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Abstract
Let R denote the generalized Radon transform, which integrates over a family of
N -dimensional smooth submanifolds Sỹ ⊂ U , 1 ≤ N ≤ n − 1, where an open set
U ⊂ R

n is the image domain. The submanifolds are parametrized by points ỹ ⊂ Ṽ ,
where an open set Ṽ ⊂ R

n is the data domain. We assume that the canonical relation
C̃ from T ∗U to T ∗Ṽ of R is a local canonical graph (when R is viewed as a Fourier
Integral Operator). The continuous data are denoted by g, and the reconstruction is
f̌ = R∗Bg. Here R∗ is a weighted adjoint of R, B is a pseudo-differential operator,
and g is a conormal distribution. Discrete data consists of the values of g on a regular
lattice with step size O(ε). Let S denote the singular support of f̌ , and f̌ε = R∗Bgε

be the reconstruction from interpolated discrete data gε(ỹ). Pick a point x0 ∈ S, i.e.
the singularity of f̌ at x0 is visible from the data. The main result of the paper is the
computation of the limit

DTB(x̌) := lim
ε→0

εκ f̌ε(x0 + ε x̌).

Here κ ≥ 0 is selected based on the strength of the reconstructed singularity, and x̌ is
confined to a bounded set. The limiting function DTB(x̌), which we call the discrete
transition behavior, contains full information about the resolution of reconstruction.
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1 Introduction

Analysis of resolution of tomographic reconstruction from discrete Radon transform
data is a practically important problem. In many applications one needs to know
how accurately and with what resolution singularities of the object f (e.g., a jump
discontinuity across a smooth surface S = singsupp( f )) are reconstructed. Let f̌
denote the reconstruction from continuous data, and f̌ε denote the reconstruction from
discrete data, where ε represents the data sampling rate. In the latter case, interpolated
discrete data are substituted into the “continuous” inversion formula. In [17–20] the
author initiated an analysis of reconstruction, which is focused on the behavior of f̌ε
near S. One of the main results of these papers is the computation of the limit

DTB(x̌) := lim
ε→0

εκ f̌ε(x0 + ε x̌). (1.1)

Here x0 ∈ S (x0 is selected subject to some constraints, see Definition 3.4 below),
κ ≥ 0 is a unique number selected based on the strength of the singularity of f̌ at x0
(see 4.19), and x̌ is confined to a bounded set. Let f0 be the leading singularity of f̌ in
a neighborhood of x0 (see Definition 5.2). For example, if f̌ is a conormal distribution
with a homogeneous top symbol, then f0 is the distribution determined by the top
symbol. If f0 is a homogeneous distribution of degree −κ , i.e., f0(t x̌) = t−κ f0(x̌),
then this value of κ is used in (1.1).

It is important to emphasize that both the size of the neighborhood around x0 and the
data sampling rate go to zero simultaneously in (1.1). The limiting function DTB(x̌),
which we call the discrete transition behavior (or DTB for short), contains complete
information about the resolution of reconstruction. The limit in (1.1) is computed for
a fixed x0, so the dependence of the DTB, f0, and κ on x0 is omitted for simplicity.

The DTB in (1.1) is a complete description of the reconstruction from discrete data
in a neighborhood of a singularity. To put it simply, DTB is an accurate estimate of
the reconstruction itself, which is the most one can ever obtain in resolution analysis.
Conventional measures of resolution such as Full Width at Half Maximum (FWHM),
line pairs per unit length, characteristic scale, etc., are a single number each. Once
the full DTB function is computed, getting any desired resolution measurement from
it (i.e., converting the DTB into a single number) is trivial. See Remark 4.10 for an
example.

The results obtained to date can be summarized as follows. Even though we study
reconstruction from discrete data, the classification of the cases is based on their
continuous analogues. In [17] we find DTB(x̌) for the Radon transform in R

2 in two
cases: f is static and f changes during the scan (dynamic tomography). In the static
case the reconstruction formula is exact (i.e., f̌ = f ), and in the dynamic case the
reconstruction formula is quasi-exact (i.e., f̌ − f is smoother than f ). In [18] we find
f0(x̌) for the classical Radon transform (CRT) in R

3 assuming the reconstruction is
exact and f has jumps. In [20] we consider a similar setting as in [18], i.e., f has
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Table 1 Summary of the cases considered prior to this paper

RT type Dimension Type of inversion Singularity of f

[17] CRT & GRT 2 Exact/quasi-exact Jumps

[18] CRT 3 Exact Jumps

[20] GRT 3 Quasi-exact Jumps

[19] CRT n More general More general

jumps and reconstruction is quasi-exact, but consider a wide family of generalized
Radon transforms (GRT) in R

3. Finally, in [19], the data still comes from the classical
Radon transform, but the dimension is increased to R

n , the reconstruction operators
are more general, and f may have singularities other than jumps. See Table 1 for a
summary of the cases.

Let R denote the GRT, which integrates over a family of N -dimensional smooth
submanifolds Sỹ ⊂ U ⊂ R

n , 1 ≤ N ≤ n − 1. When integration is performed over
affine subspaces and N < n − 1, the GRT is known as the N -plane transform. If
N = 1, the GRT is called the ray (or, X-ray) transform. The open set U represents
the image domain. The submanifolds Sỹ are parametrized by points ỹ ⊂ Ṽ , where
an open set Ṽ ⊂ R

n is the data domain. Our only other condition on R (besides that
Sỹ be embedded manifolds, see Assumption 3.1(G1)) is that the canonical relation
C̃ from T ∗U to T ∗Ṽ of R be a local canonical graph (see Assumption 3.1(G2) and
Sect. 5.1). Here we viewR as a Fourier Integral Operator (FIO). Assumption 3.1(G2)
implies also that all the singularities of f microlocally near (x0, ξ0) ∈ T ∗U , where ξ0
is conormal to S at x0, are visible in the GRT data R f (ỹ), ỹ ∈ Ṽ (see Remark 3.2).

Reconstruction from continuous data g = R f is achieved by f̌ = R∗Bg. Here
R∗ is a weighted adjoint of R, which integrates over submanifolds T̃x := {ỹ ∈ Ṽ :
x ∈ Sỹ}, and B is a fairly general pseudo-differential operator (�DO). In fact, g does
not even have to be the GRT of some f . All we need is that g be a sufficiently regular
conormal distribution associated with a smooth hypersurface � ⊂ Ṽ [13, Sect. 18.2].
The data g are sampled on a regular lattice ỹ j = εDj , j ∈ Z

n , covering Ṽ , where D
is a sampling matrix.

To illustrate the effect of B on reconstruction, suppose g = R f , where f is a
sufficiently regular conormal distribution associated with a smooth hypersurface S ⊂
U . The choice of B determines whether the reconstruction is quasi-exact (i.e., f̌ − f
is smoother than f ), preserves the order of singularities of f ( f̌ and f are in the same
Sobolev space), or is singularity-enhancing ( f̌ is more singular than f ). A common
example of the latter is Lambda (also known as local) tomography [8, 27].

The setting considered in this paper includes all the cases considered previously
[17–20], and is substantially more general than before. In particular, in the previous
work we always had N = n − 1. Now, N can be any integer 1 ≤ N ≤ n − 1. This
includes the practically most important case of cone beam CT: n = 3 and N = 1, on
which the overwhelming majority of all medical, industrial, and security CT scans are
based (see e.g., [15, 24] and references therein).
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The main result of this paper is the derivation of the DTB (1.1) under these general
conditions (see Theorem 4.7). Our result shows that even though g is sampled on
a regular lattice, due to the geometric properties of the GRT, the resolution is both
location- and direction-dependent (see Remark 4.8).We also show that theDTB equals
to the convolution of the continuous transition behavior (CTB) with the suitably scaled
classical Radon transform of the interpolation kernel (see Theorem 5.4). Loosely
speaking, the CTB is the continuous analogue of the DTB (see Definition 5.3):

CTB(x̌) := lim
ε→0

εκ f̌ (x0 + ε x̌). (1.2)

To put it differently, CTB(x̌) is the leading singularity of the reconstruction f̌ at x0
(the same as f0 mentioned above). Since the reconstruction is not always intended to
compute f or its singularities exactly (e.g., for singularity-enhancing reconstructions),
it is important to know what the CTB look like in these more general situations.

The operator R∗ (and, of course, R as well) can be viewed as an FIO, which is
associated to a phase function linear in the frequency variables (see [12, Sect. 2.4] and
[10, Sect. 1.3]):

(R∗g)(x) = 1

(2π)N

∫
RN

∫
Ṽ
eiμ·�(x,ỹ)w(x, ỹ)g(ỹ)dỹdμ. (1.3)

Here w ∈ C∞
0 (U × Ṽ), and � ∈ C∞(U × Ṽ) is any R

n−N valued function that
satisfies some nondegeneracy conditions (so that C̃ is a local canonical graph). Any
such � determines a pair R, R∗ by setting Sỹ = {x ∈ U : �(x, ỹ) = 0}, T̃x =
{ỹ ∈ Ṽ : �(x, ỹ) = 0}, and selecting integration weights to ensure that R and
R∗ are properly supported FIOs. As is easily seen, any properly supported FIO F :
E ′(Ṽ) → D′(U) with the same phase can be represented in the form F = R∗B
modulo a regularizing operator for someB (at least, microlocally whereR∗ is elliptic).
Indeed, we can just take B = (R∗)−1F , where (R∗)−1 is a (left and right) parametrix
for R∗ (see [6, Proposition 5.1.2]). We assume here that an appropriate cut-off is
introduced in (R∗)−1, so the composition is well-defined. Also, we do not worry
about global conditions on R, because U and Ṽ are sufficiently small. Then B is a
�DO (its canonical relation C̃ ◦ C̃ t is the diagonal from T ∗Ṽ to T ∗Ṽ), and F −R∗B
is regularizing. Thus, the reconstruction algorithm is the application of an FIO F with
a phase function, which is linear in the frequency variables, to discrete data g(ỹ j ).

We emphasizeR∗ when discussing parallels betweenR∗ and FIOs, because in this
paper we investigate the resolution of computing R∗B from discrete data (and not of
R).

Various methods for applying FIOs to discrete data have been proposed, see e.g.,
[3–5, 35] and references therein. This appears to be the first analysis of resolution
of the reconstructed image Fg for fairly general classes of FIOs F and (conormal)
distributions g. Some results along this direction are in [20]. Here g = I f , where
I is an imaging operator (frequently an FIO), and f is the unknown original object.
Analyses of such sort are especially important, because they apply not only when an
exact inversion formula for I is known (e.g., when I is the classical Radon transform),
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but even when no such formula exists (e.g., when I is a weighted GRT integrating over
nonplanar submanifolds). In the latter cases a common approach is to use a parametrix
for I as the reconstruction operator F , so Fg accurately recovers only the singularities
of f . Reconstruction of the smooth part of f with this approach is usually not accurate
even if the data are ideal (i.e., known exactly everywhere). See, for example, Remark
1 in [29]. Our approach, which we call local resolution analysis, is well suited to the
analysis of such linear recosntruction algorithms because the analysis is localized to
an immediate neighborhood of the singularities of f .

Let g be a conormal distribution associated with a smooth hypersurface �̃, i.e.,
WF(g) ⊂ N∗�̃, the latter is the conormal bundle of �̃. Even if g is not in the range
ofR, our assumptions ensure that there is a smooth hypersurface S ⊂ U such that (1)
N∗�̃ = C̃ ◦ N∗S, and (2) WF( f̌ ) ⊂ N∗S̃ . Let T̃S be the set of all ỹ ∈ Ṽ such that
Sỹ is tangent to S. As is well-known, �̃ = T̃S .

A common thread through our work is that the well-behaved DTB (i.e., the limit in
(1.1)) is guaranteed to exist only if a pair (x0, ỹ0) ∈ U × Ṽ is generic. Here x0 ∈ S,
and ỹ0 ∈ �̃ is the data point from which the singularity of f̌ at x0 is visible, i.e. Sỹ0
is tangent to S at x0. Roughly, the pair is generic if in a small neighborhood of ỹ0
the sampling lattice ỹ j is in general position relative to a local patch of �̃ containing
ỹ0 (see Definition 3.4 for a precise statement). The property of a pair to be generic is
closely related with the uniform distribution theory [21].

If (x0, ỹ0) is not generic, the DTB may be different from the generic one predicted
by our theory, and certain non-local artifacts that depend on the shape of S can appear
as well (see e.g. [19]) even ifR∗R is a �DO. This shows also that the case of discrete
data is more complicated than when the data are continuous, because in the latter case
WF( f̌ ) ⊂ WF( f ) whenever R∗R is a �DO.

Alternative approaches to study resolution are in the framework of the sampling
theory. The key assumption in these approaches is that f be essentially bandlimited
in the classical sense [7, 23, 25] or in the semiclassical sense [22, 31, 32]. However,
the methodologies of these approaches are quite different from ours, and the results
obtained are different as well. The latter include sampling rate required to resolve
details of a given size, and analysis of aliasing artifact if the sampling requirements
are violated.

The paper is organized as follows. In Sect. 2 we introduce the GRTR and its adjoint
R∗, the sampling matrix D, the sampling lattice ỹ j = εDj , j ∈ Z

n , and fix a pair
(x0, ỹ0) ∈ U × Ṽ such that Sỹ0 is tangent to S at x0. In Sect. 3 we select convenient
coordinates both in the data and image domains, state the main geometric assumptions
aboutR and the shape of S, and define a generic pair (x0, ỹ0). In Sect. 4 we formulate
the main assumptions about the operator B, interpolation kernel ϕ, and data function
g. Essentially,B is a�DOwith a homogeneous top symbol. Likewise, g is a conormal
distribution with a homogeneous top symbol associated with a smooth hypersurface
�̃. The top symbol decays sufficiently fast, so g is a continuous function. We do not
require that g be in the range of R. We also give a formula for κ in terms of N and
the orders of B and g (see 4.19). Then we state our main result as Theorem 4.7, where
explicit formulas for the DTB are provided.
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In Sect. 5 we look at R as an FIO, and discuss some of our assumptions from the
FIO perspective. We also state a theorem about the relationship between the DTB and
CTB (Theorem 5.4), and provide some intuition behind our results.

The proof of Theorem 4.7 is spread over Sects. 6–11. Preliminary results are in
Sects. 6 and 7. In Sect. 6 we show that TS and Tx0 are tangent at y0 and investigate
the contact. All calculations are done in the new y-coordinates, so we drop the tildas
in ỹ, �̃, Ṽ , etc. Let gε be the interpolated data (see 4.6). In Sect. 7 we obtain various
bounds on g, gε , g − gε , and their derivatives. The core of the proof is in Sects. 8–11.
To help the reader, Sect. 8.1 describes the main ideas of the proof and outlines what
is done in each of the Sects. 8–11.

Theorem 5.4 is proven in Sect. 12. In Appendix B we show that our assumptions
about g are reasonable. For example, they are satisfied when f is a conormal distri-
bution associated with a smooth hypersurface S. The fact that g = R f is conormal
follows from the calculus of FIOs, see e.g. [33, Sect. VIII.5]. We present the necessary
calculations here, because they are short, make the paper self-contained, and these cal-
culations are used elsewhere in the paper. Finally, proofs of various auxiliary lemmas
are collected in the other appendices.

