R0/2)\~\alpha 

2  - q
\bigr) 
e - \epsilon 1 \~\alpha 

2

\times 
\int 

R

\int H0(\~\alpha +\~\nu )

0

w
\bigl( 
q - (R0/2)\~\nu 

2  - \^t
\bigr) 
d\^td\~\nu dqd\~\alpha , C :=\Delta f(x0)R0.

(4.3)

We inserted an exponential factor in (4.2), since the quadruple integral in (4.3) would
otherwise not be absolutely convergent. Simplifying and changing variables u= \~\alpha +\~\nu ,
v= \~\alpha  - \~\nu , gives
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ANALYSIS OF RESOLUTION 709

J(h, \epsilon 1) = C

\int \int 

R2

\int H0(\~\alpha +\~\nu )

0

(\scrH \varphi \prime \ast w)
\bigl( 
h+ (R0/2)(\~\alpha 

2  - \~\nu 2) - \^t
\bigr) 
e - \epsilon 1 \~\alpha 

2

d\^td\~\nu d\~\alpha 

=
C

2

\int \int 

R2

(\scrH \varphi \prime \ast w \ast \chi H0(u)) (h+ (R0/2)uv) e
 - \epsilon 1(u+v)2/4dudv.

(4.4)

See (2.10) for the definition of \chi H .
Represent the integrand in terms of its Fourier transform and integrate with

respect to v:

J(h, \epsilon 1) = - C

2

1

2\pi 

\int \int \int 

R3

| \lambda | \~\varphi (\lambda ) \~w(\lambda )\~\chi H0(u)(\lambda )e
 - i\lambda (h+(R0/2)uv)

\times e - \epsilon 1(u+v)2/4dudvd\lambda 

= - C

4\pi 

\biggl( 
4\pi 

\epsilon 1

\biggr) 1/2 \int \int 

R2

| \lambda | \~\varphi (\lambda ) \~w(\lambda )\~\chi H0(u)(\lambda ) exp

\biggl( 
i
\lambda R0u

2

2

\biggr) 

\times exp

\biggl( 
 - (\lambda R0)

2

4\epsilon 1
u2
\biggr) 
due - i\lambda hd\lambda ,

(4.5)

where tildes above functions denote the 1D Fourier transform:

(4.6) \~\varphi (\lambda ) =

\int 
\varphi (x)ei\lambda xdx.

The double integral in (4.5) converges absolutely, since \~\varphi (\lambda ) =O(\lambda  - 2), \lambda \rightarrow \infty .

Changing the variable s= u/\epsilon 
1/2
1 , we get by dominated convergence:

lim
\epsilon 1\rightarrow 0+

J(h, \epsilon 1) = - C

(4\pi )1/2

\int \int 

R2

| \lambda | \~\varphi (\lambda ) \~w(\lambda )\~\chi H0(0)(\lambda )

\times exp

\biggl( 
 - (\lambda R0)

2

4
s2
\biggr) 
dse - i\lambda hd\lambda 

= - C

R0

\int 

R
\~\varphi (\lambda ) \~w(\lambda )\~\chi H0(0)(\lambda ) e

 - i\lambda hd\lambda .

(4.7)

An integrable upper bound is c| \lambda | | \~\varphi (\lambda )| exp( - (\lambda R0s)
2/4) \in L1(R2) for some c > 0.

Recall that \~\varphi (\lambda )\in L1(R) due to assumption 2.3(IK1). Finally,

I(h, \epsilon ) =
C

R0
(\varphi \ast w \ast \chi H0(0))(h) =\Delta f(x0)(\varphi \ast w \ast \chi H0(0))(h).(4.8)

Example 1. Constant width layer. Suppose H0(\theta )\equiv H is a constant. In this case
H\epsilon (\theta ) = \epsilon H, and (2.5) and (2.11) are consistent with each other. Indeed, let us return
to the situation in the remark following (2.9), where f\epsilon modifies the original function
f . Application of (2.5) to f\mathrm{m}\mathrm{o}\mathrm{d}

\epsilon = f  - f\epsilon gives (2.5), where \vec{}\Theta 0 \cdot \v x is replaced with
\vec{}\Theta 0 \cdot \v x - H. This is precisely what we get by subtracting (2.11) from (2.5).

Example 2. Fractal boundary. Suppose that H\epsilon is given by

H\epsilon (s) := \epsilon 1 - (\gamma /2)
\infty \sum 

n=n0(\epsilon )

r - \gamma n\phi (rns),

0<\gamma < 1, r > 1, \phi (0) = 0, n0(\epsilon ) = c - \lfloor (1/2) logr \epsilon \rfloor , c\in Z,

(4.9)

where \phi \in C\beta 
\ast (R), i.e., \phi is bounded and H\"older continuous with exponent \beta , \gamma < \beta < 1.

By (2.8),
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710 ALEXANDER KATSEVICH

H0(s) :=\epsilon 
 - (\gamma /2)

\infty \sum 

n=n0(\epsilon )

r - \gamma n\phi (rn\epsilon 1/2s)

=
\infty \sum 

n=c

r - \gamma (n+q\epsilon )\phi (rn+q\epsilon s), q\epsilon = \{ (1/2) logr \epsilon \} .
(4.10)

The function H0 is a real Weierstrass-type function (see [6]), which is continuous
everywhere, differentiable nowhere, and its graph is a curve whose fractal dimension
exceeds one [6]. See also [3] for a slightly less general case, where \phi is Z-periodic. It is
well known that H0 is bounded and H\"older continuous with exponent \gamma . From this,
both properties in (2.7) follow immediately. Thus, our approach allows the analysis
of reconstruction of functions with singularities along rough (e.g., fractal) curves.

5. Remote singularities. End of the proof of Theorem 2.6. In this section
we pick x0 \not \in \scrS and show that the reconstruction of f\epsilon from discrete data does not
create artifacts in a neighborhood of x0 (i.e., there are no nonlocal artifacts there) as
long as x0 is generic.

Without loss of generality, we may suppose that x0 satisfies (x0  - y(0)) \cdot \vec{}\Theta 0 = 0,
but x0 \not = y(0). We can still use Lemma 3.2, because it deals only with tomographic
data and is independent of the reconstruction point. If x0 \not \in \scrS , then \Delta f and R0 in
(3.7) are computed at the point of tangency y(0). Recall that, by Lemma 3.1, \Psi 
satisfies Lemma 3.2 as well. Now, the function \vec{}\Theta \cdot (x0 - y(\theta )) has a root of first order
at \theta = 0 (by condition 1 in the definition of a generic point), so

| f (1)(x0 + \epsilon \v x) + f (2)(x0 + \epsilon \v x)| 

\leq c1\epsilon 
1/2

\sum 

| \alpha k| \leq a

\bigm| \bigm| \bigm| \bigm| \Psi 
\biggl( 
\alpha k, \vec{}\alpha k \cdot \v x+

\vec{}\alpha k \cdot (x0  - y(\alpha k))

\epsilon 
+ qk, qk

\biggr) \bigm| \bigm| \bigm| \bigm| 

\leq c2\epsilon 
1/2

O(\epsilon  - 1)\sum 

k=1

k - (1+\delta )/2 =O(\epsilon \delta /2).

(5.1)

Here \delta is the same as in (3.13), \Psi is defined in (3.25), and the qk's are defined in
(3.14). In this argument we assume that a > 0 is sufficiently small. How small a
should be depends on the distance | x0  - y(0)| . This distance depends only on the
properties of f , e.g., the geometry of \scrS , and, therefore, is fixed for any given f . So a
sufficiently small a> 0 can be selected and then held fixed throughout the proof.

