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Abstract
Dynamic environments challenge existing robot navigation methods, and motivate either stringent assump-
tions on workspace variation or relinquishing of collision avoidance and convergence guarantees. This paper
shows that the latter can be preserved even in the absence of knowledge of how the environment evolves,
through a navigation function methodology applicable to sphere-worlds with moving obstacles and robot des-
tinations. Assuming bounds on speeds of robot destination and obstacles, and sufficiently higher maximum
robot speed, the navigation function gradient can be used produce robot feedback laws that guarantee obsta-
cle avoidance, and theoretical guarantees of bounded tracking errors and asymptotic convergence to the target
when the latter eventually stops moving. The efficacy of the gradient-based feedback controller derived from the
new navigation function construction is demonstrated both in numerical simulations as well as experimentally.

Keywords: Reactive Navigation, Dynamic Environments, Convergence, non-Point Destinations.

1 Introduction
Motion planning with obstacle avoidance is one of the
oldest problems in robot navigation, with a multitude
of available solutions that have been used in a wide
range of applications, from typical ones involving
mobile robots, manipulators, and self-driving vehi-
cles, to more novel ones such as no-contact disinfec-
tion [1–4]. The problem is considered solved given
complete knowledge of static robot environments [5];
however, dynamic environments, where either the
robot’s target or the obstacles move, bring new
unmet challenges [6]. The need for robot navigation
in dynamic environments arises in many scenarios,
including autonomous driving [7], unmanned aerial
vehicle (UAV) target tracking [8, 9], and human-robot
interaction [10, 11]. One major challenge for motion
planning and navigation in dynamic environments is

that given the temporal coupling between path plan-
ning and trajectory generation (time parameteriza-
tion), the two subproblems have to be solved simul-
taneously and in real-time [6]. Existing approaches
for motion planning in dynamic environments [12–
14] typically iteratively solve the navigation problem
over time, but in doing so it is not clear how to
establish global collision avoidance and convergence
guarantees.

Several methods based on reinforcement learn-
ing (RL) have recently appeared (e.g. [15]) to address
problems of intercepting and tracking moving tar-
gets in dynamic environments. Another example is
a belief abstraction approach which allows for the
incorporation of dynamic obstacles [16], which how-
ever needs to assume constant obstacle speed. While
more classical RL-based methods [17] (Q-learning,
SARSA algorithm) and their variants [18] have been
applied to robot navigation, it is known that such
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methods can suffer from overfitting problems [19],
high computational cost and no theoretical guarantee
for convergence to a global optimum [20, 21].

Solutions based on iterative graph search-
based [22–24] or sampling methods [25, 26],
including randomly exploring random tree
(RRT) [13, 14, 27, 28] or probabilistic roadmap
method (PRM) [29, 30] can suffer from markedly
heavy computation cost when applied in high-
dimensional dynamic environments [31]. A significant
portion of this computational overhead is associated
with the need to repeatedly solve the motion planning
problem as the workspace of the robot evolves [32].
Additional computational challenges for sampling-
based methods can be traced to a range of different
parameters which are not always directly controlled,
including poor sampling [15]. This is where feedback-
based methods seem to have an advantage. These
methods are often overlooked due to the possible
appearance of spurious local minima that could
prevent convergence; however this is only an issue
in formulations involving superposition of attrac-
tive and repulsive vector fields [33, 34]. However,
feedback-based methods immune to this problem
exist. One example is the velocity obstacle (VO)
approach, where the robot’s velocity is selected from
admissible sets constructed based on the obstacles’
velocities [35]. Naturally, VO efficacy hinges on the
accuracy of obstacle motion measurement, which can
present challenges for fast loop closures [36]. Another
feedback-based method immune to local minima
issues, is the harmonic field approach [37]. This
approach is primarily for static environments, since
a direct extension to dynamic ones would involve
the iterative solution of nontrivial partial differential
equations (PDEs) in real time. Still, with some prior
information about the kinematics of moving obsta-
cles [38, 39] or target [40], some interesting results
have been reported.

Navigation functions offer yet another option for
overcoming the challenge of local minima to guaran-
tee almost global convergence [41, 42]. Their original
construction, however, is based on the assumption
that the workspace is known and static. Analytical
feedback-based methods have attempted to lift the
assumption about a known environment by reactively
using sensor measurements [19, 43], yet they have
not yet been fully extended to dynamic environments
(cf. [44]). More evidence is needed to ascertain the
potential efficacy of such methods in dynamic envi-
ronments [45, 46], and the quest for generalization of

navigation function methods to fully dynamic environ-
ments reveals unmet technical challenges [11, 47–49].

This paper meets some of the remaining chal-
lenges of feedback-based navigation in dynamic envi-
ronments with moving obstacles and target, for the
case of a dynamic sphere world where the robot has
sufficient actuation bandwidth to respond to environ-
ment variations. The methodology expands the navi-
gation function toolbox with a nontrivial extension of
prior work that combines moving destination [48] with
moving obstacles [36], and derives analytic condi-
tions on the geometric parameters of the time-varying
workspace, under which the navigation function prop-
erties are uniform over time. Based on these properties
a feedback law is derived, for which global colli-
sion avoidance is theoretically proven, and asymptotic
convergence to the target is guaranteed when the lat-
ter eventually stops moving. This is achieved without
knowledge of obstacle or target kinematics, but rather
under the assumption that the robot has sufficient con-
trol authority to outmaneuver any moving obstacle.
This is a significant advancement over prior work [50]
that achieved asymptotic stability on the basis of
known moving entity velocities.

The contributions, therefore, of this paper are:
(a) proof that navigation functions built on sphere

worlds with time-varying destinations and mov-
ing internal obstacles can be tuned to be free of
local minima; and

(b) proof of asymptotic convergence to an eventually
settling target for a robot steered using a time-
varying navigation function and without knowl-
edge of obstacle velocities.

These claims are corroborated in simulations and
experiments with spherical mobile robots and obsta-
cles (Fig. 1).

Fig. 1: The SPHERO Bolt robot.
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While the aforementioned results apply to ideal-
ized sphere world environments, they are still signif-
icant for at least two reasons (a) there exist method-
ological pathways to star-world extensions [11], and
(b) there can still be real-world robot navigation sce-
narios that conform to this model, as the one motivat-
ing this analysis and which involves spherical robots
like the one featuring in Fig. 1 engaging in child-
robot play-based interaction. In these interactions we
could have one such robot playing games of chase in
cluttered environments containing other toys (possibly
static robot balls), exploring the scientific hypothe-
sis that “smart” dynamic and mobile toys can engage
with children better than stationary “dump” toys. The
dynamic nature of the human subject which the robot
should intercept and the possibility of additional mov-
ing actors in the scene (other robots or children)
motivate the key features of the problem statement
presented in Section 2. Beyond Section 2, which
starts with some technical preliminaries, the paper is
organized as follows. Section 3 presents a solution
roadmap for formalizing the properties of the navi-
gation function and proceeds to refine this roadmap
with a sequence of mathematical propositions, while
Section 4 establishes the convergence properties of
a control law based on the gradient of the naviga-
tion function. Simulation and experimental results are
shown in Section 5 validating the property of the nav-
igation function and convergence guaranteed by the
gradient control law. Section 7 concludes the paper
and hints at directions for future extensions.