2 Preliminaries

Let 	̃(t, ỹ) ∈ C∞(RN × Ṽ) be a defining function for the GRT R. Here t ∈ R
N

is an auxiliary variable that parametrizes smooth manifolds Sỹ := {x ∈ U : x =
	̃(t, ỹ), t ∈ R

N } over which R integrates, an open set U ⊂ R
n is the image domain,

ỹ ∈ Ṽ is the data domain variable, and an open set Ṽ ⊂ R
n is the data domain. Both

U and Ṽ are endowed by the usual Euclidean metric. The corresponding GRT is given
by

R f (ỹ) =
∫
Sỹ

f (x)b(x, ỹ)dx, ỹ ∈ Ṽ, (2.1)

where b ∈ C∞
0 (U × Ṽ), dx = (detGS(t, ỹ))1/2dt is the volume form on Sỹ induced

by the embedding Sỹ ↪→ U , and GS is the Gram matrix

GS
jk(t, ỹ) = ∂	̃(t, ỹ)

∂t j
· ∂	̃(t, ỹ)

∂tk
, 1 ≤ j, k ≤ N . (2.2)

Therefore, more explicitly,

R f (ỹ) =
∫

RN
f (x)b(x, ỹ)(detGS(t, ỹ))1/2dt, x = 	̃(t, ỹ). (2.3)

We assume that f is compactly supported, supp( f ) ⊂ U , and f is sufficiently smooth,
so that R f (ỹ) is a continuous function. Exact (i.e., continuous) reconstruction is
computed by
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f̌ (x) = (R∗Bg)(x) =
∫
T̃x

(Bg)(ỹ)w(x, ỹ)dỹ, x ∈ U , g = R f , (2.4)

where w ∈ C∞
0 (U × Ṽ), dỹ is the volume form on T̃x := {ỹ ∈ Ṽ : x ∈ Sỹ} (which

is induced by the embedding T̃x ↪→ Ṽ , see the paragraph following (4.1) below), R∗
is a weighted adjoint of R, and B is a fairly arbitrary pseudo-differential operator
(�DO). Lemma 3.7 below asserts that T̃x ⊂ Ṽ is a smooth, embedded submanifold.
The reconstruction formula in (2.4) is of the Filtered-Backprojection type. Application
ofB is the filtering step, and integration with respect to ỹ (i.e., the application ofR∗) is
the backprojection step. By reconstruction herewemean any function (or, distribution)
f̌ that is reconstructed from the data using (2.4). The reconstruction is intended to
recover the visible wave-front set of f , but the strength of the singularities of f̌ and
f need not match.
Let D be a data sampling matrix, det D = 1. Discrete data g(ỹ j ) are given on the

lattice

ỹ j = εDj, j ∈ Z
n . (2.5)

Reconstruction fromdiscrete data is given by the same formula (2.4), wherewe replace
g with its interpolated version gε (see 4.6).

We assume that S := singsupp( f ) is a smooth hypersurface. Pick some x0 ∈ S.
This point is fixed throughout the paper. Our goal is to study the function reconstructed
from discrete data in a neighborhood of x0. All our results are local, so we assume that
U is a sufficiently small neighborhood of x0. Let ỹ0 ∈ Ṽ be such that Sỹ0 is tangent to
S at x0. Only a small neighborhood of ỹ0 is relevant for the recovery of the singularity
of f at x0. Hence we assume that Ṽ is a sufficiently small neighborhood of ỹ0.

3 Selecting Coordinates, Geometric Assumptions

Let �(x) = 0 be an equation of S, and d�(x) �= 0, x ∈ U . Introduce the matrix

M̃ :=
(

	̃t 	̃y

(ξ0 · 	̃)t t (ξ0 · 	̃)t y

)
, ξ0 := d� ∈ T ∗

x0U , (3.1)

which is the Jacobian matrix for the equations

	̃(t, ỹ) = x0, ξ0 · 	̃t (t, ỹ) = 0, (3.2)

where (t, ỹ) ∈ R
N × Ṽ are the unknowns. See Fig. 1 for an illustration of S and ξ0.

For convenience, in (3.1) and in the rest of the paper we frequently drop the arguments
of �, 	̃, and similar functions whenever they are x0 and (t0, ỹ0), as appropriate. Here
t0 is the unique point such that x0 = 	̃(t0, ỹ0). Our convention is that a variable in
the subscript of a function denotes the partial derivative of the function with respect
to the variable, e.g.,
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	̃ỹ j =
⎛
⎝∂ỹ j 	̃1

. . .

∂ỹ j 	̃n

⎞
⎠ , 	̃ỹ =

⎛
⎝∂ỹ1	̃1 . . . ∂ỹn 	̃1

. . . . . . . . .

∂ỹ1	̃n . . . ∂ỹn 	̃n

⎞
⎠ . (3.3)

Assumption 3.1 (Geometry of the GRT )

G1. rank 	̃t = N ;
G2. det M̃ �= 0.

Remark 3.2 Assumption G1 implies that Sỹ ⊂ U is a smooth N -dimensional embed-
ded submanifold for any ỹ ∈ Ṽ provided that U � x0 and Ṽ � ỹ0 are sufficiently small
neighborhoods. Assumption G2 guarantees that any singularity of f microlocally
near (x0, ξ0) is visible from the GRT dataR f (ỹ), ỹ ∈ Ṽ . In addition, Assumption G2
ensures that T̃x = {ỹ ∈ Ṽ : x ∈ Sỹ} is a codimension n − N embedded manifold for
any x ∈ U (see (3.14) and Lemma 3.7).

Example 3.3 Excluding some exceptional cases, Assumptions 3.1 are satisfied by the
X-ray transform in R

3, where Sỹ are lines intersecting a smooth curve C. Since Sỹ are
lines, it is trivial that one can find 	̃ so that G1 holds. It is well-known that G2 holds
for some 	̃ if the plane �0 := {x ∈ U : ξ0 · (x − x0) = 0} intersects C transversely.
By (3.1) and (3.2), this is, essentially, the Tuy condition [34]. Assumption 3.1(G2)
fails to hold if �0 is either tangent to C or does not intersect it. In the latter case the
singularity at (x0, ξ0) is invisible.

Definition 3.4 The pair (x0, ỹ0), such that Sỹ0 is tangent to S at x0, is generic for the
sampling matrix D if

(1) There is no vector m ∈ Z
n , m �= 0, such that the 1-form

ω̃ = (D−Tm)1dỹ1 + · · · + (D−Tm)ndỹn ∈ T ∗
ỹ0
T̃x0 (3.4)

vanishes identically on Tỹ0 T̃x0 , i.e. ω̃ /∈ N∗
ỹ0
T̃x0 , and

(2) The matrix (� ◦ 	̃)t t is either positive definite or negative definite.

In simple terms, condition (1) says that there is no nonzero vector m ∈ Z
n such

that D−Tm is orthogonal to T̃x0 at ỹ0. For more information about this condition see
Remark 5.1.

In the rest of the paper, we assume that the pair (x0, ỹ0) is generic in the sense of
Definition 3.4, and (�◦	̃)t t isnegativedefinite. The latter assumption is not restrictive,
because the positive and negative definite cases can be converted into each other by
a change of the x coordinates. To illustrate the notation convention described above,
(� ◦ 	̃)t t stands for the matrix of the second derivatives of the function (� ◦ 	̃)(t, y)
with respect to t evaluated at (t0, ỹ0).

Using Assumption 3.1(G1), select x coordinates so that

x =
(
x (1)

x (2)

)
, x (1) ∈ R

n−N , x (2) ∈ R
N , x0 =

(
0
0

)
= 	̃(t0, ỹ0),

d� = (|d�|, 0, . . . , 0), 	̃
(1)
t = 0, det 	̃(2)

t �= 0.

(3.5)
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We also denote x⊥ := (x2, . . . , xn)T . See Fig. 1 for an illustration of the coordinates
x1 and x⊥ (the plane {x : x1 = 0, x⊥ ∈ R

n−1} is shown as a shaded oval). The
notation 	̃

( j)∗ , j = 1, 2, stands for the derivative of the j-th group of coordinates of
x = 	̃(t, ỹ) (either along x (1) or along x (2)) with respect to ∗ = t or ỹ. By the last
inequality in (3.5), we can select x (2) as the t variables. With this choice we have (with
some other defining function 	̃):

x (1) = 	̃(1)(x (2), ỹ), x (2) ≡ 	̃(2)(x (2), ỹ), 	̃
(1)
x (2) = 0, 	̃

(2)
x (2) (x

(2), ỹ) ≡ IN , (3.6)

where IN is the N×N identitymatrix. This definition of 	̃ is assumed inwhat follows.
We also need a convenient y coordinate system. Since the data points in (2.5)

are given in the original coordinates, we have to keep track of both the original and
new coordinates. Points in the original and new y coordinates are denoted ỹ and y,
respectively. Data domains in the original and new y coordinates are denoted Ṽ and
V , respectively. Suppose that ỹ = Uy + ỹ0 and Ṽ = UV + ỹ0, where U is some
orthogonal matrix U : R

n → R
n .

Inwhat followswewill be usingmostly the new y coordinates, sowe furthermodify
the defining function:

	(x (2), y) := 	̃(x (2), ỹ(y)) = 	̃(x (2),Uy + ỹ0). (3.7)

Since the x variable remains the same, the function 	(x (2), y) satisfies (3.6) (with the
derivative computed at (x (2)

0 , y0) = (0, 0)):

x (1) = 	(1)(x (2), y), x (2) ≡ 	(2)(x (2), y), 	
(1)
x (2) = 0, 	

(2)
x (2) (x

(2), y) ≡ IN . (3.8)

For the same reason, condition (2) in Definition 3.4 implies that the matrix (� ◦
	)x (2)x (2) is either positive definite or negative definite. The following lemma is proven
in Appendix A.

Lemma 3.5 Suppose x0 ∈ S, Sỹ0 is tangent to S at x0, det(� ◦ 	̃)t t �= 0, and
Assumptions 3.1 hold. The orthogonal matrix U and the function �, which satisfies
(3.5), can be selected so that the new y coordinates and the new function 	 satisfy

y =
(
y1
y⊥

)
, y1 ∈ R, y⊥ ∈ R

n−1, y0 =
(
0
0

)
, (� ◦ 	)y1 = 1, (� ◦ 	)y⊥ = 0;

(3.9)

and

y =
(
y(1)

y(2)

)
, y(1) ∈ R

n−N , y(2) ∈ R
N , det	(1)

y(1) �= 0, 	
(1)
y(2) = 0. (3.10)

Remark 3.6 The representations y = (y1, y⊥)T and y = (y(1), y(2))T are twodifferent
ways to split the y coordinates, which are convenient in different contexts. See Fig. 1
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x0
S

Θ0
ξ0Tx0

Sy0

TS

Sy0
Tx0V

U

y0

y1
x1

y
x

Fig. 1 Main geometric objects used in the paper

for an illustration of the coordinates y1 and y⊥ (the plane {y : y1 = 0, y⊥ ∈ R
n−1} is

shown as a shaded oval).

Similarly to (3.1), we compute the matrix M by replacing ỹ and 	̃ with y and 	,
respectively. In block form

M :=
(

	x (2) 	y

ξ0 · 	x (2)x (2) ξ0 · 	x (2)y

)
=

(
M11 M12
M21 M22

)
,

M11 = 	(x (2),y(1)) ∈ R
n×n, M12 = 	y(2) ∈ R

n×N ,

M21 ∈ R
N×n, M22 = ξ0 · 	x (2)y(2) ∈ R

N×N .

(3.11)

In the selected x- and y-coordinates (see (3.5), (3.10)), the matrix M becomes

M =
⎛
⎜⎝

0 	
(1)
y(1) 0

IN 0 0
ξ0 · 	x (2)x (2) ξ0 · 	x (2)y(1) ξ0 · 	x (2)y(2)

⎞
⎟⎠ . (3.12)

By (3.12), Assumption 3.1(G2) is equivalent to

det	(1)
y(1) �= 0, det M22 = det

(
ξ0 · 	x (2)y(2)

)
�= 0. (3.13)

Let us introduce two important sets:

TS := {y ∈ V : Sy is tangent to S}, Tx := {y ∈ V : x ∈ Sy}. (3.14)

Here and in what follows, with some mild abuse of notation, Sy denotes Sỹ(y). See
Fig. 1 for an illustration of Sy0 , TS , and Tx0 .
Lemma 3.7 Suppose x0 ∈ S, Sy0 is tangent to S at x0, det(� ◦ 	)x (2)x (2) �= 0, and
Assumptions 3.1 hold. One can find sufficiently small neighborhoods U � x0 and
V � y0 so that

(1) TS ⊂ V is a smooth, codimension one embedded manifold; and
(2) Tx ⊂ V is a smooth, codimension n − N embedded manifold for any x ∈ U .

Proof To find TS , we solve the equations

�(	(x (2), y)) = 0, (� ◦ 	)x (2) (x (2), y) = 0 (3.15)
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for x (2) and y1 in terms of y⊥. The Jacobian matrix is

(
(� ◦ 	)x (2) (� ◦ 	)y1

(� ◦ 	)x (2)x (2) (� ◦ 	)x (2)y1

)
. (3.16)

By condition (2) in Definition 3.4 (with t = x (2)), det(� ◦ 	)x (2)x (2) �= 0. More-
over, (� ◦ 	)x (2) = 0 and (� ◦ 	)y1 �= 0, and the Jacobian is non-degenerate.
Therefore, solving (3.15) determines x (2)(y⊥) and y1(y⊥) as smooth functions of
y⊥ in a small neighborhood of y⊥ = 0. In particular, y1(y⊥) is a local equation of
the smooth, codimension 1 embedded submanifold TS ⊂ V . The point of tangency
x∗ = 	(x (2)(y⊥), (y1(y⊥), y⊥)) also depends smoothly on y⊥.

To prove assertion (2), solve x (1) = 	(1)(x (2), y) for y(1). This gives an equation for
Tx in the form y = Y (y(2), x) (where y(2) ≡ Y (2)(y(2), x)). The property det	(1)

y(1) �= 0
(cf. (3.10)) implies thatTx ⊂ V is a smooth, codimensionn−N embedded submanifold
for any x ∈ U provided that both U and V are sufficiently small. Since 	

(1)
y(2) = 0, we

also get

∂Y (1)(y(2), x0)/∂ y
(2)

∣∣∣
y(2)=0

= 0. (3.17)

��

In what follows, we use

�0 := dy(� ◦ 	) = 	∗ξ0; Y0(y
(2)) := Y (y(2), x0), y(2) ∈ V. (3.18)

Thus �0 ∈ T ∗
y0V is the pull-back of ξ0 ∈ T ∗

x0U by 	(0, ·). By (3.9), �0 = dy1 (see
Fig. 1).

4 Main Assumptions andMain Result

To simplify notations, in the rest of the paper we set b(x, y) := b(x, ỹ(y)),w(x, y) :=
w(x, ỹ(y)), and g(y) := g(ỹ(y)). The original versions of these functions are used
only in Sect. 2. Thus the reconstruction is computed by

(R∗Bg)(x) =
∫
Tx

(Bg)(y)w(x, y)dy, (4.1)

where dy = (det GT (y(2), x))1/2dy(2) is the volume form on Tx , GT is the Gram
matrix:

GT
i j (y

(2), x) = ∂Y (y(2), x)

∂ y(2)
i

· ∂Y (y(2), x)

∂ y(2)
j

, 1 ≤ i, j ≤ N , (4.2)
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B is a �DO

(Bg)(y) := 1

(2π)n

∫
B̃(y, η)g̃(η)e−iy·ηdη, g̃ = Fg, (4.3)

and F is the Fourier transform in R
n . To clarify the use of indices in (4.2), if y(2)

is viewed as part of y, then y(2)
j = yn−N+ j , 1 ≤ j ≤ N . Using (2.5) and that

ỹ = Uy + ỹ0, the discrete data g(ŷ j ) are known at the points

ŷ j = UT (εDj − ỹ0), j ∈ Z
n . (4.4)

Reconstruction from discrete data is given by

f̌ε(x) = (R∗Bgε)(x) =
∫
Tx

(Bgε)(y)w(x, y)dy, (4.5)

where gε(y) is the interpolated data:

gε(y) :=
∑

| j |≤ϑ/ε

ϕ

(
y − ŷ j

ε

)
g(ŷ j ), (4.6)

ϕ is an interpolation kernel, ϑ = σ−1
min supỹ∈Ṽ |ỹ|, and σmin is the smallest singu-

lar value of the sampling matrix D. The value of ϑ is selected in such a way that
ŷ j ∈ supp(g) implies | j | ≤ ϑ/ε. In what follows we call (4.1) reconstruction
from continuous data (as opposed to reconstruction from discrete data (4.5)). Denote
N = {1, 2, . . . } and N0 = {0} ∪ N.