The reconstruction at x0 \not \in \scrS combines contributions of two types: (1) from
a neighborhood of each point of tangency (e.g., like y(0)), and (2) from all other
segments of \scrS . The latter segments have the property that no line through x0 is
tangent to them. In this section we proved that contributions of the first type are
O(\epsilon \delta /2). The estimate of f (3) in (3.33) does not depend on the location of x0, so it
applies in the case x0 \not \in \scrS as well. Using the linearity of the Radon transform and a
partition of unity type of argument, (3.33) yields that the sum of all contributions of
the second type is of order O(\epsilon \gamma /2). Hence f \mathrm{r}\mathrm{e}\mathrm{c}\epsilon (x0+ \epsilon \v x)\rightarrow 0 as \epsilon \rightarrow 0 if x0 \not \in \scrS , which
proves (2.12). Combining with the results in section 4 (see (4.1) and (4.8)), we finish
the proof of (2.11). Theorem 2.6 is proven.

6. Numerical experiments I. Our first experiment is with an oscillatory per-
turbation. The perturbed boundary \scrS \epsilon oscillates around a curve \scrS , which is the
boundary of the disk centered at xc = (0.1,0.2) with radius R= 0.3. The equation of
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ANALYSIS OF RESOLUTION 711

Fig. 2. Entire oscillatory phantom, \gamma = 1. Left column: Np = 501; right column: Np = 1001.
Top row: originals; bottom row: reconstructions.

\scrS \epsilon is r(\theta ) = R+ 2\epsilon cos(0.71\theta /\epsilon 1/2) in polar coordinates with the origin at the center
of the disk. Here

\epsilon =\Delta p= 1.2/(Np  - 1), \Delta \theta = \pi /N\theta , N\theta =Np  - 1.

Obviously, the perturbation satisfies (2.7) with \gamma = 1. The phantoms (i.e., the density
plots of f\epsilon (x)) with Np = 501 and Np = 1001 are shown in Figure 2.

We use the Keys interpolation kernel [23, 5]

(6.1) \varphi (t) = 3B3(t+ 2) - (B2(t+ 2) +B2(t+ 1)),

where Bn is the cardinal B-spline of degree n supported on [0, n+1]. The kernel is a
piecewise-cubic polynomial, and \varphi ,\varphi \prime are continuous, hence, \varphi \in C2

0 (R).
We use this opportunity to correct the typo in [18, eq. (6.1)]. The interpolating

kernel used in the numerical experiments reported in [18] was not the cubic B-spline,
but the Keys kernel (6.1).

Reconstructions of a region of interest (ROI) are shown in Figures 3 and 4. The
ROI is centered at the point on the boundary of the disk

x0 = xc  - R(cos(\alpha ), sin(\alpha )), \alpha = 0.32\pi .

The ROI is a square with side length 100\epsilon centered at x0. In Figure 3, Np = 501, and
in Figure 4, Np = 1001. In this and all other figures, the gray color stands for pixel
value 0, black color for pixel value (-1), and white color for pixel value 1. Notice that
the ROI scales linearly with \epsilon . Since the period of oscillations of \scrS \epsilon scales like \epsilon 1/2,
the ROI contains fewer periods of \scrS \epsilon as \epsilon decreases. Figures 3 and 4 demonstrate a
good match between the DTBs (cf. Theorem 2.6) and reconstructions.

Our second experiment is with a phantom with a fractal perturbation. The
fractal boundary \scrS \epsilon is around the same disk as above. The equation of \scrS \epsilon now is
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712 ALEXANDER KATSEVICH

exact profile
reconstructed profile

predicted profile

Fig. 3. ROI in the oscillatory phantom, \gamma = 1, \alpha = 0.32\pi , Np = 501. Left panel: reconstruction;
middle panel: ground truth with the location of the profile shown; right panel: profiles along the line
indicated in the middle panel.

exact profile
reconstructed profile

predicted profile

Fig. 4. ROI in the oscillatory phantom, \gamma = 1, \alpha = 0.32\pi , Np = 1001. Left panel: reconstruc-
tion; middle panel: ground truth with the location of the profile shown; right panel: profiles along
the line indicated in the middle panel.

r(\theta ) =R+ \epsilon H0(\theta /\epsilon 
1/2) in polar coordinates with the origin at the center of the disk,

where

(6.2) H0(s) = 5
\infty \sum 

n=c

r - \gamma n sin(rns), c= \lfloor logr(\pi )\rfloor , r=
\surd 
12, \gamma = 1/2.

The phantoms with Np = 501 and Np = 1001 are shown in Figure 5.
Comparing Figure 3 with Figure 6 and Figure 4 with Figure 7, we see that the

convergence of the reconstruction to the DTB in Theorem 2.6 is slower for smaller
values of \gamma . The convergence is the fastest for the globally smooth boundary (close
to the zero coordinate in the plots on the right in Figures 3, 4, 6, and 7), slower when
\gamma = 1, and the slowest, when \gamma = 0.5.

7. New DTB. Numerical experiments II. By (2.2) and (2.3) we can write
the reconstruction in the form

(7.1) f \mathrm{r}\mathrm{e}\mathrm{c}\epsilon (x) = - \Delta \alpha 

2\pi 

1

\epsilon 2

\sum 

| \alpha k| \leq \pi /2

\sum 

j

\scrH \varphi \prime 
\biggl( 
\vec{}\alpha k \cdot x - pj

\epsilon 

\biggr) \int \int 
w

\biggl( 
pj  - \vec{}\alpha k \cdot y

\epsilon 

\biggr) 
f\epsilon (y)dy.

Arguing formally, the sums with respect to k and j in the limit as \epsilon \rightarrow 0 become
integrals, and we get

lim
\epsilon \rightarrow 0

\biggl( 
f \mathrm{r}\mathrm{e}\mathrm{c}\epsilon (x) - 1

\epsilon 2

\int \int 
K

\biggl( 
x - y

\epsilon 

\biggr) 
f\epsilon (y)dy

\biggr) 
= 0,

K(z) := - 1

2\pi 

\int \pi 

0

(\scrH \varphi \prime \ast w)(\vec{}\alpha \cdot z)d\alpha .
(7.2)
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exact profile
reconstructed profile

predicted profile

Fig. 4. ROI in the oscillatory phantom, \gamma = 1, \alpha = 0.32\pi , Np = 1001. Left panel: reconstruc-
tion, middle panel: ground truth with the location of the profile shown, right panel: profiles along
the line indicated in the middle panel.

Fig. 5. Phantom with a fractal boundary, \gamma = 1/2. Left column: Np = 501, right column:
Np = 1001. Top row: ground truth, bottom row: reconstruction. Global artifacts are not visible.

Comparing Figure 3 with Figure 6 and Figure 4 with Figure 7, we see that the
convergence of the reconstruction to the DTB in Theorem 2.6 is slower for smaller
values of \gamma . The convergence is the fastest for the globally smooth boundary (close
to the zero coordinate in the plots on the right in Figure 3, Figure 4, Figure 6, and
Figure 7), slower when \gamma = 1, and the slowest - when \gamma = 0.5.

7. New DTB. Numerical experiments II. By (2.2) and (2.3) we can write
the reconstruction in the form
(7.1)

f rec
\epsilon (x) =  - \Delta \alpha 

2\pi 

1

\epsilon 2

\sum 

| \alpha k| \leq \pi /2

\sum 

j

\scrH \varphi \prime 
\biggl( 
\vec{}\alpha k \cdot x - pj

\epsilon 

\biggr) \int \int 
w

\biggl( 
pj  - \vec{}\alpha k \cdot y

\epsilon 

\biggr) 
f\epsilon (y)dy.