2 Problem Formulation
2.1 Notation and Preliminaries
If A ⇢ Rn is a set, and ✏ > 0 is a small constant,
A(✏) is used to express a neighborhood in the exterior
A, including its boundary @A. The size of this neigh-
borhood will be described later in terms of ✏ and a
scalar function that implicitly defines A as one of its
level sets. We denote Ac the set’s complement and Å
its interior. By writing Ā we express the closure of
A, i.e., its interior combined with its boundary. The
expression A\B denotes set difference, i.e., all points
of A that are not in B. The gradient of f : Rn ! R,
denoted rf , is treated as a column vector, and if we
need to highlight the variable with respect to which we
differentiate, say x, we write it as rxf .

2.2 Problem Statement
A point robot at configuration x, is moving omni-
directionally in a spherical workspace of radius
⇢0, centered at the origin of Rn and denoted W .
The workspace W is a spherical subset of the n-
dimensional Euclidean space, defined as W , Rn \
B0, where B0 , {x : kxk � ⇢0} is considered the
exterior (to the workspace) surrounding obstacle.

Assumption 1 The target’s and obstacles’ speeds, ẋT and ȯj ,
respectively, are bounded, while the (point) robot can pro-
duce a speed ẋ of magnitude which significantly exceeds
those of its target and obstacles.

The objective of the robot is to converge to the
exterior boundary @BT of a ball around a moving
target centered at xT and has fixed radius rT , while
avoiding collisions with the outer boundary @B0 as
well as with a set of m � 0 stationary or moving
spherical obstacles Bj ⇢ W , with fixed radii ⇢j for
j 2 {1, . . . ,m}. The free workspace of the robot
is essentially W “punctured” by the internal obstacle
spheres Bj :

F , W \
[

j2{1,...,m}

Bj .

Since all sets of interest (robot, obstacles, workspace
boundary) are assumed to be spherical, F is referred
to as a sphere world.

The free workspace F is assumed valid in the
sense that (i) all obstacle and target closures are in the
interior of the workspace, i.e., B̄T ⇢ W̊ and B̄j ⇢ W̊
for j 2 {1, . . . ,m}; and (ii) none of these closures
intersect with one other, i.e., 8 i, j 2 {0, . . . ,m} [
{T}, B̄i \ B̄j = ?.

Assumption 2 (cf [41]) Sphere world F is valid in the
sense that the boundaries of any two spheres B` for ` 2
{0, . . . ,m} [ {T} are at least � +

p
✏ apart for some

arbitrarily small � > 0.

We will prescribe the minimal necessary separa-
tion between workspace objects in Section 3 more
formally. It is further assumed that the robot at x
knows the current location and size of (i) every obsta-
cle (oj and ⇢j , respectively) and (ii) its target (xT and
rT , respectively) at time t, and that the speeds of the
target and every moving obstacle are bounded.
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3 Navigation Function Properties
3.1 Overview
Partition F as follows.

• The set near obstacles excluding the target:
F0(✏) ,

Sm
j=1 Bj(✏) \ B̄T ;

• The set near the (outer) workspace boundary:
F1(✏) , B0(✏) \

�
B̄T
S

F0(✏)
�
;

• The set away from (any) workspace boundaries:
F2(✏) ,

⇣
F̊ \

�
F0(✏)

S
F1(✏)

�⌘S
B̄T ;

• The set away from any boundaries and target:
F3(✏) , F2(✏) \ BT (✏).

(a) (b)

Fig. 2: Elements of workspace decomposition. (a) the set
near the obstacles F0(✏); (b) the set near the outer workspace
boundary F1(✏).

The approach to the problem of Section 2.2
involves constructing a sphere-world navigation func-
tion '(x) [41] and using its negated gradient to steer
the robot to its objective according to a control law
of the type ẋ = �rxf('), where f is some dif-
ferentiable bijective function (see Fig. 3). Function
' is parameterized by a positive (integer) constant
k, which is chosen to give ' its navigation function
properties. With a slight—and for the purposes of
this work, inconsequential—departure from their orig-
inal statement [41] these properties are understood as
follows:

Definition 1 (cf [41]) A function ' : R+ ⇥ F ! [0, 1] is
a navigation function if it is (i) continuously differentiable
on R+ ⇥F , (ii) attains its minimum on @BT , (iii) attains its
maximum on @F , and (iv) is a Morse-Bott function on F̊ .

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 3: A series of snapshots from a simulation study where
the robot navigates using the gradient of a navigation func-
tion within a dynamic environment featuring two obstacles
and a target moving on fixed, periodic trajectories.

The mathematical roadmap for establishing the
navigation function properties for ' is as follows.

1. Identify the target boundary @BT as a non-
degenerate critical submanifold of ';

2. establish that no critical points of ' are on @F ;
3. demonstrate that with appropriate parameter

selection, there can be no critical points in F3(✏);
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4. show that there exist an upper bound on ✏, below
which no local minima of ' exist in F0(✏);

5. prove that there exists a lower bound on k above
which no critical point exist in F1(✏); and finally

6. determine an appropriate choice of k for which
all critical points in F̊0(✏) are non-degenerate.

It is known that in two dimensions any poten-
tial field defined on a manifold like F̊ \ B̄T will
have at least as many stationary points other than the
motion planning destination as the number of interior
obstacles [41]. A judicious choice of ', however, can
ensure that these stationary points are saddles with
have attraction sets of measure zero. Denote S(t) the
union of these regions of attraction of those saddles,
keeping in mind that in the case considered here this
set is time-varying. With the navigation function prop-
erties in place, and assuming that x(0) /2 S(0) and that
the robot has sufficient control authority relative to its
moving target and obstacles, we proceed to show that
a control law of the form u = �rx', which essen-
tially renders F̊ \(B̄T [S(t)) positively invariant, also
ensures that the robot tracks its target boundary with
bounded error, and that if the target stops moving it
will eventually asymptotically converge to it. The end
result of the methodology is the emergence of naviga-
tion behaviors like the one featured in Fig. 3, where
the robot reactively avoids collisions and deliberately
seeks paths to its destination. More details on the sce-
nario of Fig. 3 is found in Section 5. The proofs of the
technical statements on the construction and proper-
ties of the navigation function ' can be found in the
Appendix.

3.2 Refinement of the Solution Roadmap
For each spherical obstacle Bj define a smooth scalar
function �j that attains negative values in B̊j , is posi-
tive in Bc

j and zero @Bj . For the workspace boundary
B0 the situation is reversed: B̊0 maps to positive val-
ues (indicating free space) and the exterior maps to
negative values. One choice for such functions is

�j(t, x) , kx(t)� oj(t)k2 � ⇢2j j 2 {1, . . . ,m}
�0(x) , ⇢20 � kxk2 .

Now we are in position to define concretely the neigh-
borhoods of workspace boundaries as follows:

Bj(✏) , {x 2 F | 0 < �j(x) < ✏} j 2 {0, . . . ,m} .

It can be shown (using a triangle inequality for j 2
{1, . . . ,m} and a reverse triangle inequality for j = 0)
that when x 2 F3(✏), the robot is at least

p
✏ away

from the workspace boundary. Thus the workspace
validity property “scales” with ✏ and regions near
obstacle boundaries remain always within the valid
workspace, i.e., 8 j 2 {0, . . . ,m}, Bj(✏) ⇢ F \F3(✏).

