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Abstract

Let R denote the generalized Radon transform, which integrates over a family of
N-dimensional smooth submanifolds S; CU,1 < N <n— 1, where an open set
U C R" is the image domain. The submanifolds are parametrized by points y C v,
where an open set V C R" is the data domain. We assume that the canonical relation
C from T*U to T*V of R is a local canonical graph (when R is viewed as a Fourier
Integral Operator). The continuous data are denoted by g, and the reconstruction is
f = R*Bg. Here R* is a weighted adjoint of R, B is a pseudo-differential operator,
and g is a conormal distribution. Discrete data consists of the values of g on a regular
lattice with step size O (€). Let S denote the singular support of f,and f. = R*Bg.
be the reconstruction from interpolated discrete data g.(y). Pick a point xo € S, i.e.
the singularity of f at xo is visible from the data. The main result of the paper is the
computation of the limit

DTB() = lim € fe(xo + €X).

Here x> 0 is selected based on the strength of the reconstructed singularity, and X is
confined to a bounded set. The limiting function DTB(X), which we call the discrete
transition behavior, contains full information about the resolution of reconstruction.
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1 Introduction

Analysis of resolution of tomographic reconstruction from discrete Radon transform
data is a practically important problem. In many applications one needs to know
how accurately and with what resolution singularities of the object f (e.g., a jump
discontinuity across a smooth surface S = singsupp(f)) are reconstructed. Let f
denote the reconstruction from continuous data, and fe denote the reconstruction from
discrete data, where € represents the data sampling rate. In the latter case, interpolated
discrete data are substituted into the “continuous” inversion formula. In [17-20] the
author initiated an analysis of reconstruction, which is focused on the behavior of fg
near S. One of the main results of these papers is the computation of the limit

DTB(¥) := lim € fu(xo + €X). (1.1)
€—

Here xo € S (xg is selected subject to some constraints, see Definition 3.4 below),
k > 0 is a unique number selected based on the strength of the singularity of f at xo
(see 4.19), and X is confined to a bounded set. Let fj be the leading singularity of f in
aneighborhood of xq (see Definition 5.2). For example, if f is a conormal distribution
with a homogeneous top symbol, then fp is the distribution determined by the top
symbol. If fj is a homogeneous distribution of degree —«, i.e., fo(tX) = t~* fo(X),
then this value of « is used in (1.1).

Itis important to emphasize that both the size of the neighborhood around x( and the
data sampling rate go to zero simultaneously in (1.1). The limiting function DTB(X),
which we call the discrete transition behavior (or DTB for short), contains complete
information about the resolution of reconstruction. The limit in (1.1) is computed for
a fixed xg, so the dependence of the DTB, fy, and k on xq is omitted for simplicity.

The DTB in (1.1) is a complete description of the reconstruction from discrete data
in a neighborhood of a singularity. To put it simply, DTB is an accurate estimate of
the reconstruction itself, which is the most one can ever obtain in resolution analysis.
Conventional measures of resolution such as Full Width at Half Maximum (FWHM),
line pairs per unit length, characteristic scale, etc., are a single number each. Once
the full DTB function is computed, getting any desired resolution measurement from
it (i.e., converting the DTB into a single number) is trivial. See Remark 4.10 for an
example.

The results obtained to date can be summarized as follows. Even though we study
reconstruction from discrete data, the classification of the cases is based on their
continuous analogues. In [17] we find DTB(¥) for the Radon transform in R? in two
cases: f is static and f changes during the scan (dynamic tomography). In the static
case the reconstruction formula is exact (i.e., f = f), and in the dynamic case the
reconstruction formula is quasi-exact (i.e., f — f is smoother than f). In [18] we find
fo(x) for the classical Radon transform (CRT) in R3 assuming the reconstruction is
exact and f has jumps. In [20] we consider a similar setting as in [18], i.e., f has
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Table 1 Summary of the cases considered prior to this paper

RT type Dimension Type of inversion Singularity of f
[17] CRT & GRT 2 Exact/quasi-exact Jumps
[18] CRT 3 Exact Jumps
[20] GRT 3 Quasi-exact Jumps
[19] CRT n More general More general

jumps and reconstruction is quasi-exact, but consider a wide family of generalized
Radon transforms (GRT) in R3. Finally, in [19], the data still comes from the classical
Radon transform, but the dimension is increased to R", the reconstruction operators
are more general, and f may have singularities other than jumps. See Table 1 for a
summary of the cases.

Let R denote the GRT, which integrates over a family of N-dimensional smooth
submanifolds 8; CU CR", 1 <N <n— 1. When integration is performed over
affine subspaces and N < n — 1, the GRT is known as the N-plane transform. If
N = 1, the GRT is called the ray (or, X-ray) transform. The open set I/ represents
the image domain. The submanifolds S5 are parametrized by points y C V, where
an open set V C R” is the data domain. Our only other condition on R (besides that
S5 be embedded manifolds, see Assumption 3.1(G1)) is that the canonical relation
C from T*U to T*V of R be a local canonical graph (see Assumption 3.1(G2) and
Sect. 5.1). Here we view R as a Fourier Integral Operator (FIO). Assumption 3.1(G2)
implies also that all the singularities of f microlocally near (x, &) € T*U, where &
is conormal to § at xg, are visible in the GRT data R f(y), y € Y (see Remark 3.2).

Reconstruction from continuous data g = R f is achieved by f 7'\’,* Bg. Here
R* is a weighted adjoint of R, which integrates over submanifolds 7, := {j € V :
x € 83}, and B is a fairly general pseudo-differential operator (WDO). In fact, g does
not even have to be the GRT of some f. All we need is that g be a sufficiently regular
conormal distribution associated with a smooth hypersurface I' C V [13, Sect. 18.2].
The data g are sampled on a regular lattice y; = €Dj, j € Z", covering V, where D
is a sampling matrix.

To illustrate the effect of 5 on reconstruction, suppose g = R f, where f is a
sufficiently regular conormal distribution associated with a smooth hypersurface S C
U. The choice of B determines whether the reconstruction is quasi-exact (i.e., f - f
is smoother than f), preserves the order of singularities of f ( f and f are in the same
Sobolev space), or is singularity-enhancing ( f is more singular than f). A common
example of the latter is Lambda (also known as local) tomography [8, 27].

The setting considered in this paper includes all the cases considered previously
[17-20], and is substantially more general than before. In particular, in the previous
work we always had N = n — 1. Now, N can be any integer | < N < n — 1. This
includes the practically most important case of cone beam CT: n = 3 and N = 1, on
which the overwhelming majority of all medical, industrial, and security CT scans are
based (see e.g., [15, 24] and references therein).
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The main result of this paper is the derivation of the DTB (1.1) under these general
conditions (see Theorem 4.7). Our result shows that even though g is sampled on
a regular lattice, due to the geometric properties of the GRT, the resolution is both
location- and direction-dependent (see Remark 4.8). We also show that the DTB equals
to the convolution of the continuous transition behavior (CTB) with the suitably scaled
classical Radon transform of the interpolation kernel (see Theorem 5.4). Loosely
speaking, the CTB is the continuous analogue of the DTB (see Definition 5.3):

CTB(¥) = lim € f(xo + €X). (1.2)
€e—

To put it differently, CTB(x) is the leading singularity of the reconstruction f at xo
(the same as fp mentioned above). Since the reconstruction is not always intended to
compute f or its singularities exactly (e.g., for singularity-enhancing reconstructions),
it is important to know what the CTB look like in these more general situations.

The operator R* (and, of course, R as well) can be viewed as an FIO, which is
associated to a phase function linear in the frequency variables (see [12, Sect. 2.4] and

[10, Sect. 1.3]):

1 . .
R*)() = 5w fR i /v M PN w(x, )g(F)didu. (1.3)

Here w € C°(U x V), and ¥ € COWU x V) is any R"~ valued function that
satisfies some nondegeneracy conditions (so that C is a local canonical graph). Any
such W determines a pair R, R* by setting S5 = {x € U : ¥(x,y) =0}, T, =
{y € Voo W(x, y) = 0}, and selecting integration weights to ensure that R and
R* are properly supported FIOs. As is easily seen, any properly supported FIO F :
&' W) — D'U) with the same phase can be represented in the form F = R*S
modulo a regularizing operator for some I3 (at least, microlocally where R* is elliptic).
Indeed, we can just take B = (R*)~' F, where (R*)~! is a (left and right) parametrix
for R* (see [6, Proposition 5.1.2]). We assume here that an appropriate cut-off is
introduced in (R*)_l, so the composition is well-defined. Also, we do not worry
about global conditions on R, because ¢/ and V are sufficiently small. Then B is a
WDO (its canonical relation C o C is the diagonal from T*V to T*V), and F — R*B
is regularizing. Thus, the reconstruction algorithm is the application of an FIO F with
a phase function, which is linear in the frequency variables, to discrete data g(y;).

We emphasize R* when discussing parallels between R* and FIOs, because in this
paper we investigate the resolution of computing R*3 from discrete data (and not of
R).

Various methods for applying FIOs to discrete data have been proposed, see e.g.,
[3-5, 35] and references therein. This appears to be the first analysis of resolution
of the reconstructed image Fg for fairly general classes of FIOs F' and (conormal)
distributions g. Some results along this direction are in [20]. Here g = Z f, where
7 is an imaging operator (frequently an FIO), and f is the unknown original object.
Analyses of such sort are especially important, because they apply not only when an
exact inversion formula for Z is known (e.g., when Z is the classical Radon transform),
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but even when no such formula exists (e.g., when 7 is a weighted GRT integrating over
nonplanar submanifolds). In the latter cases a common approach is to use a parametrix
for 7 as the reconstruction operator F, so F'g accurately recovers only the singularities
of f.Reconstruction of the smooth part of f with this approach is usually not accurate
even if the data are ideal (i.e., known exactly everywhere). See, for example, Remark
1 in [29]. Our approach, which we call local resolution analysis, is well suited to the
analysis of such linear recosntruction algorithms because the analysis is localized to
an immediate neighborhood of the singularities of f.

Let g be a conormal distribution associated with a smooth hypersurface 1:, i.e.,
WF(g) C N*T, the latter is the conormal bundle of I". Even if g is not in the range
of R, our assumptions ensure that there is a smooth hypersurface S C U such that (1)
N*T' = C o N*S, and (2) WF(f) C N*S. Let 7~'3 be the set of all y € V such that
Sy is tangent to S. As is well-known, = TS.

A common thread through our work is that the well-behaved DTB (i.e., the limit in
(1.1)) is guaranteed to exist only if a pair (xg, yg) € U x Vis generic. Here xg € S,
and o € T is the data point from which the singularity of f at xq is visible, i.e. S5,
is tangent to S at xo. Roughly, the pair is generic if in a small neighborhood of ¥
the sampling lattice 7/ is in general position relative to a local patch of I" containing
yo (see Definition 3.4 for a precise statement). The property of a pair to be generic is
closely related with the uniform distribution theory [21].

If (xp, yo) is not generic, the DTB may be different from the generic one predicted
by our theory, and certain non-local artifacts that depend on the shape of S can appear
as well (see e.g. [19]) even if R*R is a WDO. This shows also that the case of discrete
data is more complicated than when the data are continuous, because in the latter case
WE(f) C WF(f) whenever R*R is a WDO.

Alternative approaches to study resolution are in the framework of the sampling
theory. The key assumption in these approaches is that f be essentially bandlimited
in the classical sense [7, 23, 25] or in the semiclassical sense [22, 31, 32]. However,
the methodologies of these approaches are quite different from ours, and the results
obtained are different as well. The latter include sampling rate required to resolve
details of a given size, and analysis of aliasing artifact if the sampling requirements
are violated.

The paper is organized as follows. In Sect. 2 we introduce the GRT R and its adjoint
R*, the sampling matrix D, the sampling lattice y/ = €Dj, j € Z", and fix a pair
(x0, ¥0) € U X YV such that Sy, is tangent to S at xg. In Sect. 3 we select convenient
coordinates both in the data and image domains, state the main geometric assumptions
about R and the shape of S, and define a generic pair (xo, ¥o). In Sect. 4 we formulate
the main assumptions about the operator B, interpolation kernel ¢, and data function
g. Essentially, 5is a WDO with a homogeneous top symbol. Likewise, g is a conormal
distribution with a homogeneous top symbol associated with a smooth hypersurface
I'. The top symbol decays sufficiently fast, so g is a continuous function. We do not
require that g be in the range of R. We also give a formula for « in terms of N and
the orders of 5 and g (see 4.19). Then we state our main result as Theorem 4.7, where
explicit formulas for the DTB are provided.
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In Sect. 5 we look at R as an FIO, and discuss some of our assumptions from the
FIO perspective. We also state a theorem about the relationship between the DTB and
CTB (Theorem 5.4), and provide some intuition behind our results.

The proof of Theorem 4.7 is spread over Sects. 6—11. Preliminary results are in
Sects. 6 and 7. In Sect. 6 we show that 7g and 7y, are tangent at yo and investigate
the contact. All calculations are done in the new y-coordinates, so we drop the tildas
iny, T, f), etc. Let g be the interpolated data (see 4.6). In Sect. 7 we obtain various
bounds on g, g., g — &g, and their derivatives. The core of the proof is in Sects. 8—11.
To help the reader, Sect. 8.1 describes the main ideas of the proof and outlines what
is done in each of the Sects. 8—11.

Theorem 5.4 is proven in Sect. 12. In Appendix B we show that our assumptions
about g are reasonable. For example, they are satisfied when f is a conormal distri-
bution associated with a smooth hypersurface S. The fact that g = R f is conormal
follows from the calculus of FIOs, see e.g. [33, Sect. VIIL.5]. We present the necessary
calculations here, because they are short, make the paper self-contained, and these cal-
culations are used elsewhere in the paper. Finally, proofs of various auxiliary lemmas
are collected in the other appendices.

2 Preliminaries

Let ®(z, 7) € C®MRN x f)) be a defining function for the GRT R. Here ¢t € RN
is an auxiliary variable that parametrizes smooth manifolds S5 := {x € U :

d(r, ) t€e R™} over which R integrates, an open set { C R”" is the image domaln
§ € Vis the data domain variable, and an open set V C R is the data domain. Both
U and V are endowed by the usual Euclidean metric. The corresponding GRT is given
by

RfG) = /S @bt v, eV, @.1)

where b € C3°(U x V), dx = (det GS (¢, $))1/2dr is the volume form on Sy induced
by the embedding S5 < U, and G is the Gram matrix

ad(t, ad(t, v
S5 = 220N IPGD gy (22)
ot oty

Therefore, more explicitly,

RfGF) = / FOOb(x, $)(det G2, 7)) /2dt, x = d(1, 7). (2.3)
RN

We assume that f is compactly supported, supp(f) C U, and f is sufficiently smooth,
so that R f(¥) is a continuous function. Exact (i.e., continuous) reconstruction is
computed by
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F) = (R*Bg)(x) = /7 B Grwx. )5, x €U, g =Rf.  (2.4)

where w € Cg°U x V) dy is the volume form on 7, := {y € V:ixe S } (which
is induced by the embedding 7; < V, see the paragraph following (4.1) below), R*
is a weighted adjoint of R, and B is a fairly arbitrary pseudo-differential operator
(VDO). Lemma 3.7 below asserts that 7. C V is a smooth, embedded submanifold.
The reconstruction formula in (2.4) is of the Filtered-Backprojection type. Application
of B is the filtering step, and integration with respect to y (i.e., the application of R*) is
the backprojection step. By reconstruction here we mean any function (or, distribution)
f that is reconstructed from the data using (2.4). The reconstruction is intended to
recover the visible wave-front set of f, but the strength of the singularities of f and
f need not match.