Fig. 5. Phantom with a fractal boundary, \gamma = 1/2. Left column: \bfitN \bfitp = 501; right column:
Np = 1001. Top row: ground truth, bottom row: reconstruction. Global artifacts are not visible.20 ALEXANDER KATSEVICH

exact profile
reconstructed profile

predicted profile

exact profile
reconstructed profile

predicted profile

Fig. 6. ROI in the fractal phantom, \gamma = 1/2, Np = 501. Left column: reconstruction, middle
column: ground truth with the location of the profile shown, right column: profiles along the line
indicated in the middle panel. Top row: \alpha = 0.33\pi , bottom row: \alpha = 0.49\pi .

exact profile
reconstructed profile

predicted profile

exact profile
reconstructed profile

predicted profile

Fig. 7. ROI in the fractal phantom, \gamma = 1/2, Np = 1001. Left column: reconstruction, middle
column: ground truth with the location of the profile shown, right column: profiles along the line
indicated in the middle panel. Top row: \alpha = 0.33\pi , bottom row: \alpha = 0.49\pi .

Arguing formally, the sums with respect to k and j in the limit as \epsilon \rightarrow 0 become
integrals, and we get

lim
\epsilon \rightarrow 0

\biggl( 
f rec
\epsilon (x) - 1

\epsilon 2

\int \int 
K

\biggl( 
x - y

\epsilon 

\biggr) 
f\epsilon (y)dy

\biggr) 
= 0,

K(z) :=  - 1

2\pi 

\int \pi 

0

(\scrH \varphi \prime \ast w)(\vec{}\alpha \cdot z)d\alpha .
(7.2)

Write (7.2) in the form of (1.3):

DTBnew(\v x, \epsilon ) :=
1

\epsilon 2

\int \int 
K

\biggl( 
(x0 + \epsilon \v x) - y

\epsilon 

\biggr) 
f\epsilon (y)dy,

f rec
\epsilon (x0 + \epsilon \v x) = DTBnew(\v x, \epsilon ) + error term.

(7.3)

Fig. 6. ROI in the fractal phantom, \gamma = 1/2, Np = 501. Left column: reconstruction; middle
column: ground truth with the location of the profile shown; right column: profiles along the line
indicated in the middle panel. Top row: \alpha = 0.33\pi , bottom row: \alpha = 0.49\pi .

Write (7.2) in the form of (1.3):

DTB\mathrm{n}\mathrm{e}\mathrm{w}(\v x, \epsilon ) :=
1

\epsilon 2

\int \int 
K

\biggl( 
(x0 + \epsilon \v x) - y

\epsilon 

\biggr) 
f\epsilon (y)dy,

f \mathrm{r}\mathrm{e}\mathrm{c}\epsilon (x0 + \epsilon \v x) =DTB\mathrm{n}\mathrm{e}\mathrm{w}(\v x, \epsilon ) + error term.

(7.3)

Obviously, K is radial and compactly supported. This follows, because \^K(\alpha , t) =
(\varphi \ast w)(t) is radial, compactly supported, and even (i.e., in the range of the Radon
transform). Recall that \^K denotes the Radon transform of K.
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exact profile
reconstructed profile

predicted profile

exact profile
reconstructed profile

predicted profile

Fig. 6. ROI in the fractal phantom, \gamma = 1/2, Np = 501. Left column: reconstruction, middle
column: ground truth with the location of the profile shown, right column: profiles along the line
indicated in the middle panel. Top row: \alpha = 0.33\pi , bottom row: \alpha = 0.49\pi .

exact profile
reconstructed profile

predicted profile

exact profile
reconstructed profile

predicted profile

Fig. 7. ROI in the fractal phantom, \gamma = 1/2, Np = 1001. Left column: reconstruction, middle
column: ground truth with the location of the profile shown, right column: profiles along the line
indicated in the middle panel. Top row: \alpha = 0.33\pi , bottom row: \alpha = 0.49\pi .

Arguing formally, the sums with respect to k and j in the limit as \epsilon \rightarrow 0 become
integrals, and we get

lim
\epsilon \rightarrow 0

\biggl( 
f rec
\epsilon (x) - 1

\epsilon 2

\int \int 
K

\biggl( 
x - y

\epsilon 

\biggr) 
f\epsilon (y)dy

\biggr) 
= 0,

K(z) :=  - 1

2\pi 

\int \pi 

0

(\scrH \varphi \prime \ast w)(\vec{}\alpha \cdot z)d\alpha .
(7.2)

Write (7.2) in the form of (1.3):

DTBnew(\v x, \epsilon ) :=
1

\epsilon 2

\int \int 
K

\biggl( 
(x0 + \epsilon \v x) - y

\epsilon 

\biggr) 
f\epsilon (y)dy,

f rec
\epsilon (x0 + \epsilon \v x) = DTBnew(\v x, \epsilon ) + error term.

(7.3)

Fig. 7. ROI in the fractal phantom, \gamma = 1/2, Np = 1001. Left column: reconstruction; middle
column: ground truth with the location of the profile shown; right column: profiles along the line
indicated in the middle panel. Top row: \alpha = 0.33\pi , bottom row: \alpha = 0.49\pi .

We see that (7.3) is easy to implement and easy to analyze in order to investigate
the resolution of reconstruction from discrete data. Also, (7.2), if it is correct, implies
the result proven earlier. Intuitively, as \epsilon \rightarrow 0, the boundaries \scrS and \scrS \epsilon become locally
flat, and we get Theorem 2.6. To see this fact rigorously, start similarly to (3.4),

DTB\mathrm{n}\mathrm{e}\mathrm{w}(\v x, \epsilon ) =
1

\epsilon 2

\int a

 - a

\int H\epsilon (\theta )

0

K

\Biggl( 
(x0 + \epsilon \v x) - (y(\theta ) + t\vec{}\Theta )

\epsilon 

\Biggr) 
F (\theta , t)dtd\theta 

=

\int a/\epsilon 

 - a/\epsilon 

\int \epsilon  - 1H\epsilon (\epsilon \^\theta )

0

K

\Biggl( 
(x0 + \epsilon \v x) - (y(\epsilon \^\theta ) + \epsilon \^t\vec{}\Theta )

\epsilon 

\Biggr) 
F (\epsilon \^\theta , \epsilon \^t)d\^td\^\theta ,

(7.4)

where F is the same as in (3.4). Since K is compactly supported, it is clear that \^\theta is
confined to a bounded set, and

DTB\mathrm{n}\mathrm{e}\mathrm{w}(\v x, \epsilon ) = F (0,0)

\int 

R

\int H0(\epsilon 
1/2\^\theta )

0

K
\Bigl( 
\v x - 

\Bigl( 
\^\theta y\prime (0) + \^t\vec{}\Theta 0

\Bigr) \Bigr) 
d\^td\^\theta +O(\epsilon ),(7.5)

where H0(\epsilon 
1/2\^\theta ) =H0(0)+O(\epsilon \gamma /2), and we used that x0 = y(0). Using that F (0,0) =

\Delta f(x0)R0 and | y\prime (0)| =R0, we compute

DTB\mathrm{n}\mathrm{e}\mathrm{w}(\v x, \epsilon ) = \Delta f(x0)

\int 

R

\int H0(0)

0

\^K
\Bigl( 
\vec{}\Theta 0, \vec{}\Theta 0 \cdot \v x - \^t

\Bigr) 
d\^td\^\theta +O(\epsilon \gamma /2).(7.6)

Recalling that \^K =\varphi \ast w, the assertion follows.
Moreover, the local convergence of \scrS \epsilon to a flat line segment (which is described

in terms of the convergence H0(\epsilon 
1/2\^\theta )\rightarrow H0(0)) is slower the lower the value of \gamma is,

which matches the observations in section 6. Thus, (7.3) has the potential to be a more
accurate result than that given in Theorem 2.6. Our numerical experiments confirm
this conjecture. We implemented the kernel K(z) and convolved it with f\epsilon to compute
DTB\mathrm{n}\mathrm{e}\mathrm{w} for the same two values of \epsilon . The graphs along the same line segments as in
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Obviously, K is radial and compactly supported. This follows, because \^K(\alpha , t) =
(\varphi \ast w)(t) is radial, compactly supported, and even (i.e., in the range of the Radon
transform). Recall that \^K denotes the Radon transform of K.