The surface on the boundary of the ball around the
moving target, @BT , which is the destination surface
of the navigation function, can be formally captured
as {x 2 Rn |

��x� xT (t)
��2� r2T = 0}. As a metric of

distance between the robot and its destination surface
we use the goal function

J(t, x) ,
⇣��x� xT (t)

��2 � r2T

⌘2

whereas a surrogate of the distance between the robot
and boundary of the free space can be

�(t, x) , �0(x)
mY

j=1

�j(t, x) .

The crux of the technical approach is to show first
that for the function

'(t, x) , J(t, x)
⇥
J(t, x)k + �(t, x)

⇤1/k (1)

there exist a fixed positive real N(✏) > 0 such that for
every integer k > N(✏), (1) gives rise to a navigation
function in the sense of Definition 1.

The following sequence of propositions codify
the roadmap of Section 3.1. Their proofs are in the
Appendix.

Proposition 1 The target boundary, @BT (t), is a non-
degenerate critical submanifold for '.

Proposition 2 All critical points of ' are in F̊ .

Note now that ' as defined in (1), and '̂ , Jk/�
share the same critical points, and their type is identi-
cal [41]. This fact is exploited to simplify the analysis
of the critical points of ', using '̂ in a surrogate role,
as in the following proposition.
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Proposition 3 For every ✏ > 0 there exists an N(✏) > 0
such that if integer k � N(✏) there are no critical points of
'̂ = Jk/� in F3(✏).

Proposition 4 In any valid workspace, 9 ✏0 such that '̂ =
Jk/� has no local minima in F0(✏), as long as ✏ < ✏0.

Proposition 5 In a valid workspace, and for any � > 0,
there exist a k1 > 0 such that if integer

k > k1 , 2m(⇢0 � �)2

�2
,

'̂ has no critical points in F1(✏).

Proposition 6 With an appropriate choice of k, critical
points xc in the interior of F0(✏) are non-degenerate.

3.3 Summary
We can summarize the bounds derived within the
proof of each of the above propositions for the prox-
imity to workspace boundary parameter ✏ and the
tuning parameter k, in Tables 1 and 2, respectively.
The design process that guarantees the construction of
a navigation function selects ✏ in a way that respects
all inequalities in Table 1, and then based on this value
of ✏, k is selected to satisfy all inequalities in Table 2.

Proposition Upper bound on ✏

Proposition 4

✏<2�4(⇢0��)m�1

"✓
rd+�

2⇢0�rd��

◆2
+1

#

·

n
6m(⇢0��)m�1(2⇢0�rd��)5

�+rd
+ 32m(⇢0��)5

�2
+

2(2⇢0�rd��)4(⇢0��)m�1
⇥
(⇢0��)m�1+(m�1)(⇢0��)m�2

+m(m2�2m+2)(⇢0��)m�3+(m�1)2
o�1

Proposition 6 ✏<
1�

s
1+⇣2

2

22m�3(m�1)⇢m�3
0

Table 1: Summary of bounds on ✏ in different propo-
sitions. An admissible value for ✏ should satisfy the
conjunction of the above conditions.

4 Proof of Convergence
It can be shown that with prior knowledge of the
target’s (cf. [48, 50]) and obstacles’ trajectories, an
appropriately constructed control law can formally
establish collision avoidance and convergence of the

Propositions Lower bounds on k

Proposition 3 k � 2(2m+1)(⇢0��)3

rd(
p
✏+�)2

Proposition 5 k � 2m(⇢0��)2

�2

Table 2: Summary of bounds on k in different proposi-
tions. For a choice of ✏ consistent with Table 1, a value
for k that satisfies the conjunction of the above condi-
tions is guaranteed to produce a navigation function.

robot to its destination. This paper shows that even if
these trajectories are unknown, with sufficient control
authority the robot can track its target while avoid-
ing collisions, and if the target stops moving, it will
eventually converge to it.

Assume that the robot has the kinematics of a sin-
gle integrator, or that its dynamics can be feedback
linearized in this form:

ẋ = u x(0) = x0 2 F \ S(0) . (2)

Now define the control law as

u = �cr'(t, x) , (3)

where c > 0 is a constant control gain.

Proposition 7 The dynamics of the navigation function

'(t, x) =
J(t, x)

⇥
J(t, x) + �(t, x)

⇤1/ ,

induced by robot control law (3) away from the zero-measure
attraction sets of its stationary points in a sphere world F , is
input-to-state stable (ISS) with respect to the speeds of robot
destination and obstacles.

Proof Consider the closed loop scalar dynamical system

'̇(t, x) = @'
@t +

⇣
@'
@x

⌘|
u

=
⇣
@'
@x

⌘|
u+ @'

@� �̇ + @'
@J

@J
@t ,

the dynamics of which, given @J
@t = @J

@xT
ẋT , can be

expanded in the form

'̇(t, x) =

(
�(t,x)

[J(t,x)+�(t,x)]1+1/

@J(t,x)
@x

�
2J(t,x)

hPm
j=1 �̄(t,x)[x�oj(t)]

|�
Qm

j=1 �j(t,x) x
|
i

[J(t,x)+�(t,x)]1+1/

)
u
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+
2J(t,x)

Pm
j=1 �̄j(t,x)[x�oj(t)]|

[J(t,x)+�(t,x)]1+1/ ȯj

+
4�(t,x)

p
J(t,x)

[J(t,x)+�(t,x)]1+1/

⇥
xT (t)� x

⇤|
ẋT , (4)

where one can note that terms multiplying [x � oj(t)]
|ȯj

and [xT � x]|ẋT are nonnegative in F̄ . The denominator
term in (4) can be recognized as

⇥
J(t, x) + �(t, x)

⇤1+1/
=


J(t, x)
'(t, x)

�+1

> 0

for all (t, x) 2 R+ ⇥ F̄ . With some algebraic manipulation,
(4) can be brought to the form
2

4
⇥
J(t, x)/'(t, x)

⇤+1

p
J(t, x)

3

5 '̇ =

"
[J(t, x)/'(t, x)]+1

p
J(t,x)

#⇣
@'
@x

⌘|
u

+ 2
p

J(t, x)
mX

j=1

�̄j(t, x)[x� oj(t)]
|ȯj

+ 4�(t, x)[xT (t)� x]|ẋT . (5)

Based on the properties of ' as established in the proofs of
Propositions 1 through 6 (see Appendices A and B), the sum
of the last two terms in the right hand side of (5) is upper
bounded:

2
p

J(t, x)
mX

j=1

�̄j(t, x)[x� oj(t)]
|ȯj

+ 4�(t, x)[xT (t)� x]|ẋT

< 2
p

J(t, x)
mX

j=1

�̄j(t, x)kx� oj(t)k sup
t�0

kȯjk

+ 4�(t, x)kxT (t)� xk sup
t�0

kẋT k <

8�(t, x)⇢0 sup
t�0

kẋT k+4
p

J(t, x)
mX

j=1

�̄j(t, x)⇢0 sup
t�0

kȯjk

< (2⇢0)
2m+3 sup

t�0
kẋT k+

m(4⇢2
0�r2T )(2⇢0)

2m+2

2 sup
t�0

kȯjk

= (2⇢0)
2m+2

"
2⇢0 sup

t�0
kẋT k+

m(4⇢2
0�r2T )
2 sup

t�0
kȯjk

#

< (2⇢0)
2m+3

"
 sup

t�0
kẋT k+m⇢0 sup

t�0
kȯjk

#
. (6)

Therefore, once (3) is plugged into (5), it leads to

'̇
(6)
< �c kr'(t, x)k2 +

h
'(t,x)
J(t,x)

i+1
(2⇢0)

2m+5

·
"
 sup

t�0
kẋT k+m⇢0 sup

t�0
kȯjk

#
. (7)

The ratio '(t,x)
J(t,x) =

⇥
J(t, x) + �(t, x)

⇤�1/ is upper and
lower bounded in F̄ , while r' will always be nonzero
8x /2 S(t), from which point an application of the ultimate
boundedness theorem [51] on the dynamics of ' establishes
the existence of a KL class function ⇠ and a K class function
� such that

'(t, x)  ⇠
�
t,'(0, x0)

�
+�
�
supt�0{kkẋT k+m⇢0kȯjk}

�
.