Definition 4.1 Given an open set V ⊂ R
n , r ∈ R, and N ∈ N, Sr (V × RN ) denotes

the space of C∞(V × (RN \ {0})) functions, B̃(y, η), having the following properties

|∂my B̃(y, η)| ≤ cm |η|a−N ∀m ∈ N
n
0, y ∈ V , 0 < |η| ≤ 1;

|∂m1
y ∂m2

η B̃(y, η)| ≤ cm1,m2 |η|r−|m2|, ∀m1,m2 ∈ N
n
0, y ∈ V , |η| ≥ 1; (4.7)

for some constants cm, cm1,m2 > 0 and a > 0.

Now we state all the assumptions about B, ϕ, and g.

Assumption 4.2 (Properties of B)
B1. B̃(y, η) ≡ 0 outside a small conic neighborhood of (y0,�0); and
B2. The amplitude of B satisfies

B̃ ∈ Sβ0(V × R
n); B̃ − B̃0 ∈ Sβ1(V × R

n);
B̃0(y, λη) = λβ0 B̃0(y, η); β0 > β1;

(4.8)

for some B̃0, β0, and β1, and for all y ∈ V , λ > 0.
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Recall that �r�, r ∈ R, denotes the largest integer not exceeding r . Similarly, �r�
denotes the smallest integer greater than or equal to r . We also introduce:

�r−�= lim
ε→+0

�r − ε�=
{

�r�, r /∈ Z,

r − 1, r ∈ Z,
�r+� = lim

ε→+0
�r + ε�=

{
�r�, r /∈ Z,

r + 1, r ∈ Z.

(4.9)

Assumption 4.3 (Properties of the interpolation kernel ϕ)

IK1. ϕ ∈ C
�β+

0 �
0 (Rn), i.e., ϕ is compactly supported, and all of its derivatives up to

order �β+
0 � are L∞;

IK2. ϕ is exact up to order �β0� for the sampling lattice determined by D1 := UT D,
i.e.,

∑
j∈Zn

(D1 j)
mϕ(u − D1 j) ≡ um, |m| ≤ �β0�, m ∈ N

n
0, u ∈ R

n, (4.10)

for all indicated m and u.

Assumption IK2 with m = 0 implies that ϕ is normalized. By assumption,
| det D1| = 1. Then

1 =
∫
D1[0,1]n

∑
j∈Zn

ϕ(u − D1 j)du =
∫

[0,1]n
∑
j∈Zn

ϕ(D1(v − j))dv

=
∫

Rn
ϕ(D1v)dv =

∫
Rn

ϕ(v)dv.

(4.11)

Assume that g is given by

g(y) = 1

2π

∫
R

υ̃(y, λ)e−iλP(y)dλ, y ∈ V, (4.12)

for some P ∈ C∞(V) with dP(y) �= 0 on V . We need the smooth hypersurface
determined by P:

� := {y ∈ V : P(y) = 0}. (4.13)

Even if g is not in the range of R, Assumptions 3.1 and Definition 3.4 imply that
there exists a smooth surface S ⊂ U such that � = TS (see Sect. 5.1 for additional
information). Let Ŝy0 be the projection of Sy0 onto S along the first coordinate x1 (see
Fig. 1).

Definition 4.4 Set

�IIS := IISy0
− IIŜy0

, (4.14)

where IISy0
is the matrix of the second fundamental form of Sy0 at x0 written in the

coordinates (x1, x (2))T , and similarly for Ŝy0 .
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Assumption 4.5 (Properties of the data function g)

g1. υ̃ ∈ S−(s0+1)(V × R), and there exists a compact K ⊂ V such that υ̃(y, λ) ≡ 0
if y ∈ V \ K ;

g2. υ̃ satisfies

υ̃(y, λ) = υ̃+(y)λ−(s0+1)
+ + υ̃−(y)λ−(s0+1)

− + R̃(y, λ), ∀y ∈ V, |λ| ≥ 1,

υ̃± ∈ C∞
0 (V), R̃ ∈ S−(s1+1)(V × R), 0 < s0 < s1, s1 /∈ N;

(4.15)

for some υ̃±, R̃, s0, and s1;
g3. P ∈ C∞(V) is given by

P(y) = y1 − ψ(y⊥), (4.16)

where ψ is smooth, ψ(0) = 0, and dψ(0) = 0;
g4. If s0 ∈ N, one has

υ̃+(y) = (−1)s0+1υ̃−(y) for any y ∈ �. (4.17)

g5. The matrix �IIS is negative definite.

We use superscripts ′±′ to distinguish between two different functions as opposed to
the positive and negative parts of a number. The latter are denoted by the subscripts
′±′: λ± := max(±λ, 0).

Assumptions g1, g2 imply that g is sufficiently regular. The assumption s1 /∈ N is not
restrictive. It is made to simplify some of the proofs. Assumption g3 is not restrictive
either. An equivalent assumption is dP1(y0) = �0 for some other smooth P1 (see
also (B.5) and (B.9) below). Indeed, by shrinking V , if necessary, we can find ψ(y⊥)

with the required properties such that the function u(y) := P1(y)/P(y) (where P is
as in (4.16)) satisfies u ∈ C∞(V) and c1 ≤ |u(y)|, |du(y)| ≤ c2 for some c1,2 > 0
and all y ∈ V . Substituting P1(y) = u(y)P(y) into (4.12) and changing variables
λ1 = λu(y), we see that the new amplitude υ̃1(y, λ1) := υ̃(y, λ1/u(y))/u(y) satisfies
g1, g2 (with the same s0 and s1), and g4. See Remark B.1 about the meaning of
assumption g4. Define

e(a) := exp
(
i
π

2
a
)

. (4.18)

Assumption 4.6 (Joint properties of B and g)

C1. The constants β0 and s0, defined in (4.8) and (4.15), respectively, satisfy

κ := β0 − s0 − (N/2) ≥ 0; (4.19)

C2. The functions B̃0 and υ̃±, defined in (4.8) and (4.15), respectively, satisfy

B̃0(y, dy P(y))υ̃+(y)= − e(2(β0−s0))B̃0(y,−dy P(y))υ̃−(y) if κ=0 ∀y∈�. (4.20)
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The role of conditions (4.17) and (4.20) is that they prevent the appearance of
logarithmic terms in g and f̌ = R∗Bg in a neighborhood of � and S, respectively,
see (C.6) and (12.7).

Set xε := x0 + ε x̌ . Adopt the convention that the interior side of S is the one where
the x1 axis points and define

x int0 := lim
x1→0+(x1, x

⊥ = 0), xext0 := lim
x1→0−(x1, x

⊥ = 0). (4.21)

Let ϕ̂ denote the classical Radon transform of ϕ (see (8.8)). Recall that D1 = UT D.
Now we can state our main result.

Theorem 4.7 Suppose U and V are sufficiently small neighborhoods of x0 and y0,
respectively, and

(1) Sy0 is tangent to S at x0;
(2) Assumptions 3.1, 4.2, 4.3, 4.5, and 4.6 are satisfied; and
(3) The pair (x0, y0) is generic for the sampling matrix D1.

Then one has

lim
ε→0

εκ f̌ε(xε) =C1

∫
ϕ̂
(
�0, (x̌1/∂y1	1) − p

) (
c+1 (p − i0)−κ + c−1 (p + i0)−κ

)
dp,

C1 =(2π)N/2w(x0, y0)| det�IIS |1/2 (
∂y1	1

)−N/2

∣∣∣∣∣det
∂2	1

∂x(2)∂ y(2)

∣∣∣∣∣
−1

,

c±1 =�(κ)

2π
B̃0(y0, ±�0)υ̃

±(y0)e(∓(β0 − s0)) if κ > 0,

(4.22)

and

lim
ε→0

f̌ε(xε) = f̌ (xint0 ) + C1c1

∫ 0

−∞
ϕ̂
(
�0, (x̌1/∂y1	1) − p

)
dp,

c1 :=i B̃0(y0,�0)υ̃
+(y0)e(−(β0 − s0)) if κ = 0.

(4.23)

See [9, Chapter I, Sect. 3.6] for the definition and properties of the distributions
(p ± i0)a .

Remark 4.8 Since x̌1 is a rescaled coordinate, (4.22) and (4.23) imply that in the
original coordinates x the resolution of reconstruction is∼ εr(∂y1	1)(x

(2)
0 , y0), where

r > 0 is (loosely speaking) a measure of the spread of ϕ̂(�0, p) as a function of p.
This shows that the resolution is not only location-dependent (via the x (2) dependence
of 	), but also direction-dependent (via the y dependence of 	).

Even though the formulas (4.22), (4.23) do not contain the sampling matrix, the
dependence on D1 is still there. It is implicit, andmanifests itself via the kernelϕ, which
is required to be exact on the lattice determined by D1 (see Assumption 4.3(IK2)).

Remark 4.9 The limits in (4.22) and (4.23) are functions of the scalar argument h =
x̌1/∂y1	1. Hence, it is more appropriate to view the DTBs as functions on R rather
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than on R
n . With this convention, the expressions in (4.22) and (4.23) can be written

as DTB(x̌1/∂y1	1). The same convention applies to the CTB as well. This convention
will be used in the rest of the paper.

Remark 4.10 Set x = x0 + (h/|ξ0|)ξ0, i.e. h is physical (not rescaled) signed distance
from x to x0. Equation (4.23) implies that the derivative of the edge response function
of the reconstruction (in R

2, this derivative is known as the line spread function) is
E ′(h) := ϕ̂

(
�0, h/(ε∂y1	1)

)
. Thus, to compute, for example, FWHM, we perform

the following steps: (1) Find the maximum M := maxh E ′(h). Frequently, M =
ϕ̂(�0, 0); and (2) Find the length FWHM= |{h ∈ R : E ′(h) ≥ M/2}|.

The proof of the theorem is broken into several sections. The contact between TS
and Tx0 in a neighborhood of y0 is investigated in Sect. 6. Properties of the continuous
data function g and its interpolated version are investigated in Sect. 7. These two
sections prepare the groundwork for the remainder of the proof in Sects. 8–11. A
high-level overview of the remainder of the proof is at the end of Sect. 8.1.

5 Additional Results: Discussion

5.1 FIO Point of View

Introduce the function

φ(x, y, λ) = λ · (x (1) − 	(1)(x (2), y)), λ ∈ R
n−N . (5.1)

Clearly, φ is the phase function of the FIOR (cf. (2.3)):

R f (y) = 1

(2π)n−N

∫
Rn−N

∫
Rn

f (x)eiφ(x,y,λ)b(x, y)(det GS(x (2), y))1/2dxdλ

(5.2)

with the canonical relation from T ∗U to T ∗V:

C := {(x, dxφ(x, y, λ), y,−dyφ(x, y, λ) : x (1) = 	(1)(x (2), y)} ⊂ T ∗U × T ∗V.

(5.3)

In (5.2), GS is computed similarly to (2.2), but with ỹ and 	̃ replaced by y and 	,
respectively.

Set λ0 := (1, 0, . . . , 0)T . Clearly, ξ0 = |d�|dxφ �= 0 and �0 = −|d�|dyφ �= 0.
This follows easily from (3.5), (3.18), and (5.1). This also implies that the differentials
dx,λφ and dy,λφ do not vanish anywhere in a conic neighborhood of (x0, y0, λ0) (see
[33, Definition 2.1, Sect. VI.2]). As a reminder about our convention, the differen-
tials are evaluated at (x0, y0, λ0). Clearly ∂2φ/∂x (1)∂λ = In−N , so the differentials
dx,y,λ(∂φ/∂λ j ), 1 ≤ j ≤ n − N , are linearly independent, and φ is nondegenerate
[33, Definition 1.1, Sect. VIII.1].
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Setting λ = λ0 gives

det

(
φx,y φx,λ

φλ,y φλ,λ

)
= det

⎛
⎜⎝

0 0 In−N

− ∂2	1
∂x (2)∂ y(1) − ∂2	1

∂x (2)∂ y(2) 0

−	
(1)
y(1) 0 0

⎞
⎟⎠ . (5.4)

Here we have used that 	
(1)
x (2) = 0 and 	

(1)
y(2) = 0 (see (3.5) and (3.10)). In fact, the

determinant in (5.4) is non-zero if and only if det M �= 0 (see (3.11)–(3.13)). Hence
Assumption 3.1(G2) implies that C is a local canonical graph (see the discussion fol-
lowing Eq. (4.23) in [33, Sect. VI] and Definition 6.1 in [33, Sect. VIII]). In particular,
there is a unique, smooth hypersurface S ⊂ U such that (N∗� \ 0) = C ◦ (N∗S \ 0).
Here N∗� and N∗S are the conormal bundles of � and S, respectively, and 0 is the
zero section.

From (2.2) and (3.6), detGS = 1. Clearly,R is an elliptic FIO in a neighborhood of
((x0, ξ0), (y0,�0)) ∈ (T ∗U \0)×(T ∗V \0) if b(x0, y0) �= 0 and U , V are sufficiently
small.

The fact that the GRT and its adjoint can be viewed as FIOs has been known for
a long time (see e.g., [11, 26]). The material in this section is well-known, and is
presented for the convenience of the reader to make the paper self-contained.

Remark 5.1 We can now discuss condition (1) in Definition 3.4 in more detail. Here it
is convenient to argue in the original ỹ coordinates. The preceding discussion shows
that for every x ∈ S there is ỹ(x) ∈ �̃, which depends smoothly on x , such that Sỹ(x)

is tangent to S and x . Consider the N -dimensional tangent space to T̃x at ỹ(x). By
(3.6) it is determined by (1) solving x (1) = 	̃(1)(x (2), (ỹ(1), ỹ(2))) for ỹ(1) in terms
of x and ỹ(2), and (2) computing the partial derivatives ∂ ỹ(1)/∂ ỹ(2)

j , 1 ≤ j ≤ N , at

(x, ỹ(2)(x)). Consider the n × N matrix:

�(x) :=
(

∂ ỹ(1)/∂ ỹ(2)

IN

)
. (5.5)

Condition (1) in Definition 3.4 is violated for an exceptional x ∈ S if (D−Tm)�(x) =
0 for some m ∈ Z

n .

5.2 CTB and Its Relationship with DTB

When describing the leading singularity of a distribution at a point, the following
definition (which is a slight modification of the one in [16]) is convenient.

Definition 5.2 [16] Given a distribution f ∈ D′(Rn) and a point x0 ∈ R
n , suppose

there exists a distribution f0 ∈ D′(Rn) so that for some a ∈ R the following equality
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holds

lim
ε→0

ε−a
∫

f (x0 + ε x̌)∂mx̌ ω(x̌)dx̌ =
∫

f0(x̌)∂
m
x̌ ω(x̌)dx̌,

∀m ∈ N
n
0, |m| =max(0, �a+�),

(5.6)

for any ω ∈ C∞
0 (Rn). Then we call f0 the leading order singularity of f at x0.

Definition 5.3 CTB is defined as the leading order singularity of the reconstruction
from continuous data R∗Bg at x0.

Similarly to the DTB, the following theorem shows that the CTB can be viewed as
a function of a scalar argument.