We see that (7.3) is easy to implement and easy to analyze in order to investigate
the resolution of reconstruction from discrete data. Also, equation (7.2), if it is
correct, implies the result proven earlier. Intuitively, as \epsilon \rightarrow 0, the boundaries \scrS and
\scrS \epsilon become locally flat, and we get Theorem 2.6. To see this fact rigorously, start
similarly to (3.4):

DTBnew(\v x, \epsilon ) =
1

\epsilon 2

\int a

 - a

\int H\epsilon (\theta )

0

K

\Biggl( 
(x0 + \epsilon \v x) - (y(\theta ) + t\vec{}\Theta )

\epsilon 

\Biggr) 
F (\theta , t)dtd\theta 

=

\int a/\epsilon 

 - a/\epsilon 

\int \epsilon  - 1H\epsilon (\epsilon \^\theta )

0

K

\Biggl( 
(x0 + \epsilon \v x) - (y(\epsilon \^\theta ) + \epsilon \^t\vec{}\Theta )

\epsilon 

\Biggr) 
F (\epsilon \^\theta , \epsilon \^t)d\^td\^\theta ,

(7.4)

where F is the same as in (3.4). Since K is compactly supported, it is clear that \^\theta is
confined to a bounded set, and

DTBnew(\v x, \epsilon ) =F (0, 0)

\int 

R

\int H0(\epsilon 
1/2\^\theta )

0

K
\Bigl( 
\v x - 

\Bigl( 
\^\theta y\prime (0) + \^t\vec{}\Theta 0

\Bigr) \Bigr) 
d\^td\^\theta +O(\epsilon ),(7.5)

where H0(\epsilon 
1/2\^\theta ) = H0(0)+O(\epsilon \gamma /2), and we used that x0 = y(0). Using that F (0, 0) =

\Delta f(x0)R0 and | y\prime (0)| = R0, we compute

DTBnew(\v x, \epsilon ) =\Delta f(x0)

\int 

R

\int H0(0)

0

\^K
\Bigl( 
\vec{}\Theta 0, \vec{}\Theta 0 \cdot \v x - \^t

\Bigr) 
d\^td\^\theta +O(\epsilon \gamma /2).(7.6)

Recalling that \^K = \varphi \ast w, the assertion follows.
Moreover, the local convergence of \scrS \epsilon to a flat line segment (which is described

in terms of the convergence H0(\epsilon 
1/2\^\theta ) \rightarrow H0(0)) is slower the lower the value of \gamma 

is, which matches the observations in section 6. Thus, (7.3) has the potential to be
a more accurate result than that given in Theorem 2.6. Our numerical experiments
confirm this conjecture. We implemented the kernel K(z) and convolved it with f\epsilon 
to compute DTBnew for the same two values of \epsilon . The graphs along the same line
segments as in Figure 6 and Figure 7 are shown in Figure 8 and Figure 9, respectively.
By comparing the profiles we see that the latter are significantly more accurate than
the former.

exact profile
reconstructed profile

predicted profile

exact profile
reconstructed profile

predicted profile

Fig. 8. ROI in the fractal phantom of Figure 6, \gamma = 1/2, Np = 501. Left: \alpha = 0.33\pi , right:
\alpha = 0.49\pi .

Fig. 8. ROI in the fractal phantom of Figure 6, \gamma = 1/2, Np = 501. Left: \alpha = 0.33\pi ; right:
\alpha = 0.49\pi .22 ALEXANDER KATSEVICH

exact profile
reconstructed profile

predicted profile

exact profile
reconstructed profile

predicted profile

Fig. 9. ROI in the fractal phantom of Figure 7, \gamma = 1/2, Np = 1001. Left: \alpha = 0.33\pi , right:
\alpha = 0.49\pi .

Due to the division by \epsilon , the sums with respect to j and k in (7.1) involve stepsizes
that do not go to zero as \epsilon \rightarrow 0. Therefore, replacing the sums with integrals in (7.1)
appears counterintuitive. In general, (7.2) is indeed false. This can be seen, for
example, as follows. Since the kernel K is compactly supported, formula (7.2) does
not explain non-local artifacts, which are known to arise in case f has a singularity
across a line segment. Thus, at best, (7.2) holds only for certain classes of functions.
Our numerical experiments suggest that the formula holds for functions described in
section 2. The complete proof of (7.2) is complicated and beyond the scope of this
paper. In this section we state one result along these lines and formulate a conjecture
about the rate of convergence in (7.2). A complete explanation of our numerical
results requires establishing the convergence rates in (2.11) and (7.2), and making
sure that the latter is faster than the former.

Here we strengthen assumption 2.3(IK1) by requesting that \~\varphi (\lambda ) = O(| \lambda |  - 3),
\lambda \rightarrow \infty . The Keys interpolation kernel in (6.1) satisfies this assumption. Consider
the function

(7.7) \psi (q, t) :=
\sum 

j

(\scrH \varphi \prime )(q  - j)w(j  - q  - t).

Then

\psi (q, t) = \psi (q + 1, t), q, t \in R; \psi (q, t) = O(t - 2), t\rightarrow \infty , q \in R,\int 
\psi (q, t)dt \equiv 0, q \in R.

(7.8)

The last property follows from assumption 2.3(IK2), see (2.4). By (7.8), we can
represent \psi in terms of its Fourier series:

\psi (q, t) =
\sum 

m

\~\psi m(t)e( - mq), e(q) := exp(2\pi iq),

\~\psi m(t) =

\int 1

0

\psi (q, t)e(mq)dq =

\int 

R
(\scrH \varphi \prime )(q)w( - q  - t)e(mq)dq.

(7.9)

Due to the assumptions that \varphi ,w \in C2
0 (R) and \~\varphi (\lambda ) = O(| \lambda |  - 3) we have

(7.10) | \~\psi m(t)| \leq c(1 +m2) - 1(1 + t2) - 1,

for some c, so the Fourier series for \psi converges absolutely. Indeed, if t is restricted

to any compact set, the result follows because (̃\scrH \varphi \prime )(\lambda ), \~w(\lambda ) = O(\lambda  - 2) implies

\bigm| \bigm| \bigm| \bigm| 
\int 

| \mu | \~\varphi (\mu ) \~w(\mu  - \lambda )ei(\mu  - \lambda )td\mu 

\bigm| \bigm| \bigm| \bigm| \leq 
\int 

| \mu \~\varphi (\mu ) \~w(\mu  - \lambda )| d\mu = O(\lambda  - 2), \lambda = 2\pi m\rightarrow \infty .

(7.11)

Fig. 9. ROI in the fractal phantom of Figure 7, \gamma = 1/2, Np = 1001. Left: \alpha = 0.33\pi ; right:
\alpha = 0.49\pi .

Figures 6 and 7 are shown in Figures 8 and 9, respectively. By comparing the profiles
we see that the latter are significantly more accurate than the former.

Due to the division by \epsilon , the sums with respect to j and k in (7.1) involve step
sizes that do not go to zero as \epsilon \rightarrow 0. Therefore, replacing the sums with integrals in
(7.1) appears counterintuitive. In general, (7.2) is indeed false. This can be seen, for
example, as follows. Since the kernel K is compactly supported, formula (7.2) does
not explain nonlocal artifacts, which are known to arise in case f has a singularity
across a line segment. Thus, at best, (7.2) holds only for certain classes of functions.
Our numerical experiments suggest that the formula holds for functions described in
section 2. The complete proof of (7.2) is complicated and beyond the scope of this
paper. In this section we state one result along these lines and formulate a conjecture
about the rate of convergence in (7.2). A complete explanation of our numerical
results requires establishing the convergence rates in (2.11) and (7.2), and making
sure that the latter is faster than the former.