⇤

Some remarks on (7) may be in order.

Remark 1 (Convergence) The boundedness of theh
'(t,x)
J(t,x)

i+1
=
⇥
J(t, x) + �(t, x)

⇤�1�1/ term allows
the selection of a sufficiently large control gain c to over-
come the disturbing influence of the moving obstacles and
target, which is limited via the finite values of supt�0 kȯjk
and supt�0 kẋT k, respectively.

Remark 2 (Collision avoidance) Similarly, collision avoid-
ance under (3) is not unconditional; it relies on selecting
a gain c large enough to enable the robot to overcome the
agility of dynamic obstacles and target.

Remark 3 (Saddle points) While it can be readily verified a
priori whether the robot’s position is in S(t) at initial time,
the theoretical possibility that x(t) intersects with S(t) as
the latter moves inside the workspace over time, cannot be
eliminated. That said, given that S(t) is of zero measure and
time-varying, the probability that x(t) 2 S(t) 8 t > ⌧ > 0
is practically zero.

In light of these observations and armed with
Proposition 7, we move to the following claim:

Proposition 8 If the target eventually stops (ẋT = 0) and
with the conditions of Proposition 7 in force, there is a suffi-
ciently large control gain c > 0 to ensure the point robot (2)
under (3) asymptotically converges to its target.

Proof Assuming ẋT = 0 after some time ⌧ > 0 (and given
that there is no memory in the system which means that x(⌧)
can be considered a new initial condition), (7) can be restated
without its ẋT term, establishing ISS of '(t, x) with respect
to supt�⌧ kȯjk. At this point, ultimate boundedness argu-
ments can establish that for a sufficiently large c > 0 (the
existence of which is predicated on Assumption 1), '(x, t)
can reach in finite time an arbitrarily small value " > 0, after
which time the state x(t) will stay within the sublevel set
{x 2 F : '(x) < "}. Continuity now suggests that if this "
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is sufficiently small, the sublevel set {x 2 F : '(x) < "}
will be contained in a small neighborhood of BT . Notice,
however, that (validity) Assumption 2 now forces BT to
always be at least some � +

p
✏ away from any obstacle Bj

for j 2 {0, . . . ,m}. As a result, for sufficiently small "
and for c > 0 adequately large to ensure finite-time positive
invariance of the sublevel set {x 2 F : '(x) < "}, the BT

neighborhood that contains the latter will be disjoint from
any Bj for j 2 {0, . . . ,m}.

The significance of this fact is the realization that using a
sufficiently large control gain, one can send the robot where
the obstacles cannot follow: once inside this sublevel set
{x 2 F : '(x) < "}, the robot has a straight shot to its
target which cannot be disrupted by the motion of the obsta-
cles. While not evident from (7), this view can be justified
by (4) when ẋT = 0 (as assumed). With the robot out of the
obstacles’ reach (�j lower bounded in the sublevel set) and
capable of moving faster than them, there is only a finite time
during which the obstacles can maintain [x�oj(t)]

|ȯj > 0.
After that time, the second term in (4) can also be dropped:

'̇ = �c kr'k2 , (8)

establishing exponential convergence for '. ⇤

5 Numerical Validation
Figure 3 illustrates in the form of snapshots how
the time-varying navigation function can steer the
(point mass) system to its moving destination among
two spherical obstacles that oscillate thus varying the
width of the allowable pathways between them.

The figure is read from top left to bottom right; the
initial position for the robot (see Fig. 3a) is marked
as a point in the bottom region of the spherical outer
boundary of the environment, whereas the moving
destination is depicted as the point at the upper por-
tion, surrounded by a small (target) sphere that the
robot needs to converge to.

The target transcribes a circular motion within the
top region of the work space (above the two mov-
ing obstacles). These two obstacles, arranged along
the horizontal diameter of the outer boundary, move
back and forth in an oscillatory motion on this line,
with the same frequency and speed and varying dis-
tance between them. The sequence of snapshots in the
figure depict the robot starting to move upward toward
its destination, attempting at first to pass in between
the two oscillating obstacles (Fig. 3b). Then the gap
closes as the two moving obstacles approach each
other and the robot fails to pass through in two con-
secutive attempts (Fig. 3c–3d) and backtracks. Then,
being closer now and with the right timing a gap opens
(Fig. 3e), and the robot “sees its chance” to make

another run between them (Fig. 3f). Once through
(Fig. 3g) it has a clear shot to its goal (Fig. 3h).

In another scenario, depicted in Fig. 4, the obsta-
cles are coordinated deliberately to exhibit a “mali-
cious” behavior with respect to the robot, swarming
around it in an attempt to prevent it from reaching
its target. In this scenario, therefore, the obstacles do
not follow fixed trajectories, but adapt their motion
reactively in response to the motion of the robot and
the target. Specifically, the obstacles move under the
effect of swarming cohesion & separation artificial
forces, generated as a negated gradient of an inter-
agent potential function of the relative distance dij
between agents i and j having the form V (dij) =
1/(⌫1dij)

2 + log2(⌫2dij) [52, 53]. The arrows marked
on the obstacles in Fig. 4 denote the direction of
these artificial swarming forces. The swarm interac-
tion network between obstacles, target, and robot is
fully connected, but target and robot are indifferent to
the swarming interaction. In this scenario, the robot’s
maximum speed surpasses that of the obstacles by a
factor of 3. As the sequence of snapshots in Fig. 4
indicate, despite their intend, the obstacles are not fast
enough to block the robot which outmaneuvers their
cluster from the right.

Things can become more challenging, however,
when the relative actuation capacity between robot
and obstacles approaches unity. In an otherwise iden-
tical scenario to that of Fig. 4, where the ratio of
maximum speeds between robot and obstacles falls
to 2, the obstacles are able to move in a coordinated
fashion to block the robot from reaching its target
(Fig. 5). (Although this scenario was not simulated
for longer time horizons than those of Figs. 3 and 4
to explore if the robot eventually finds a successful
circumnavigation strategy.) Videos of the aforemen-
tioned scenarios are available at https://udspace.udel.
edu/handle/19716/31417.

6 Experimental Validation
The experimental testbed mirrors the simulation setup
and consists of a (virtual) outer workspace boundary
marked by black tape in Fig. 6a with ⇢0 = 150 cm,
one static obstacle, one moving obstacle, and a moving
target.