Let D be a data sampling matrix, det D = 1. Discrete data g(/) are given on the
lattice

j/ =eDj, jeZ (2.5)

Reconstruction from discrete data is given by the same formula (2.4), where we replace
g with its interpolated version g, (see 4.6).

We assume that S := singsupp(f) is a smooth hypersurface. Pick some xo € S.
This point is fixed throughout the paper. Our goal is to study the function reconstructed
from discrete data in a neighborhood of xg. All our results are local, so we assume that
U is a sufficiently small neighborhood of xg. Let ¥y € V be such that Sy, is tangent to
S at xo. Only a small neighborhood of ¥y is relevant for the recovery of the singularity
of f at xo. Hence we assume that V is a sufficiently small neighborhood of yy.

3 Selecting Coordinates, Geometric Assumptions

Let W(x) = 0 be an equation of S, and dW (x) # 0, x € U. Introduce the matrix

7 th <i> .
M = S = d\IJ T , 31
((50 D)y (& - cb)ty) 50 € T U 3.1

which is the Jacobian matrix for the equations

(1, §) = xo0, & - Pi(t,7) =0, (3.2)

where (7, ) € RV x Y are the unknowns. See Fig. 1 for an illustration of S and &.
For convenience, in (3.1) and in the rest of the paper we frequently drop the arguments
of W, ®, and similar functions whenever they are xo and (#o, o), as appropriate. Here
to is the unique point such that xg = &)(to, ¥0). Our convention is that a variable in
the subscript of a function denotes the partial derivative of the function with respect
to the variable, e.g.,
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b= ... |, 5= ... ... .| (33)

Assumption 3.1 (Geometry of the GRT)

Gl. rank~ d~>, =N;
G2. detM #£0.

Remark 3.2 Assumption G1 implies that S5 C U is a smooth N-dimensional embed-
ded submanifold for any y € % provided that/ > xo and V 5 jo are sufficiently small
neighborhoods. Assumption G2 guarantees that any singularity of f microlocally
near (xg, &) is visible from the GRT data R f (y), y € V. In addition, Assumption G2
ensures that 7, = {y e Vixe Sy} is a codimension n — N embedded manifold for
any x € U (see (3.14) and Lemma 3.7).

Example 3.3 Excluding some exceptional cases, Assumptions 3.1 are satisfied by the
X-ray transform in R3, where Sy are lines intersecting a smooth curve C. Since Sj are
lines, it is trivial that one can find ® so that G1 holds. It is well-known that G2 holds
for some @ if the plane Iy := {x € U : & - (x — x¢) = 0} intersects C transversely.
By (3.1) and (3.2), this is, essentially, the Tuy condition [34]. Assumption 3.1(G2)
fails to hold if Iy is either tangent to C or does not intersect it. In the latter case the
singularity at (xo, &) is invisible.

Definition 3.4 The pair (xo, yo), such that Sy, is tangent to S at xo, is generic for the
sampling matrix D if

(1) There is no vector m € Z", m # 0, such that the 1-form

&= (D" Tm)1d5 + -+ (D Tm),dy, € T* T, (3.4)

Yo £X0

vanishes identically on T: 5o ’]}0, ie. ¢ N 7y,» and

(2) The matrix (¥ o ®),, is either positive deﬁmte or negative definite.

In 31mp1e terms, condition (1) says that there is no nonzero vector m € Z" such
that D~"m is orthogonal to TXO at yo. For more information about this condition see
Remark 5.1.

In the rest of the paper, we assume that the pair (xg, yo) is generic in the sense of
Definition 3.4, and (\IJOCT)), ¢ isnegative definite. The latter assumption is not restrictive,
because the positive and negative definite cases can be converted into each other by
a change of the x coordinates. To illustrate the notation convention described above,
(Yo Ci)) ¢+ stands for the matrix of the second derivatives of the function (W o Cb)(t, y)
with respect to ¢ evaluated at (f, yo).

Using Assumption 3.1(G1), select x coordinates so that

x M =N Q) N 0 z
X = x(2) , X e R , X ER,X(): 0 :(D([O’yo)’

av = (4¥1.0.....0), 3 =0, derd %0

(3.5)
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We also denote x+ := (x2, ..., xn)T. See Fig. 1 for an illustration of the coordinates
x1 and x7t (the plane {x : x; = 0,xt € R"’l} is shown as a shaded oval). The
notation ﬁ)ij ), Jj = 1, 2, stands for the derivative of the j-th group of coordinates of
x = ®(t, §) (either along xV or along x @) with respect to % = ¢ or y. By the last
inequality in (3.5), we can select x?) as the 7 variables. With this choice we have (with
some other defining function ®):

2)

) ) ) o )
20 =30a®@, 5), 2@ =320, 5), 3 =0, G @

=1y, (3.6)

where Iy is the N x N identity matrix. This definition of ® is assumed in what follows.

We also need a convenient y coordinate system. Since the data points in (2.5)
are given in the original coordinates, we have to keep track of both the original and
new coordinates. Points in the original and new y coordinates are denoted y and y,
respectively. Data domains in the original and new y coordinates are denoted V and
V), respectively. Suppose that § = Uy + 5 and V = UV + jo, where U is some
orthogonal matrix U : R" — R”".

In what follows we will be using mostly the new y coordinates, so we further modify
the defining function:

P(x?,y) = ¢, () = 2@, Uy + o). (3.7)

Since the x variable remains the same, the function ® (x| y) satisfies (3.6) (with the
derivative computed at (x(()z), vo) = (0, 0)):

1 2
20 = oM@ y), x@ = 0@ ), o) =0, 02 P ) =1y. (38
For the same reason, condition (2) in Definition 3.4 implies that the matrix (¥ o
®) . @, is either positive definite or negative definite. The following lemma is proven

in Appendix A.

Lemma 3.5 Suppose xo € S, Sy, is tangent to S at xo, det(¥ o @), # 0, and
Assumptions 3.1 hold. The orthogonal matrix U and the function V, which satisfies
(3.5), can be selected so that the new y coordinates and the new function ® satisfy

- 0
y = (ﬂ) yieR, yr eR"! y = (0>,(\Ilo<1>)y, =1, (Yod),. =0;
(3.9)

and

()
_ 1 1
y= G(z)), yD e RN y@ e RV det q>;<3) #0, c1>;(§) =0. (3.10)

Remark 3.6 The representationsy = (y;, y-)T andy = (yV, y®)T are two different
ways to split the y coordinates, which are convenient in different contexts. See Fig. 1

Birkhauser



6 Page 100f59 Journal of Fourier Analysis and Applications (2023) 29:6

Fig. 1 Main geometric objects used in the paper

for an illustration of the coordinates y; and y* (the plane {y : y; = 0, y= € R" !} is
shown as a shaded oval).

Similarly to (3.1), we compute the matrix M by replacing 7 and ® with y and ®,
respectively. In block form

M= .0 o, _ (Mn M2
o P00 S0 Proy My M)
My = @0 0y € R™, My = @0 € RV,

My € RV, My =& - ®,0,0 € RV,

@3.11)

In the selected x- and y-coordinates (see (3.5), (3.10)), the matrix M becomes

0 o) 0
M = Iy 0 0 . (3.12)

§0 - P 2,0 &0 Py S0 Proy@

By (3.12), Assumption 3.1(G2) is equivalent to
det ®'}), # 0, det Ma = det (so : CDx(z)y(Z)) £0. (3.13)
Let us introduce two important sets:
Is:={yeV: Syistangentto S}, 7T, :={yeV:xeS} (3.14)

Here and in what follows, with some mild abuse of notation, Sy denotes Sy (). See
Fig. 1 for an illustration of Sy, 7s, and 7.

Lemma 3.7 Suppose xo € S, Sy, is tangent to S at xo, det(¥ o ®) ), # 0, and
Assumptions 3.1 hold. One can find sufficiently small neighborhoods U > xo and
VY 3 yg so that

(1) Is C V is a smooth, codimension one embedded manifold; and
(2) T, C V is a smooth, codimension n — N embedded manifold for any x € U.

Proof To find 7g, we solve the equations
U(@x®,y) =0, (Vod),0x®, y) =0 (3.15)
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for x®® and y; in terms of y*. The Jacobian matrix is

(( Wod)»p (Pod)y ) ' (3.16)

Vo ®) 0,0 (Vod)a,

By condition (2) in Definition 3.4 (with ¢ = x@), det(¥ o ®). @, # 0. More-
over, (W o @), = 0 and (W o ®),, # 0, and the Jacobian is non-degenerate.
Therefore, solving (3.15) determines x@ (yL) and y; (yi) as smooth functions of
y+ in a small neighborhood of y* = 0. In particular, y;(y=) is a local equation of
the smooth, codimension 1 embedded submanifold 7s C V. The point of tangency
X = (P (yh), (1 (yH), yH)) also depends smoothly on y=+.

To prove assertion (2), solve x(!) = &M (x@ | y) for y(I). This gives an equation for
T, intheformy = ¥ (y@®, x) (where y» = Y@ (y®@ x)). The property det @;](1) #0
(cf.(3.10)) implies that 7, C )V is a smooth, codimension n— N embedded submanifold
for any x € U provided that both I/ and V are sufficiently small. Since @;3) =0, we

also get

@ /0y, =0, G47

In what follows, we use
B0 :=dy (¥ o @) = d*5; Yo(y?) :=Y(y? . xp), yP eV.  (3.18)

Thus ®¢ € T;;V is the pull-back of & € TU by ®(0, -). By (3.9), ©9 = dy; (see
Fig. 1).

4 Main Assumptions and Main Result

To simplify notations, in the rest of the paper we set b(x, y) := b(x, y(y)), w(x, y) :=
w(x, y(y)), and g(y) := g(¥(y)). The original versions of these functions are used
only in Sect. 2. Thus the reconstruction is computed by

(R*Bg)(x) =/T(Bg)(y)w(x,y)dy, 4.1

where dy = (det GT(yQ), x))/2dy@ is the volume form on 7, G7 is the Gram
matrix:

Y@, x) vy,
GT(®, = U0 O oy, (42)

2 2
ayi() ayﬁ.)
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Bisa¥DO

1 . o N
Bg)(y) == - /B(y, mgme dn, g = Fg, (4.3)
(2m)

and F is the Fourier transform in R”. To clarify the use of indices in (4.2), if y®

is viewed as part of y, then y;2) = Yu-N+j, I < j < N. Using (2.5) and that
3 = Uy + yo, the discrete data g($/) are known at the points

$/ =U"(eDj —30), j €Z". (4.4)

Reconstruction from discrete data is given by
o) = RBg ) = [ Beoou, »ay. (4.5)

where g¢ (v) is the interpolated data:

~

. y—y o
ge(y) = Y w( - )g(y ). (4.6)

ljl<v/e

@ is an interpolation kernel, ¥ = ol

min
lar value of the sampling matrix D. The value of ¥ is selected in such a way that
v/ € supp(g) implies |j| < ©¥/e. In what follows we call (4.1) reconstruction
from continuous data (as opposed to reconstruction from discrete data (4.5)). Denote

N={1,2,...}and Ny = {0} UN.

Definition 4.1 Given an openset V C R”", r € R,and N € N, §"(V x RN) denotes
the space of C*(V x (R" \ {0})) functions, B(y, 1), having the following properties

SUp; v |¥], and o, is the smallest singu-

07 B(y, )] < cmlnl®N Vm e Nj, y € V,0 < ] < 1;

- 4.7
101072 B(y, )| < CmypmyInl" 1", Vmy,my e Nj, y € V. [0l = 1
for some constants ¢, ¢y ,m, > 0 and a > 0.
Now we state all the assumptions about B, ¢, and g.
Assumption 4.2 (Properties of B)
Bl1. I§(y, n) = 0 outside a small conic neighborhood of (yy, ®¢); and
B2. The amplitude of B satisfies
B e SP(V xR"); B— Bye SP(V xR");
(4.8)

Bo(y, An) = A Bo(y, n); Bo > Pr;

for some By, Bo, and B, and forall y € V, A > 0.
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Recall that |r ], r € R, denotes the largest integer not exceeding r. Similarly, [r]
denotes the smallest integer greater than or equal to ». We also introduce:

I L B3/ ). rez
|_r J—GEISI_OLF EJ_ r—1, reZ, |—r —|_el—1>151-0fr+€1_{r+1, r € Z.
(4.9)

Assumption 4.3 (Properties of the interpolation kernel ¢)

+
IK1. ¢ € Cgﬁo ! (R™), i.e., ¢ is compactly supported, and all of its derivatives up to

order (,Bgr 1 are L°°;
IK2. ¢ is exact up to order [Bo] for the sampling lattice determined by Dy := U D,
ie.,

> (D) e — Dij)=u", |m| < [Bo], m e NG, u e R", (4.10)
jezn
for all indicated m and u.

Assumption IK2 with m = 0 implies that ¢ is normalized. By assumption,
| det Di| = 1. Then

= /D1[0,1]” Z

¢ — Dy j)du = f[o . > e(Di(v — j)dv

jez jez (4.11)
:/ go(Dlv)dv:/ p(v)dv.
R™ R”
Assume that g is given by
1 ,
¢ = 5 [ 50O y e, *.12)
R

for some P € C°°(V) with dP(y) # 0 on V. We need the smooth hypersurface
determined by P:

:={yeV: P(y) =0} (4.13)

Even if g is not in the range of R, Assumptions 3.1 and Definition 3.4 imply that
there exists a smooth surface S C U such that ' = 7g (see Sect. 5.1 for additional
information). Let S,,, be the projection of Sy, onto S along the first coordinate x; (see
Fig. 1).

Definition 4.4 Set

Allg :=1I5, —1Iig (4.14)

S,VO ’

where Ils, is the matrix of the second fundamental form of Sy, at xo written in the

coordinates (x1, x(z))T, and similarly for S’yo.
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Assumption 4.5 (Properties of the data function g)

gl. O e §~6otD (Y x R), and there exists a compact K C V such that 0(y, 1) = 0
ifyeV\K;
g2. v satisfies

oy, %) = 0T MALOTY 4 5 (AT L Ry, 0), Vy eV, A = 1

- " (4.15)
0t e CPW), Re STV X R), 0 <59 <s1, 51 ¢ N;
for some OF, R, s, and s1;
g3. P € C*(V) is given by
P(y) =y —vG), (4.16)
where ¥ is smooth, ¥ (0) = 0, and dy (0) = 0;
g4. If so € N, one has
ot (y) = (=)®"57(y) forany yeT. (4.17)

g5. The matrix Allg is negative definite.

We use superscripts '+’ to distinguish between two different functions as opposed to
the positive and negative parts of a number. The latter are denoted by the subscripts
'+ A4 := max(£A, 0).

Assumptions g1, g2 imply that g is sufficiently regular. The assumption s; ¢ Nisnot
restrictive. It is made to simplify some of the proofs. Assumption g3 is not restrictive
either. An equivalent assumption is dP;(yp) = ®¢ for some other smooth P; (see
also (B.5) and (B.9) below). Indeed, by shrinking V, if necessary, we can find w(yL)
with the required properties such that the function u(y) := P;(y)/P(y) (where P is
as in (4.16)) satisfies u € C°°(V) and ¢1 < |u(y)|, |[du(y)| < ca for some c;2 > 0
and all y € V. Substituting P;(y) = u(y)P(y) into (4.12) and changing variables
A1 = Au(y), we see that the new amplitude 0y (y, A1) := U(y, A1 /u(y))/u(y) satisfies
gl, g2 (with the same sg and s1), and g4. See Remark B.1 about the meaning of
assumption g4. Define

e(a) = exp (i%a) . (4.18)

Assumption 4.6 (Joint properties of B and g)
C1. The constants By and s, defined in (4.8) and (4.15), respectively, satisfy

K= fo —s0—(N/2) = 0; (4.19)
C2. The functions By and O, defined in (4.8) and (4.15), respectively, satisfy

Bo(y, dy P(3)) 0T (y)= — e(2(Bo—50)) Bo(y, —dy P(y))D™ (y) if k=0 ¥yel. (4.20)
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The role of conditions (4.17) and (4.20) is that they prevent the appearance of
logarithmic terms in g and f = R*Bg in a neighborhood of I" and S, respectively,
see (C.6) and (12.7).