Theorem 5.4 Under the assumptions of Theorem 4.7, one has

lim
ε→0

εκR∗Bg(xε) = CTB(x̌1/∂y1	1), (5.7)

where

CTB(h) = C1
(
c+
1 (h − i0)−κ + c−

1 (h + i0)−κ
)
, κ > 0,

CTB(h) = −C1c1(1/2)sgn(h) + const, κ = 0,
(5.8)

and C1, c1, and c
±
1 are the same as in Theorem 4.7. Thus, the DTB is the convolution

of the CTB with the scaled classical Radon transform of the interpolating kernel:

DTB(h) =
∫

ϕ̂(�0, h − p)CTB(p)dp, κ > 0,

DTB(h) =
∫

ϕ̂(�0, h − p)CTB(p)dp + const, κ = 0.
(5.9)

5.3 Discussion

Recall that f̌ (x) := R∗Bg(x) denotes the reconstruction from continuous data. Sup-
pose κ = 0, i.e. f̌ has a jump across S. The second term on the right in (4.23)
equals zero for all x̌1 > c. Because ϕ is normalized:

∫
ϕ̂(�0, p)dp = 1, the second

term equals C1c1 for all x̌1 < −c. Here c > 0 is sufficiently large, and we used that
∂y1	1 > 0 (cf. (3.9)). By (12.7), the productC1c1 is precisely the jump of f̌ (x) across
S at x0: −C1c1 = f̌ (x int0 ) − f̌ (xext0 ), see (10.2) and (4.21). Thus, the right-hand side
of (4.23) equals to f̌ (x int0 ) if x̌1 > c, and to f̌ (xext0 ) – if x̌1 < −c. This shows that
(4.23) describes a smooth transition of the discrete reconstruction f̌ε(xε) from the
value f̌ (x int0 ) on the interior side of S to the value f̌ (xext0 ) on the exterior side of S.
Loosely speaking, the transition happens over a region of size O(ε):

DTB(x̌1/∂y1	1) = lim
ε→0

f̌ε(x0 + ε x̌) =
{
f̌ (x int0 ), x̌1 > c,

f̌ (xext0 ), x̌1 < −c.
(5.10)
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Then the DTB is a “stretched” version of the abrupt jump of f̌ across S in the con-
tinuous case. This is most apparent from the last equations in (5.8), (5.9). See also
Section 6 of [20] for a similar discussion in the setting of quasi-exact inversion of the
GRT in R

3.

6 Beginning of the Proof of Theorem 4.7. Tangency of TS and Tx0

In this sectionwe show thatTS andTx0 are tangent at y0, and investigate their properties
near the point of tangency.

Lemma 6.1 Suppose the assumptions of Lemma 3.7 are satisfied. The submanifolds
TS and Tx0 are tangent at y0 = 0, and �0 = dy(� ◦ 	) is conormal to both of them
at y0 = 0.

Proof Begin with TS . Following the proof of the first assertion of Lemma 3.7, all we
need to do is compute ∂y⊥ y1. Viewing x (2) and y1 as functions of y⊥ and differentiating
the equation (� ◦ 	)(x (2), y) = 0 (cf. (3.15)) gives:

d� · (	x (2)∂y⊥x (2) + 	y1∂y⊥ y1 + 	y⊥) = (� ◦ 	)y1∂y⊥ y1 = 0, (6.1)

which implies ∂y⊥ y1 = 0. Here we have used that (cf. (3.5), (3.9))

(� ◦ 	)x (2) = 0, (� ◦ 	)y1 �= 0, (� ◦ 	)y⊥ = 0. (6.2)

Therefore, in the selected y coordinates, the equation of the tangent space Ty0TS
(viewed as a subspace of R

n) is y1 = 0. See the shaded ellipse on the left in Fig. 1.
Since only the first component of �0 is not zero (see the line following (3.18)), it
follows that �0 is conormal to TS at y0.

Consider next Tx0 . Differentiating x (1)
0 = 	(1)(x (2)

0 , y), where y(1) = Y (1)
0 (y(2))

(see (3.18)), and using (3.10) gives ∂ y(1)/∂ y(2) = 0. Hence the equation of the tangent
space Ty0Tx0 is y(1) = 0, i.e. Ty0Tx0 is a subspace of Ty0TS . ��

Next we look more closely at the contact between Tx0 and TS .

Lemma 6.2 Suppose the assumptions of Lemma 3.7 are satisfied. Let y = Y0(y(2)) be
the equation of Tx0 defined in (3.18). Let y = Z(y(2)) be the equation of the projection
of Tx0 onto TS along the first coordinate, i.e., Z(y(2)) ∈ TS and Y0(y(2))− Z(y(2)) =
(h(y(2)), 0, . . . , 0)T for a scalar function h(y(2)). Then, with M22 as in (3.11), and
�0 as in (3.18), we have

�0 · (Y0(y
(2)) − Z(y(2))) = −1

2
Qy(2) · y(2) + O(|y(2)|3),

Q = MT
22(� ◦ 	)−1

x (2)x (2)M22, det Q �= 0.
(6.3)
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Proof We solve separately two sets of equations (recall that x0 = 0):

Tx0 : 	(1)(0, y) = 0;
TS : (� ◦ 	)(x (2), y) = 0, (� ◦ 	)x (2) (x (2), y) = 0.

(6.4)

Since (x (2), y) = (0, 0) solves (6.4), we have to first order in y(2)

Tx0 : 	(1)
y y = O(|y(2)|2); (6.5)

TS : (� ◦ 	)x (2) x̌ (2) + (� ◦ 	)y y̌ = O(|y(2)|2), (6.6)

(� ◦ 	)x (2)x (2) x̌ (2) + (� ◦ 	)x (2)y y̌ = O(|y(2)|2). (6.7)

The solution to the second system (i.e., related to TS ) is denoted with a check. Because
Tx0 and TS are tangent at y0, y = y̌ + O(|y(2)|2). Recall that we search not for the
general solution y ∈ TS , but for the points y = Z(y(2)) obtained by projecting Tx0
onto TS along y1. Therefore, y̌(2) ≡ y(2). By (3.10) and (6.5), y(1) = O(|y(2)|2). By
(6.7) and the assumption det(� ◦ 	)x (2)x (2) �= 0, x (2) = O(|y(2)|).

Since 	
(2)
y ≡ 0, (6.5) implies 	y y,	y y̌ = O(|y(2)|2). Let �x (2) and �y =(

�y(1)

0

)
denote second order perturbations, i.e. y(1) = �y(1) + O(|y(2)|3) (and

analogously for x (2) and y̌(1)). Since y(2) is an independent variable, its perturbation
is not considered. Then

Tx0 : 	(1)
y(1)�y(1) + (1/2)	(1)

y(2)y(2) y
(2) · y(2) = O(|y(2)|3); (6.8)

TS : (� ◦ 	)x (2)�x̌ (2) + (� ◦ 	)y�y̌

+ (1/2)
(
(� ◦ 	)x (2)x (2) x̌ (2) · x̌ (2) + 2(� ◦ 	)x (2)y x̌

(2) · y̌ + (� ◦ 	)yy y̌ · y̌
)

= O(|y(2)|3). (6.9)

Only (6.6) was used to derive (6.9). Using (6.7) and that y(1) = O(|y(2)|2), x (2) =
O(|y(2)|), (� ◦ 	)y = (1, 0, . . . , 0), (� ◦ 	)x (2) = 0, and 	y y̌ = O(|y(2)|2) yields

Tx0 : (d� 	y1)�y1 + (1/2)d�(	y(2)y(2) y(2) · y(2)) = O(|y(2)|3); (6.10)

TS : (d� 	y1)�y̌1+(1/2)d�
(
	x (2)y(2) x̌ (2) · y(2)+	y(2)y(2) y(2) · y(2))=O(|y(2)|3).

Subtracting the two equations gives (recall that ξ0 = d�):

�y1 − �y̌1 = �0 · (�y − �y̌) = (1/2)ξ0 · 	x (2)y(2)
ˇx (2)y(2) + O(|y(2)|3). (6.11)

Solving (6.7) for x̌ (2) and substituting into (6.11) we get the formula for Q in (6.3).
That Q is non-degenerate follows from (3.13). ��
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Remark 6.3 In this remark we discuss the meaning of condition (2) in Definition 3.4
from two perspectives. First, consider the image domain perspective. An equation for
Ŝy0 is �(x1,	⊥(x (2), y0)) = 0, where x1 is viewed as a function of x (2). Hence

�x1∂x (2)x1 + �x⊥∂x (2)	
⊥ = 0, �x1∂

2
x (2)x1 + �x⊥x⊥∂x (2)	

⊥∂x (2)	
⊥ = 0. (6.12)

Here we have used that �x⊥ = 0 implies ∂x (2)x1 = 0. By (3.5) and (3.8),

|d�|∂2x (2)x1 + �x (2)x (2) = 0. (6.13)

Using (3.5) and (3.8) again and then (4.14) gives

(� ◦ 	)x (2)x (2) = � ′′
x (2)x (2) + |d�|∂2x (2)	1 = |d�|∂2x (2) (	1 − x1) = |d�|�IIS .

(6.14)

This shows that if Assumptions 3.1 hold, condition (2) is equivalent to the requirement
that �IIS be either positive definite or negative definite.

To understand condition (2) from the data domain perspective, look at the surfaces
Tx0 and TS . Define similarly to (4.14):

�IIT := IITx0
− IIT̂x0

, (6.15)

where T̂x0 is the projection of Tx0 onto TS along the first coordinate y1, and IITx0
,

IIT̂x0
are the matrices of the second fundamental form of Tx0 , T̂x0 , respectively, at y0

written in the coordinates (y1, y(2))T . By construction, y = Z(y(2)) is the equation
of T̂x0 . By Lemma 6.2, �IIT = −Q. Hence, if Assumptions 3.1 hold, condition (2)
in Definition 3.4 is equivalent to the requirement that �IIT be either positive definite
or negative definite.

Let y = Y (y(2), xε) be the equation for Txε (see the proof of Lemma 3.7). This
equation is obtained by solving ε x̌ (1) = 	(1)(ε x̌ (2), y) for y(1) and setting y(2) ≡
Y (2)(y(2), xε). Suppose |x̌ | = O(1) and |y(2)| = O(ε1/2). The term ε x̌ is of a lower
order than y(2), so the equation for Tx0 in (6.5) is accurate on Txε to the order ε1/2.
Due to 	

(1)
x (2) = 0, the updated version of (6.8) becomes

	
(1)
y(1) y

(1) + (1/2)	(1)
y(2)y(2) y

(2)y(2) = ε x̌ (1) + O(ε3/2). (6.16)

The terms (1/2)	(1)
y(2)y(2) y

(2)y(2) in (6.8) and in (6.16) are the same. Also, �y(1) in

(6.8) is the analogue of y(1) in (6.16). Therefore, to order ε, introduction of the term
ε x̌ requires only a linear correction compared with Y0(y(2)) = Y (y(2), x0), and we
have

Y (1)(y(2), xε) = Y (1)
0 (y(2)) + ε(	

(1)
y(1) )

−1 x̌ (1) + O(ε3/2) if |y(2)| = O(ε1/2). (6.17)
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Hence

Y (1)
x = (

(	
(1)
y(1) )

−1, 0
)
, Y (2)

x = 0. (6.18)

7 On Some Properties of the Continuous Data g and Its Interpolated
Version g�

By [14, Proposition 25.1.3], g is a conormal distribution with respect to �(= TS).
The wave front set of g is contained in the conormal bundle of �:

WF(g) ⊂ N∗� \ 0 = {(y, η) ∈ T ∗V : P(y) = 0, η = λdP(y), λ �= 0}. (7.1)

See also Sect. 18.2 and Definition 18.2.6 in [13] for a formal definition and in-depth
discussion of conormal distributions. A discussion of closely related Lagrangian dis-
tributions is in Sect. 25.1 of [14].

In this paper we use two types of spaces of continuous functions. First, Ck
b (R

n),
k ∈ N0, is the Banach space of functions with bounded derivatives up to order k. The
norm in Ck

b (R
n) is given by

‖h‖Ck
b

:= max|m|≤k
|h(m)|L∞ . (7.2)

The subscript ‘0’ in Ck
0 means that we consider the subspace of compactly supported

functions, Ck
0 (R

n) ⊂ Ck
b (R

n).
The second type is the Hölder-Zygmund spaces Cr∗(Rn), r > 0. Pick any μ0 ∈

C∞
0 (Rn) such that μ0(η) = 1 for |η| ≤ 1, μ0(η) = 0 for |η| ≥ 2, and define

μ j (η) := μ0(2− jη) − μ0(2− j+1η), j ∈ N [1, Sect. 5.4]. Then

Cr∗(Rn) := {h ∈ C0
b (R

n) : ‖h‖Cr∗ < ∞},
‖h‖Cr∗ := sup

j∈N0

2 jr‖F−1(μ j (η)h̃(η))‖L∞ ,
(7.3)

where h̃ = Fh. If r /∈ Z, i.e. r = k + γ , k ∈ N0, 0 < γ < 1, then Cr∗(Rn) consists
of Ck

b (R
n) functions, which have Hölder continuous k-th order derivatives (see [30,

Definition 2.4 and Example 2.3]):

max|m|=k
sup

x∈Rn ,|h|>0

| f (m)(x + h) − f (m)(x)|
|h|γ < ∞. (7.4)

As is easily seen, Ck
b ⊂ Ck∗ if k ∈ N. The Hölder-Zygmund spaces are a particular

case of the Besov spaces:Cr∗(Rn) = Br
p,q(R

n), where p, q = ∞ [1, item 2 in Remark
6.4].

The following two lemmas are proven in Appendix C.
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Lemma 7.1 Suppose g satisfies Assumption 4.5. There exist cm > 0 such that

|∂my g(y)| ≤ cm

{
|P(y)|s0−|m|, |m| > s0,

1, |m| ≤ s0,
∀m ∈ N

n
0, y ∈ V \ �. (7.5)

Additionally,

g ∈ Cs0∗ (V) ∀s0 > 0 and g ∈ Cs0
0 (V) if s0 ∈ N. (7.6)

If the leading term in υ̃ is missing, i.e., υ̃± ≡ 0, then g ∈ Cs1∗ (V), and (7.5) holds with
s0 replaced by s1.

Lemma 7.2 SupposeB and g satisfy Assumptions 4.2, 4.5, and 4.6. There exists cβ > 0
such that

|(Bg)(y)| ≤ cβ |P(y)|s0−β0 , ∀y ∈ V \ �. (7.7)

If κ = 0, we additionally have with some c > 0

|(Bg)(y)| ≤ cβ P(y)s0−β0+c, for any y ∈ V if P(y) > 0. (7.8)

Define

g(l)
ε (y) :=

∑
| j |≤ϑ/ε

∂ly1ϕ

(
y − ŷ j

ε

)
g(ŷ j ), �g(l)

ε (y) := ∂ly1(gε(y) − g(y)), 0≤ l≤�β+
0 �.

(7.9)

The following two lemmas are proven in Appendix C.

Lemma 7.3 Supposeϕ and g satisfy Assumptions 4.3 and 4.5, respectively. There exists
κ1 > 0 such that

|g(l)
ε (y)| ≤ c

⎧⎪⎨
⎪⎩

|P(y)|s0−l , |P(y)| ≥ κ1ε, s0 < l ≤ �β+
0 �,

εs0−l , |P(y)| ≤ κ1ε, s0 < l ≤ �β+
0 �,

1, 0 ≤ l ≤ s0,

∀y ∈ V, (7.10)

for some c > 0.
If the top order term in υ̃ is missing, i.e., υ̃± ≡ 0, then (7.10) holds with s0 replaced

by s1 as long as l ≤ �β+
0 �.