The Sphero™ robots used in this experiment are
basically differential drive vehicles with ability to turn
in place. They are controlled at a kinematic level using
an API that prescribes speed and bearing directives,
accompanied by underlying pid controllers that steer

https://udspace.udel.edu/handle/19716/31417
https://udspace.udel.edu/handle/19716/31417
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the vehicle to track these references. In this sense, the
kinematics of Sphero™ can be assumed to adhere to
the equations of a unicycle:

ẋ = v cos ✓ ẏ = v sin ✓ ✓̇ = ! .

Given that only the (x, y) position is of interest
here, we can reasonably consider an input-output feed-
back linearization process that would render the above
kinematics equivalent to those of a single integrator.

(a) (b)

(c) (d)

(e) (f)

Fig. 4: A series of snapshots from a simulation study fea-
turing two obstacles attempting to swarm around robot and
target. Despite the adversarial action, the robot still reaches
its destination.

The obstacles and the destination are spherical
robots; the moving obstacle and the target are realized
by Sphero™ BOLT robots, while the static obstacle
and the interceptor robot are realized by a SPHERO™
SPRK+ and a SPHERO™ 2, respectively; all these
spheres have equal radii, and the volume of the robot

was taken into account when modelled as a point by
doubling the radius the control algorithm uses for the
other spheres to ⇢1 = ⇢2 = 20 cm. The target sphere
around the destination has radius rd = 25 cm. The
objects are distinguished by their color LED signa-
ture; the target emits blue light, while the navigating
robot emits red in Fig. 6a. The moving obstacle and
the destination follow circular trajectories, which are
unknown to the robot. The location of every object
is determined in real time via color detection using a
light-tracking overhead RealSense D415 camera.

(a) (b)

(c) (d)

(e) (f)

Fig. 5: A series of snapshots from a simulation study fea-
turing two obstacles attempting to swarm around robot and
target. In this case, because the robot cannot move fast
enough relative to the obstacles, the latter succeed in block-
ing its path to its destination.

The latter’s limitations is the reason for the low
(ambient light) exposure in Fig. 6a. Control and
communication is facilitated through the SPHERO
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Multi-Agent Robotic Testbed, while the robots’ kine-
matic commands are computed in MATLAB and
relayed through bluetooth. Figure 6a depicts the ini-
tial workspace and robot configuration, with the robot
(red light) on the bottom right area of the workspace—
the outer boundary of which is marked with a black
tape, and the two moving objects (blue target, green
obstacle) tracking circular trajectories outlined by thin
dotted curves. None of these trajectories is known to
the robot.

paths of moving objects

target sphere

target

moving obstacle

static obstacle

robot interceptor

workspace boundary

moving

(a) Initial configuration

workspace boundary

static obstacle

target sphere

moving obstacle

robot interceptor

moving target

(b) Steady state

Fig. 6: Snapshots from experimental implementation.

The thicker circle around the target marks the sur-
face of BT around it, while a static obstacle is visible
on the top right. Figure 6b gives a snapshot of the
steady state, where the robot has navigated between
the green moving and black static obstacles, reached
the surface of the target sphere and tracks it as the
target moves along its circular trajectory. A video of
the experimental run described is available at https:
//udspace.udel.edu/handle/19716/31417.

Figure 7 shows the evolution of the value of the
navigation function as the experiment of Fig. 6 pro-
gresses over a time window of one minute. The robot
is initially close —taking into account its volume,
and given the parameter tuning applied— to the outer
workspace boundary, which is why value for ' starts
very close to its maximum, and then very quickly
decreases to its minimum of zero. The temporary
intermittent small increases evident in the graph of '
are due to a combination of motion noise and use of
raw and unfiltered measurements of the objects’ posi-
tions directly from the overhead color tracking system.
Steady state is practically reached within 8 seconds,
and in the remaining time the robot tracks the target
as the latter goes around its circular path, remaining
close to @BT .

0 10 20 30 40 50 60
t(s)

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Fig. 7: Evolution of the value of the navigation func-
tion during the experiment with the boundary conditions of
Fig. 6. Blue solid curve gives the value of ' based on (unfil-
tered) position measurements; red dashed curve indicates the
expected evolution of ' in controlled simulation conditions.

7 Conclusions and Future Work
There has been anecdotal evidence that the naviga-
tion function methodology can also be effective in
time-varying environments. This paper mathemati-
cally establishes the truth of this conjecture through a
series of propositions, the proof of which offer explicit
(albeit conservative) uniform bounds on the func-
tion’s parameters. The paper accompanies the proof
of correctness of the time-varying sphere world nav-
igation function with a proof of convergence for a
negated gradient-based control law. While the paper
addresses the key but idealized case of navigation

https://udspace.udel.edu/handle/19716/31417
https://udspace.udel.edu/handle/19716/31417
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in time-varying sphere worlds where both destination
and obstacles may be moving, there has already been
work that paves the road toward extensions to star
worlds [11] and multi-robot systems [50].
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Appendix A Useful expressions
A.1 Gradients and Hessians for the

obstacle function �

For �0(x) the gradient is found directly as:

�0 = ⇢20 �kxk2 =) r�0 = �2x (A1)

For �j(t, x) with j 2 {1 . . .m} it is

�j(t, x) =
��x� oj(t)

��2 � ⇢2j

=) r�j = 2[x� oj(t)] (A2)

The omitted product for an obstacle function �j(t, x)
is defined as [41]:

�̄j ,
Qm

l=0,l 6=j �l

allowing the decomposition � = �j �̄j . Thus the
gradient of � is found directly as:

r�(t, x)
(A2,A1)

=

� 2x�̄0(x) + 2
mX

j=1

[x� oj(t)]�̄j(t, x) . (A3)

Based on the above, the fact that no obstacle radius
is larger than ⇢0, and given the workspace validity
assumption, one can derive the bound

kr�(t, x)k  2(m+ 1)(⇢0 � �)m . (A4)

Noting that r2�j(t, x) = 2I where I is the iden-
tity matrix, for any j 2 {0,m} the Hessian of �
expands as

r2�(t, x) = r�jr�̄|
j +2�̄jI+r�̄jr�̄|

j +�jr2�̄j .

Based on the above expression, after taking norms,
expanding, and using recursion on kr2�̄jk, one can
arrive at

kr2�k  2(⇢0 � �)m
⇥
(⇢0 � �)m +m(⇢0 � �)m�1

+ (m+ 1)(m2 + 1)(⇢0 � �)m�2 +m2
⇤
, (A5)

which holds everywhere in F2(✏).

A.2 Gradient and Hessian of '̂
The gradient of '̂ = Jk/� can be written as

r'̂ =
kJk�1

�2

✓
�rJ � 1

k
Jr�

◆
. (A6)

At a critical point xc, '̂ needs to satisfy r'̂ |xc
= 0,

meaning

�rJ |xc
� 1

kJ r� |xc
= 0 . (A7)

It is noteworthy here that at a critical point of '̂, the
gradient of J is in the same direction as that of �:

rJ |xc

(A7,A3)
= �2�̄0xc+

2J

k�

mX

j=1

(xc�oj)�̄j . (A8)

On the other hand, the Hessian

r2'̂ = (krJ� � Jr�)r
 
Jk�1

�2

!|

+

Jk�1
�
krJr�| + k�r2J �r�rJ| � Jr2�

�

�2
,

when evaluated at xc given (A7), reduces to

r2'̂ |xc
=

Jk�1

�2

⇣
krJ r�| + k�r2J

�r�rJ| � J r2�
⌘ ����

xc

. (A9)

A.3 Gradient and Hessian of the goal
function J

At an arbitrary x 2 F , the gradient and Hessian of the
goal function J , are expressed, respectively, as

rJ(t, x) =

(
4
p
J [x� xT (t)] x /2 BT

�4
p
J [x� xT (t)] x 2 BT

(A10)

and given the workspace validity assumption, for x /2
BT

krJ(t, x)k  4(2⇢0 � rT � �)3 . (A11)
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For the Hessian of the goal function we have

r2J(t, x) =
(
4
p
J I + 8[x� xT (t)][x� xT (t)]| x /2 BT

�4
p
J I � 8[x� xT (t)][x� xT (t)]| x 2 BT .