Here we strengthen assumption 2.3.IK1 by requesting that \~\varphi (\lambda ) =O(| \lambda |  - 3), \lambda \rightarrow 
\infty . The Keys interpolation kernel in (6.1) satisfies this assumption. Consider the
function

(7.7) \psi (q, t) :=
\sum 

j

(\scrH \varphi \prime )(q - j)w(j  - q - t).

Then

\psi (q, t) = \psi (q+ 1, t), q, t\in R, \psi (q, t) =O(t - 2), t\rightarrow \infty , q \in R,\int 
\psi (q, t)dt\equiv 0, q \in R.

(7.8)

The last property follows from assumption 2.3.IK2; see (2.4). By (7.8), we can repre-
sent \psi in terms of its Fourier series:
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716 ALEXANDER KATSEVICH

\psi (q, t) =
\sum 

m

\~\psi m(t)e( - mq), e(q) := exp(2\pi iq),

\~\psi m(t) =

\int 1

0

\psi (q, t)e(mq)dq=

\int 

R
(\scrH \varphi \prime )(q)w( - q - t)e(mq)dq.

(7.9)

Due to the assumptions that \varphi ,w \in C2
0 (R) and \~\varphi (\lambda ) =O(| \lambda |  - 3) we have

(7.10) | \~\psi m(t)| \leq c(1 +m2) - 1(1 + t2) - 1

for some c, so the Fourier series for \psi converges absolutely. Indeed, if t is restricted

to any compact set, the result follows because (̃\scrH \varphi \prime )(\lambda ), \~w(\lambda ) =O(\lambda  - 2) implies

\bigm| \bigm| \bigm| \bigm| 
\int 

| \mu | \~\varphi (\mu ) \~w(\mu  - \lambda )ei(\mu  - \lambda )td\mu 

\bigm| \bigm| \bigm| \bigm| \leq 
\int 

| \mu \~\varphi (\mu ) \~w(\mu  - \lambda )| d\mu =O(\lambda  - 2), \lambda = 2\pi m\rightarrow \infty .

(7.11)

If | t| \geq c for some c\gg 1 sufficiently large, integrate by parts twice and use that

(7.12) max
q

| (\partial /\partial q)2((\scrH \varphi \prime )(q)w( - q - t))| =O(t - 2), t\rightarrow \infty .

Differentiation by parts works, because (\scrH \varphi \prime )(q) is smooth in a neighborhood of any
q such that w( - q - t) \not = 0.

From (7.1), (7.7), and (7.9), the reconstructed image becomes

f \mathrm{r}\mathrm{e}\mathrm{c}\epsilon (x) = - \Delta \alpha 

2\pi 

\sum 

m

\sum 

k

e ( - mqk)Am(\alpha k, \epsilon ),
\sum 

k

:=
\sum 

| \alpha k| \leq \pi /2

,

qk :=
\vec{}\alpha k \cdot x - \=p

\epsilon 
, Am(\alpha , \epsilon ) := \epsilon  - 2

\int \int 
\~\psi m

\biggl( 
\vec{}\alpha \cdot (y - x)

\epsilon 

\biggr) 
f\epsilon (y)dy.

(7.13)

Suppose first that x0 = y(0). To obtain (7.2), we should be able to replace the sum
with respect to k by an integral with respect to \alpha and ignore all m \not = 0 terms. The
results in sections 3 and 5 suggest that the rate in (2.11) is O(\epsilon \gamma /2); cf. (3.33). Thus,
to establish that the new DTB is more accurate, we need to show that

\Delta \alpha 
\sum 

m\not =0

\sum 

k

e ( - mqk)Am(\alpha k, \epsilon ) = o(\epsilon \gamma /2),

1

2\pi \epsilon 2

\sum 

k

\int \int \int \alpha k+\Delta \alpha /2

\alpha k - \Delta \alpha /2

\biggl( 
\~\psi 0

\biggl( 
\vec{}\alpha \cdot (y - x)

\epsilon 

\biggr) 
 - \~\psi 0

\biggl( 
\vec{}\alpha k \cdot (y - x)

\epsilon 

\biggr) \biggr) 
d\alpha 

\times f\epsilon (y)dy= o(\epsilon \gamma /2).

(7.14)

Suppose now x0 \not = y(0), which is equivalent to assuming x0 \not \in \scrS . In this case f is
smooth near x0, so we should expect that DTB(\v x, \epsilon )\equiv 0 for all \epsilon > 0 sufficiently small.
SinceK(z) is compactly supported,

\int \int 
K((x - y)/\epsilon )f\epsilon (y)dy\equiv 0 for all \epsilon > 0 sufficiently

small and all x sufficiently close to x0, precisely as expected. Hence, there is no need
to single out the term m = 0 (which previously gave the only nonzero contribution)
in (7.13), because the entire sum should go to zero sufficiently fast as \epsilon \rightarrow 0. The
following lemma states that this is indeed the case. Its proof is in Appendix C.
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ANALYSIS OF RESOLUTION 717

Lemma 7.1. Pick x0 \not \in \scrS such that no line through x0, which intersects \scrS , is
tangent to \scrS . This includes the endpoints of \scrS , in which case the one-sided tangents
to \scrS are considered. Suppose the level sets of H0 are not too dense, i.e., there exist
\rho ,L0 > 0 independent of \^t and \epsilon such that any open interval of any length L \geq L0

contains no more than \rho L points from H - 1
0 (\^t) for almost all \^t and all 0 < \epsilon \leq \epsilon 0.

Under the assumptions of Theorem 2.6, one has

(7.15) f \mathrm{r}\mathrm{e}\mathrm{c}\epsilon (x) =O(\epsilon 1/2 ln(1/\epsilon )), \epsilon \rightarrow 0,

uniformly with respect to x in a sufficiently small neighborhood of x0.

Using numerical evidence and the above lemma as a guide, we state the following
conjecture.

Conjecture 7.2. Pick any generic x0. Suppose the level sets of H0 are not too
dense, as defined in Lemma 7.1. Under the assumptions of Theorem 2.6, one has

(7.16) f \mathrm{r}\mathrm{e}\mathrm{c}\epsilon (x0 + \epsilon \v x) =
1

\epsilon 2

\int \int 
K

\biggl( 
(x0 + \epsilon \v x) - y

\epsilon 

\biggr) 
f\epsilon (y)dy+O(\epsilon 1/2 ln(1/\epsilon )), \epsilon \rightarrow 0,

where the big-O term is uniform with respect to \v x in any compact set.

To prove the conjecture one has to consider the case x0 \in \scrS as well as the case
x0 \not \in \scrS , when a line through x0 is tangent to \scrS .

The assumptions in Lemma 7.1 and the conjecture are not vacuous in the following
sense. If H0 is H\"older continuous, and its level sets H - 1

0 (\^t) are not too dense, as
defined in Lemma 7.1, this does not imply that H0 is Lipschitz continuous. In (D.1)
we present an example of a function on [0,\infty ) (the Schwarz function [42]), which is
strictly monotonically increasing, locally H\"older continuous with exponent \gamma \in (0,1),
and is not locally H\"older continuous with any exponent \gamma \prime >\gamma on any interval. Using
this function as a building block, one can create a wide range of perturbations H0,
which satisfy all the assumptions in Lemma 7.1. Due to the limited smoothness of such
an H0, the derivation in section 3, section 5 for the original DTB cannot guarantee
convergence faster than O(\epsilon \gamma /2), which is slower than the conjectured rate.