Lemma 7.4 Suppose ϕ and g satisfy Assumptions 4.3 and 4.5, respectively. Let κ1 be
the same as in Lemma 7.3. One has

|�g(l)
ε (y)| ≤ cε|P(y)|s0−1−l , y ∈ V, |P(y)| ≥ κ1ε, �s−

0 � ≤ l ≤ �β+
0 �, (7.11)

|�g(l)
ε (y)| ≤ cεs0−l , y ∈ V, 0 ≤ l ≤ �s−

0 �, (7.12)
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for some c > 0.
If the top order term in υ̃ is missing, i.e. υ̃± ≡ 0, then (7.11), (7.12) hold with s0

replaced by s1 as long as l ≤ �β+
0 �.

8 Computing the First Part of the Leading Term

8.1 Splitting the Reconstruction into Two Parts: f� = f(1)� + f(2)�

By (4.5),

f̌ε(xε) =
∫
y∈Txε

(Bgε)(y)w(xε, y)dy. (8.1)

Pick some large A � 1 and introduce two sets

�1 :=
{
y(2) ∈ R

N : |y(2)| ≤ Aε1/2
}

,

�2 :=
{
y(2) ∈ R

N : |y(2)| ≥ Aε1/2,

(
y(1)

y(2)

)
∈ V

}
.

(8.2)

Let f (l)
ε (xε) denote the reconstruction obtained using (8.1), where the y integration is

restricted to the part of Txε corresponding to�l , l = 1, 2, respectively. The main ideas
behind the split are that (1) The contribution of f (2)

ε (xε) to the DTB goes to zero when
A → ∞; (2) For each fixed A > 0, the fact that |y(2)| = O(ε1/2) greatly simplifies
estimation of f (1)

ε (xε); and (3) The double limit limA→∞ limε→0 f (1)
ε (xε) exists and

gives the DTB.
The remainder of the proof consists of four parts: (1) Show that the leading singular

part of f (1)
ε (xε) (i.e., when only the top order terms are retained in B and g) gives the

main contribution to the DTB. This is done in the rest of this section; (2) Show that the
remaining, less singular part of f (1)

ε (xε) does not contribute to the DTB (Sect. 9); (3)
Show that the contribution of f (2)

ε (xε) to the DTB can be made as small as one likes
by selecting A > 0 sufficiently large (Sect. 10); and (4) Compute the DTB (Sect. 11).

8.2 Estimation of the Leading Term of f(1)� (x�)

Throughout this section we assume that B in (4.3) satisfies B̃(y, η) ≡ B̃0(y, η), i.e.,
we assume that the symbol of B contains only the top order term. Let B0 denote the
�DO of the form (4.3), where B̃(y, η) ≡ B̃0(y0, η). Likewise, we assume that the
symbol of g coincides with its top order term (i.e., R̃ ≡ 0 in (4.15)). It then follows
from (C.1) to (C.7) (see also (11.3)) that g is given by

g(y) = a+(y)Ps0+ (y) + a−(y)Ps0− (y), a± ∈ C∞
0 (V), (8.3)
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where a±(y) are linear combinations of υ̃±(y). Substitute (8.3) into (8.1)

f (1)
ε (xε) =

∫
y∈Txε

|y(2)|≤Aε1/2

(Bgε)(y)w(xε, y)dy. (8.4)

Introduce the operator

B1dg := F−1
1d (b̃(λ)g̃(λ)), b̃(λ) := B̃0(y0,�0)λ

β0+ + B̃0(y0,−�0)λ
β0− , (8.5)

where g is sufficiently smooth and decays sufficiently fast, and F1d denotes the 1D
Fourier transform. Introduce an auxiliary function:

ϒ(p) :=
∫

B1d ϕ̂(�0, p − q)A(q)dq = F−1
1d (ϕ̃(λ�0)b̃(λ)Ã(λ)), p ∈ R, (8.6)

where ϕ̃ = Fϕ, Ã = F1dA,

A(p) := a+(y0)p
s0+ + a−(y0)p

s0− , p ∈ R, (8.7)

B1d acts with respect to the affine variable, and the hat denotes the classical Radon
transform that integrates over hyperplanes:

ϕ̂(�0, p) :=
∫

ϕ(x)δ(�0 · x − p)dx . (8.8)

Both b̃(λ) and Ã(λ) are not smooth at λ = 0, so the product b̃(λ)Ã(λ) needs to be
computed carefully, see the discussion between (11.4) and (11.6).

The main result in this section is the following lemma.

Lemma 8.1 Suppose the symbols of B and g contain only the top order terms as
described above. Under the assumptions of Theorem 4.7 one has

lim
ε→0

εκ f (1)
ε (xε) = w(x0, y0)

∫
|y̌(2)|≤A

ϒ

(
∂Y1
∂x1

x̌1 − Qy̌(2) · y̌(2)

2

)
dy̌(2). (8.9)

8.3 Proof of Lemma 8.1

We begin by investigating the sum in (8.4). The key result is the following lemma (see
Appendix D for the proof).

Lemma 8.2 Suppose y, z ∈ V satisfy

|y − y0| ≤ cε1/2, |y − z| ≤ cε, z ∈ �, (8.10)
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for some c > 0, and gε is obtained by interpolating g in (8.3) (cf. (4.6)). One has

εβ0−s0 (Bgε)(y) =
∑
j∈Zn

B0ϕ

(
y − ŷ j

ε

)
A

(
�0 · ŷ

j − z

ε

)
+ O(εmin(s0,1)/2), ε → 0,

(8.11)

where the series on the right converges absolutely, and the big-O term is uniform
with respect to z, y satisfying (8.10). Moreover, the left-hand side of (8.11) remains
bounded as ε → 0 uniformly with respect to z, y satisfying (8.10).

The next step is to use (8.11) in (8.4):

εβ0−s0 f (1)
ε (xε) = O(ε(N+min(s0,1))/2) (8.12)

+w(x0, y0)
∫

�1

∑
j∈Zn

B0ϕ

(
Y (y(2), xε) − ŷ j

ε

)
A

(
�0 · ŷ

j − Z(y(2))

ε

)
dy(2).

Here Z(y(2)) is obtained by projecting Y0(y(2)) onto� along y1, see Lemma 6.2. From
(3.17) and Y0(y(2), x) ≡ y(2) we have GT = IN and detGT = 1, where GT is the
Gram matrix (4.2) evaluated at y(2) = 0, x = x0. This property was used to obtain
(8.12). By (6.17) and Lemma 6.2,

|Y (y(2), xε) − Z(y(2))| = |Y0(y(2)) + O(ε) − Z(y(2))|
= |Y0(y(2)) − Z(y(2))| + O(ε) = O(|y(2)|2) + O(ε) = O(ε),

(8.13)

so the conditions in (8.10) hold, and (8.11) applies.
In view of (8.12), define

φ(v, p) :=w(x0, y0)
∑
j∈Zn

B0ϕ(v − D1 j)A(�0 · D1 j − p), v ∈ R
n, p ∈ R. (8.14)

Recall that D1 = UT D (cf. Assumption 4.3(IK2)). As is easily checked,

φ(v + D1m, p + �0 · D1m) =φ(v, p), ∀m ∈ Z
n, v ∈ R

n, p ∈ R; (8.15)∫
[0,1]n

φ(v + D1u, p + �0 · D1u)du =w(x0, y0)
∫

Rn
B0ϕ(v − u)A(�0 · u − p)du

=w(x0, y0)ϒ(�0 · v − p), ∀v ∈ R
n, p ∈ R.

(8.16)

Use (8.14) to rewrite (8.12):

εκ f (1)
ε (xε) = I (ε) + O(εmin(s0,1)/2), (8.17)
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where

I (ε) := ε−N/2
∫

�1

φ

(
Y (y(2), xε) +UT ỹ0

ε
,�0 · Z(y(2)) +UT ỹ0

ε

)
dy(2)

= ε−N/2
∫

�1

φ

(
Y (y(2), xε) − Y0(y(2))

ε
+ D1uε,

�0 ·
(

−Y0(y(2)) − Z(y(2))

ε
+ D1uε

))
dy(2),

uε := D−1
1 (UT ỹ0 + Y0(y(2)))

ε
.

(8.18)

Using that x̌ = O(1) and |y(2)| = O(ε1/2), (6.17) and (6.18) imply

Y (y(2), xε) − Y0(y(2))

ε
= Yx (y

(2), 0)x̌ + O(ε) = v0 + O(ε1/2), v0 :=
(
Y (1)
x x̌
0

)
.

(8.19)

By Lemma 6.2,

�0 · (Y0(y
(2)) − Z(y(2))) = −Qy(2) · y(2)

2
+ O(|y(2)|3). (8.20)

Therefore,

I (ε) =
∫
|y̌(2)|≤A

φ

(
v0 + D1uε + O(ε1/2),

Qy̌(2) · y̌(2)

2
+ �0 · D1uε + O(ε1/2)

)
dy̌(2),

(8.21)

where y(2) = ε1/2 y̌(2).
The following result is proven in Appendix E.

Lemma 8.3 Pick any c, 0 < c < ∞. One has

φ(v + �v, p) − φ(v, p) = O(|�v|1−{β0}), �v → 0, |v|, |p| ≤ c;
φ(v, p + �p) − φ(v, p) = O(|�p|min(s0,1)), �p → 0, |v|, |p| ≤ c; (8.22)

and the two big-O terms are uniform in v and p confined to the indicated sets.

Introduce an auxiliary function

φ1(q; u) := φ(v0 + D1u, q + �0 · D1u), u ∈ R
n, q ∈ R. (8.23)
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By Lemma 8.3, the integrand in (8.21) can be written in the form:

φ1

(
Qy̌(2) · y̌(2)

2
; uε

)
+ O(εa/2), (8.24)

where a = min(1 − {β0}, s0, 1) > 0.
Consider now uε . The assumption |y(2)| = O(ε1/2) implies

Y0(y
(2)) = Y ′

0(0)y
(2) + Y ′′

0 (0)y(2) · y(2)

2
+ O(ε3/2), (8.25)

where we have used that Y0(0) = 0. Here Y ′
0(0) = ∂y(2)Y0(y(2))|y(2)=0 and Y ′′

0 (0) =
∂2
y(2)Y0(y

(2))|y(2)=0. For completeness, note that Y ′
0(0) = (0, IN )T (see (3.17)), but

this is not used in what follows.
From (8.15), φ1(q; u + m) = φ1(q; u) for any m ∈ Z

n . Using Lemma 8.3 again
and (8.25), (8.24) becomes

φ1

(
Qy̌(2) · y̌(2)

2
; D−1 ỹ0

ε
+ D−1

1

(
Y ′
0(0)y̌

(2)

ε1/2
+ Y ′′

0 (0)y̌(2) · y̌(2)

2

))
+ O(εa/2).

(8.26)

Thus, we need to compute the limit of the following integral as ε → 0:

J (ε) :=
∫

|y̌(2)|≤A
φ1(q; u)dy̌(2), q = q(y̌(2)) = Qy̌(2) · y̌(2)

2
,

u = u(y̌(2), ε) = D−1
1 Y ′

0(0)y̌
(2)

ε1/2
+

[
D−1 ỹ0

ε
+ D−1

1
Y ′′
0 (0)y̌(2) · y̌(2)

2

]
.

(8.27)

Represent φ1 in terms of its Fourier series:

φ1(q; u) =
∑
m∈Zn

φ̃1,m(q)e2π im·u . (8.28)

The N columns of Y ′
0(0) form a basis for the tangent space to Tx0 at y0 = 0 written

in the new y coordinates. The columns of UY ′
0(0) span the tangent space to T̃x0 at ỹ0

written in the original ỹ coordinates. By assumption, T̃x0 is generic at ỹ0 with respect
to D (cf. Definition 3.4), so there is nom ∈ Z

n such thatm �= 0 andmD−1
1 Y ′

0(0) = 0.
The same argument as in (5.8)–(5.14) in [20] implies

lim
ε→0

J (ε) =
∫

|y̌(2)|≤A

∫
[0,1]n

φ1

(
Qy̌(2) · y̌(2)

2
, u

)
dudy̌(2). (8.29)
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Here is an outline of the argument. Break up the integral with respect to y̌(2) in
(8.27) into a sum of integrals over a finite, pairwise disjoint covering of the domain
of integration by subdomains Bk with diameter 0 < δ � 1. Then approximate each
of these integrals by assuming that y̌(2) is constant everywhere except in the first term
of u outside of brackets in (8.27). This is done by choosing y̌(2)

k ∈ Bk in an arbitrary
fashion:

J (ε) =
∑
k

[
Jk(ε) + O(δa)Vol(Bk)

]
, Jk(ε) :=

∫
Bk

φ1(q(y̌(2)
k ); uk(y̌(2), ε))dy̌(2),

uk(y̌
(2), ε) = D−1

1 Y ′
0(0)y̌

(2)

ε1/2
+

[
D−1 ỹ0

ε
+ D−1

1

Y ′′
0 (0)y̌(2)

k · y̌(2)
k

2

]
.

(8.30)

Thus, the variable of integration y̌(2) is present only in the rapidly changing term
with ε1/2 in the denominator. The magnitude of the error term O(δa) follows from
Lemma 8.3. Represent each φ1 in (8.30) in terms of its Fourier series (8.28). Using
the fact that there is no m ∈ Z

n such that m �= 0 and mD−1
1 Y ′

0(0) = 0 implies

lim
ε→0

∫
Bk

exp(2π im · u(y̌(2), ε))dy̌(2) = 0 if m �= 0. (8.31)

The first term in uk (cf. (8.30)) is the only one that contains y̌(2) and changes rapidly
as ε → 0. In turn, (8.31) implies

lim
ε→0

Jk(ε) = φ̃1,m=0(q(y̌(2)
k )) =

∫
[0,1]n

φ1(q(y̌(2)
k ); u)du. (8.32)

Using that δ > 0 can be as small as we like finishes the proof of (8.29).
Combining (8.17), (8.21), (8.23), (8.26), (8.27), (8.29) gives

limε→0 εκ f (1)
ε (xε)=

∫
|y̌(2)|≤A

∫
[0,1]n φ

(
v0+D1u,

Qy̌(2)·y̌(2)

2 +�0 · D1u

)
dudy̌(2).

(8.33)

By (8.16) and (8.33),

lim
ε→0

εκ f (1)
ε (xε) = w(x0, y0)

∫
|y̌(2)|≤A

ϒ

(
�0 · v0 − Qy̌(2) · y̌(2)

2

)
dy̌(2). (8.34)

Since ∂Y1/∂x⊥ = 0 (cf. (11.8)) and �0 = dy1, from the definition of v0 in (8.19)

�0 ·
(
Y (1)
x x̌
0

)
= ∂Y1

∂x1
x̌1. (8.35)

Combining (8.34) and (8.35) proves Lemma 8.1.
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9 Estimation of the Remaining Parts of f (1)� (x�)

In this section we prove that the lower order terms of f (1)
ε (xε) do not contribute to

the DTB. In this section, by c we denote various positive constants that may have
different values in different places. From (4.16), (6.3), (6.17), and (8.2) it follows that
there exists c1 > 0 such that

y(2) ∈ �1, y ∈ Txε implies |P(y)| ≤ c1ε. (9.1)

Let β and s denote the remaining highest order exponents in (4.8) and (4.15), respec-
tively. By construction, β0 − s0 > β − s. This means that either s = s0 if the first term
in B is missing (i.e., β = β1 < β0), or β = β0 if the first term in υ̃ is missing (i.e.,
s = s1 > s0).