(A12)

Similarly, for x /2 BT the norm of this matrix is
uniformly upper bounded as

kr2J(t, x)k  12(2⇢0 � rT � �)2 . (A13)

Appendix B Proofs
B.1 Proposition 1
Proof We first show that a vector v satisfying
v|r2' |xD

v = 0 is tangent to @BT . For xD(t) 2 @BT ,

it holds that
��xD(t)� xT (t)

��2 � r2T = 0, implying that
J and rJ both vanish. Therefore, the gradient of ' at
xD , written as (explicit dependence of terms on x and t is
dropped for brevity),

r' |xD
=

(Jk + �)
1/krJ � Jr(Jk + �)

1/k

(Jk + �)2/k

�����
xD

= 0

indicating that xD is a critical point for '; given that
'(t, x) � 0 and '(t, xD) = 0, xD is a minimum. The
Hessian of '(t, x) evaluated at xD is expressed as

r2' |xD
=

r
⇣
rJ(Jk + �)

1/k � Jr(J + �)
1/k
⌘

(Jk + �)2/k

�����
xD

+

⇣
(Jk + �)

1/krJ � J r(J+�)
1/k
⌘⇣

r(Jk + �)
� 2/k

⌘|
�����
xD

= 8�
� 1/k(xD � xT )(xD � xT )

|

from which it follows that (a) r2' |xD
is singular, and

(b) the quadratic form v|r2' |xD
v is zero for any v ?

(xD�xT ), where in xD�xT (t) we identify the radial vec-
tor from the surface to the center of BT (t). Now xD�xT (t)
is in fact along the normal direction to @BT (t) given that
BT is a sphere; for any w = �[xD � xT (t)], � 2 R, notice
that w|r2' |xD

w = 8�2��1/k 6= 0 and thus the Hessian
is nondegenerate in a direction normal to @BT (t). ⇤

B.2 Proposition 2
Proof The proposition is falsified only when a critical point
exists in @F . We can show that this cannot happen. Since
Bj for j 2 {0, . . . ,m} do not intersect in a valid F , any
x0 2 @F will necessarily be on a single @B`, for some ` 2
{0, . . . ,m}. Then �`(t, x0) = 0 but r�` |x0

= 2[x0 �

ol(t)] 6= 0, while 8j 2 {0, . . . ,m} \ {`}, �j(t, x0) > 0.
Then, r' |x0

reduces to

r' |x0
=

(Jk + �)
1/krJ � J r(Jk + �)

1/k

(Jk + �)2/k

�����
x0

=

(Jk + �)rJ � J
k

⇣
kJk�1rJ +r�

⌘

(Jk + �)
1
k+1

�����
x0

�=0
=

�
J�kr�|x0

k
�`=0
= �J�k

k

mY

j=0,j 6=`

�j(t, x0)r�` |x0
6= 0 .

⇤

B.3 Proposition 3
Proof Before we begin, it may be worthwhile to recall some
implications of Assumption 2: (i) The robot is in the inte-
rior of Bc

0 (whose center is the default origin of F ) andp
✏ + � away from its boundary, i.e., kx� o0k = kxk 

⇢0 �
p
✏ � �; (ii) The distance of any obstacle center from

the origin of the workspace is upper bounded 8 t � 0, i.e.,��oj(t)
��  ⇢0 � ⇢j �

p
✏ � � (iii) The distance between

the robot and BT is upper and lower bounded 8 t � 0, i.e.,
rT 

��x� xT (t)
��  2⇢0 �

p
✏ � � � rT ; and (iv) The

distance between the robot and any interior obstacle cen-
ter is upper and lower bounded, i.e., ⇢j <

��x� oj(t)
�� 

2(⇢0 �
p
✏� �)� ⇢j .

At a critical point x 2 W(✏) of '̂ it is necessary that
�rJ � 1

kr� = 0, meaning that if k > Jkr�k
�krJk , x cannot

be a critical point. The strategy therefore is to set k suffi-
ciently high so as to preclude the possibility of critical points
in W(✏). For this, it suffices to have

k � supW(✏),t�0
J

krJk supW(✏),t�0
kr�k

� .

Let x 2 W(✏), and suppose Bj is the obstacle closest to
x. For x 2 F2(✏) ⇢ W(✏), it holds that �j(t, x) � ✏, so

sup
F2(✏)

J(t, x)��rJ(t, x)
��

(A10)
= sup

F2(✏)

��x� xT (t)
��2 � r2T

4
��x� xT (t)

��

 (⇢0��)2

rT
, (B14)

and similarly

sup
F2(✏)

kr�k
�

 sup
F2(✏)

mX

j=0

��r�j
��

�j
= sup

F2(✏)

2kxk
�0(x)

+ sup
F2(✏)

mX

j=1

2
��x� oj(t)

��
�j(t, x)

 2

(
p
✏+ �)2

sup
F2(✏)

�
kxk+

mX

j=1

��x� oj(t)
��  2(2m+ 1)(⇢0 � �)

(
p
✏+ �)2

. (B15)

Denote N(✏) the product of the suprema in (B14) and
(B15):

N(✏) , 2(2m+ 1)(⇢0 � �)3

rT (
p
✏+ �)2

.
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Now if k � N(✏), x cannot be a critical point. ⇤

B.4 Proposition 4
Proof A sufficient condition for a critical point of '̂ not
to be a local minimum, is for the Hessian of '̂ evaluated
there to have at least one negative eigenvalue. Demonstrating
the existence of a negative eigenvalue essentially amounts
to showing that there exists a vector v 2 Rn such that
v|r2'̂v < 0.