Set x¢ := xg + €x. Adopt the convention that the interior side of S is the one where
the x| axis points and define

XM= lim (v, xt =0), x&i= lim (x, xT =0). 4.21)
x1—0t x1—0~

Let ¢ denote the classical Radon transform of ¢ (see (8.8)). Recall that D; = U D.
Now we can state our main result.

Theorem 4.7 Suppose U and V are sufficiently small neighborhoods of xo and vy,
respectively, and

(1) Sy, is tangent to S at xo;
(2) Assumptions 3.1, 4.2,4.3, 4.5, and 4.6 are satisfied; and
(3) The pair (xg, yo) is generic for the sampling matrix D;.

Then one has

lim € fe(xe) =Ci /qs (©0. (&1/8y 1) = p) (¢ (p = 100 + ¢y (p+i0) ™) dp,

¢ =@m)N 2w (xg, yo)l det Alig|'/? 3y, @1) N/ detax?j)j}l)(z) l, (4.22)
f =%Eo(yo, £600)5= (yo)e(F(Bo — 50)) if k >0,
and
. .. 0
lim fote =f )+ Coer [ (0. o @0 = p)ap.

c1 :=i Bo(y0. ©0)0™ (yo)e(—(Bo — s0)) if x =0.

See [9, Chapter I, Sect. 3.6] for the definition and properties of the distributions
(p £i0)“.
Remark 4.8 Since X is a rescaled coordinate, (4.22) and (4.23) imply that in the
original coordinates x the resolution of reconstructionis ~ €r(dy, ®1) (xéz) , Y0), Where
r > 0 is (loosely speaking) a measure of the spread of ¢(®g, p) as a function of p.
This shows that the resolution is not only location-dependent (via the x®’ dependence
of @), but also direction-dependent (via the y dependence of ®).

Even though the formulas (4.22), (4.23) do not contain the sampling matrix, the
dependence on D is still there. It is implicit, and manifests itself via the kernel ¢, which
is required to be exact on the lattice determined by D; (see Assumption 4.3(IK2)).

Remark 4.9 The limits in (4.22) and (4.23) are functions of the scalar argument & =
X1/dy, ®1. Hence, it is more appropriate to view the DTBs as functions on R rather
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than on R”. With this convention, the expressions in (4.22) and (4.23) can be written
as DTB(x1/9y, ®1). The same convention applies to the CTB as well. This convention
will be used in the rest of the paper.

Remark 4.10 Set x = xo + (h/|&0|)&o, i.e. h is physical (not rescaled) signed distance
from x to xo. Equation (4.23) implies that the derivative of the edge response function
of the reconstruction (in RZ, this derivative is known as the line spread function) is
E'(h) := ¢ (©q, h/(€dy, ®1)). Thus, to compute, for example, FWHM, we perform
the following steps: (1) Find the maximum M := maxy E’(h). Frequently, M =
9(©g, 0); and (2) Find the length FWHM= |{h € R : E'(h) > M /2}|.

The proof of the theorem is broken into several sections. The contact between 7g
and 7y, in a neighborhood of yy is investigated in Sect. 6. Properties of the continuous
data function g and its interpolated version are investigated in Sect. 7. These two
sections prepare the groundwork for the remainder of the proof in Sects. §-11. A
high-level overview of the remainder of the proof is at the end of Sect. 8.1.

5 Additional Results: Discussion
5.1 FIO Point of View
Introduce the function
dx,y, ) =1 D =D @ ), 2 eRrRV, 5.1)

Clearly, ¢ is the phase function of the FIO R (cf. (2.3)):

Rf(y) = F@)e?* I Pp(x, y)(det GS(x P, y))/2dxdi

1
(27-[)an Aan R~
5.2)

with the canonical relation from 7*U to T*V:

C = {(x, dep(x, 3, 1), ¥, —dyp(x, y, 2) : xD = @V y)} € 75U x T*V.
5.3)

In (5.2), GS is computed similarly to (2.2), but with  and ® replaced by y and ®,
respectively.

Set &g := (1,0, ...,0)7. Clearly, & = |[dW|d,¢ # 0 and Oy = —|d¥|dy¢ # 0.
This follows easily from (3.5), (3.18), and (5.1). This also implies that the differentials
dy ¢ and dy ;¢ do not vanish anywhere in a conic neighborhood of (xo, yo, Ao) (see
[33, Definition 2.1, Sect. VI.2]). As a reminder about our convention, the differen-
tials are evaluated at (xg, yo, Ag). Clearly 82¢ / axDaxr = I,_y, so the differentials
dy,y,(d¢/0Xj), 1 < j < n — N, are linearly independent, and ¢ is nondegenerate
[33, Definition 1.1, Sect. VIIL.1].
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Setting A = Aq gives

0 0 In—N
920 920
da(fer )| sl g 0 | e
.y Ph, 1
_CD;(I) 0 0

Here we have used that dJil(;) = 0 and (b(vl(; = 0 (see (3.5) and (3.10)). In fact, the
determinant in (5.4) is non-zero if and only if det M # 0 (see (3.11)—(3.13)). Hence
Assumption 3.1(G2) implies that C is a local canonical graph (see the discussion fol-
lowing Eq. (4.23) in [33, Sect. VI] and Definition 6.1 in [33, Sect. VIII]). In particular,
there is a unique, smooth hypersurface S C U such that (N*T'\ 0) = C o (N*S\ 0).
Here N*I" and N*S are the conormal bundles of I" and S, respectively, and 0 is the
zero section.

From (2.2) and (3.6), det GS =1. Clearly, R is an elliptic FIO in a neighborhood of
((x0, &0), Vo, ®0)) € (T*UN\0) x (T*V\0) if b(xg, yo) # 0andU, V are sufficiently
small.

The fact that the GRT and its adjoint can be viewed as FIOs has been known for
a long time (see e.g., [11, 26]). The material in this section is well-known, and is
presented for the convenience of the reader to make the paper self-contained.

Remark 5.1 We can now discuss condition (1) in Definition 3.4 in more detail. Here it
is convenient to argue in the original y coordinates. The preceding discussion shows
that for every x € S there is y(x) € I', which depends smoothly on x, such that S5y

is tangent to S and x. Consider the N-dimensional tangent space to Ty at §(x). By
(3.6) it is determined by (1) solving x® = &M@ D, 5@)) for 31 in terms
of x and y@, and (2) computing the partial derivatives 0 )7(1) /0 y]@, 1<j<N,at
(x, 7@ (x)). Consider the n x N matrix:

5D 795(2)
B(x) = <3y /9y ) (5.5)

Iy

Condition (1) in Definition 3.4 is violated for an exceptional x € S if ( D TmE®x) =
0 for some m € Z".

5.2 CTB and Its Relationship with DTB

When describing the leading singularity of a distribution at a point, the following
definition (which is a slight modification of the one in [16]) is convenient.

Definition 5.2 [16] Given a distribution f € D’(R") and a point xy € R", suppose
there exists a distribution fy € D’(R") so that for some a € R the following equality
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holds

lirrbe_“/f(xo—kei)a)f(”w()?)di :/fo(i)a;”a)(i)di,

Vm e N2, |m| =max(0, [a*7),

(5.6)

for any w € CG°(R"). Then we call fj the leading order singularity of f at xo.

Definition 5.3 CTB is defined as the leading order singularity of the reconstruction
from continuous data R*Bg at xo.

Similarly to the DTB, the following theorem shows that the CTB can be viewed as
a function of a scalar argument.

Theorem 5.4 Under the assumptions of Theorem 4.7, one has

lim ¢“R*Bg(xe) = CTB(E1/dy, ®1), (5.7)
€—>

where

CTB(h) = Ci (¢ (h —i0) ™ + ¢ (h+i0)™¥), k > 0, 59

CTB(h) = —Cic1(1/2)sgn(h) + const, k =0, .
and Cy, cy, and cli are the same as in Theorem 4.7. Thus, the DTB is the convolution
of the CTB with the scaled classical Radon transform of the interpolating kernel:

DTB(h) = /(/3(@0, h — p)CTB(p)dp, k >0,
5.9
DTB(h) = /(ﬁ(@o, h — p)CTB(p)dp + const, k = 0.

5.3 Discussion

Recall that f (x) := R*Bg(x) denotes the reconstruction from continuous data. Sup-
pose k = 0, i.e. f has a jump across S. The second term on the right in (4.23)
equals zero for all X; > c¢. Because ¢ is normalized: f @(0p, p)dp = 1, the second
term equals Cjc; for all X; < —c. Here ¢ > 0 is sufficiently large, and we used that
dy, @1 > 0(cf. (3.9)). By (12.7), the product Cjc; is precisely the jump of f(x) across
Satxo: —Cier = f(xi™) — f(x§), see (10.2) and (4.21). Thus, the right-hand side
of (4.23) equals to f(xM) if ¥; > ¢, and to f(x§") —if ¥| < —c. This shows that
(4.23) describes a smooth transition of the discrete reconstruction fe(xe) from the
value f (x(i)m) on the interior side of S to the value f (xg’“) on the exterior side of S.
Loosely speaking, the transition happens over a region of size O (¢):

faiy, % > e,

. 5.10
fagy, 5 < O

DTB(%1 /9y, ®1) = lim fe(xo 4 €x) =
€—
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Then the DTB is a “stretched” version of the abrupt jump of f across S in the con-
tinuous case. This is most apparent from the last equations in (5.8), (5.9). See also
Section 6 of [20] for a similar discussion in the setting of quasi-exact inversion of the
GRT in R,

6 Beginning of the Proof of Theorem 4.7. Tangency of 75 and 7y,

In this section we show that 7 and 7, are tangent at yo, and investigate their properties
near the point of tangency.

Lemma 6.1 Suppose the assumptions of Lemma 3.7 are satisfied. The submanifolds
1s and Ty, are tangent at yo = 0, and Oy = d, (¥ o ®) is conormal to both of them
at yo = 0.

Proof Begin with 7s. Following the proof of the first assertion of Lemma 3.7, all we
need to dois compute 9,1 y1. Viewing x@ and y; as functions of y* and differentiating

the equation (¥ o ®)(x@, y) = 0 (cf. (3.15)) gives:

AW - (D, 2d,0x® + @y 0,1y + D 1) = (Wo D)y, 0,1y =0, 6.1)

y
which implies ByL y1 = 0. Here we have used that (cf. (3.5), (3.9))

(Wod)0 =0, (Wod), #0, (¥od),. =0. 6.2)

Therefore, in the selected y coordinates, the equation of the tangent space Ty,7s
(viewed as a subspace of R") is y; = 0. See the shaded ellipse on the left in Fig. 1.
Since only the first component of ® is not zero (see the line following (3.18)), it
follows that ® is conormal to Zg at yy.

Consider next 7y, . Differentiating x(()l) = <I>(1)(x(()2), y), where y(' = Yél)(y(z))
(see (3.18)), and using (3.10) gives 3y /dy?® = 0. Hence the equation of the tangent
space Ty, Ty, is yV) = 0, i.e. Ty, Ty, is a subspace of Ty, 7s. ]

Next we look more closely at the contact between 7, and 7s.

Lemma 6.2 Suppose the assumptions of Lemma 3.7 are satisfied. Let y = Yo(y®) be
the equation of Ty, defined in (3.18). Lety = Z (y@®) be the equation of the projection
of T, onto Is along the first coordinate, i.e., Z(y®) € Ts and Yo(y?) — Z(y®) =
(h(y(2)), 0,...,07 for a scalar function h(y(z)). Then, with M», as in (3.11), and
®g as in (3.18), we have

1
Qo - Yo(y?) — 2(y?)) = —EQy(z) @+ oy?P,

Q = MH(Wo®) ) M, det Q #0.

6.3)
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Proof We solve separately two sets of equations (recall that xo = 0):

T+ @00, y) =0;

6.4)
Ts: (Wod)(x?,y) =0, (Wod) ox?,y) =0.
Since (x@, y) = (0, 0) solves (6.4), we have to first order in y(z)
Ty - @y = 0(1y?P; (6.5)
Ts 1 (¥ o ®),0X? + (Vo @),5 = 0(y? ), (6.6)
(Vo ®),0,0X? + (Vo d),0,5 = 0(yP . (6.7)

The solution to the second system (i.e., related to 75) is denoted with a check. Because
7y, and Tg are tangent at yp, y = y + O (]y®|?). Recall that we search not for the
general solution y € 7g, but for the points y = Z(y®)) obtained by projecting Ty
onto 7g along y;. Therefore, y» = y®_ By (3.10) and (6.5), ' = 0(]y?|?). By
(6.7) and the assumption det(¥ o ®) o), # 0, x?® = 0(|y@)).

Since ®” = 0, (6.5) implies ®,y, @5 = O(ly®|?). Let Ax® and Ay =

0

analogously for x® and y(V). Since y® is an independent variable, its perturbation
is not considered. Then

(1
<Ay > denote second order perturbations, i.e. y(V' = Ay®M + 0(|y®?) (and

1 1
T 100 Ay + (172040 oy - y® = 01y P); 6.8)

Ts 1 (Vo @) 0 AX? + (Vo @),AY
+(1/2) ((qf 0 @), F? - ¥ 4 2(W o )0, ¥ - §+ (W o D), 5 - y)
=0(y?P). (6.9)

Only (6.6) was used to derive (6.9). Using (6.7) and that yD = 0(y??), x® =
0(1y®]), (W o @), =(1,0,...,0), (¥ 0o ®) ) =0,and @, 5 = O(|y?[?) yields

T+ [@W @y) A1 + (1/2)d¥ (D0, - y®) = 0(1yPP); (6.10)
Ts: (AW dy) AP +(1/2)d¥ (D, 0,0 X - yP +® 0 ,0y? - y@)=0(y@ ).

Subtracting the two equations gives (recall that £y = dW):
Ayi — A1 = Og - (Ay = AF) = (1/2)&0 - ©,0,0x@y® + 0(1y@ ). (6.11)

Solving (6.7) for @ and substituting into (6.11) we get the formula for Q in (6.3).
That Q is non-degenerate follows from (3.13). O
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Remark 6.3 In this remark we discuss the meaning of condition (2) in Definition 3.4
from two perspectives. First, consider the image domain perspective. An equation for
Syo is W(xy, @+ (x@, yp)) = 0, where x; is viewed as a function of x®. Hence

Wy d,0x1 + W80 @t =0, Wy 020 x + W,1,10,00 0,00 =0. (6.12)
Here we have used that W 1 = 0 implies 0,2 x; = 0. By (3.5) and (3.8),

|dW[02,,x; + W

x@x

o =0. (6.13)
Using (3.5) and (3.8) again and then (4.14) gives

(W o @) 0,00 = Wi o + [dW[07,, P = [dW[37,, (P — x1) = [d¥|Alls.
(6.14)

This shows that if Assumptions 3.1 hold, condition (2) is equivalent to the requirement
that Alls be either positive definite or negative definite.