Another interesting class of perturbations with limited smoothness, to which
Lemma 7.1 applies, can be constructed using the Cantor staircase c(x) : [0,1]\rightarrow [0,1]
[24]. Let C \subset [0,1] be the Cantor set. Then c is increasing, the range of c is [0,1],
c([0,1] \setminus C) consists of dyadic reals (i.e., numbers of the form j2 - m, j \in Z, m \in N),
and C cannot contain any interval of nonzero length. Hence, for almost all \^t \in [0,1]
(i.e., for \^t not a dyadic real), the level set c - 1(\^t) consists of a single number. The
Cantor function is H\"older continuous with exponent \gamma = log 2/ log 3, and no higher
exponent works [8, Proposition 10.1].

Our numerical experiments show that even when the level sets of a function
become infinitely dense (see [39, 43] regarding level sets of the Weirstrass function),
DTB\mathrm{n}\mathrm{e}\mathrm{w} still appears to exhibit rapid convergence faster than O(\epsilon \gamma /2).

Appendix A. Proof of Lemma 3.1. We prove the lemma in the more com-
plicated case g\ast = g. The case g\ast = gl is proven along the same lines, but many of the
steps are simpler. Throughout this section, by c we denote various positive constants
whose value in different places is different. Pick any \alpha \in ( - a,a). Introduce

(A.1) \psi (\nu ) := \vec{}\alpha \cdot (y(\alpha + \nu ) - y(\alpha )), | \alpha | , | \alpha + \nu | \leq a.
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718 ALEXANDER KATSEVICH

The dependence of \psi on \alpha is irrelevant and omitted from notation. Since \psi (k)(\nu ) =
\vec{}\alpha \cdot y(k)(\alpha + \nu ), k= 1,2, we easily get from (3.1) the following properties:

\psi (0) = \psi \prime (0) = 0, \psi \prime (\nu )/\nu \geq c, and \psi \prime \prime (\nu )\geq c if | \alpha | , | \alpha + \nu | \leq a.(A.2)

Therefore, by (3.6)

(A.3) g(\alpha , \^p)\equiv 0 for \^p < - c

for some c independent of \alpha \in ( - a,a).
Suppose now \^p\rightarrow +\infty . Since w is compactly supported andH0 is bounded, we can

find c > 0 sufficiently large and independent of \^p, \epsilon , so that the domain of integration
with respect to \nu in (3.6) is contained inside the union of two nonintersecting intervals,
whose endpoints are computed by solving

(A.4) \psi (\epsilon 1/2\~\nu ) = \epsilon (\^p\pm c).

The positive pair of solutions \~\nu +1,2 > 0 determines one interval, the negative pair

\~\nu  - 1,2 < 0, the other, and the two intervals are bounded away from zero. By (A.2), we
get that

(A.5)
\bigm| \bigm| \bigm| d
\bigl[ 
\epsilon  - 1\psi (\epsilon 1/2\~\nu )

\bigr] 
/d\~\nu 

\bigm| \bigm| \bigm| \geq c, \~\nu \in [\~\nu \pm 1 , \~\nu 
\pm 
2 ].

Hence, again by (A.2), \~\nu \pm 2  - \~\nu \pm 1 = O(\epsilon 1/2/| \psi \prime (\epsilon 1/2\~\nu \pm 1 )| ) = O(\^p - 1/2). The statement
(3.9) follows because the integrand in (3.6) is uniformly bounded.

To prove the last assertion of the lemma, set g= g+ + g - , where

g+(\alpha , \^p) =

\int \epsilon  - 1/2(a - \alpha )

0

\int H0(\~\alpha +\~\nu )

0

w
\Bigl( 
\^p - \psi (\epsilon 1/2\~\nu ) - \^t cos(\epsilon 1/2\~\nu )

\Bigr) 

\times F (\alpha + \epsilon 1/2\~\nu , \epsilon \^t)d\^td\~\nu ,

(A.6)

\~\alpha = \epsilon  - 1/2\alpha , and g - is defined similarly by integrating over (\epsilon  - 1/2( - a  - \alpha ),0] with
respect to \~\nu . First, we consider g+, so \~\nu > 0. Introduce the variable \^s=\psi (\epsilon 1/2\~\nu )/\epsilon . By
(A.5), \~\nu \prime (\^s) is uniformly bounded for all \epsilon > 0 small enough whenever \^s is bounded
away from zero. To indicate the dependence of \~\nu (\^s) on \epsilon we write \~\nu \epsilon (\^s). Change
variables \~\nu = \~\nu \epsilon (\^s) in (A.6):

g+(\alpha , \^p) =

\int 

R

\int H0(\~\alpha +\~\nu )

0

w
\Bigl( 
\^p - \^s - \^t cos(\epsilon 1/2\~\nu )

\Bigr) 
F (\alpha + \epsilon 1/2\~\nu , \epsilon \^t)d\^t \~\nu \prime \epsilon (\^s)d\^s,

\~\nu =\~\nu \epsilon (\^s).

(A.7)

Here we extended the integration with respect to \^s to R. Even though \~\nu \prime \epsilon (\^s) is not
defined for \^s > 0 sufficiently large, this is irrelevant because F (\cdot )\equiv 0 for such \^s. Using
the argument following (3.28), such an extension does not affect the smoothness of F .
Changing the lower limit does not change the integral either, because w is compactly
suported and \^p\rightarrow +\infty . Similarly,

g+(\alpha , \^p+\Delta \^p) =

\int 

R

\int H0(\~\alpha +\~\nu )

0

w
\Bigl( 
\^p - \^s - \^t cos(\epsilon 1/2\~\nu )

\Bigr) 

\times F (\alpha + \epsilon 1/2\~\nu , \epsilon \^t)d\^t \~\nu \prime \epsilon (\^s+\Delta \^p)d\^s, \~\nu = \~\nu \epsilon (\^s+\Delta \^p).

(A.8)
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ANALYSIS OF RESOLUTION 719

As before, from (A.2) we obtain

\~\nu (k)\epsilon (\^p) =O
\Bigl( 
\^p1/2 - k

\Bigr) 
, \^p\rightarrow +\infty , k= 0,1,2,(A.9)

uniformly in \epsilon .
By (A.9), dropping \Delta \^p in the argument of \~\nu \epsilon in the argument of H0 in the upper

limit of the inner integral in (A.8) leads to an error of magnitude

(A.10) \^p - 1/2O
\Bigl( 
(| \Delta \^p| /\^p1/2)\gamma 

\Bigr) 
.

Recall that \Delta \^p = O(\^p\delta ), \delta < 1/2, \^p \rightarrow +\infty . Dropping \Delta \^p in \~\nu \epsilon , which is located
in the arguments of w and F , leads to an error of magnitude (\epsilon /\^p)1/2O(| \Delta \^p| /\^p1/2).
Dropping \Delta \^p from \~\nu \prime \epsilon leads to an error of magnitude O(| \Delta \^p| /\^p3/2).

Under our assumptions \gamma < 1 and \delta < 1/2, so all the error terms are dominated by
(A.10). Subtracting (A.7) from (A.8) we prove that g+(\alpha , \^p) satisfies the estimate in
(3.10). Similar arguments and similar estimates hold for g - (\alpha , \^p) as well, and (3.10)
is proven.

Appendix B. Proof of Lemma 3.2. Using that (\scrH \varphi \prime )(t) = O(t - 2), t\rightarrow \infty ,
we obtain for some c using (3.8), (3.9),

(B.1) | \Psi l(\~\alpha , \^p, q)| \leq c
\sum 

j\geq  - c

1

1 + (| \^p| + j)2
1

1 + | j| 1/2 =O(| \^p|  - 3/2), \^p\rightarrow  - \infty , q \in [0,1).