Toward this end, denote xc 2 F0(✏) the critical point
of '̂ in question, and expand the gradient of the obstacle
function �(t, x) evaluated at xc, using omitted products:

r� |xc
=

mX

l=1

2[xc � ol(t)]�̄l(t, xc)� 2�̄0(xc)xc

= 2(xc � oj)�̄j + �j

2

42
mX

l=1,l 6=j

(xc � ol)
�̄l
�j

� 2 �̄0
�j

xc

3

5

| {z }
↵j

= 2(xc � oj)�̄j + �j↵j , (B16)

where we dropped the dependence of terms on t for brevity.
Now, given that xc 62 BT is a critical point, and that
k �rJ = J r�, it follows

rJ
(A10)
= 4

⇣
kxc � xT k2 � r2T

⌘
[xc � xT ]

(A8)
=

J
k�

r�
(B16)
=

J [2(xc � oj)�̄j + �j↵j ]

k�
,

which one can manipulate to arrive at

xc � xT =

p
J

2k

 
xc � oj

�j
+

↵j

2�̄j

!
. (B17)

Then, multiplying both sides of (A7) with rJ| and
expanding � using the omitted product of �j , yields

k� krJk2 |xc
= J r�| rJ |xc

=)

k� =
�̄jr�|

j rJ + �jr�̄|
j rJ

16
��xc � xT (t)

��2
. (B18)

Now in order for xc not to be a local minimum, it
suffices to show that there exists some vector v so that
v|r2' |xc

v < 0 when ✏ is set sufficiently small. Indeed,
take v to be a unit vector orthogonal to r�j . Then,

�2

Jk�1
v|r2' |xc

v

(A7)(A9)
= J�j

1� 1
k

�̄j
v|r�̄jr�̄|

j v + k�v|r2Jv

� 2J �̄j � J�jv
|r2�̄jv

(B18)
=

�̄jr�|
j rJ + �jr�̄|

j rJ

16
��xc � xT (t)

��2
v|r2Jv � 2J �̄j+

v|J�j
h
1� 1

k

�̄j
r�̄jr�̄|

j �r2�̄j
i
v

= �j


r�̄|

j rJ v|r2Jv

16kxc�xT (t)k2 + Jv|⇣ 1� 1
k

�̄j
r�̄jr�̄|

j �r2�̄j
⌘
v

�

| {z }
B

+ �̄j

2

4 v|r2Jv

16
��xc � xT (t)

��2
r�|

j rJ � 2J

3

5

| {z }
A

. (B19)

Now expand the term v|r2Jv in A into

v|r2Jv
(A12)
= 4

⇣��xc � xT (t)
��2 � r2T

⌘

+ 8
�
v|[xc � xT (t)]

�2 (B17)
= 4

p
J +

J |v|↵j |2

2k2�̄j
2 ,

then substitute back

A =
4
p
J +

J|v|↵j |2

2k2�̄j
2

16kxc � xT k2
[8
p
J(xc � oj)

|(xc � xT )]� 2J

=
2J +

J
3
2 |v|↵j |2
(2k�̄j)2

kxc � xT k2
(xc � oj)

|(xc � xT )� 2J .

It is known [41, Lemma 3.5] that for any xT and oj in a valid
workspace, the critical point xc satisfies

(xc�xT )
|(xT�oj) 

��xT � oj
��
q

✏+ ⇢2j �
��xT � oj

��
�

,

which leads to upper bounding A as by the quantity

2J

2

64
kxT�ojk

✓q
✏+⇢2

j�kxT�ojk
◆

kxc�xT k2

✓
1 +

p
J|v|↵j |2
2(2k�̄j)2

◆
� 1

3

75

which can be shown to be negative. Indeed, given the
workspace validity assumption,

q
✏+ ⇢2j �

��xT � oj
�� <

q
✏+ ⇢2j � (⇢j + rT +

p
✏ + �) < 0. On the other hand,

term B is multiplied by �j < ✏ for in xc 2 Bj(✏). There-
fore, by making ✏ small enough, one can guarantee that
v|r2' |xc

v < 0. Specifically how small, can be deter-
mined as follows, first by further upper bounding A for
xc 2 Bj(✏):

A  �2J


rTkxT�ojk
kxc�xT k2 + 1

�

 �2J
h

rT (rT+
p
✏+�)

(2⇢0�rT�
p
✏��)2

+ 1
i

 �2(� +
p
✏)4
h

rT (rT+�+
p
✏)

(2⇢0�rT���
p
✏)2

+ 1
i

 �2�4
⇣

rT+�
2⇢0�rT��

⌘2
+ 1

�
. (B20)

Similarly,

B 
|r�̄|

j rJ |kr2Jk

16kxc � xT k2
+ Jk 1� 1

k

�̄j
r�̄jr�̄|

j �r2�̄jk
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
kr�̄jkkrJkkr2Jk

16kxc � xT k2
+ k�1

k�̄j
Jkr�̄jk2 + Jkr2�̄jk

 kr�̄jkkrJkkr2Jk
16(�+rT ) +

(k�1)Jkr�̄jk2

k�̄j
+ Jkr2�̄jk

(A4,A11,A13)
 6m(⇢0��)m�1(2⇢0�rT��)5

�+rT
+ 32m(⇢0��)5

�2

+2(2⇢0�rT��)4(⇢0��)m�1
⇥
(⇢0��)m�1+(m�1)(⇢0��)m�2

+m(m2�2m+2)(⇢0��)m�3+(m�1)2
⇤

. (B21)

Using (B20) and (B21), (B19) allows for the derivation of a
lower bound on ✏ that would make v|r2' |xc

v negative:

�2v|r2'|xc
v

Jk�1  �jB + �̄jA  0

(= �j  � (⇢0��)m�1A
B

(= ✏  2�4(⇢0 � �)m�1
⇣

rT+�
2⇢0�rT��

⌘2
+ 1

�
⇥

n
6m(⇢0��)m�1(2⇢0�rT��)5

�+rT
+ 32m(⇢0��)5

�2

+2(2⇢0�rT��)4(⇢0��)m�1
⇥
(⇢0��)m�1+(m�1)(⇢0��)m�2

+m(m2�2m+2)(⇢0��)m�3+(m�1)2
o�1

.

⇤

B.5 Proof of Proposition 5
Proof By contradiction: assume xc 2 F1(✏) is a critical
point. At a critical point, we know that r'̂(xc) ⌘ rJk

� =
0. We will show that an appropriate choice of k forces
r'̂|rJ > 0 instead.

Since xc 2 F1(✏) ⇢ B0(✏), the workspace validity
assumption forces a minimal separation between xc and xT :

kxck �
��xT (t)

�� > � . (B22)

Given that,

rJ|r�0
(A10),(A1)

=

� 8
p
J
�
xc � xT (t)

�|
xc = 8

p
J
⇣
xT (t)

|xc �kxck2
⌘

 8
p
J|{z}

>0

kxck|{z}
>0

⇣��xT (t)
���kxck

⌘

| {z }
<0

(B22)
< 0 . (B23)

Now expand r'̂|rJ and bound it as follows:

r'̂|rJ
(A6)
=

kJk�1

�2

✓
�rJ � Jr�

k

◆|
rJ

=
Jk

�2

✓
k�
J

rJ|rJ �r�|rJ

◆

=
Jk

�2

⇣
16k�

��x� xT (t)
��2 �r�|rJ

⌘

=

Jk�0


16k�̄0

��x� xT (t)
��2 �

⇣
r�̄|

0 + �̄0
�0

r�|
0

⌘
rJ

�

�2

(B23)
>

Jk�0
�2

⇣
16k�̄0

��x� xT (t)
��2 �r�̄|

0rJ
⌘

.

To ensure r'̂|rJ > 0, one needs k >
r�̄|

0rJ

16�̄0kx�xT (t)k2

and toward this end we obtain a supremum of that
expression in F1(✏) as follows:

r�̄|
0rJ

16�̄0
��x� xT (t)

��2


��r�̄0
��krJk

16�̄0
��x� xT (t)

��2

=

p
J

4
��x� xT (t)

��

��r�̄0
��

�̄0

 sup
F1

 p
J

4
��x� xT (t)

��

!
sup
F1

 ��r�̄0
��

�̄0

!

 sup
F1

✓
kx�xT (t)k2�r2T

4kx�xT (t)k

◆ mX

l=1

 
sup
F1

2kx�ol(t)k
�l

!