Suppose initially that β > �s−�. Set k := �β+�, ν := k − β. Thus, 0 < ν ≤ 1,
ν = 1 if β ∈ N0, and s0 ≤ s < k ≤ �β+

0 �. Clearly,

B = W1∂
k
y1 + W2, (9.2)

for some W1 ∈ S−ν(V × R
n) and W2 ∈ S−∞(V × R

n). Here we use a cut-off near
η = 0 and the fact that the amplitude of B is supported in a small conic neighborhood
of (y0,�0 = dy1). Then

(Bgε)(y) =
∫

K (y, y − w)g(k)
ε (w)dw + O(1), (9.3)

where K (y, w) is the Schwartz kernel of W1, and O(1) represents W2gε(y). The
latter statement follows, because gε(y) is uniformly bounded as ε → 0 for all y ∈ V
(cf. (4.6) and (7.6)) and compactly supported. By the estimate [1, Eq. (5.13)],

|∂ lw1
K (y, y − w)| ≤ c(l)|y − w|−(n−ν+l), l ≥ 0, y, w ∈ V. (9.4)

Combining (9.2), (7.9), the two top cases in (7.10) with l = k and s0 replaced by s,
(9.3), and (9.4) with l = 0, gives

|(Bgε)(y)| ≤ c(J1 + J2) + O(1),

J1 :=
∫

κ1ε≤|P(w)|≤O(1)

|w1 − ψ(w⊥)|s−k

|y − w|n−ν
dw, J2 :=

∫
|P(w)|≤κ1ε

εs−k

|y − w|n−ν
dw,

(9.5)

where κ1 is the same as in Lemma 7.3. Consider J1:

J1 =
∫ ∫

κ1ε≤|p|≤O(1)

|p|s−k

|([P − p] + ψ(y⊥) − ψ(w⊥), y⊥ − w⊥)|n−ν
dpdw⊥,

(9.6)
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where we denoted P := P(y) and changed variables w1 → p = w1 −ψ(w⊥). There
exists 0 < c′ < 1 so that

|a + ψ(y⊥) − ψ(w⊥)| + |y⊥ − w⊥| ≥ c′(|a| + |y⊥ − w⊥|) ∀a ∈ R, y, w ∈ V.

(9.7)

By construction, ∂y⊥ψ(0) = 0. Assume V is sufficiently small, so that |ψ(y⊥) −
ψ(w⊥)| ≤ c′′|y⊥ − w⊥|, y, w ∈ V , for some 0 < c′′ < 1. Then any c′ such that
0 < c′ < 1 − c′′ works. This implies

J1 ≤c
∫

κ1ε≤|p|≤O(1)

∫ |p|s−k

(|P − p| + |w⊥|)n−ν
dw⊥dp

≤c
∫

κ1ε≤|p|≤O(1)

|p|s−k

|P − p|1−ν
dp =

⎧⎪⎨
⎪⎩
O(εs−β), β > s,

O(ln(1/ε)), β = s,

O(1), β < s.

(9.8)

Here we have used that P = O(ε).
The term J2 can be estimated analogously, and we get an estimate similar to (9.8),

where the bound is O(εs−β) in all three cases.
Suppose β > s. By (9.5), (Bgε)(y) = O(εs−β). Estimate the integral in (8.4):

|εκ f (1)
ε (xε)| ≤ εκ

∫
�1

O(εs−β)dy(2) = O(εκ+s−β)

∫ Aε1/2

0
r N−1dr

=O(ε(β0−s0)−(β−s)) if β > s.

(9.9)

In a similar fashion,

|εκ f (1)
ε (xε)| =

{
O(εβ0−s0 ln(1/ε)), β = s,

O(εβ0−s0), β < s.
(9.10)

Since β0 − s0 ≥ N/2 ≥ 1/2, εκ f (1)
ε (xε) → 0 in all three cases.

Suppose now 0 < β ≤ �s−�. Similarly to (9.2), B = W1∂
k
y1 + W2, where k =

�β� ≥ 1, ν = k − β ≥ 0, s > k,W1 ∈ S−ν(V × R
n), andW2 ∈ S−∞(V × R

n). The
kernel ofW1 is an L1 function (see e.g. Theorem 5.15 in [1]) and supy∈V |�g(k)

ε (y)| =
O(εs−k) (cf. (7.12) with s0 replaced by s). This implies that supy∈V |(Bgε)(y) −
Bg(y)| = O(εs−k). From Lemma 7.1, Bg ∈ Cs−β∗ (V), and s > β. Thus, (Bgε)(y) =
O(1), and the desired result follows similarly to the case β < s in (9.10). The case
β ≤ 0 is proven using the same argument with l = 0 in (7.12) and without splitting B
into two parts.
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10 Estimation of f (2)� (x�)

10.1 Statement of Results

In this section we prove the following two lemmas.

Lemma 10.1 Under the assumptions of Theorem 4.7 one has

lim
ε→0

{
εκ f̌ε(xε), κ > 0

f̌ε(xε) − f (2)(xε), κ = 0
= w(x0, y0)

∫
RN

ϒ

(
∂Y1
∂x1

x̌1 − Qy̌(2) · y̌(2)

2

)
dy̌(2).

(10.1)

Lemma 10.2 Suppose κ = 0. Under the assumptions of Theorem 4.7 one has

lim
ε→0

f (2)(xε) = (R∗Bg)(xint0 ). (10.2)

Recall that x int0 is defined in (4.21). Lemma 10.1 is proven by considering the last

remaining term f (2)
ε (xε):

f (2)
ε (xε) =

∫
y∈Txε

|y(2)|>Aε1/2

(Bgε)(y)w(xε, y)dy, (10.3)

where both B and g are given by their full expressions. The continuous counterpart of
(10.3) is

f (2)(xε) =
∫

y∈Txε
|y(2)|>Aε1/2

(Bg)(y)w(xε, y)dy. (10.4)

10.2 Proof of Lemma 10.1

The following lemma is proven in Appendix F.

Lemma 10.3 Suppose B, g, and ϕ satisfy Assumptions 4.2, 4.3, 4.5, and 4.6. There
exist c, κ2 > 0 such that for all ε > 0 sufficiently small one has

|(Bgε)(y) − (Bg)(y)| ≤ cε |P(y)|s0−1−β0

{
1, β0 /∈ N,

| ln(P(y)/ε)|, β0 ∈ N,
y ∈ V,

(10.5)

whenever |P(y)| > κ2ε.

Return now to (10.3). Pick any y ∈ Txε . Recall that y = Y (y(2), x) is obtained by
solving x (1) = 	(1)(x (2), y) for y(1), and that y(2) ≡ Y (2)(y(2), x) (see the proof of
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Lemma 3.7). Hence |Y (y(2), xε) − Y0(y(2))| = O(ε). Strictly speaking, we cannot
invoke (6.17) here, because in (6.17) the assumption is |y(2)| = O(ε1/2). Therefore,

P(Y (y(2), xε)) = P(Y0(y
(2))) + O(ε) = �0 · (Y0(y

(2)) − Z(y(2))) + O(ε).

(10.6)

Recall that Z(y(2)) is the projection of Y0(y(2)) onto �, cf. Lemma 6.2. Using (6.3),
(8.2), and that Q is negative definite, by shrinking V , if necessary, and taking A � 1
large enough, we can make sure that (a) P(y) ≥ c|y(2)|2 for some c > 0 and (b)
inequality (10.5) applies (i.e. P(y) > κ2ε) if y ∈ Txε and y(2) ∈ �2 for all ε > 0
small enough.

Suppose first that κ > 0. Using (10.3), (10.5), and (7.7) gives an estimate

|εκ f (2)
ε (xε)| ≤ O(εκ)

∫
�2

(
εP(y)s0−β0−1 ln(P(y)/ε) + P(y)s0−β0

)
dy(2)

≤ O(εκ)

∫
�2

(
ε|y(2)|2(s0−β0−1) ln(P(y)/ε) + |y(2)|2(s0−β0)

)
dy(2)

= O(A−2κ). (10.7)

If κ = 0, we get from (10.4), (10.5), and (7.8)

| f (2)
ε (xε) − f (2)(xε)| ≤

∫
�2

εP(y)s0−β0−1 ln(P(y)/ε)dy(2)

≤ ε

∫
�2

|y(2)|2(s0−β0−1) ln(P(y)/ε)dy(2) = O(A−2 ln A).

(10.8)

As A � 1 canbe arbitrarily large, combining (10.7) and (10.8)with (8.9), (8.35) proves
(10.1). Here we use that the integral on the right in (10.1) is absolutely convergent
(see Sect. 11).

10.3 Proof of Lemma 10.2

Recall that κ = 0. By (6.3) and (10.6), for any c1 > 0 we can find A0 � 1 sufficiently
large so that P(y) > c|y(2)|2 for all A ≥ A0, ε > 0 sufficiently small, |x̌ | ≤ c1, and
y ∈ Txε as long as y

(2) ∈ �2. It follows from (7.8) that the integral in (10.4) admits a
uniform (i.e., independent of ε > 0 sufficiently small, A � 1 sufficiently large, and
x̌ confined to a bounded set) integrable bound:
∫
|y(2)|≤O(1)

P(y)s0−β0+cdy(2) ≤ c′
∫
|y(2)|≤O(1)

|y(2)|2(s0−β0+c)dy(2)

≤ c′
∫ O(1)

0
r2(s0−β0+c)r N−1dr < ∞, β0 − s0 = N/2.

(10.9)

In (10.9), the constant c in the exponent is the same as the one in (7.8). Therefore,
we can compute the limit of f (2)(xε) as ε → 0 by taking the pointwise limit of the



6 Page 34 of 59 Journal of Fourier Analysis and Applications (2023) 29 :6

integrand in (10.4). This limit is independent of A � 1. Shrinking V if necessary, by
(6.3) we can ensure that P(y) > 0 for any y ∈ Tx0 , y �= 0. Hence

lim
ε→0

f (2)(xε) =
∫
Tx0

(Bg)(y)w(x0, y)dy. (10.10)

Thus, the limit is independent of x̌ .
A slightly more general argument holds as well. Let x = (x1, 0, . . . 0)T ∈ U be

a point with x1 > 0 sufficiently small, and let y ∈ Tx be arbitrary. It follows from
(6.3) and ∂Y1/∂x1 > 0 (see (11.8)) that P(Y (y(2), x)) ≥ c(x1 + |y(2)|2) for some
c > 0. This is easy to understand geometrically. If x1 > 0, i.e. x is on the interior
side of S, no curve Sy , y ∈ V , is tangent to S. Hence the curve Tx does not intersect
� = TS , and P(Y (y(2), x)) is bounded away from zero. For any such x , we still have
the same lower bound P(Y (y(2), x)) ≥ c|y(2)|2. In view of (4.21) and (10.9), we can
use dominated convergence to conclude

∫
Tx0

(Bg)(y)w(x0, y)dy = lim
x=(x1,x⊥=0)

x1→0+

∫
y∈Tx

(Bg)(y)w(x, y)dy = (R∗Bg)(x int0 ).

(10.11)

Comparing (10.10) with (10.11) proves (10.2).

11 Computation of the DTB: End of the Proof of Theorem 4.7

In this section we evaluate the right side of (10.1) and show that it equals to (4.22) if
κ > 0 and to (4.23) if κ = 0.

The right side of (10.1) simplifies to the expression

2N/2

| det Q|1/2
∫

RN
ϒ

(
h + |v|2

)
dv = 2N/2|SN−1|

| det Q|1/2
∫ ∞

0
ϒ

(
h + q2

)
qN−1dq,

h := (∂Y1/∂x1)x̌1,

(11.1)

where |SN−1| is the area of the unit sphere in R
N . Set (see (C.3))

J (h) :=1

2

∫
ϒ(h+q)q(N−2)/2

+ dq= e(−N/2)�(N/2)

2
F−1
1d (ϒ̃(λ)(λ−i0)−N/2).

(11.2)

As is shown in (C.1)-(C.7), the leading singular term of g (cf. (4.15)):

F−1
1d (υ̃+(y)λ−(s0+1)

+ + υ̃−(y)λ−(s0+1)
− )(P(y)) (11.3)
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is indeed of the form (8.3) (where a±(y) are linear combinations of υ̃±(y)). Hence
Ã(λ) = υ̃+(y)λ−(s0+1)

+ + υ̃−(y)λ−(s0+1)
− , and (8.6), (11.2) yield

J (h) =�(N/2)

2
F−1
1d (ϕ̃(λ�0)μ(λ)) (h),

μ(λ) :=B̃0(y0,�0)υ̃
+(y0)e(−N/2)λκ−1+ + B̃0(y0,−�0)υ̃

−(y0)e(N/2)λκ−1− .

(11.4)

The function J (h) is identical to the one introduced in [19, Eq. (4.6)] if we replace n in
the latter with N +1. See [19, Sect. 4.5] for additional information about this function.
In particular, ϒ(p) = O(|p|−(β0−s0)), p → ∞ (this follows from (8.6)), hence the
integral in (11.2) is absolutely convergent if κ > 0. Also, μ(λ) is the product of three
distributions b̃(λ)Ã(λ)(λ − i0)−N/2, which is well-defined as a locally integrable
function if κ > 0.

Combine with the factor w(x0, y0) in (10.1) and the factor in front of the integral
in (11.1) and compute the inverse Fourier transform (cf. (C.3))

DTB(h) = C1

∫
ϕ̂(�0, h − p)

(
c+1 (p − i0)−κ + c−1 (p + i0)−κ

)
dp, κ > 0,

C1 = (2π)N/2w(x0, y0)| det Q|−1/2, c±1 = �(κ)

2π
B̃0(y0, ±�0)υ̃

±(y0)e(∓(β0 − s0)).

(11.5)

If κ = 0, a more careful analysis of J (h) is required (see Sect. 4.6 of [19]).
Similarly to (C.16), (C.17), condition (4.20) implies that ϒ(p) ≡ 0, p > c, for some
c > 0, hence the integral in (11.2) is still absolutely convergent. Straightforward
multiplication of the distributions to obtain μ(λ) no longer works, because μ(λ) is
not a locally integrable function if κ = 0. Fortunately, in this case μ(λ) is computed
in [19, Eq. (4.45)] (see [19, Eqs. (4.45)–(4.47)]). Observe that condition (4.20) in this
paper is equivalent to [19, condition (4.6)]. At first glance the two conditions differ
by a sign, but s0 in [19] corresponds to s0 + 1 here, which eliminates the discrepancy.
Then μ(λ) = B̃0(y0,�0)υ̃

+(y0)e(−N/2)(λ − i0)−1, and (11.5) becomes

DTB(h) =C1c1

∫
ϕ̂(�0, h − p)p0−dp = C1c1

∫ 0

−∞
ϕ̂(�0, h − p)dp, κ = 0,

c1 :=i B̃0(y0, �0)υ̃
+(y0)e(−(β0 − s0)),

(11.6)

where C1 is the same as in (11.5).
Let us now compute | det Q|1/2. The following lemma is proven in Appendix 1.

Lemma 11.1 One has

| det Q|1/2 = (∂	1/∂ y1)N/2

| det�IIS |1/2
∣∣∣∣det ∂2	1

∂x (2)∂ y(2)

∣∣∣∣ (11.7)

and

∂Y1/∂x1 = (∂	1/∂ y1)
−1, ∂Y1/∂x1, ∂	1/∂ y1 > 0, ∂Y1/∂x

⊥ = 0, (11.8)

where y = Y (y(2), x) is the function constructed in the proof of Lemma 3.7.
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Substituting (11.7) into (11.5) and comparing (11.5), (11.6) with (4.22),(4.23),
respectively, we finish the proof of Theorem 4.7.