To understand condition (2) from the data domain perspective, look at the surfaces
7y, and 7g. Define similarly to (4.14):

Ally =Tz, —1l; |
x0

(6.15)

where j}o is the projection of 7y, onto 7g along the first coordinate y;, and Iz,
Hj;o are the matrices of the second fundamental form of 7, 7A}0, respectively, at yo
wriz:ten in the coordinates (y1, y(z))T. By construction, y = Z (y(z)) is the equation
of 7;,. By Lemma 6.2, All7 = —Q. Hence, if Assumptions 3.1 hold, condition (2)

in Definition 3.4 is equivalent to the requirement that AIl7 be either positive definite
or negative definite.

Lety = Y(y(z), x¢) be the equation for 7, (see the proof of Lemma 3.7). This
equation is obtained by solving ex(V = &M (ex@ | y) for y) and setting y» =
Y@ (y@ | xo). Suppose |X| = O(1) and |[yP| = O(e!/?). The term €X is of a lower
order than y®, so the equation for 7, in (6.5) is accurate on 7, to the order €'/2,
Due to cbil(;) = 0, the updated version of (6.8) becomes

q><(3)y<” + (1/2)c1><(2) 2y Py? =i 4 032, (6.16)

The terms (1 /2)q><<2) o y@y®@ in (6.8) and in (6.16) are the same. Also, Ay" in
(6.8) is the analogue of y(l) in (6.16). Therefore, to order €, introduction of the term
€X requires only a linear correction compared with Yy (y?®) = Y(y@, xp), and we
have

1 1) =1y .
Y(l)(y(z),xe) — Y(§ )(y(Z)) + E(@i(?)) 1x M + 0(63/2) if |y(2)| — 0(61/2)_ (6.17)
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Hence

v = (@) 0). ¥ =o. (6.18)

7 On Some Properties of the Continuous Data g and Its Interpolated
Version g,

By [14, Proposition 25.1.3], g is a conormal distribution with respect to I'(= 7g).
The wave front set of g is contained in the conormal bundle of T":

WF(g) C N T\O0={(y,n) € T*V: P(y) =0,n=ArdP(y), A #0}. (7.1)

See also Sect. 18.2 and Definition 18.2.6 in [13] for a formal definition and in-depth
discussion of conormal distributions. A discussion of closely related Lagrangian dis-
tributions is in Sect. 25.1 of [14].

In this paper we use two types of spaces of continuous functions. First, C ]1; (R™),
k € Np, is the Banach space of functions with bounded derivatives up to order k. The
norm in C,’j (R™) is given by

Iy == max [h]z. (7.2)

The subscript ‘0’ in Cg means that we consider the subspace of compactly supported
functions, Cé‘ R" Cc C ’b‘ (R™).

The second type is the Holder-Zygmund spaces C(R"), r > 0. Pick any o €
Cg°(R") such that uo(n) = 1 for [n| < 1, uo(n) = 0 for |n| > 2, and define
i) = o7 n) — o277 *1y), j € N1, Sect. 5.4]. Then

Cr(R™) = {h € CHR™) : |Ihllcr < oo},

N ~ (7.3)
Iallcr := sup 27" | F~ (i (mh(m)| Lo,
Jj€No

where h = Fh. If r ¢ Z,ie.r =k +y,k € Nyg,0 <y < 1, then C,(R") consists
of C’b‘(R”) functions, which have Holder continuous k-th order derivatives (see [30,
Definition 2.4 and Example 2.3]):

| £ x4+ h) — )
max  sup < oo. (7.4)
Im|=k xeRn 7|0 |hl”

As is easily seen, C]b‘ C Cf: if k € N. The Holder-Zygmund spaces are a particular
case of the Besov spaces: C, (R") = B[’,’q (R™), where p, g = oo [1,item 2 in Remark
6.4].

The following two lemmas are proven in Appendix C.
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Lemma 7.1 Suppose g satisfies Assumption 4.5. There exist ¢;,, > 0 such that

[P~ m| > so,

105 W < cm n ml < so. Vm e Ng,y e V\T. (7.5)
Additionally,

gE€CP(V) Vs> 0and g € Cy’(V) if so € N. (7.6)

If the leading term in U is missing, i.e., =0, then g € C3'(V), and (1.5) holds with

so replaced by s;.

Lemma 7.2 Suppose B and g satisfy Assumptions 4.2,4.5,and 4.6. There exists cg > 0
such that

(B < cgl PO, ¥y e V\T. (1.7)

If k = 0, we additionally have with some ¢ > 0

[(Bg)(y)| < CﬁP(y)‘YO_ﬂO'”, foranyy e Vif P(y) > 0. (7.8)
Define
slm= Y e < )g(yf> ag () = 0L, (ge () — g0)), 0=1=BT1.
[j1=v/e

(7.9)

The following two lemmas are proven in Appendix C.

Lemma 7.3 Suppose ¢ and g satisfy Assumptions 4.3 and 4.5, respectively. There exists
1 > 0 such that

PO, PO = sae, so <1 < TB;T,
18P < ¢ {en, IP(y)| < »1€, so <1 <[B;1, Yy eV, (7.10)
1, 0<1<so,

for some ¢ > 0.
If the top order term in U is missing, i.e., = 0, then (7.10) holds with so replaced
by sy as long as ] < {,3 IB

Lemma 7.4 Suppose ¢ and g satisfy Assumptions 4.3 and 4.5, respectively. Let | be
the same as in Lemma 7.3. One has

A8 < cel POy eV PO = 56, Lsg | <1< TAf1, (7.1D)
1AgP () < ey eV, 0<1 < sy ], (7.12)
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for some ¢ > 0.
If the top order term in U is missing, i.e. 0F = 0, then (7.11), (7.12) hold with s
replaced by sy as long as ] < |',36r'|.

8 Computing the First Part of the Leading Term
8.1 Splitting the Reconstruction into Two Parts: fo = fg) + fg)

By (4.5),
o) = / (Bge) 5)w(xe. y)dy. 8.1)
yeT,

Pick some large A >> 1 and introduce two sets

Q= {y(z) eRY: y?| < Ae”z},

2 N 2 12 [y (8.2)
92;:{y<>eR Sy > Ae!?, (y(2)>eV}.

Let fe(l) (x¢) denote the reconstruction obtained using (8.1), where the y integration is
restricted to the part of 7, corresponding to ;,/ = 1, 2, respectively. The main ideas
behind the split are that (1) The contribution of féz) (x¢) to the DTB goes to zero when
A — 0o0; (2) For each fixed A > 0, the fact that |y | = O(e!/?) greatly simplifies
estimation of fé(l) (x¢); and (3) The double limit lim 4, o0 lime_ fe(l)(xe) exists and
gives the DTB.

The remainder of the proof consists of four parts: (1) Show that the leading singular
part of fe(l) (x¢) (i.e., when only the top order terms are retained in 3 and g) gives the
main contribution to the DTB. This is done in the rest of this section; (2) Show that the
remaining, less singular part of fe(l)(xe) does not contribute to the DTB (Sect. 9); (3)
Show that the contribution of fe(z) (x¢) to the DTB can be made as small as one likes
by selecting A > 0 sufficiently large (Sect. 10); and (4) Compute the DTB (Sect. 11).

8.2 Estimation of the Leading Term of f(;) (xe)

Throughout this section we assume that B in (4.3) satisfies B(y, n) = éo(y, n), i.e.,
we assume that the symbol of 3 contains only the top order term. Let By denote the
WDO of the form (4.3), where B(y, n) = Bo(yo, n). Likewise, we assume that the
symbol of g coincides with its top order term (i.e., R=0in (4.15)). It then follows
from (C.1) to (C.7) (see also (11.3)) that g is given by

gy) =atMPY) +a” WPO(y), a* € CFWV), (8.3)
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where a® (y) are linear combinations of 0% (y). Substitute (8.3) into (8.1)
fD(xe) = / VeT., (Bge) () w(xe, y)dy. (8.4)

Iy?|<4e! 2

Introduce the operator
Biag == Fil(b(WE(), b0 := Bo(yo, ©0)° + Bo(yo, —00)1™,  (8.5)

where g is sufficiently smooth and decays sufficiently fast, and F14 denotes the 1D
Fourier transform. Introduce an auxiliary function:

T(p) 1=/Bld§5(®O» P — 9 A@)dg = F1 (§(1O)b()AM)), p € R, (8.6)

where ¢ = Fo, A = FiA,
A(p) :=a®(yo)p +a~ (yo)p®, p € R, (8.7)

Big acts with respect to the affine variable, and the hat denotes the classical Radon
transform that integrates over hyperplanes:

¢(©p, p) == /(/)(X)5(®0 - x — p)dx. (8.8)

Both b()) and fl()») are not smooth at A = 0, so the product l;()»)/i()») needs to be
computed carefully, see the discussion between (11.4) and (11.6).
The main result in this section is the following lemma.

Lemma 8.1 Suppose the symbols of B and g contain only the top order terms as
described above. Under the assumptions of Theorem 4.7 one has

aﬂi B Q}V’(z) . S;(Q)

dy®. (8.9
o ! > )y (8.9)

lim €* £V (xe) = w(xo, yo) T(
e—0 IF®|<A

8.3 Proof of Lemma 8.1

We begin by investigating the sum in (8.4). The key result is the following lemma (see
Appendix D for the proof).

Lemma 8.2 Suppose y, z € V satisfy

1/2

[y —yol <ce’?, |y—z| <ce z €T, (8.10)
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for some ¢ > 0, and g, is obtained by interpolating g in (8.3) (cf. (4.6)). One has

—$J 57— .

P70 (Bge)(v) = Y- Bog (y - )A (®o~ — Z) + 0(eminboD/2) ¢ 0,
Jjezn

(8.11)

where the series on the right converges absolutely, and the big-O term is uniform
with respect to z,y satisfying (8.10). Moreover, the left-hand side of (8.11) remains
bounded as € — 0 uniformly with respect to z, y satisfying (8.10).

The next step is to use (8.11) in (8.4):

eﬁo—mfg(l)(xe) = O (e(N+min(s0.1))/2y 8.12)
Y(y?, xe) — 3/ 5/ — Z(y@)
+w(xo,yo)/ > Bog VX TV ) ale, . Y ) gy
Q) jEZ" € €

Here Z(y®) is obtained by projecting Yo (y®) onto I along y{, see Lemma 6.2. From
(3.17) and Yo(y®, x) = y@ we have G7 = Iy and det GT = 1, where G7 is the
Gram matrix (4.2) evaluated at y® = 0, x = xo. This property was used to obtain
(8.12). By (6.17) and Lemma 6.2,

Y@, x) = Z(y@) | = Yo 3P) + 0(e) — Z(y?)) 5.13)
= Y(@) = Z(®) | + 0(e) = 0(1yP1?) + 0(e) = 0(e),

so the conditions in (8.10) hold, and (8.11) applies.
In view of (8.12), define

¢ (v, p) ==w(xo.y0) ) Bop(v = Di)A@©o-Dij = p). veR" peR. (g,
JEZL!

Recall that D = UT D (cf. Assumption 4.3(IK2)). As is easily checked,

¢+ Dym, p+ 0Oy Dym) =p(v, p), Vme Z",v e R*, p € R; (8.15)
/ ¢ (v + Du, p + O - Dyu)du =w(xo, yo)/ Bogp(v —u)A(Oqg - u — p)du
[0,1] Ry

=w(x0, y0)Y(Og - v —p), Yv e R", p e R.
(8.16)

Use (8.14) to rewrite (8.12):
ere(l)(xé) =1I(e) + O(Gmin(xo,l)/Z)’ (8.17)
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where
Y (2)’ +UTy ZOyN 1+ UuTy
1(e) :=6_N/2/ ¢< (y Xe) YO’®0' ) Yo dy(z)
Qi € €
YOy, x.) — Yo(y@
:671\1/2/ ¢( ', xe) — Yoy )+D1u€,
Q1 € (8.18)
Yo(v@®) — Z(v®
®0_<_ 00y )6 0N L )dy@)’
o DN UT 50 + Yoy @)
¢ = .

€
Using that ¥ = O(1) and |[y®| = 0(€!/?), (6.17) and (6.18) imply

Y(y?, x) — Yo(y?)

M)y
=Y, (y@,00% + 0(e) = vo + O('/?), g := (Yx x) :

€ 0
(8.19)
By Lemma 6.2,
Qy(z) . y(2)
Q0 (No(3'?) = Z(yP)) = ==———+ 0(y*'). (8.20)
Therefore,
v2) . 52
I(e) = / o ¢<u0 + Dy + 062, LT 60 D + 0(61/2)>dy(2),
RASUE\
(8.21)
where y® = €!/2y2),
The following result is proven in Appendix E.
Lemma 8.3 Pick any ¢, 0 < ¢ < 0o. One has
¢+ Av, p) — ¢, p) = O(|Av|'"" N Av — 0, o], |p| < ¢ 522)

o, p+Ap) — ¢, p) = O(Ap[™™0D) Ap — 0, |v],|pl <

and the two big-O terms are uniform in v and p confined to the indicated sets.

Introduce an auxiliary function

¢1(q; u) = ¢(vo+ Diu,q +O¢ - Diu), u e R", g e R. (8.23)
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By Lemma 8.3, the integrand in (8.21) can be written in the form:

@ . y@
$1 (QyTy ) + 0, (8.24)
where a = min(1 — {8}, so, 1) > 0.

Consider now u. The assumption |y | = O (e!/?) implies

Yé/(())y(2) Sy@

5 + 0%, (8.25)

Yor®) = ¥5(0)y® +
where we have used that Y,(0) = 0. Here Yj(0) = Iy Yo (y(z))ly(z):o and Y(0) =
a;m Yo(y*)|,@—o. For completeness, note that Y§(0) = (0, Iy)” (see (3.17)), but
this is not used in what follows.

From (8.15), ¢1(q; u + m) = ¢1(q; u) for any m € Z". Using Lemma 8.3 again
and (8.25), (8.24) becomes

v@ . y@ p-l3 Y. (0)y® y’/ 0)v®@ . (2)
. (Qy y : 6)’0 +D1_1 ( 0(0)y T )y T 0(6”/2).