< sup
F1

✓
kx�xT (t)k

2 � r2T
2kx�xT (t)k

◆ mX

l=1

 
sup
F1

kx�ol(t)k
�2

!

 2m(⇢0 � �)2

�2
, k1 ,

and k1  k, no critical points exist in F1(✏). ⇤

B.6 Proof of Proposition 6
Proof One way to establish non-degeneracy for a critical
point is to partition the tangent space on which '̂ lies into
two subspaces, and ensure that a quadratic form v|r2'̂v is
positive for all vectors v in one subspace, and negative for
all vectors v on the other [41, Lemma 3.8].

If �j is the implicit function for the obstacle closest
to critical point xc 2 F0(✏), the proof of Proposition 4
established that for v in the subspace that is orthogo-
nal to r�j/

��r�j
��, v|r2'̂ v < 0. So now consider the

complement of the aforementioned subspace, which is nat-
urally spanned by v̄ , r�j/

��r�j
��. We want to verify that

v̄|r2'v̄ > 0.
Combining (A8) with (A9) yields

r2'̂ |xc
= Jk�1

�2

⇣
k�r2J + J(1�1/k)

� r�r�| � Jr2�
⌘

.

Let us now expand the expression

�2

Jk�1
v̄| r2'̂ v̄ =

v̄|

J
�

⇣
1� 1

k

⌘
r�r�| � J r2� + k�r2J

�
v̄ =

k� v̄|r2J v̄ +
J

✓
1� 1

k

◆

�

�
r�| v̄

�2 � J v̄|r2� v̄ ,

(B24)
and note that for small enough ✏ [41, p. 435]

Jkr�k2

2k� +
J(1�1/k)

�

�
r�| v̄

�2� Jv̄|r2� v̄ � 0 .
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Then to set the sign of (B24), it suffices to make

v̄| k�r2J v̄ � Jkr�k2

2k�
. (B25)

To ensure that, first focus on the left hand side of (B25) and
recall (A12) for the Hessian of J at a critical point xc:

v̄|k�r2Jv̄

(A10)
= k�v̄|

⇣
4
p
JI + 8

�
xc � xT (t)

� �
xc � xT (t)

�|⌘
v̄

= 4k�
p
J + 8k�|v̄|

�
xc � xT (t)

�
|2 . (B26)

At the critical point xc we have Jr� = k�rJ and by
taking the squared norms of both sides we arrive at

4k�
(A10)
=

Jkr�k2

4k�
��xc � xT (t)

��2
. (B27)

Now we plug (B27) back to (B26) and obtain the left hand
side of (B25) in the form:

k� v̄|r2Jv̄ = 4k�
p
J + 8k�|v̄|

�
xc � xT (t)

�
|2

=
kr�k2 J3/2 + 2Jkr�k2 |v̄|

�
xc � xT (t)

�
|2

4k�
��xc � xT (t)

��2
.

(B28)
Given (B28), (B25) reduces to
p
J + 2|v̄|

�
xc � xT (t)

�
|2

2
��xc � xT (t)

��2
� 1

()
��xc � xT (t)

��2 � r2T

+ 2|v̄|
�
xc � xT (t)

�
|2� 2

��xc � xT (t)
��2 ()

2|v̄|
�
xc � xT (t)

�
|2�

��xc � xT (t)
��2 + r2T . (B29)

Assuming, without loss of generality, that for some j,
xc 2 Bj(✏), means that v̄| =

�
xc � oj(t)

�|/
��xc � oj(t)

�� in
which case (B29) becomes

2| (xc�oj(t))|

kxc�oj(t)k
�
xc � xT (t)

�
|2 �

��xc � xT (t)
��2 + r2T .

(B30)
Any critical point xc inside F0(✏) will be by definition

away from the target, i.e.,
��xc � xT (t)

�� > rT . There is
therefore a ⇣ < 1 such that

rT = ⇣ inf
Bj(✏)

��xc � xT (t)
�� .

Now (B30) is implied if
�
xc � oj(t)

�| �
xc � xT (t)

�
��xc � oj(t)

����xc � xT (t)
�� > 1 �

r
1 + ⇣2

2
. (B31)

Let us see, therefore, how the left hand side of (B31) can be
lower-bounded.

First, let us leverage (B17) to substitute for xc � xT (t)
in the left hand side of (B31) and lower bound it (dropping
indicators of time dependence for brevity) as
�
xc � oj

�|
(xc � xT )��xc � oj

��kxc � xT k

�

p
J(xc�oj)

|
4k


2(xc�oj)

�j
+

↵j

�̄j

�

p
Jkxc�ojk

4k


2kxc�ojk

�j
+

k↵jk
�̄j

�

�
2
��xc � oj

��2/�j �
��xc � oj

����↵j
��/�̄j

2
��xc � oj

��2/�j +
��xc � oj

����↵j
��/�̄j

=
1� �j

��↵j
��/2�̄j

��xc � oj
��

1 + �j
��↵j

��/2�̄j
��xc � oj

��
= 1�

�j
��↵j

��/�̄j
��xc � oj

��

1 + �j
��↵j

��/2�̄j
��xc � oj

��

� 1�
�j
��↵j

��

�̄j
��xc � oj

�� � 1�
✏
��↵j

��

�̄j
��xc � oj

�� . (B32)

Using the lower bound of (B32) in place of the left hand
side of (B31) yields a suitable ✏ that essentially enforces
(B25) through (B29):

1�
✏
��↵j

��

�̄j
��xc � oj

�� >

r
1 + ⇣2

2
()

✏
��↵j

��

�̄j
��xc � oj

�� <

1�
r

1 + ⇣2

2
() ✏ <

 
1�

r
1 + ⇣2

2

!

�̄j
��xc � oj

��
��↵j

�� <

 
1�

r
1 + ⇣2

2

!
⇢mj��↵j
�� .

To fix the bound on ✏ we produce an upper bound for ↵j

as follows (dropping temporarily again time dependency
indicators for brevity):

k↵jk =
���2

mX

l=1,l 6=j

(xc � ol)
�̄l
�j

� 2 �̄0
�j

xc
��� =

���2
mX

l=1,l 6=j

(xc � ol)
mY

a=1
l 6=a 6=j

�a � 2xc

mY

b=1
0 6=b 6=j

�b

���

< 2
mX

l=1
l 6=j

sup
xc2F0

k(xc�ol)k
mY

a=1
j 6=a 6=l

�a�2kxck
mY

b=1
0 6=b 6=j

⇠⇠⇠⇠⇠:0
ess inf �b

 22m�3(⇢0 �
p
✏� �)2m�4

mX

l=1
l 6=j

(⇢l +
p
✏)

 (m� 1)(2⇢0)
2m�3 .

Given this bound on k↵jk, an upper bound ✏03 on ✏ is set:

✏3
0 ,

1�
q

1+⇣2

2

22m�3(m� 1)⇢m�3
0

.

Tracing the thought trail back,

✏ < ✏3
0 =) 1�

✏
��↵j

��

�̄j
��xc � oj

�� >

r
1 + ⇣2

2

=) v̄| k�r2J v̄ � Jkr�k2

2k�
=) v̄|r2' v̄ > 0 ,

and the critical point xc 2 F0(✏) cannot be degenerate.
⇤
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