Fix any \delta , 0< \delta < 1/2. Similarly to (B.1), we can show that

(B.2)
\sum 

| j - \^p| \geq p\delta 

(\scrH \varphi \prime ) (\^p - j)gl(\alpha , j  - q) =O(\^p - (1/2+\delta )), \^p\rightarrow +\infty , q \in [0,1).

Split the remaining sum into two:
\sum 

| j - \^p| <\^p\delta 

(\scrH \varphi \prime ) (\^p - j)gl(\alpha , j  - q)

=
\sum 

| j - \^p| <\^p\delta 

(\scrH \varphi \prime ) (\^p - j) (gl(\alpha , j  - q) - gl(\alpha , \^p - q))

+ gl(\alpha , \^p - q)
\sum 

| j - \^p| <\^p\delta 

(\scrH \varphi \prime ) (\^p - j) =: S1 + S2.

(B.3)

Clearly, \scrH \varphi \prime (t) =O(t - 2), t\rightarrow \infty . Combining with (2.7), (3.9), and (3.10), we find

S1 =O
\Bigl( 
\^p\gamma (\delta  - 1/2) - 1/2

\Bigr) \sum 

| j - \^p| <\^p\delta 

(\scrH \varphi \prime )(\^p - j) =O
\Bigl( 
\^p\gamma (\delta  - 1/2) - 1/2

\Bigr) 
, \^p\rightarrow +\infty .(B.4)

Moreover, by the exactness of \varphi (assumption 2.3.IK2),

(B.5)
\sum 

| j - \^p| <\^p\delta 

\varphi \prime (r - j) \not = 0 only if | r - (\^p - \^p\delta )| \leq c or | r - (\^p+ \^p\delta )| \leq c

for some c. Hence,

S2 =O
\Bigl( 
\^p - 1/2(1 + \^p2\delta ) - 1

\Bigr) 
=O

\Bigl( 
\^p - 1/2 - 2\delta 

\Bigr) 
, \^p\rightarrow +\infty , q \in [0,1).(B.6)

Combining (B.2), (B.3), (B.4), and (B.6) gives

(B.7) | \Psi l(\~\alpha , \^p, q)| =O(\^p - (1/2+\delta )), \delta = (\gamma /2)/(\gamma + 1), \^p\rightarrow +\infty , q \in [0,1).

The choice of \delta in (B.7) satisfies 0< \delta < 1/2 and provides the fastest guaranteed rate
of decay of \Psi l. Combining (B.1) and (B.7) (and replacing \delta with \delta /2 for notational
convenience) proves the lemma.
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720 ALEXANDER KATSEVICH

Appendix C. Proof of Lemma 7.1. Pick any x sufficiently close to x0. All the
estimates below are uniform with respect to x in a small (but fixed) size neighborhood,
so the x-dependence of various quantities is omitted from the notation.

Let \Omega be the set of all \alpha \in [ - \pi /2, \pi /2] such that the lines \{ y \in R2 : (y - x) \cdot \vec{}\alpha = 0\} 
intersect \scrS . Let \theta = \Theta (\alpha ), \alpha \in \Omega , be determined by solving (y(\theta )  - x) \cdot \vec{}\alpha = 0. By
using a partition of unity, if necessary, we can assume that \scrS is short and the solution
is unique. By assumption, the intersection is transverse for any \alpha \in \Omega (up to the
endpoints). Hence | \Theta \prime (\alpha )| = | y(\Theta (\alpha )) - x| /| \vec{}\alpha \cdot y\prime (\Theta (\alpha ))| and

(C.1) 0<min
\alpha \in \Omega 

| \vec{}\alpha \cdot y\prime (\Theta (\alpha ))| , 0<min
\alpha \in \Omega 

| \Theta \prime (\alpha )| \leq max
\alpha \in \Omega 

| \Theta \prime (\alpha )| <\infty .

Transform the expression for Am (cf. (7.13)) similarly to (3.4),

Am(\alpha , \epsilon ) =
1

\epsilon 

\int a

 - a

\int \epsilon  - 1H\epsilon (\theta )

0

\~\psi m

\biggl( 
\vec{}\alpha \cdot (y(\theta ) - x)

\epsilon 
+ \^t cos(\theta  - \alpha )

\biggr) 
F (\theta , \epsilon \^t)d\^td\theta ,(C.2)

where F is the same as in (3.4), and \~\psi m is introduced in (7.9). Clearly,

(C.3) Am(\alpha , \epsilon ) = (1 +m2) - 1O(\epsilon ), \alpha \in [ - \pi /2, \pi /2] \setminus \Omega .

Next, consider the case \alpha \in \Omega . Setting \~\theta = (\theta  - \Theta (\alpha ))/\epsilon 1/2, (C.2) becomes

Am(\alpha , \epsilon ) =\epsilon  - 1/2

\int \int \epsilon  - 1H\epsilon (\theta )

0

\~\psi m

\biggl( 
\vec{}\alpha \cdot (y(\theta ) - y(\Theta (\alpha )))

\epsilon 
+ \^t cos(\theta  - \alpha )

\biggr) 

\times F (\theta , \epsilon \^t)d\^td\~\theta , \theta =\Theta (\alpha ) + \epsilon 1/2\~\theta , \alpha \in \Omega .

(C.4)

Due to (7.10), we can integrate with respect to \~\theta over any fixed neighborhood of 0,

Am(\alpha , \epsilon )

= \epsilon  - 1/2

\int \delta 

 - \delta 

\int \epsilon  - 1H\epsilon (\theta )

0

\~\psi m

\biggl( 
\vec{}\alpha \cdot y\prime (\Theta (\alpha ))

\epsilon 1/2
\~\theta +O(\~\theta 2) + \^t cos(\Theta (\alpha ) - \alpha ) +O(\epsilon 1/2)

\biggr) 

\times 
\Bigl( 
F (\Theta (\alpha ),0) +O(\epsilon 1/2)

\Bigr) 
d\^td\~\theta + (1+m2) - 1O(\epsilon 1/2),

\theta =\Theta (\alpha ) + \epsilon 1/2\~\theta , \alpha \in \Omega ,

(C.5)

for some \delta > 0 sufficiently small. Here we have used that

(C.6) \~\psi m(t), \~\psi \prime 
m(t) = (1 +m2) - 1O(t - 2), t\rightarrow \infty ,

which follows from (7.7) and (7.9). Using (C.6) it is easy to see that the terms O(\epsilon 1/2)
and O(\~\theta 2) can be omitted from the argument of \~\psi m without changing the error term:

Am(\alpha , \epsilon )

=
F (\Theta (\alpha ),0)

\epsilon 1/2

\int \delta 

 - \delta 

\int H0(\epsilon 
 - 1/2\Theta (\alpha )+\~\theta )

0

\~\psi m

\biggl( 
\vec{}\alpha \cdot y\prime (\Theta (\alpha ))

\epsilon 1/2
\~\theta + \^t cos(\Theta (\alpha ) - \alpha )

\biggr) 
d\^td\~\theta 

+ (1+m2) - 1O(\epsilon 1/2), \alpha \in \Omega .

(C.7)

By (C.1), \vec{}\alpha \cdot y\prime (\Theta (\alpha )) is bounded away from zero on \Omega . By the last equation in (7.8),\int 
\~\psi m(\^t)d\^t = 0 for all m, so we can replace the lower limit of the inner integral in
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ANALYSIS OF RESOLUTION 721

(C.7) with any value independent of \~\theta . Again, we use here that the contribution to
the integral with respect to \~\theta of the domain outside ( - \delta , \delta ) is of the same magnitude
as the error term in (C.7). We choose the lower limit to be H0(\epsilon 

 - 1/2\Theta (\alpha )). Hence

| Am(\alpha , \epsilon )| \leq (1 +m2) - 1

\biggl[ 
O(\epsilon  - 1/2)

\int \delta 

 - \delta 

\bigm| \bigm| H0(s+ \~\theta ) - H0(s)
\bigm| \bigm| 

1 + (\~\theta 2/\epsilon )
d\~\theta +O(\epsilon 1/2)

\biggr] 
,

s=\epsilon  - 1/2\Theta (\alpha ), \alpha \in \Omega .