2 el/2 2
(8.26)
Thus, we need to compute the limit of the following integral as € — 0:
v@ .y
o= [ a@nd®. g =qG®) = E0
5@ =4 2 827
DLy (0)3@ -1z 70)y@ . 3@ ’
Y5(0)y D™ yo 1 Yy Oy -y
=u(3?, DY, 170
u=u(y’,e) = Y + D, 5
Represent ¢ in terms of its Fourier series:
$ir(g;u) =Y Prm(@)e™ ™", (8.28)

meZ

The N columns of Y(’) (0) form a basis for the tangent space to 7, at yo = 0 written
in the new y coordinates. The columns of U Y{;(0) span the tangent space to ’j}o at yo
written in the original y coordinates. By assumption, 7, is generic at yo with respect
to D (cf. Definition 3.4), so there is no m € Z" such that m # 0 and me] Y;(0) = 0.
The same argument as in (5.8)—(5.14) in [20] implies

Qy(Z) v(2) L)
hm J(e) = u |dudy'”. (8.29)
y@1<a Jo, 11
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Here is an outline of the argument. Break up the integral with respect to ¥ in
(8.27) into a sum of integrals over a finite, pairwise disjoint covering of the domain
of integration by subdomains By with diameter 0 < § < 1. Then approximate each
of these integrals by assuming that ¥ is constant everywhere except in the first term
of u outside of brackets in (8.27). This is done by choosing },Ez) € By in an arbitrary
fashion:

J(€) = [J(e) + 0(“)Vol(BY)]. J(e) = /B $1(g); ur G, €))dy @,
k k
(8.30)

) DI 05 [D 5, 32 32
(32, €) = =L 6(;/2 +D11 0 ; il

Thus, the variable of integration y® is present only in the rapidly changing term
with €!/2 in the denominator. The magnitude of the error term O (§%) follows from
Lemma 8.3. Represent each ¢ in (8.30) in terms of its Fourier series (8.28). Using
the fact that there is no m € Z" such that m # 0 and le_1 Y;(0) = 0 implies

lim [ expQuim -u(3?,€)dy? =0ifm # 0. (8.31)

€—0/p,

The first term in ux (cf. (8.30)) is the only one that contains y® and changes rapidly
as € — 0. In turn, (8.31) implies

lim 7€) = Grn—o(q 7)) = /[0 Q@G e (8.32)

Using that § > 0 can be as small as we like finishes the proof of (8.29).
Combining (8.17), (8.21), (8.23), (8.26), (8.27), (8.29) gives

) 1 NORTE .
lime— EKfe( )(xf):f\}(ZHSA f[oy]]n ¢<UO+D1M, 9 5 — 40 - Dlu>dudy(2)~
(8.33)

By (8.16) and (8.33),

0y® .y

dy®. (8.34
2 )y (8.34)

lim € £V (x¢) = w(x, yo) T<®0 g —
=0 Iy |<A

Since 3Y1/8xl =0 (cf. (11.8)) and ®¢ = dyy, from the definition of vg in (8.19)

X X 1.
@ . = —X1. 8.35

Combining (8.34) and (8.35) proves Lemma 8.1.
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9 Estimation of the Remaining Parts of fé”(xe)

In this section we prove that the lower order terms of fe(l)(xe) do not contribute to
the DTB. In this section, by ¢ we denote various positive constants that may have
different values in different places. From (4.16), (6.3), (6.17), and (8.2) it follows that
there exists ¢; > 0 such that

y? € Qy, y e T, implies | P(y)| < cye. 9.1)

Let B and s denote the remaining highest order exponents in (4.8) and (4.15), respec-
tively. By construction, 8y — so > B — s. This means that either s = s if the first term
in B is missing (i.e., B = B1 < Bo), or B = Py if the first term in U is missing (i.e.,
s =51 > 850).

Suppose initially that 8 > |[s~|. Setk := [BT],v :=k — B.Thus, 0 < v < 1,
v=1if B € No,and so < s < k < [B]]. Clearly,

B = W13§1 + Wh, 9.2)

for some W) € S7V(V x R") and W, € S™>°(V x R"). Here we use a cut-off near
n = 0 and the fact that the amplitude of 13 is supported in a small conic neighborhood
of (yo9, ®9 = dy;). Then

w&mo=fK@J—wMWWMw+om, (9.3)

where K (y, w) is the Schwartz kernel of W, and O(1) represents W5 g.(y). The
latter statement follows, because g (y) is uniformly bounded as ¢ — O forall y € V
(cf. (4.6) and (7.6)) and compactly supported. By the estimate [1, Eq. (5.13)],

05, K (y,y —w)| < cDly —w[~" ™ 1>0, yweV. (9.4)

Combining (9.2), (7.9), the two top cases in (7.10) with / = k and s¢ replaced by s,
(9.3), and (9.4) with [ = 0, gives

[(Bge)(W| = c(J1 + J2) + O(1),

. Lys—k s—k 9.5
e v, et 09
se<|Pw)l<o) 1y —w|" [P(w)|<se |y — w|"

where 3] is the same as in Lemma 7.3. Consider J;:
h=// pl*
sae<ipl<oy |([P — pl+ ¥ (yL) — ¥ (wh), yt —wh)pr=v

dpde,

9.6)
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where we denoted P := P(y) and changed variables w; — p = w; — ¥ (w™). There
exists 0 < ¢’ < 1 so that

la+y(h) —yhH+ Iyt —wh = (al+ Iyt —wi)VaeR, y, w e V.
9.7

By construction, 9,1¥(0) = 0. Assume V is sufficiently small, so that |y (y1) —

Ywh)| < |yt —wt], y,w € V, for some 0 < ¢” < 1. Then any ¢’ such that
0 < ¢’ <1 —¢” works. This implies

s—k
Ji 5cf f I ——dw'dp
sme<ipl<oyJ (P — pl+|w=)"=Y

| |S_k O(E‘Y_ﬂ), '8 >, (98)
56/ P - = dp =1 0Mnd/e), p=s,
1e<|pl<0(1) p o), B <s.

Here we have used that P = O(e).

The term J; can be estimated analogously, and we get an estimate similar to (9.8),
where the bound is O (¢*~#) in all three cases.

Suppose B > s. By (9.5), (Bge)(y) = O(e°~#). Estimate the integral in (8.4):

Ael/?
IerE(l)(x€)| ge"/ 0 P)ay® = 0(6K+S*ﬁ)‘/‘ AN-14,
0

Q 9.9)
=0(6(ﬂ°_S0)_(ﬂ_‘Y)) if B> s.
In a similar fashion,
O(efo=01n(1/€)), B=s,
Kk (1) _
|6 € (xe)| - {O(EBOsO), ﬂ <. (910)

Since By — 5o = N/2 > 1/2, € £ (x.) — 0 in all three cases.

Suppose now 0 < B < |s—]. Similarly to (9.2), B = W, 3§1 + W, where k =
B1=>1L,v=k—B>0,s >k, W €SV xR"), and W, € STV x R"). The
kernel of W is an L' function (see e.g. Theorem 5.151in [1]) and Sup,cy |Agék) | =
O (e*7%) (cf. (7.12) with so replaced by s). This implies that SUpyey |(Bge)(y) —
Bg(y)| = O(e*%). From Lemma 7.1, Bg € Ci_ﬂ(V), and s > B. Thus, (Bge)(y) =
O (1), and the desired result follows similarly to the case 8 < s in (9.10). The case
B < 0is proven using the same argument with / = 0 in (7.12) and without splitting B
into two parts.
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10 Estimation of f(_(:z) (xe)

10.1 Statement of Results

In this section we prove the following two lemmas.

Lemma 10.1 Under the assumptions of Theorem 4.7 one has

€ fe(xe). k>0 g yo)/ ( Moo Qi(”'i(”)dym
2

=0 fe(xe)_f(z)(xe)y K= 3x1
(10.1)
Lemma 10.2 Suppose k = 0. Under the assumptions of Theorem 4.7 one has
lim FP(xe) = (R*Bg) (xim). (10.2)

Recall that x(i)m is defined in (4.21). Lemma 10.1 is proven by considering the last

remaining term fe(z) (x¢):

FP o) = / ver,  Bgo(wxe, y)dy, (10.3)
ly®|>Ae!/?
where both B and g are given by their full expressions. The continuous counterpart of

(10.3) is

F@ o = / ver,  (BOGIW(xe, y)dy. (104)

ly@|>Ael/2
10.2 Proof of Lemma 10.1

The following lemma is proven in Appendix F.

Lemma 10.3 Suppose B, g, and ¢ satisfy Assumptions 4.2, 4.3, 4.5, and 4.6. There
exist ¢, sy > 0 such that for all € > 0 sufficiently small one has

1, N,
[(Bge)(») — (Bg)(»)| < ce | P(y)[0~'Fo Po ¢

V,
1In(P(/e)l. poeN, *

(10.5)

whenever | P(y)| > e.

Return now to (10.3). Pick any y € 7. Recall that y = Y (y®, x) is obtained by
solving x(V = @MW (x@ | y) for y(, and that y® = Y@ (y® | x) (see the proof of
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Lemma 3.7). Hence |Y (y@®, x¢) — Yo(y@)| = O(e). Strictly speaking, we cannot
invoke (6.17) here, because in (6.17) the assumption is [y®'| = O(e'/?). Therefore,

PY(y?, x0)) = P(Yo(y@)) + 0(e) = Op - (Yo (yP) — Z(y@)) + O(e).
(10.6)

Recall that Z(y(z)) is the projection of Yo(y(z)) onto I', cf. Lemma 6.2. Using (6.3),
(8.2), and that Q is negative definite, by shrinking V), if necessary, and taking A > 1
large enough, we can make sure that (a) P(y) > c| y@ 12 for some ¢ > 0 and (b)
inequality (10.5) applies (i.e. P(y) > sne€)if y € 7, and y® e Q, foralle > 0
small enough.

Suppose first that « > 0. Using (10.3), (10.5), and (7.7) gives an estimate

€ £2) (xe)|

IA

0(€") / (ePyo =t n(P(/e) + P H) dy®
Q)

IA

0(€¥) (€|y(2)|2(So—ﬂo—l) In(P(y)/e) + |y? |2(S0—/30)) dy®
Q0
= O(A™%). (10.7)

If «k = 0, we get from (10.4), (10.5), and (7.8)

1P (xe) = fPxo)| < / eP(y)* P~ n(P(y)/e)dy®
@ (10.8)
SG/ |y(2)|2(S0*f30*1) ln(P(y)/e)dy(z) — O(A72 In A).
Q2

As A > 1canbearbitrarily large, combining (10.7) and (10.8) with (8.9), (8.35) proves
(10.1). Here we use that the integral on the right in (10.1) is absolutely convergent
(see Sect. 11).

10.3 Proof of Lemma 10.2

Recall that « = 0. By (6.3) and (10.6), for any ¢; > O we can find Ag > 1 sufficiently
large so that P(y) > cly@ |2 forall A > Ag,e >0 sufficiently small, |X| < ¢y, and
v € 7, aslong as y@ e Q,. It follows from (7.8) that the integral in (10.4) admits a
uniform (i.e., independent of € > 0 sufficiently small, A > 1 sufficiently large, and
X confined to a bounded set) integrable bound:

/ P(y)0—Potegy@ </ f |y @ (s0=Pot) g @)

ly®@|<0(1) — Jy®@i=om

o) (10.9)

< c// r260=Pote) . N=1q, — oo, By — 59 = N/2.
0

In (10.9), the constant ¢ in the exponent is the same as the one in (7.8). Therefore,

we can compute the limit of £ (x.) as € — 0 by taking the pointwise limit of the
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integrand in (10.4). This limit is independent of A >> 1. Shrinking V if necessary, by
(6.3) we can ensure that P(y) > O forany y € 7y, y # 0. Hence

3%f(2>(x5>= /7 (Bg)(y)w(xo, y)dy. (10.10)
X0

Thus, the limit is independent of X.

A slightly more general argument holds as well. Let x = (x1,0,...0)" € U be
a point with x; > 0 sufficiently small, and let y € 7, be arbitrary. It follows from
(6.3) and 8Y1/dx; > 0 (see (11.8)) that P(Y (y?, x)) > c(x; + |y?|?) for some
¢ > 0. This is easy to understand geometrically. If x; > 0, i.e. x is on the interior
side of §, no curve Sy, y € V, is tangent to S. Hence the curve 7, does not intersect
I'=7g,and P(Y (y(z), x)) is bounded away from zero. For any such x, we still have
the same lower bound P(Y (y®, x)) > ¢|y®|2. In view of (4.21) and (10.9), we can
use dominated convergence to conclude

/ Bo)Mwxo, dy = lim / (Bg)(nw(x, y)dy = (R*Bg)(xiM).
’]}0 x=(x1,x0+=0) yveTy

(10.11)

Comparing (10.10) with (10.11) proves (10.2).

11 Computation of the DTB: End of the Proof of Theorem 4.7

In this section we evaluate the right side of (10.1) and show that it equals to (4.22) if
k > 0andto (4.23)if « = 0.
The right side of (10.1) simplifies to the expression

2N/2 ) 2N/2|SN—1| 00 5 Vol
o [RNT<h+|v| >dv:—|detQ|1/2 O T (h+q?)q"dg,
h = (3Y1/0x1)X1,
(11.1)

where |SV 1| is the area of the unit sphere in RY . Set (see (C.3))

(N=2)/2 e(=N/2)T'(N/2)

1 -
J(h):=3 / Y(h+q)g, ~dg= Fi (Y0)(—i0)~N/2),

2
(11.2)
As is shown in (C.1)-(C.7), the leading singular term of g (cf. (4.15)):
Fil @t maz ™ 4 57 (At (P(y)) (11.3)
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is indeed of the form (8.3) (where a®(y) are linear combinations of 0+ (y)). Hence
Ay = ot (MAZD £ 57 (»aZ0F and (8.6), (11.2) yield

o — F(N/2)

Fi @(00)n() (h), (114
(n) :=éo<yo, )0 (v0)e(—N /225 + Bo(yo, —©0)D~ (yo)e(N /2)2 "

The function J (k) is identical to the one introduced in [19, Eq. (4.6)] if we replace n in
the latter with N + 1. See [19, Sect. 4.5] for additional information about this function.
In particular, Y(p) = O(|p|~®0=50)), p — oo (this follows from (8.6)), hence the
integral in (11.2) is absolutely convergent if x > 0. Also, ©(A) is the product of three
distributions b(A)A(L)(A — i0)~N/2, which is well-defined as a locally integrable
function if « > 0.

Combine with the factor w(xg, yp) in (10.1) and the factor in front of the integral
in (11.1) and compute the inverse Fourier transform (cf. (C.3))

DTB(h) = C; /@(@0, h— p) (cff(p —i0) " + ] (p+ iO)*") dp, « > 0,
(11.5)
C1 = @M Pw(xg, yo)l det Q|72 o = (—)Bo(yo, +£600)0% (y0)e(F(Bo — 50)).-

If « = 0, a more careful analysis of J(h) is required (see Sect. 4.6 of [19]).
Similarly to (C.16), (C.17), condition (4.20) implies that Y'(p) = 0, p > ¢, for some
¢ > 0, hence the integral in (11.2) is still absolutely convergent. Straightforward
multiplication of the distributions to obtain p (1) no longer works, because (i) is
not a locally integrable function if k = 0. Fortunately, in this case (1) is computed
in [19, Eq. (4.45)] (see [19, Eqgs. (4.45)—(4.47)]). Observe that condition (4.20) in this
paper is equivalent to [19, condition (4.6)]. At first glance the two conditions differ
by a sign, but sg in [19] corresponds to sg + 1 here, which eliminates the discrepancy.

Then (X)) = Bo(yo, O0) 0T (yo)e(—=N/2) (A — i0)~1, and (11.5) becomes

0
DTB(h) =Cjcy /fﬁ(@o, h—p)pdp = Ciey / @(©g,h — p)dp, k =0,
e (11.6)

e1 =i By (y0. ©0)0 " (yo)e(—(Bo — 50)).
where C| is the same as in (11.5).
Let us now compute | det Q|'/2. The following lemma is proven in Appendix 1.
Lemma 11.1 One has
GRS
8x(2)ay(2)

(@1 /ay)N/?

det 0"/ =
| det O | det Allg|1/2

(11.7)

and
aY1/dx1 = (3@1/8))1)_1, aY1/dxy, 0®1/9y1 > 0, 3Y1/3xl =0, (11.8)
where y = Y (y®, x) is the function constructed in the proof of Lemma 3.7.
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Substituting (11.7) into (11.5) and comparing (11.5), (11.6) with (4.22),(4.23),
respectively, we finish the proof of Theorem 4.7.

12 Proof of Theorem 5.4

From (C.13) in the proof of Lemma 7.2 and (4.1) it follows that

1 CbPOy
(R*Bg)(x) = /R /R TR PO w(x, y)(det GT (y P, x))2dyPdx,

J(y, )L) — J(l)(y’ )\) + J(2)(y, )\‘)’ y = Y(y(Z)’x) c 7}7
IO, 2) = Bo(y, dPG)TT AL ™™ + Bo(y, =dP())T~ (A2,
J® ¢ Scfl(V x R), ¢ = max(By — so — 1, B1 — 50, Bo — S1). (12.1)

By construction, P(Yo(y®)) = @ - (Yo(y?) — Z(y?)). By (6.3),

2P (Yo(y?)
3,00 P(Yo(y )]y = 0. +y2 — 0, detQ £0. (12.2)
@D |,

Therefore the stationary point yiz) (x) of the phase P (Y (y@®, x)) is a smooth function
of x in a neighborhood of x = xg. Set x = x, = xo + €X.