12 Proof of Theorem 5.4

From (C.13) in the proof of Lemma 7.2 and (4.1) it follows that

(R∗Bg)(x) = 1

2π

∫
R

∫
RN

J (y, λ)e−iλP(y)w(x, y)(det GT (y(2), x))1/2dy(2)dλ,

J (y, λ) = J (1)(y, λ) + J (2)(y, λ), y = Y (y(2), x) ∈ Tx ,
J (1)(y, λ) = B̃0(y, dP(y))υ̃+(y)λβ0−s0−1

+ + B̃0(y,−dP(y))υ̃−(y)λβ0−s0−1
− ,

J (2) ∈ Sc−1(V × R), c = max(β0 − s0 − 1, β1 − s0, β0 − s1). (12.1)

By construction, P(Y0(y(2))) = �0 · (Y0(y(2)) − Z(y(2))). By (6.3),

∂y(2) P(Y0(y
(2)))|y(2)=0 = 0,

∂2P(Y0(y(2)))

(∂ y(2))2

∣∣∣∣∣
y(2)=0

= −Q, det Q �= 0. (12.2)

Therefore the stationary point y(2)∗ (x) of the phase P(Y (y(2), x)) is a smooth function
of x in a neighborhood of x = x0. Set x = xε = x0 + ε x̌ .

By (6.17), (6.18), and (12.2), application of the stationary phase method to the
integral with respect to y(2) in (12.1) yields:

Wε(x̌, λ) :=
∫

RN
J (y, λ)e−iλP(y)w(xε, y)(detG

T (y(2), xε))
1/2dy(2)

= (
R̃(1)

ε (x̌, λ) + R̃(2)
ε (x̌, λ)

)
e−iλε(h+O(ε)), y = Y (y(2), xε),

R̃(1)
ε (x̌, λ) = (2π)

N
2

(
w(x0, y0)

| det Q|1/2 + O(ε)

)(
(B̃0(y0, �0)υ̃

+(y0) + O(ε))e

(
− N

2

)
λκ−1+

+(B̃0(y0, −�0)υ̃
−(y0) + O(ε))e

(
N

2

)
λκ−1−

)

R̃(2)
ε ∈ Sκ−1−c(U × R), h = (∂Y1/∂x1)x̌1, κ > 0, (12.3)

for some c > 0 and any open, bounded set U ⊂ R
n . Here we have used also that Q

is negative definite, and detGT = 1.
The function R̃(1)

ε (x̌, λ) is the leading (as λ → ∞) term ofWε(x̌, λ). It is obtained
by replacing J (y, λ) with J (1)(y, λ) (cf. (12.1)) in (12.3) and retaining the top order
terms after the stationary phase method is applied. Thus, all the O(ε) terms in the
formula for R̃(1)

ε (x̌, λ) are independent ofλ, they are smooth functions of x̌ , and remain
O(ε) when differentiated any number of times with respect to x̌ . All the remaining
lower order (as λ → ∞) terms are absorbed into R̃(2)

ε (x̌, λ).
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The expression ε(h + O(ε)) in the exponent arises by evaluating P(y) at the
stationary point:

P(Y (y(2)∗ (xε), xε)) =P(Y (O(ε), ε x̌)) = Y1(O(ε), ε x̌) + O(ε2)

=ε[(∂Y1/∂x1)x̌1 + O(ε)], (12.4)

where we have used that x0 = 0, y0 = 0, ∂y(2)Y1 = 0 (cf. (3.17)), P(y) = y1−ψ(y⊥),
ψ(0) = 0, and ψ ′(0) = 0, and (8.35).

Now we show that

lim
ε→0

εκ(R∗Bg)(xε)

= C1F−1
1d (μ(λ))(h) = C1

(
c+
1 (h − i0)−κ + c−

1 (h + i0)−κ
)
, κ > 0,

(12.5)

whereμ(λ) is the same as in (11.4), and C1 and c
±
1 are the same as in (11.5). The limit

in (12.5) is understood in the sense of distributions with test functions ω ∈ C∞
0 (Rn)

(cf. [16] and (5.6)).
When a = −κ < 0, m = 0, and it is not necessary to require derivatives in (5.6).

Thus, the limit in (12.5) is understood in the sense of taking the limit as ε → 0 on
both sides of the following equality:

∫
Rn

εκ(R∗Bg)(x0 + ε x̌)ω(x̌)dx̌ = 1

2π

∫
R

∫
Rn

εκ−1Wε(x̌, σ/ε)ω(x̌)dx̌dσ.

(12.6)

The right-hand side of (12.5) follows from (12.3), the dominated convergence theorem,
and (C.3). The dominated convergence theorem can be applied because

(1) The function R̃ε(x̌, λ), where R̃ε := R̃(1)
ε + R̃(2)

ε , is absolutely integrable at λ = 0
since κ > 0; and

(2) The integrand in (12.6) is rapidly decreasing as σ → ∞ uniformly in ε. This
follows from integration by parts with respect to x̌1 on the right in (12.6) and
using that R̃ε ∈ Sκ−1(U × R) (cf. (12.3)), ω ∈ C∞

0 (Rn), and ∂Y1/∂x1 �= 0 (cf.
(11.8)). Clearly, the constants cm and cm1,m2 that control the derivatives of R̃ε in
(4.7) can be selected independently of ε for all ε > 0 sufficiently small.

If κ = 0, the function μ(λ) is no longer integrable at the origin, and |m| = 1 in
(5.6). Hence we use test functions of the form ∂x̌ jω(x̌), 1 ≤ j ≤ n. This makes the
same argument as in the case κ > 0 to work, but the price to pay is that the CTB is
determined up to a constant. See the paragraph following Theorem 4.6 of [19] for a
similar phenomenon. Using condition (4.20) in (12.3) implies

lim
ε→0

(R∗Bg)(xε) − C1c1(−1/2)sgn(x̌1) = const, κ = 0, (12.7)

where c1 is the same as in (11.6).
Comparing (11.5) and (11.6) with (12.5) and (12.7), respectively, we see that the

DTB is the convolution of the CTB with the scaled classical Radon transform of the
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interpolating kernel. The difference between p0− in (11.6) and (−1/2)sgn(p) in (12.7)
is due to the nonuniqueness (up to a constant).

Appendix A. Proof of Lemma 3.5

We begin by constructing an orthogonal matrix Ǔ such that the intermediate coor-
dinates y̌ = Ǔ T (ỹ − ỹ0) and the intermediate function 	̌(t, y̌) = 	̃(t, Ǔ y̌ + ỹ0)
satisfy (3.10). Here y̌ = (z(1), y(2))T . The final coordinates y and the intermediate
coordinates y̌ will have the same y(2) component, this is why we wrote y(2) in the
definition of y̌.

Let V1�V T
2 be the SVD of the Jacobian matrix 	̃

(1)
ỹ . To remind the reader, 	̃

(1)
ỹ

stands for the matrix of partial derivatives ∂ỹ	̃
(1)(x (2), ỹ) evaluated at (x (2)

0 , ỹ0). Here
V1 ∈ O(n − N ) and V2 ∈ O(n) are orthogonal matrices, and � is a rectangular
(n − N ) × n matrix with �i j = 0, i �= j , and �i i > 0, 1 ≤ i ≤ n − N . The

latter property follows from Assumption 3.1(G2) and 	̃
(1)
x (2) = 0, which yield that

rank	̃(1)
ỹ = n − N . Then we can take Ǔ = V2, so y̌ = V T

2 (ỹ − ỹ0). Indeed,

∂	̌(1)

∂ y(2)
= ∂	̃(1)

∂ ỹ

∂ ỹ

∂ y(2)
= V1�V T

2 V (2)
2 = V1�

(
0
IN

)
= 0. (A.1)

Here V (2)
2 is the n × N matrix consisting of the last N columns of V2. Likewise,

∂	̌(1)

∂z(1)
= ∂	̃(1)

∂ ỹ

∂ ỹ

∂z(1)
=V1�V T

2 V (1)
2 =V1�

(
In−N

0

)
, det

∂	̌(1)

∂z(1)
�= 0. (A.2)

The final coordinates y and the final orthogonal matrix U can be found as follows.
As was already mentioned, we keep the coordinates y(2) the same and rotate the z(1)

coordinates: z(1) → y(1). Hence (A.1), (A.2) still hold with 	̌ and z(1) replaced by 	

and y(1), respectively, and the new y coordinates satisfy (3.10).
By (3.5), the rotation z(1) → y(1) should be selected so that

∂	1/∂ y j = (∂	̌1/∂z
(1))(∂z(1)/∂ y j ) = 0, j = 2, . . . , n − N . (A.3)

If V ∈ O(n− N ) is such that z(1) = V y(1), then (A.3) implies that the second through
the last columns of V form an orthonormal basis of the subspace of R

n−N , which
consists of vectors orthogonal to ∂	̌1/∂z(1). It is clear that such a basis can be found.
Then the matrix U becomes

U = Ǔ

(
V 0
0 IN

)
. (A.4)

Our construction ensures that all components of the vector ∂y	1, except, possibly,
the first one, are zero. By (A.2), the first component is not zero. Multiplying �(y) by
a constant, we can make sure that ∂y1(� ◦ 	) = 1.
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Appendix B. Behavior ofRf Near 0

Suppose f ∈ E ′(U) is given by

f (x) = 1

2π

∫
f̃ (x, λ)e−iλ�(x)dλ, (B.1)

where � is the same as in Sects. 3, 6, and f̃ satisfies

f̃ (x, λ) = f̃ +(x)λ
−(s0+1)+ N

2+ + f̃ −(x)λ
−(s0+1)+ N

2− + R̃(x, λ),∀x ∈ U , |λ| ≥ 1;
f̃ (x, λ) ≡ 0 ∀x ∈ U \ K for some compact K ⊂ U;
|∂mx f̃ (x, λ)| ≤ cm |λ|a, a > −1, ∀x ∈ U , 0 < |λ| ≤ 1,m ∈ N

n
0;

R̃ ∈ S−(s1+1)+ N
2 (U × R), f̃ ± ∈ C∞

0 (U), (N/2) − 1 < s0 < s1,

(B.2)

for some a, cm, s0, s1, R̃, and f̃ ±. If g = R f for a sufficiently regular f , then g should
have more regularity (s0 > (N/2) − 1) than in the general case (4.15) (s0 > 0).

From (2.3), after changing variables and the defining function (t → x (2), ỹ → y,
	̃ → 	), the GRT of f is given by

R f (y) =
∫

RN
f (x)b(x, y)(det GS(x (2), y))1/2dx (2)

= 1

2π

∫
R

∫
RN

f̃ (x, λ)e−iλ�(x)b(x, y)(det GS(x (2), y))1/2dx (2)dλ,

(B.3)

where x = 	(x (2), y).
Consider the second equation for TS in (6.4) and solve it for x (2). Since det(� ◦

	)x (2)x (2) �= 0, the solution x (2)∗ = x (2)∗ (y) is a smooth function. The function x (2)∗ (y)
here is different from x (2)(y⊥) in the paragraph following (3.16), because now we
solve only the second of the two equations that define TS . The asymptotics as λ → ∞
of the integral with respect to x (2) in (B.3) is computed with the help of the stationary
phase method [33, Chapter VIII, Eqs. (2.14)–(2.20)]
∫

f̃ (x, λ)e−iλ�(x)b(x, y)(det GS(x (2), y))1/2dx (2)

=
⎛
⎝ f̃ (x∗, λ)b(x∗, y)

∣∣∣∣∣
detGS(x (2)∗ , y)

det(� ◦ 	)x (2)x (2) (x (2)∗ , y)

∣∣∣∣∣
1/2 (

2π

|λ|
)N/2

+ R̃(y, λ)

⎞
⎠

× e−i π
4 sgn(λ(�◦	)x(2)x(2) (x

(2)∗ ,y))e−iλ�(x∗), |λ| ≥ 1, R̃ ∈ S−(s0+2)(V × R),

(B.4)

for some R̃. Here x∗ = 	(x (2)∗ (y), y), and sgnM for a symmetric matrix M denotes
the signature of M , i.e. the number of positive eigenvalues of M minus the number of
negative eigenvalues.
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Introduce the function

P1(y) := (� ◦ 	)(x (2)∗ (y), y). (B.5)

Then R f can be written as

R f (y) = 1

2π

∫
υ̃(y, λ)e−iλP1(y)dλ, (B.6)

and, with the same a, s0, s1 as in (B.2) and some cm , R̃,

υ̃(y, λ) = υ̃+(y)λ−(s0+1)
+ + υ̃−(y)λ−(s0+1)

− + R̃(y, λ), |λ| ≥ 1;
|∂my ṽ(y, λ)| ≤ cm |λ|a, ∀y ∈ V, 0 < |λ| ≤ 1,m ∈ N

n
0;

R̃ ∈ S−min(s1+1,s0+2)(V × R);

υ̃±(y)=(2π)N/2 f̃ ±(x∗)b(x∗, y)
∣∣∣∣∣

detGS(x (2)∗ , y)

det(� ◦ 	)x (2)x (2) (x (2)∗ , y)

∣∣∣∣∣
1/2

× e±i π
4 N ∈ C∞(V);

(B.7)

where x∗ = 	(x (2)∗ (y), y), and we have used that (� ◦ 	)x (2)x (2) is negative definite.
By construction, P1(y) = 0 is another equation for TS . Since (� ◦ 	)x (2) = 0,

equation (6.6) does not determine x (2)∗ . Therefore, to first order, x (2)∗ is determined by
solving (6.7):

x (2)∗ (y) = −(� ◦ 	)−1
x (2)x (2) (� ◦ 	)x (2)y y + O(|y|2), (B.8)

and

P1(y) = dy(� ◦ 	)y + O(|y|2) = �0 · y + O(|y|2). (B.9)

Remark B.1 We are now in a position to discuss the implications of Assump-
tion 4.5(g4). Suppose g = R f and s0 ∈ N. From (4.17) and (B.7),

υ̃−(y)

υ̃+(y)
= (−1)s0+1,

f̃ −(x)

f̃ +(x)
= e(−2a), a := s0 − (N/2) + 1,∀y ∈ �, x ∈ S.

(B.10)

Here we have used that x∗(y) ∈ S if y ∈ �. Recall that the function e(a) is defined in
(4.18).

Suppose first that N is odd, i.e., a /∈ N. Substituting (B.10) into (B.2) gives to
leading order:

f̃ (x, λ) ∼ f̃ +(x)λ−a+ + f̃ −(x)λ−a− = f̃ +(x)(λ−a+ + e(−2a)λ−a− )

= f̃ +(x)(λ + i0)−a, λ → ∞, ∀x ∈ S.
(B.11)
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Using (B.1) and computing the inverse Fourier transform,we approximate f to leading
order:

f (x + �x) ∼ c f̃ +(x)(d�(x)�x)a−1+ , |�x | → 0, ∀x ∈ S, (B.12)

for some c �= 0. Thus, if N is odd, Assumption 4.5(g4) means that, to leading order,
the nonsmooth part of f is supported on the positive side of S.

Suppose next that N is even, i.e. a ∈ N. Substituting (B.10) into (B.2) gives:

f̃ (x, λ) ∼ f̃ +(x)λ−a, λ → ∞, ∀x ∈ S,

f (x + �x) ∼ c f̃ +(x)ha−1sgn h, h := d�(x)�x, |�x | → 0, ∀x ∈ S,
(B.13)

for some c �= 0. Thus, if N is even, Assumption 4.5(g4) means that, to leading order,
the nonsmooth part of f is symmetric about S: f (x +�x) ∼ f (x −�x) if a is even,
and f (x + �x) ∼ − f (x − �x) if a is odd.