(C.8)

Neglecting the O(\epsilon 1/2) term in (C.8) (the last term inside the brackets) leads to a
term of magnitude O(\epsilon 1/2) in f \mathrm{r}\mathrm{e}\mathrm{c}\epsilon . Accounting for (C.3) in a similar fashion, (7.13)
and (C.8) imply

f \mathrm{r}\mathrm{e}\mathrm{c}\epsilon (x) =O(\epsilon 1/2)

\int \delta 

 - \delta 

g(\~\theta , \epsilon )

1 + (\~\theta 2/\epsilon )
d\~\theta +O(\epsilon 1/2),

g(\~\theta , \epsilon ) :=
\sum 

\alpha k\in \Omega 

\bigm| \bigm| H0(sk + \~\theta ) - H0(sk)
\bigm| \bigm| , sk := \epsilon  - 1/2\Theta (\alpha k).

(C.9)

If we use only the smoothness of H0 (cf. (2.7)), the most we can say is that each
term in the sum is O(| \~\theta | \gamma ), so g(\~\theta , \epsilon ) =O(\epsilon  - 1| \~\theta | \gamma ). However, the structure of the sum
allows us to exploit the assumption that the level sets of H0 are not too dense, and
this leads to a better estimate.

Define, similarly to (2.10),

(C.10) \chi t1,t2(t) :=

\Biggl\{ 
1, t1 \leq t\leq t2 or t2 \leq t\leq t1,

0, otherwise.

Clearly,

g(\~\theta , \epsilon ) =
\sum 

\alpha k\in \Omega 

\int 
\chi H0(sk),H0(sk+\~\theta )(\^t)d\^t=

\int 
N(\^t, \~\theta , \epsilon )d\^t,(C.11)

where N(\^t, \~\theta , \epsilon ) is the number of \alpha k \in \Omega such that either H0(sk)\leq \^t\leq H0(sk + \~\theta ) or
H0(sk+ \~\theta )\leq \^t\leq H0(sk). By the assumption in Lemma 7.1 about the level sets of H0,
N is finite for almost all \^t. Our argument implies that the values of the index k counted
by the function N(\^t, \~\theta , \epsilon ) are such that the closed interval with the endpoints sk and
sk + \~\theta contains at least one un \in H - 1

0 (\^t). By assumption, the number of un \in H - 1
0 (\^t)

on any interval of length O(\epsilon  - 1/2) is O(\epsilon  - 1/2) uniformly in \^t for almost all \^t. Fix any
n. By (C.1) and the definition of sk in (C.9), there are no more than 1+O(\epsilon  - 1/2| \~\theta | )
values of k such that | sk  - un| \leq | \~\theta | . Hence N(\^t, \~\theta , \epsilon ) =O(\epsilon  - 1/2)(1 + \epsilon  - 1/2| \~\theta | ). Using
that the range of H0 is bounded (cf. (2.7)), the integral with respect to \^t in (C.11) is
over a compact set, so

(C.12) g(\~\theta , \epsilon ) =O(\epsilon  - 1/2)(1 + \epsilon  - 1/2| \~\theta | ).

Substituting (C.12) into (C.9), we finish the proof:

(C.13) f \mathrm{r}\mathrm{e}\mathrm{c}\epsilon (x) =O(1)

\int \delta 

 - \delta 

1 + \epsilon  - 1/2| \~\theta | 
1 + (\~\theta 2/\epsilon )

d\~\theta +O(\epsilon 1/2) =O(\epsilon 1/2 ln(1/\epsilon )).

The estimate in (C.13) is better than O(\epsilon \gamma /2) if \gamma < 1; cf. (3.33). The latter is the
corresponding result in the original approach in subsection 3.4 (no line through x0 with
the unit normal in \Omega 3 tangent to \scrS ). This result can be rederived using the approach
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722 ALEXANDER KATSEVICH

in this section. Indeed, as mentioned above, (2.7) implies g(\~\theta , \epsilon ) =O(\epsilon  - 1| \~\theta | \gamma ), and we
compute, similarly to (C.13),

(C.14) f \mathrm{r}\mathrm{e}\mathrm{c}\epsilon (x) =O(\epsilon  - 1/2)

\int \delta 

 - \delta 

| \~\theta | \gamma 
1 + (\~\theta 2/\epsilon )

d\~\theta +O(\epsilon 1/2) =O(\epsilon \gamma /2), 0<\gamma < 1.

Hence a truly novel mechanism (e.g., based on a consideration of the level sets of H0)
is needed to establish the faster decay rates in (7.14).

Appendix D. Example of a monotone, H\"older continuous function,
which is nondifferentiable in a dense set. Set

(D.1) H0(s) =
\infty \sum 

n=0

\varphi (2ns)/3n, \varphi (s) := \lfloor s\rfloor + \{ s\} \gamma ,

where 0<\gamma < 1. Obviously, the series above converges absolutely for any fixed s, and
H0 is strictly monotonically increasing.

Next we show that H0 is locally H\"older continuous with exponent \gamma . We have

(D.2) | \varphi (s2) - \varphi (s1)| \leq cmax(| s2  - s1| \gamma , | s2  - s1| ), s1, s2 \geq 0,

for some c. The case | s2 - s1| \geq 1 is obvious, so we assume | s2 - s1| \leq 1 and show that
\varphi (s2) - \varphi (s1) =O(| s2  - s1| \gamma ). Clearly, it suffices to consider the case s1 = n - 1+ r1,
s2 = n+ r2, where 0\leq r1,2 < 1. We will show that

(D.3) (n+ r\gamma 2 ) - (n - 1 + r\gamma 1 )\leq (1 + r2  - r1)
\gamma .

The case r2 \geq r1 is obvious (and should not be considered anyway, because s2 - s1 \geq 1
in this case), so we assume r2 = r1  - h, where 0\leq h\leq r1. Then (D.3) becomes

(D.4) (r1  - h)\gamma + 1 - r\gamma 1 \leq (1 - h)\gamma .

Differentiating the left-hand side we see that it is increasing as a function of r1 \in [h,1].
Setting r1 = 1 shows that the inequality holds.

Pick any h> 0 and consider the difference

(D.5) H0(s+h) - H0(s) =

\left( 
 \sum 

n\geq 0:2nh<1

+
\sum 

n:2nh\geq 1

\right) 
 \varphi (2n(s+ h)) - \varphi (2ns)

3n
=: S1+S2.

By (D.2),

(D.6) | S1| \leq ch\gamma 
\sum 

n\geq 0:2nh<1

2\gamma n/3n \leq ch\gamma , | S2| \leq ch
\sum 

n:2nh\geq 1

2n/3n \leq ch,

which proves H\"older continuity. Here c denote various constants, which can be differ-
ent in different places.

Finally we show that H0(s) is not H\"older continuous with any exponent \gamma \prime > \gamma 
on any interval. Pick any j,m \in N and set s = j2 - m. Pick any h \in (0,2 - m). Using
that \varphi is increasing gives

(D.7)
H0(s+ h) - H0(s)

h\gamma \prime \geq \varphi (2m(s+ h)) - \varphi (2ms)

3mh\gamma \prime =
(j + (2mh)\gamma ) - j

3mh\gamma \prime = ch\gamma  - \gamma \prime 
,

and the desired assertion follows because dyadic reals are dense in R.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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