By (6.17), (6.18), and (12.2), application of the stationary phase method to the
integral with respect to y® in (12.1) yields:

We(E 2) = fR 10 PO, et 6T (6P, xe)!dy?

= (RO 1) + RP (&, 0))e Hetrt0@) -y — y (@ ),

w(x0, Y0)

RV ) = @o)? <7
|det Q[1/2

D ~+ N Kk—1
+ 0(6)) ((Bo(yo, B0)v " (o) + O(€))e (_5> AL

~ N
+(Bo(y0, —©0)U ™ (yo) + O(€))e (5> )»’fl>

RP e s*71=¢U x R), h = (31 /3x1)¥1, « > 0, (12.3)

for some ¢ > 0 and any open, bounded set U C R”". Here we have used also that O
is negative definite, and det GT =1.

The function 1§§“ (X, A) is the leading (as . — o0) term of W (X, A). It is obtained
by replacing J(y, A) with J(y, A) (cf. (12.1)) in (12.3) and retaining the top order
terms after the stationary phase method is applied. Thus, all the O(¢) terms in the
formula for Iéél) (X, A) are independent of X, they are smooth functions of X, and remain
O (¢) when differentiated any number of times with respect to X. All the remaining
lower order (as A — 00) terms are absorbed into ﬁéz) (X, A).
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The expression €(h + O(€)) in the exponent arises by evaluating P(y) at the
stationary point:

P(Y (3P (xe), X)) =P(Y(O(€), €X)) = Y1(O(e), €X) + O(€?)

y (12.4)
=€[(8Y1/0x1)x1 + O(€)],
where we have used that xg = 0, yo = 0,3, Y1 = 0 (cf. (3.17)), P(y) = y1 — ¥ (y 1),
¥ (0) = 0, and ¥’ (0) = 0, and (8.35).
Now we show that

lim €“(R*Bg)(x¢)
e=>0 (12.5)
= C1F (O () = Cy (¢ (h —i0) ™ + ¢ (h+i0)7%), « > 0,

where (1) is the same as in (11.4), and C| and cli are the same as in (11.5). The limit
in (12.5) is understood in the sense of distributions with test functions w € Cg°(R")
(cf. [16] and (5.6)).

When a = —« < 0, m = 0, and it is not necessary to require derivatives in (5.6).
Thus, the limit in (12.5) is understood in the sense of taking the limit as € — 0 on
both sides of the following equality:

/ €“(R*Bg)(xp + €X)w(x)dx = i/ / W (X, 0/€)w(X)dXdo.
R? 27T R n
(12.6)

The right-hand side of (12.5) follows from (12.3), the dominated convergence theorem,
and (C.3). The dominated convergence theorem can be applied because

(1) The function R, (¥, 1), where R, := I?él) + ~§2), is absolutely integrable at A = 0
since k > 0; and

(2) The integrand in (12.6) is rapidly decreasing as 0 — oo uniformly in €. This
follows from integration by parts with respect to x| on the right in (12.6) and
using that R, € S*"1(U x R) (cf. (12.3)), w € Cy°(R™), and Y7 /0x1 # O (cf.
(11.8)). Clearly, the constants c,, and ¢, that control the derivatives of 156 in
(4.7) can be selected independently of € for all € > 0 sufficiently small.

If k = 0, the function ©(}) is no longer integrable at the origin, and |m| = 1 in
(5.6). Hence we use test functions of the form agjw()?), 1 < j < n. This makes the
same argument as in the case ¥ > 0 to work, but the price to pay is that the CTB is
determined up to a constant. See the paragraph following Theorem 4.6 of [19] for a
similar phenomenon. Using condition (4.20) in (12.3) implies

lin%)(R*Bg)(xe) — Cic1(—1/2)sgn(x;) = const, k =0, (12.7)

where ¢ is the same as in (11.6).
Comparing (11.5) and (11.6) with (12.5) and (12.7), respectively, we see that the
DTB is the convolution of the CTB with the scaled classical Radon transform of the
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interpolating kernel. The difference between p% in(11.6) and (—1/ 2)sgn(p) in (12.7)
is due to the nonuniqueness (up to a constant).

Appendix A. Proof of Lemma 3.5

We begm by constructmg an orthogonal matrix U such that the intermediate coor-
dinates y = ur (y — yo) and the intermediate function <I>(t y) = <I>(t Uy y + Yo)
satisfy (3.10). Here y = (z', y®)T. The final coordinates y and the intermediate
coordinates y will have the same y® component, this is why we wrote y@ in the
definition of y.

Let VI X V2T be the SVD of the Jacobian matrix é;l). To remind the reader, é;l)

stands for the matrix of partial derivatives d5 oM (x@, y) evaluated at (x(gz), ¥o). Here
Vi € O(n — N) and V, € O(n) are orthogonal matrices, and X is a rectangular
(n — N) x n matrix with X;; = 0,7 # j,and ¥;; > 0,1 <i < n — N. The
latter property follows from Assumption 3.1(G2) and dJ((z) = 0, which yield that

rankd>§~,1) =n — N. Then we can take U = Vi, 80y = V2 (y — ¥0). Indeed,

e 9dM 5
ay® T 95 ay®

=vizvyvi? = v, 2 <1(1)v) 0. (A1)

Here V2(2) is the n x N matrix consisting of the last N columns of V. Likewise,

apM

adM  9pM j5 o
- Y :VleZTV;“:vlz(I"ON>, detm £0. (A.2)

azh 35 9z

The final coordinates y and the final orthogonal matrix U can be found as follows.
As was already mentioned, we keep the coordinates y® the same and rotate the z(!
coordinates: 7\ — y(l). Hence (A.1), (A.2) still hold with & and 7V replaced by ®
and y(I, respectively, and the new y coordinates satisfy (3.10).

By (3.5), the rotation z(1' — y( should be selected so that

3@ /dy; = (3P /9z")(9zV/dy;) =0, j=2,....,n—N. (A.3)
IfV € O(n— N) is such that z(1) = Vy(l), then (A.3) implies that the second through

the last columns of V form an orthonormal basis of the subspace of R"~N_ which
consists of vectors orthogonal to d®;/dzV. It is clear that such a basis can be found.

Then the matrix U becomes
Vo0
U=U (0 1N>' (A4

Our construction ensures that all components of the vector 9y, ®1, except, possibly,
the first one, are zero. By (A.2), the first component is not zero. Multiplying W (y) by
a constant, we can make sure that 9y, (¥ o &) = 1.
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Appendix B. Behavior of Rf Near I

Suppose f € £'(U) is given by
1 - .
fo =5 f Fr e MW s, ®.1)
where W is the same as in Sects. 3, 6, and f satisfies

Feem) = Freoas ™ L i onZ® T L R, Ve e U 4] = 1
f(x,2) =0Vx €U\ K for some compact K C U;

|8;”f(x,k)| <cmlM* a>—-1,Vxeld,0< A <1,meN};

Re s Iy x R), f*e W), (N/2) -1 <so <1,

(B.2)

for some a, ¢y, 50, 51, R, and f + . If ¢ = R f for a sufficiently regular f, then g should
have more regularity (so > (N/2) — 1) than in the general case (4.15) (so > 0).

From (2.3), after changing variables and the defining function (r — x@®, § — y,
® — @), the GRT of f is given by

Rfy) = [N f(x)b(x, y)(det GS(X(Z)’ y))l/zdx(z)
]F 7 i (B.3)
= g/R o Fox, e Y Op(x, y)(det GZ(x P, y))2dxPda,

where x = <I>(x(2), y).

Consider the second equation for 75 in (6.4) and solve it for x®. Since det(W¥ o
®),. @, # 0, the solution xf) = xiz) (y) is a smooth function. The function xiz) )
here is different from x® (y1) in the paragraph following (3.16), because now we
solve only the second of the two equations that define 75. The asymptotics as A — 0o
of the integral with respect to x® in (B.3) is computed with the help of the stationary

phase method [33, Chapter VIII, Egs. (2.14)—(2.20)]

/ Fe, We ™Y Op(x, y)(det GZ(x @), y))!/2dx®

1/2
detcSx®y |

= f(x*» Mb(xy, y) )
det(W o @), 2,2 (x5, y)

27 N/2 .
(m) +RO-A)

« e i Fsen(M(Wod) ) 2) (X»(fz)»y))e_’“’("*), Al >1, Re S0t xR,
(B.4)
for some R. Here x, = CD(x,EZ) (), ¥), and sgn M for a symmetric matrix M denotes

the signature of M, i.e. the number of positive eigenvalues of M minus the number of
negative eigenvalues.
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Introduce the function

Pi(y) i= (W o ®)(xP (), y). (B.5)

Then R f can be written as

Rf(y) = % / By, e POy, (B.6)

and, with the same a, sg, s1 as in (B.2) and some ¢,,, R,

oy, 1) = oA £ 5T AZTY L Ry, v, A = 1

|8Tﬁ(y,k)| < cm|AlY, VyeV,0<|A|<1l,me NZ:

I’é c S—min(51+1,so+2)(v x R); (B.7)
1/2

S(@
det G (x* vy) Xe:l:i%N GCOO(V),

oF (=02 fE@)bx, y) )
det(¥ o @)@, (x5, )

where x, = dJ(xiz) (), ¥), and we have used that (W o ®) ), is negative definite.
By construction, P;(y) = 0 is another equation for 7Zs. Since (W o @), = 0,

equation (6.6) does not determine xiz). Therefore, to first order, xf) is determined by
solving (6.7):
(2) _ -1 2
17 ==Wo®) 4 oWo®)a,y+ Oy, (B.8)
and

Pi(y) =dy(¥ o @)y + O(ly[*) = Qg -y + O(Iy?). (B.9)

RemarkB.1 We are now in a position to discuss the implications of Assump-
tion 4.5(g4). Suppose g = R f and so € N. From (4.17) and (B.7),

v _ il ) .
ot(y) GO e e(=2a), a:=s0— (N/2)+1,Vyel xeS.

(B.10)

Here we have used that x,(y) € Sif y € I'. Recall that the function e(a) is defined in
(4.18).

Suppose first that N is odd, i.e., a ¢ N. Substituting (B.10) into (B.2) gives to
leading order:

F ) ~fTOA" + A = FH ML + e(=2a)A=%)

2R . (B.11)
=fT(x)(A+i0)"% A — oo, Vx € S.
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Using (B.1) and computing the inverse Fourier transform, we approximate f to leading
order:

Fx+ Ax) ~cf T ()W) AN, [Ax] > 0, Vx € S, (B.12)

for some ¢ # 0. Thus, if N is odd, Assumption 4.5(g4) means that, to leading order,
the nonsmooth part of f is supported on the positive side of S.
Suppose next that N is even, i.e. a € N. Substituting (B.10) into (B.2) gives:

fx,2) ~ frxA ™, »— oo, Vx €S,

~ (B.13)
fx 4+ Ax) ~ cf+(x)h“_lsgnh, h:=d¥(x)Ax, |Ax| — 0, Vx € S,

for some ¢ # 0. Thus, if N is even, Assumption 4.5(g4) means that, to leading order,
the nonsmooth part of f is symmetric about S: f(x + Ax) ~ f(x — Ax) if a is even,
and f(x + Ax) ~ —f(x — Ax) if a is odd.

Remark B.2 The behavior of f near S can be obtained in the same way even if sg ¢ N,
and Assumption 4.5(g4) does not apply. Taking the inverse Fourier transform of the
first (asymptotic) equality in (B.11) using [9, p. 360, Egs. 25, 26] shows that

F+Ax) ~cr fret —i0 ™ 4 e f(x)(h +i0)"",

(B.14)
h:=d¥(x)Ax, |[Ax]| >0, Vx €S, a ¢ N,

for some constants c+ # 0. If a € N, then the leading singularity of f may contain
logarithmic terms [9, Chapter II, Sect. 2.4, Egs. (14) and (20)]. Computing the corre-
sponding explicit expressions is fairly straightforward and is outside the scope of the

paper.
Appendix C. Proofs of Lemmas 7.1-7.4

C.1.Proof of Lemma 7.1

The following expression for g (modulo a C*° () function) is obtained directly from
(4.12), (4.15):

g(M—=G(y, P(y)) € C*(V),

- C.1
GGy, p) i=Ff (T 00 + 57 AZ Y+ R ) (), b

where R € §—¢1+D (VxR),and F fdl is the one-dimensional inverse Fourier transform
acting with respect to A. The inverse transforms F, l_dl (A;(‘YOH)) are understood in the

sense of distributions [9, Chapter II, Sect. 2.3]. By the properties of R, we get by
computing the inverse Fourier transform if 5o ¢ N:

G(y, p)=0 (MWL (p) + 0 MV (p) + R(y, p), VyeV, peR. (C2)
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Here [9, p. 360]

P@ oy (p 7i0)9, a £0. 1. -2, ... (C3)

VEp =F 0 = =

and R(y, p) = Fy; (R(y, x)) (p). By [1, Theorem 5.12], R satisfies

Ipls1, sy <1,
109, R(y, p)l < cmy {1+ |loglpll, s1 =1, Vm e Nj. 1 eNo,y eV, p#0,
1, s1 > 1,

(C.4)

for some ¢, ; > 0. Recall that P(y + p®g) = p for any y € I" and p such that
y + p®g € V. Combining (C.1)—(C.4) gives the leading singular behavior of g:

g+ pOy) ~aT(MpY +a - (MpY, p—>0, VyeT,

- (5)
a*(y) = (27:0) (0F (»e(Es0) + U~ (»)e(Fs0)) . so ¢ N.

See [2, 28] for a characterization of the singularities of the classical Radon transform
g = R f for more general surfaces S.

If 5o €N, condition (4.17) implies 5+ (y)A 10TV 45~ (1A Z00FD = 5t ()2~ 6o+,
y eI, so0[9,p.360]

G(y, p) =0T (MW _(p) + R(y, p), Vy € V,
R 1 (—i)%t! (C.6)

V_s (p) =.7:1d1()» GotDy(p) = szsosgn(p), so € N.

An equation of the kind (C.5) still holds:

g(y+ p©g) ~at(y)pY +a~MpL, p—> 0, Vy €T,

5+ C.7
() =2 D x50+ 1)), 50 €N, ©D
2S()!

Combining (C.1)—(C.6) and using that (C.2) and (C.6) can be differentiated proves
(7.5).
From the second equation in (C.1), (C.6), and (7.3) we get also

CP(R) Vm € NI,

C.8
Cy(R) Vm € N} if so € N. €8)

MGy, € {

Together with the first equation in (C.1) this proves (7.6).
If OF = 0, the result follows from the properties of R(y, ) and (7.3), because
s1 ¢ N.
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C.2. Proof of Lemma 7.2

From (4.3) and (4.12),

1 ~ s i in (e
(Bg)(y) = W./]R" B(y, ﬂ)/];/JRU(Z,)»)e P@FINGE=Ndrdzdy.  (C.9)
As is standard (see e.g., [33]), set # = /XA and consider the phase function
Wi(z,u,y) = P() —u(z—1y). (C.10)

The only critical point (zo, #g) and the corresponding Hessian H are given by
Pyy(y) —1,
20 =, g =dP(y), HY) =< ) O) 1
n

Clearly, |det H(y)| = 1 and sgn H(y) = O for any y € V. By the stationary phase
method (see [33, Chapter VIII, Egs. (2.14)-(2.20)]) we get using (4.8) and (4.15)

A" . .
(lz )n/ / B(y. au)d(z, e HPOTFOTET N dzdu
T R JY

= B(y, \dP()0(y, 1) + R(y, 1),
J € SP=0=1y x R), R e SP~072(y x R).

J(y, h) =
(C.12)

The fact that the u-integration is over an unbounded domain does not affect the result,
because integrating by parts with respect to z we obtain a function that decreases
rapidly as |u| — oo (i.e., when |u| > Supycy |[dP(y)|) and A — oo.

Substituting (C.12) into (C.9) and using (4.8), (4.15) leads to

Be)(y) = — f (s Re POy
27

=i (Bo(y, dP (oA
(C.13)

+ Bo(y, —dP ()5~ (a0 4 Ry, A))(P(y»,

Re S'V xR), ¢ :=max(Bo—so — 1, Bi — 50, Bo — 1) < Bo — 50.

The extra factor |A|" in (C.12) cancels because |A|*du = dn. Computing the
asymptotics of the inverse Fourier transform as p = P(y) — 0 and using that
Bo(y, £dP(y)) € Cg°(V) and P(y + p®g) = pif y € T gives

(Bg)(y + pOo) =¢) Wy (p)+ ¢ Wg  (p)+ R(y + pOo, p),

L - o (C.14)
F =Bo(y, £dP(3)5* (). Vy € T
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Recall that \Ilai are defined in (C.3),and R(y, p) = ]-'l_dl (R(y, k))(p). By [1, Theorem
5.12] and (C.13), the remainder satisfies
|c—l

|p c<l,

079, R(y, p)| < cmy {1+ [loglpll, c=1, VmeN;j,leNop.yeV,p#0,
1, c>1,

(C.15)

for some ¢;;; > 0. The constant ¢ here is the same as in (C.13). The estimate (7.7)
follows from (C.14), (C.15).
If k = 0, condition (4.20) implies

Bo(y, dP(y) o+ (AT 4 Bo(y, ~dP ()5~ (a0

~ (C.16)
= Bo(y, dP(y)0T(»)(h —i0)P 01 vy e T,

and

. e(—potso+1) —(Bo—s0) _ N
(Be)(y + pOo) =Bo(y, dP(y)5+ (y) | A P Fo =50 ¢
0, Bo—s0 €N

+R(y+ pOo,p)Vy e, p #0.
(C.17)

This proves (7.8).

C.3.Proof of Lemma 7.3

Using that [ > sg and ¢ has (ﬂar 1 bounded derivatives and ¢ is exact to the degree
[Bol, we get withany 0 < M < 1:

5 . 5J  y)ym
=Y aj,lso(y - ) gGH - > %g”’”m

jl=b/e Im|<M—1 ' (C.18)
_ -1 l y_}A)j S 57 m
=< Y @ (=) X Rl G ="
j1=0/e iml=M

Here (9,,¢)(-) is the derivative of ¢(v) with respect to vy evaluated at the indicated
point, and the remainder satisfies

1
N m - N
Rn(3,y) = —'m,' f A ="y + 137 — y)r,
-0 (C.19)

N 1 /
[Rm(3, y)| < — max 18 (y + ev)|.

m! |m'|=|m|,vesuppy

Birkhauser



Journal of Fourier Analysis and Applications (2023) 29:6 Page450f59 6

To prove the top case in (7.10) select »r; > 0 so that |P(y)| > sj€ and ¢((y —
w)/€) # 0 implies |P(w)| > €. By Lemma 7.1, this ensures that for each m € Njj
there exists c¢(m) > 0 such that

P[0~ m| > s,
max g (y + €v)| < c(m) PO > e
vESuppy 1, [m| < so,

(C.20)

Set M = [ in (C.18). Then (C.20) together with the bottom line in (C.19) prove the
result.

To prove the middle case in (7.10), set M = [sg] in (C.18). If 5o € N, (7.6) and
(C.19) imply that R,, = O (1), thereby proving the assertion. If so ¢ N, the remainder
can be modified as follows

. 1 .
B30 = b [ = 0N 4 15T =) =g ()Mt = O
(€21

Here we have used (7.4) with r = s9. Since [ > M, we can replace R,, with Rm in
(C.18) without changing the equality, and the desired inequality follows.

The bottom case in (7.10) follows by setting M = [ in (C.18) and noticing that
(7.6) and (C.19) imply R,, = O(1).

If 5% = 0, the same argument as above applies with sy replaced by s1. The only
change is that there is no need to consider the case s; € N.

C.4.Proof of Lemma 7.4

Since s > 0 is the same as in the proof of Lemma 7.3, |P(y)| > 2r1€ and ¢((y —
w)/€) # 0imply | P(w)| > €. Similarly to (C.18), using the properties of ¢ we obtain

I y—3/ G ="
=3 am(g)( Y )

ljl<v/e [m|=M—1
+ Y Rn( .G - y)’") (C.22)
Im|=M
) ) .
P+ Y e <y€y> > RaGL0GT = 9" < M < [Bol.
[j1=v/e lm|=M

The term g (y) on the right in (C.22) is the only term from the Taylor polynomial that
remains after the summation with respect to j. In particular, all the terms corresponding
tol < |m| < M — 1 are converted to zero, because ¢ is exact to the degree [Bo7], and

Birkhauser



6 Page46of 59 Journal of Fourier Analysis and Applications (2023) 29:6

y_);j L
Za;w( - )(yf—y)’"=a{m<w—y>"’|w:y=o,
lj1=0/e
VmeNj:l<|ml <M-—1,yeV.

(C.23)

Using (C.22) with M = [ 4 1 and appealing to (C.19), (C.20) proves (7.11). Indeed,
recall that [ > |5, ],so M =1+ 1 > so. If 50 ¢ N, then M > 59, and the top case
in (C.20) applies when estimating R,,, |m| = M. If 5o € N, then M = sp, and the
bottom case in (C.20) applies when estimating R,,, |[m| = M.

To prove (7.12), we use (C.22) with M = [so]. If 5o € N, then ! < [so] = 5o (by
assumption, [ < |5 |), and (C.22), (7.6) prove (7.12).

If so ¢ N, we replace R,, with R,, in (C.22) as this was done in the proof of
Lemma 7.3. As before, this does not invalidate the equality and extends its applicability
to the case | = M. Note, however, that if | = M, then the term g (y) on the right
in (C.22) comes not from the Taylor polynomial, but from the modification of the
remainder. The desired assertion follows from (C.21) and the modified (C.22).

If oF = 0, the same argument as above applies with so replaced by s1. The only
change is that there is no need to consider the case s; € N.

Appendix D. Proof of Lemma 8.2

Throughout the proof, ¢ denotes various positive constants that can vary from one
place to the next. To simplify notations, in this proof we drop the subscripts from Sy
and so: B = Bo, s = so. By the choice of y coordinates (see (3.9)) and by (3.18),
y1 = O¢ - y (recall that |®¢| = 1).

Using (4.6), (8.3), and that the symbol of B is homogeneous of degree 8 we have

P Beom = Y (Be(-—G//0)) /e [a*GHPLE) +a”GHPEGN]
lil<v/e
(D.1)

where

(Bo(- —a)) ) == (Be) (), ¢1(u) :=¢u —a). (D.2)

Also (cf. (8.11)):
$i—

A <®o- Z) = [a" 0] — 2% +a 00 —z) ] (D3)

We start by estimating the difference between the terms with the subscript ‘+’ inside

the brackets in (D.1) and (D.3)
|a* GHPLGT) — a0 (3] — 2%
= [PLG) = G =20t |l GO+ 5] — 2l [t ) —a* 00)| . ©4)

3/ =U" (e Dj — F9).
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The following inequalities can be shown to hold. For all ¢, r € R one has

(g +r)% —qi] <2271 r +slgl* e, s > 1,

. . (D.5)
@+t —gif <P, 0<s <1

Consider the top inequality. The case g, ¢ +r < Ois trivial. The casesg +r <0 <g¢
and g < 0 < g+r canbe verified directly. By a change of variables and convexity, it is
easily seen that the case r < 0 < g follows from the case g, r > 0. To prove the latter,
divide by ¢* and set x = r /q. Both sides equal zero when x = 0. Differentiating with
respect to x, we see that the inequality is proven because (1 +x)*~! < 25~ 1 (x*~ 1 41)
(consider 0 < x < 1 and x > 1). The second inequality in (D.5) is obvious.

The assumption z € I implies z1 = 1//(zl), SO

PG =3 — (DY =5 — 21 + [ (h) — (D] (D.6)

Setting ¢ = ﬁ{ —ziand r = ¥ (zH) — ¥ (($HL) in (D.5) and using (D.6) and that
a™*(y) is bounded, we estimate the first term on the right in (D.4) as follows

lat ()]

PLGH - G — 20,

Sc<|w(zJ_)_l/,(@j)J_)|s+{DA’{—ZHS1|1//(ZL)—‘//(()A’j)L)|7 s> 1 )

0, 0<s<l1
D.7)
Recall that in this lemma we assume that the amplitude of 5 satisfies B(y,n) =
Bo(y, n). By (4.8), the fact that the amplitude of B is homogeneous in the frequency
variable (and, therefore, the Schwartz kernel K (y, w) of B is homogeneous in w), and
Assumption 4.3(IK1),
Bo@)| < e+ luh~ P, u e R, (D.8)

Therefore, by (8.11) and (D.1)—(D.3), we have to estimate the following two sums

3 (Wt — v ((3)HH) /el
JSe (10 =30 et

o (5] = 20 /els Y ) — w3 D) /e
hi= ) (L4 [(y = $7)/el)ptn

D.9)

ljl<v/e

The second sum is required if s > 1.

Note that the quantities J; 2 include the factor e ~*, which appears on the left in
(8.11) and has been unaccounted for until now. The remaining factor €? has been
accounted for in (D.1). In (8.11), By already acts with respect to the rescaled variable
y /€, so the factor €” is not needed on the right in (8.11). Since By is shift-invariant, it
is not necessary to represent its action in the form (D.2).
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Assumptions of the lemma imply

[ (zh) — v (GHDHI < 1w oDzt = GHE < e + 121 = GH DIzt = G
(D.10)

for some ¢ > 0. Here yj- € R"~! is some point on the line segment with the endpoints
7+, (§7)*, and we have used that [/ (yH)| < c(|z*t] + |z — (3/)*]), which follows
from ¥/ (y3") = 0.

Letm = m(z, €) € Z" besuch that |(z4+U" 39) /e —UT Dm| < c. The dependence
of m on z and € is omitted from notations. This implies

—UT"Dm —UTD( —m)

nj ni i Z—I—UT)NI()
max(jz — 31, 125 — GHED < 1z = 7] < ce 0

< ce(c+|j—m]). (D.11)

Also, using that |y — z| = O(e) gives

_
‘y Y > clj—mlif[j —m| > 1.  (D.12)

_‘(y—2)+(z—ﬁ-’)
| =

€

Substitute (D.10) into the expression for Ji in (D.9), shift the index j — j — m, and
use (D.11), (D.12):

(€' + ec + D) (e + 1)’
(I+ cl[jDFF

J1 <c
[j1=v/e

+ 0(e/?). (D.13)

Here we have used that we can ignore any finite number of terms (their contribution
is 0(e*/%)), and (D.12) applies to the remaining terms. This gives

12 :\s
a4 0
o<ijizoe (D.14)

0/e (12 ‘
< c/ ‘ (G—‘FH’)Ydr + O(GS/2) — O(Gmin(ﬁ—s,s/Z))'
1 pB+l=s

J1 <c

To estimate J,, we use the same approach as in (D.10)—(D.14):

1/2 . s
5 <c (€ +e€ljDc+1jD

S0 S Wb

+ 0

1/2 .
€/ +eljl 12
0<|jl=v/e

9/ _1)2
SC/l € ﬂdr+ 0(61/2) _ O(Gmin(ﬂfs,]/Z)) — 0(61/2).
1 pB+1=s
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Here we have used that 8 —s > N /2 > 1/2.
The second term on the right in (D.4) is estimated as follows:

57—l |at () —at ()| < 19 =21 [(a* 3 —a* (@) + (a* (2) — a* ()

< cle(c+|j —mDPF(ec+ |j —m]) +€'/?).
(D.16)

Shifting the j index as before and estimating a finite number of terms by O (e!/?)
gives an upper bound

€'+ el

T 0('?) = 0('?). (D.17)

O<l|jl=v/e

The terms with the subscript '—’ in (8.11) are estimated analogously. Our argument
proves (8.11) with 5 instead of By on the right. This implies, in particular, that the
sum on the right in (8.11) is restricted to |j| < /€.

The left-hand side of (8.11) is bounded, because

PG <19 — 21l + 1w (2D — v (DY)
<ce(c+1j—mDU + (€ +e(c+1j—m))) (D.18)
<ce(l+1]j—ml)

by (D.6), (D.10), (D.11), and |j| < ¥/e, and

POO/EF 3

T 1 )
A+ 1(y — 39)/epprn =€ +0() <00 (D.19)

| j|BFn=s
0<[jl=d/e

It is easy to see that

5 ¥ _ y-=3 €'
¢ ‘(B")( e))m BO‘”( ¢ >‘§C<1+|<y—9f>/e|>ﬂ+"’

(D.20)

N
This follows from ¢ € C(gﬁo ! ly — yol = O(e!/?), and

107" (Bo(y, ) — Bo(yo. M| < cmly — yollnlP ™!, [n| = 1, m e Nj. (D.21)

Together with (D.19) this implies that replacing y with yo in the amplitude of the
WwDO B (i.e., replacing [?o(y, n) with By (y0, n)) introduces an error of the magnitude
0 (€'/?), while keeping the sum restricted to |j| < /€.

Using that |y — z| = O(¢), (D.3) and (D.8) imply that the terms of the series on
the right in (8.11) are bounded by O ((1 + | j|)*~#+™). Hence the series is absolutely
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convergent. Contribution of the terms corresponding to |j| > ©/€ is bounded by
€D lj=0/e |jI$=#*+M = 0(eP~*) — 0 for some ¢ > 0, and the lemma is proven.
Appendix E. Proof of Lemma 8.3

Pick some sufficiently large J > 1. Then, with Dy := UT D,

P+ Av,p)—p, p) = Y [Bop(v + Av — Dy j) — Bog(v — D1 /)] A(®q - D1 j — p)

e (E.1)
=Y O+ Y. O=Ji+h
ljl=J |j1=J
.
Because By € SP(R" x R"), [1, Theorem 6.19] implies that By : Ciﬁ"] — C4,

a= |',3(T T—PBo =1—{Bo} > 0, is continuous. Nonsmoothness of the symbol at

the origin, which is not allowed by the assumptions of the theorem, is irrelevant. By
+

assumption, ¢ € C(gﬂo ! R™),s0 J; = O(|Av|?). In the second term J3, the arguments

of Byg are bounded away from zero, and the factor in brackets is smooth. Moreover,

using again that the Schwartz kernel K (y, w) of B3y is homogeneous in w, we have,
| Bop )] = O (Ju] =" H0+D) ju| — o0, 1 <l <n. (E.2)

Using the argument analogous to the one in (D.19), we easily see that J, = O (JAv|).
This proves the first line in (8.22).
The second line in (8.22) is proven analogously:

¢(U, p + AP) - ¢(U, p)
= Z Bop(v — D1 j)[A(®qg - D1j — (p+ Ap)) — A(®¢ - D1j — p)]
jezn (E.3)

= Y O+ Y O=h+h

|©0-D1jl<J [©0-D1jl>J

Clearly, A(g + Ap) — A(g) = O(|Ap|™n60-Dy yniformly in ¢ confined to any
bounded set. Using in addition that By (u) is bounded and Bog(u) = O (Ju|~"+Fo))
as [u| — oo, we get that J; = O (|A p|™inGo.D),

In J,, the argument of A is bounded away from zero. In view of A'(g) = O(|g|®*~ 1),
lg| — oo, we finish the proof by noticing that

| jlo~!
|j|n+ﬂo+1

|l < 0dAph Y

1j1>0

= O(lAp)). (E.4)

The fact that both estimates are uniform with respect to v and p confined to bounded
sets is obvious.
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Appendix F. Proof of Lemma 10.3

Asusual, ¢ denotes various positive constants that may have different values in different
places. Recall that By — s9 > 0. Set k := [Bo], v := k — Bo. Thus, 0 < v < 1, and
v = 0if By € N. Similarly to (9.2),

B =Wd} + W, (E1)

for some W; € S7V(V x R"), W, € STV x R").

F.1. Proof in the Case By ¢ N

Let K (y, w) be the Schwartz kernel of W, . Suppose, for example, that P := P(y) > 0.
The case P < 0 is completely analogous. Initially, as s» in Lemma 10.3, we can pick
any constant that satisfies »» > 2¢1, where s¢] is the same as in (7.11). This implies
that P/2 > s €. Later (see the beginning of the proof of Lemma F.1), we update the
choice of sr. Denote (cf. (10.5))

Je(y) := (Bge)(y) — (Bg)(y) = (BAge)(y). (F2)
Then
Je») =IV ) + IP(y) + 0(e™),

IV () = / K(y,y — w)Agd (w)dw, E3
|P(w)|=P/2 :

JP(y) = / K(y,y — w)Ag® (w)dw.
|P(w)|<P/2

The big-O term in (F.3) appears because of the WDO W in (F.1), and the magnitude
of the term follows from (7.12) with [ = 0. From (7.9) and (7.11) with [ = k, (E.3),
and (9.4) with [ = 0, it follows that

_ Lyso—1—k
FAO] SCG/ wi = ¥ )L dw
|P(w)|=P/2 ly —w["="
|p|soflfk i
:CG/ [ P_ L _ oL = Ly dw dp.
pizp2d I pl+v(y-) —¢¥(wh),y w)|
(F4)
Hence, we obtain similarly to (9.8)
0—1—k
1T ()] <ce / / 0P : :0+| H)n_vdpde
— w
Ip|=P/2 p (E5)

|p|s0—1—k
566/ ———dp = cepso—1=Fo
ipi=py2 |P — pl'=Y

Birkhauser



6 Page52o0f59 Journal of Fourier Analysis and Applications (2023) 29:6

To estimate Je(z)(y), integrate by parts with respect to wy in (F.3):

k—1

PO e | e+ Y07+ 55 | o= Lsg .
1=ly

_ E6
i :=/ ‘351 bk (y,y— w)AggO)(w)’ dw, (F6)
Pw)|=P/2

JE = (a"*HK vy —w)Ag? ( dw.
! _/RH w1 0y —w)Age"(w) w=( (w)£P/2,wl) v

By construction, P /2 > €. Using (7.11), (7.12) with [ = [y (both inequalities apply
when ! = Iy = [, ]), and arguing similarly to (F.4), (F.5), gives

el |p|x0—lo—1
B
Ipl<sae [P — plpot1=lo spe<|pl<p/2 | P — plPoti-lo

x150—lo—1
< ce’ 0l p=(fo+1-lo) +CEPso—l—ﬂ0/ |p|i0 0 _
sae/Py=lpl<ijz 11— pIPoti=h

< ce0—lotl p=(Bot1=lo) 4 ¢ pso—1—fo (1 + (G/P)SO—IO) ’

FE7)
where we have used that lj < sp. Using again that /P < 1/(2s1) gives J; <
ce pso—1=Fo,

Next we estimate the boundary terms in (F.6). By (7.11) (using that |s, | = lp <

[ <k—1)and (9.4),

lwi — yr(wh)[o1!
JﬁS“AH W—mwm+4dwﬂw=ww“iPﬂ (F3)

Appealing to (9.7) gives

dwt
+ so—1—1 _ so—1—=Bo
J;- <ceP fRn_l PE P/ F iy T = ceP , (F9)

which finishes the proof. As easily checked, the integral in (F.9) converges because
I <k—1<po.

F.2. Proof in the Case By € N

Suppose now By € N, i.e. k = Bp and v = 0. All the terms that do not involve
integration over a neighborhood of the set {w € V : P(w) = P} are estimated the

same way as before. For example, estimation of JE(Z) (y) is completely analogous to
(F.6)—(F.9), and we obtain the same bound |J€(2) | < ce pso—1-ho, Estimating of
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(1) is much more involved now, because the singularity at P(w) = P is no longer
1ntegrable. We have with some ¢; > 0, which is to be selected later:

IV =789 + I () + 18O,

JO9 (y) = / KOy — w)Ag (w)dw,
P/2<P(w)<P—cje
(F.10)
JI) (y) = f K(y,y —w)Ag (w)dw,
P—cie<P(w)<P+cie

JIV(y) = f K(y,y — w)Agd (w)dw.
P+4cre<P(w)

We do not estimate the integral | P(w)<P /2(-)dw, because the domain of integration
is bounded away from the set {w € V : P(w) = P}, and this integral admits the
same bound as in the previous subsection (cf. (F.5)). Similarly to (E.5), by (7.11) with

I = Bo,

pSU—l—ﬁo

80 <ee [ dp = ce PO P In(P o),
Pp<p<P—cie P—p E11)

le pSo—l—ﬂu -
FARISH] fce/ dp = ce P17 In(P /e).
P+cie<p P — P

The term JG( 1) i split further as follows:
JEP () =180 () + T2 () + I (),

]e(lb])(y) = /PfP(w)IScm K@,y - w)AgéﬂO)(w)dw,

Iyt —wt|=ci P

F.12
Oy = /P_P(w)lw .y — w) (A w) — Ag# (yydw, F12)
Iyt —wti=ze P
T3 =8P NI 1= |y pyicere KOy — w)dw.
Iyt —wti=e P
Similarly to (F.5), by (7.11) with I = Bo,
pSo~ 1—Bo
|J(1bl)(y)| <ce / ——— T pde‘ < ce? pso—2=ho,
|lwt|>c1 P J|P—p|<cie (I1P— P|+|w "
(F.13)

The second part is estimated by rearranging the Ag terms:

Je(lbz)(y) = ﬁP—P(w)ISme o, y—w)[(g H(w) - éﬁO)(y))
Iyt —wk|<c, P E14)

_ (g(ﬁO)(w) _ g(ﬁO)(y))]dw
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LemmaF.1 There exist c, ¢y, »co > 0 so that

180 (w) — g P (y)| < clw — y|P(y)P~ =P,
8 (w) — gV < elw — y| Py (E15)
if yoweV, |P(y)—Pw)| <cie, [yt —wt| <ciP(y). P(y) > me.

Proof We begin by updating the choice of 3. Select sy > 23¢] so that P > ¢
implies

P() >cPforanyv € V, |v—y| < edy, d, := diam(supp ¢), (F.16)

for some ¢ > 0.

Next we select c¢y. First, pick any c¢; so that 0 < ¢; < . This ensures that
P(w) > P —|P — P(w)| > ¢, and (7.11) can be used to estimate the derivatives
of Age(w). Let ¢y := max,eyp [¢'(v)|. Our assumptions imply

i —wil <[P = Pw)| + [y (") =¥ <ci(e+cyP).  (E17)

Let v be any point on the line segment with the endpoints w and y,i.e. v = y+A(w—y),
0 <A <1.Then

P)>P —(ly1 —wi| + Y@ =D = P —ci(e +cy P) —cyel P.
(F.18)

Reducing ¢; > 0 even further, we can ensure that P (v) > ¢ P for some ¢ > 0. This is
the value of ¢ that is assumed starting from (F.10). In the rest of the proof we assume
that w, y € V satisfy the inequalities on the last line in (F.15) with the constants ¢
and s, that we have just selected.

From (7.5) with |m| = By + 1,

180 (w) — g™ ] < Jw — y| max 1By ")+ Aw — )]

< clw — y| PP~ 1=Fo (E.19)

for some ¢ > 0.
To prove the second line in (F.15), find ¢3,3 > 0 such that

veV, |v—yl <e(cr+dy) implies P(v) > c3P. (F.20)

By (F.16), c2 3 with the required properties do exist.
Now, assume first that |w — y| > cp€, where ¢ is the same as in (F.20). Clearly,

1850 (w) — g (y)] < 1AgH0 (w)| + 18 (w) — g B (y)] + 1A% ().
(E21)
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By construction, (7.11) applies to Agé’3 O)(u)). Applying (7.11) to the first and third
terms on the right in (F.21), and (F.19) — to the second term on the right, gives

180 (w) — g ()| < ceP(w)* ' 4 c|w — y PO o cePSO*I*ﬂg’F )
§c|w—y|PS°_1_ﬂ0, )

because € < (1/c¢p)|lw — y| and
P(w)= P —|P—Pw)| =P —ci(e/P)) = P(1 —c1/(251)) = P/2. (F23)

If lw — y| < cp€, we argue similarly to (C.22):

g w) =gy =y ((aﬁﬂw (—w = 1) - @09) (—y Y ))
j ¢ €
XY Ra(L G =) (F.24)
Im|=Po+1

IRy 10" g ().

G < max
(Bo + D! Im'|=Bo+1.1y—v|<(c2+dy)e

Here (0y,¢)(:) is the derivative of ¢(v) With respect to vy evaluated at the indi-
cated point. By (F.20), (7.5) implies |R,, (37, y)| < cP*0~1=A0_The assertion follows

1861 on
because p € Cy " (R"). O

Applying (9.4) with v = [ = 0 and (F.15) in (F.14) yields (cf. (9.6)~(9.8))

(162) —1- lw—y|
O ) T T

|yl—wL\§clP

) 1
<cpo=1ho / / —apdwt  (F25)
lwli<ci P J|P—pl<cie (IP — p|+ w=)""

1
SCPSO—I—/SO/ / _ dpdw™ — cepSo—1=Fo 1n<£).
lwti<e P Jipi<cre (Ipl+ Jwt)n=1 €

J€(1b3).

The final major step is to estimate the integral in the definition of

K(y, (y; —wy, y© —wh))dwydwt

cre (F.26)

= / A f K(y, (v +hb), vh)dopdvt, heh) =y b -yt —oh).
[v-|<c| P

—cle

T
Iyt—wti<er P J|(i—w)—W D)~y (wh)|<cre
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Let W(y, n) be the amplitude of W) € SOV x R™) in (E.1). Then

A i 1A D)+t 1
1 :c/ / / W (y, n)e tmvrralve) v qdpdo dv
lvt|<c P J—cre JQ

sin(c€ ~ .
= C/ M W(y, n)e—l(mh(vL)-‘rnle)dvldn_
Q N1 lvtl<cr P

(F27)

Our goal is to show that / is uniformly bounded for all € > 0 sufficiently small and P
that satisfy P/e > s > 0. We can select W 7 in (F.1) so that the conic supports of
their amplitudes are contained in that of B. First, consider only the principal symbol
of WW;, which we denote Wo(y, 1). We can assume that Wo(y, n) =0ifn ¢ Q,n #0,
where Q2 C R” \ {0} is a small conic neighborhood of ®q U (—®y). This set is used
in (F.27). The corresponding value of I, which is obtained by replacing W (y, i) with
Wo (y, n) in (E.27), is denoted Iy.
As Wo(y, n) is positively homogeneous of degree zero in 7, set

WE ) = Wy, m(Lw) = Wo(y, £(Lw), u=n"/m € -, (E28)
where Q* is a small neighborhood of the origin in R"~!: @+ := (u e R"! : u =

't/ n € Q). The sign '+ is selected if 71 > 0, and '—" - otherwise. By the
properties of W, W(y, -) € C5°(Q1). Thus, (F.27) implies

sin(c e - . n . n
Io = C/ (c1€m) / Wi(y, u)e—znluv due_”“h(v )dvlml |n—ld)71
R n i< P JQL

sin(cie€ .
:C/ e Wy, mu e O dy 7y,
R M1 [vt|<ci P
sin(ci€ny) (F.29)
_ C/ 1€M1 W:I:(y’ wj_)e—imh(wl/m)de_dm
R 1 lwt|<cr Pl |
sin(A h(ciew: /A
- c/ @) WE(y, wh)exp (—ik“—“) dwtdx,
R A Jwli<Z)p cie

where Wi(y, w™) is the inverse Fourier transform of Wi(y, u) with respect to u.
Since P /e is bounded away from zero, h(0) = 0, and W*(y, w) is smooth and
rapidly decreasing as a function of w=, we have by the dominated convergence theorem

h L/
/ WE(y, wh) exp _,-)\M dwt
lwt<Za| c1e

(F.30)
/ | WE(y, whye W Ow gyt — WE(y, —y' (1) = Woly, £(1, =¥/ (H))
Ri-

as A — =00, and convergence is uniform with respect to € and P that satisfy P /e >

Asi 1 i (v
). As 1S seen, —1/f/(yl) is a vector normal to I at the point yJ_ .
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The remainder term in (F.30) is bounded by the expression

Ah L/
exp (—iM ik'(0) - wi) - 1’de
Cl€

[, W)
whi<?

+ / Wy, wh)ldw
lwt =23 (F31)

€
<c— Wy, wh)Jwh [P dwt
Al Jre-1

+f IWE(y, whldw? = O(a™").
[wk >3]

Due to W(y,-) € CZ(Q1), the big-O term on the right-hand side of (F31) is
uniform with respectto y € V and 0 < € < 1. Hence

sin(A) ~ Sl
Iy = Cf . Wo(y, A(1, =" (y7)))dr 4+ O(1)
R (F.32)

= ¢Z [Wo0. (1 =9/ + Woly. =1, =/ | + 01,

where O (1) is uniform with respectto y € ) as well, which proves that [ is uniformly
bounded.

The remaining term Al = [ — Iy comes from the subprincipal terms of the ampli-
tude AW = W — Wj. The corresponding WDO is in S~V (V x R") for some v > 0, s0
its Schwartz kernel AK (y, w) is smooth as long as w # 0 and absolutely integrable
at w = 0. It is now obvious that A7 is bounded as well.

By Lemma 7.4 (use (7.11) with [ = k = o), |AgP) (y)| < cepo~1=Poif p >
s1€, combining with (F.12) proves that | J'?? (y)| < ce PSo=1=Fo By (E.12), (F.13),
(F25), we conclude |J'? (y)| < ce PSo=1=Po In(P /¢). Combining with (F.10) and
(F.11) we finish the proof.

Appendix G. Proof of Lemma 11.1

We begin by proving (11.8). From (3.5) and (3.9), |[d¥|0®;/dy; = 1,i.e. 9P1/dy; >
0.

Recall that y = Y(y®, x) is found by solving x(V' = &M (x® y) for yI,
Differentiating x; = ®1(x@, (YD (yP, x), y?)) with respect to x; gives 1 =
(@P1/3y1)(dY1/dx1). Since 3P /dx® = 0 and 3P /dy" = 0, differentiating the
same identity with respect to x - gives 0 = (d®1/dy;)(dY;/dx"), and all the state-
ments in (11.8) are proven.

By (3.13), (6.3), and (6.14),

2 EIPINE)
det Q|2 — | det M| [ det(8?®/0xPay?)|

= = . G.1
| det(W o @), ), |12 |[dW|N/2| det Allg|1/2 G.D
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Using that |[d¥|0®/dy; = 1 completes the proof.
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