Remark B.2 The behavior of f near S can be obtained in the same way even if s0 /∈ N,
and Assumption 4.5(g4) does not apply. Taking the inverse Fourier transform of the
first (asymptotic) equality in (B.11) using [9, p. 360, Eqs. 25, 26] shows that

f (x + �x) ∼ c+ f̃ +(x)(h − i0)a−1 + c− f̃ −(x)(h + i0)a−1,

h := d�(x)�x, |�x | → 0, ∀x ∈ S, a /∈ N,
(B.14)

for some constants c± �= 0. If a ∈ N, then the leading singularity of f may contain
logarithmic terms [9, Chapter II, Sect. 2.4, Eqs. (14) and (20)]. Computing the corre-
sponding explicit expressions is fairly straightforward and is outside the scope of the
paper.

Appendix C. Proofs of Lemmas 7.1–7.4

C.1. Proof of Lemma 7.1

The following expression for g (modulo a C∞(V) function) is obtained directly from
(4.12), (4.15):

g(y)−G(y, P(y)) ∈ C∞(V),

G(y, p) :=F−1
1d

(
υ̃+(y)λ−(s0+1)

+ + υ̃−(y)λ−(s0+1)
− + R̃(y, λ)

)
(p),

(C.1)

where R̃ ∈ S−(s1+1)(V×R), andF−1
1d is the one-dimensional inverse Fourier transform

acting with respect to λ. The inverse transforms F−1
1d (λ

−(s0+1)
± ) are understood in the

sense of distributions [9, Chapter II, Sect. 2.3]. By the properties of R̃, we get by
computing the inverse Fourier transform if s0 /∈ N:

G(y, p)= υ̃+(y)�+−s0(p) + υ̃−(y)�−−s0(p) + R(y, p), ∀y∈V, p∈R. (C.2)
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Here [9, p. 360]

�±
a (p)=F−1

1d (λa−1± )(p)= �(a)

2π
e(∓a)(p ∓ i0)−a, a �= 0,−1,−2, . . . , (C.3)

and R(y, p) = F−1
1d

(
R̃(y, λ)

)
(p). By [1, Theorem 5.12], R satisfies

|∂my ∂ lp R(y, p)| ≤ cm,l

⎧⎪⎨
⎪⎩

|p|s1−l , s1 < l,

1 + | log |p||, s1 = l,

1, s1 > l,

∀m ∈ N
n
0, l ∈ N0, y ∈ V, p �= 0,

(C.4)

for some cm,l > 0. Recall that P(y + p�0) ≡ p for any y ∈ � and p such that
y + p�0 ∈ V . Combining (C.1)–(C.4) gives the leading singular behavior of g:

g(y + p�0) ∼a+(y)ps0+ + a−(y)ps0− , p → 0, ∀y ∈ �,

a±(y) =�(−s0)

2π

(
υ̃+(y)e(±s0) + υ̃−(y)e(∓s0)

)
, s0 /∈ N.

(C.5)

See [2, 28] for a characterization of the singularities of the classical Radon transform
g = R f for more general surfaces S.

If s0∈N, condition (4.17) implies υ̃+(y)λ−(s0+1)
+ +υ̃−(y)λ−(s0+1)

− ≡ υ̃+(y)λ−(s0+1),
y ∈ �, so [9, p. 360]

G(y, p) =υ̃+(y)�−s0(p) + R(y, p), ∀y ∈ V,

�−s0(p) =F−1
1d (λ−(s0+1))(p) = 1

2

(−i)s0+1

s0! ps0 sgn(p), s0 ∈ N.
(C.6)

An equation of the kind (C.5) still holds:

g(y + p�0) ∼a+(y)ps0+ + a−(y)ps0− , p → 0, ∀y ∈ �,

a±(y) = υ̃+(y)

2s0! e(∓(s0 + 1)), s0 ∈ N.
(C.7)

Combining (C.1)–(C.6) and using that (C.2) and (C.6) can be differentiated proves
(7.5).

From the second equation in (C.1), (C.6), and (7.3) we get also

∂my G(y, ·) ∈
{
Cs0∗ (R) ∀m ∈ N

n
0,

Cs0
0 (R) ∀m ∈ N

n
0 if s0 ∈ N.

(C.8)

Together with the first equation in (C.1) this proves (7.6).
If υ̃± ≡ 0, the result follows from the properties of R̃(y, λ) and (7.3), because

s1 /∈ N.
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C.2. Proof of Lemma 7.2

From (4.3) and (4.12),

(Bg)(y) = 1

(2π)n+1

∫
Rn

B̃(y, η)

∫
V

∫
R

υ̃(z, λ)e−iλP(z)+iη(z−y)dλdzdη. (C.9)

As is standard (see e.g., [33]), set u = η/λ and consider the phase function

W (z, u, y) := P(z) − u(z − y). (C.10)

The only critical point (z0, u0) and the corresponding Hessian H are given by

z0 = y, u0 = dP(y), H(y) =
(
Pyy(y) −In
−In 0

)
. (C.11)

Clearly, | det H(y)| = 1 and sgn H(y) = 0 for any y ∈ V . By the stationary phase
method (see [33, Chapter VIII, Eqs. (2.14)–(2.20)]) we get using (4.8) and (4.15)

J (y, λ) := |λ|n
(2π)n

∫
Rn

∫
V
B̃(y, λu)υ̃(z, λ)e−iλ(P(z)−P(y)−u(z−y))dzdu

= B̃(y, λdP(y))υ̃(y, λ) + R̃(y, λ),

J ∈ Sβ0−s0−1(V × R), R̃ ∈ Sβ0−s0−2(V × R).

(C.12)

The fact that the u-integration is over an unbounded domain does not affect the result,
because integrating by parts with respect to z we obtain a function that decreases
rapidly as |u| → ∞ (i.e., when |u| > supy∈V |dP(y)|) and λ → ∞.

Substituting (C.12) into (C.9) and using (4.8), (4.15) leads to

(Bg)(y) = 1

2π

∫
J (y, λ)e−iλP(y)dλ

= F−1
1d

(
B̃0(y, dP(y))υ̃+(y)λβ0−s0−1

+

+ B̃0(y,−dP(y))υ̃−(y)λβ0−s0−1
− + R̃(y, λ)

)
(P(y)),

R̃ ∈ Sc−1(V × R), c := max(β0 − s0 − 1, β1 − s0, β0 − s1) < β0 − s0.

(C.13)

The extra factor |λ|n in (C.12) cancels because |λ|ndu = dη. Computing the
asymptotics of the inverse Fourier transform as p = P(y) → 0 and using that
B̃0(y,±dP(y)) ∈ C∞

0 (V) and P(y + p�0) ≡ p if y ∈ � gives

(Bg)(y + p�0) =c+
1 �+

β0−s0
(p) + c−

1 �−
β0−s0

(p) + R(y + p�0, p),

c±
1 =B̃0(y,±dP(y))υ̃±(y), ∀y ∈ �.

(C.14)
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Recall that�±
a are defined in (C.3), and R(y, p) = F−1

1d

(
R̃(y, λ)

)
(p). By [1, Theorem

5.12] and (C.13), the remainder satisfies

|∂my ∂ lp R(y, p)| ≤ cm,l

⎧⎪⎨
⎪⎩

|p|c−l , c < l,

1 + | log |p||, c = l,

1, c > l,

∀m ∈ N
n
0, l ∈ N0, y ∈ V, p �= 0,

(C.15)

for some cm,l > 0. The constant c here is the same as in (C.13). The estimate (7.7)
follows from (C.14), (C.15).

If κ = 0, condition (4.20) implies

B̃0(y, dP(y))υ̃+(y)λβ0−s0−1
+ + B̃0(y,−dP(y))υ̃−(y)λβ0−s0−1

−
= B̃0(y, dP(y))υ̃+(y)(λ − i0)β0−s0−1 ∀y ∈ �,

(C.16)

and

(Bg)(y + p�0) =B̃0(y, dP(y))υ̃+(y)

{
e(−β0+s0+1)
�(−β0+s0+1) p

−(β0−s0)− , β0 − s0 /∈ N

0, β0 − s0 ∈ N

+ R(y + p�0, p) ∀y ∈ �, p �= 0.

(C.17)

This proves (7.8).

C.3. Proof of Lemma 7.3

Using that l > s0 and ϕ has �β+
0 � bounded derivatives and ϕ is exact to the degree

�β0�, we get with any 0 ≤ M ≤ l:

g(l)
ε (y) =

∑
| j |≤ϑ/ε

∂ ly1ϕ

(
y − ŷ j

ε

)⎛
⎝g(ŷ j ) −

∑
|m|≤M−1

(ŷ j − y)m

m! g(m)(y)

⎞
⎠

= ε−l
∑

| j |≤ϑ/ε

(∂ lv1ϕ)

(
y − ŷ j

ε

) ∑
|m|=M

Rm(ŷ j , y)(ŷ j − y)m .

(C.18)

Here (∂v1ϕ)(·) is the derivative of ϕ(v) with respect to v1 evaluated at the indicated
point, and the remainder satisfies

Rm(ŷ j , y) = |m|
m!

∫ 1

0
(1 − t)|m|−1g(m)(y + t(ŷ j − y))dt,

|Rm(ŷ j , y)| ≤ 1

m! max
|m′|=|m|,v∈suppϕ

|g(m′)(y + εv)|.
(C.19)
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To prove the top case in (7.10) select κ1 > 0 so that |P(y)| ≥ κ1ε and ϕ((y −
w)/ε) �= 0 implies |P(w)| ≥ ε. By Lemma 7.1, this ensures that for each m ∈ N

n
0

there exists c(m) > 0 such that

max
v∈suppϕ |g(m)(y + εv)| ≤ c(m)

{
|P(y)|s0−|m|, |m| > s0,

1, |m| ≤ s0,
, |P(y)| ≥ κ1ε.

(C.20)

Set M = l in (C.18). Then (C.20) together with the bottom line in (C.19) prove the
result.

To prove the middle case in (7.10), set M = �s0� in (C.18). If s0 ∈ N, (7.6) and
(C.19) imply that Rm = O(1), thereby proving the assertion. If s0 /∈ N, the remainder
can be modified as follows

R̃m(ŷ j , y) = |m|
m!

∫ 1

0
(1 − t)|m|−1[g(m)(y + t(ŷ j −y))−g(m)(y)]dt=O(ε{s0}).

(C.21)

Here we have used (7.4) with r = s0. Since l > M , we can replace Rm with R̃m in
(C.18) without changing the equality, and the desired inequality follows.

The bottom case in (7.10) follows by setting M = l in (C.18) and noticing that
(7.6) and (C.19) imply Rm = O(1).

If υ̃± ≡ 0, the same argument as above applies with s0 replaced by s1. The only
change is that there is no need to consider the case s1 ∈ N.

C.4. Proof of Lemma 7.4

Since κ1 > 0 is the same as in the proof of Lemma 7.3, |P(y)| ≥ κ1ε and ϕ((y −
w)/ε) �= 0 imply |P(w)| ≥ ε. Similarly to (C.18), using the properties of ϕ we obtain

g(l)
ε (y) =

∑
| j |≤ϑ/ε

∂ly1ϕ

(
y − ŷ j

ε

)( ∑
|m|≤M−1

(ŷ j − y)m

m! g(m)(y)

+
∑

|m|=M

Rm(ŷ j , y)(ŷ j − y)m
)

= g(l)(y) +
∑

| j |≤ϑ/ε

∂ly1ϕ

(
y − ŷ j

ε

) ∑
|m|=M

Rm(ŷ j , y)(ŷ j − y)m , l < M ≤ �β0�.

(C.22)

The term g(l)(y) on the right in (C.22) is the only term from the Taylor polynomial that
remains after the summationwith respect to j . In particular, all the terms corresponding
to l < |m| ≤ M − 1 are converted to zero, because ϕ is exact to the degree �β0�, and
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∑
| j |≤ϑ/ε

∂ ly1ϕ

(
y − ŷ j

ε

)
(ŷ j − y)m = ∂ lw1

(w − y)m |w=y = 0,

∀m ∈ N
n
0 : l < |m| ≤ M − 1, y ∈ V.

(C.23)

Using (C.22) with M = l + 1 and appealing to (C.19), (C.20) proves (7.11). Indeed,
recall that l ≥ �s−

0 �, so M = l + 1 ≥ s0. If s0 /∈ N, then M > s0, and the top case
in (C.20) applies when estimating Rm , |m| = M . If s0 ∈ N, then M = s0, and the
bottom case in (C.20) applies when estimating Rm , |m| = M .

To prove (7.12), we use (C.22) with M = �s0�. If s0 ∈ N, then l < �s0� = s0 (by
assumption, l ≤ �s−

0 �), and (C.22), (7.6) prove (7.12).
If s0 /∈ N, we replace Rm with R̃m in (C.22) as this was done in the proof of

Lemma7.3.As before, this does not invalidate the equality and extends its applicability
to the case l = M . Note, however, that if l = M , then the term g(l)(y) on the right
in (C.22) comes not from the Taylor polynomial, but from the modification of the
remainder. The desired assertion follows from (C.21) and the modified (C.22).

If υ̃± ≡ 0, the same argument as above applies with s0 replaced by s1. The only
change is that there is no need to consider the case s1 ∈ N.

Appendix D. Proof of Lemma 8.2

Throughout the proof, c denotes various positive constants that can vary from one
place to the next. To simplify notations, in this proof we drop the subscripts from β0
and s0: β = β0, s = s0. By the choice of y coordinates (see (3.9)) and by (3.18),
y1 = �0 · y (recall that |�0| = 1).

Using (4.6), (8.3), and that the symbol of B is homogeneous of degree β we have

εβ(Bgε)(y) =
∑

| j |≤ϑ/ε

(
Bϕ

(
· − (ŷ j/ε)

))
(y/ε)

[
a+(ŷ j )Ps0+ (ŷ j ) + a−(ŷ j )Ps0− (ŷ j )

]
,

(D.1)

where

(Bϕ(· − a)) (u) := (Bϕ1)(u), ϕ1(u) := ϕ(u − a). (D.2)

Also (cf. (8.11)):

εsA
(

�0 · ŷ
j − z

ε

)
= [a+(y0)(ŷ

j
1 − z1)

s+ + a−(y0)(ŷ
j
1 − z1)

s−]. (D.3)

We start by estimating the difference between the terms with the subscript ‘+’ inside
the brackets in (D.1) and (D.3)∣∣a+(ŷ j )Ps+(ŷ j ) − a+(y0)(ŷ

j
1 − z1)

s+
∣∣

≤
∣∣∣Ps+(ŷ j ) − (ŷ j

1 − z1)
s+
∣∣∣ |a+(ŷ j )| + |ŷ j

1 − z1|s
∣∣∣a+(ŷ j ) − a+(y0)

∣∣∣ ,
ŷ j =UT (εDj − ỹ0).

(D.4)
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The following inequalities can be shown to hold. For all q, r ∈ R one has

∣∣(q + r)s± − qs±
∣∣ ≤ 2s−1(|r |s + s|q|s−1|r |), s > 1,∣∣(q + r)s± − qs±
∣∣ ≤ |r |s, 0 < s ≤ 1.

(D.5)

Consider the top inequality. The case q, q + r ≤ 0 is trivial. The cases q + r ≤ 0 ≤ q
and q ≤ 0 ≤ q+r can be verified directly. By a change of variables and convexity, it is
easily seen that the case r < 0 < q follows from the case q, r > 0. To prove the latter,
divide by qs and set x = r/q. Both sides equal zero when x = 0. Differentiating with
respect to x , we see that the inequality is proven because (1+ x)s−1 ≤ 2s−1(xs−1+1)
(consider 0 < x ≤ 1 and x ≥ 1). The second inequality in (D.5) is obvious.

The assumption z ∈ � implies z1 = ψ(z⊥), so

P(ŷ j ) = ŷ j
1 − ψ((ŷ j )⊥) = ŷ j

1 − z1 + [ψ(z⊥) − ψ((ŷ j )⊥)]. (D.6)

Setting q = ŷ j
1 − z1 and r = ψ(z⊥) − ψ((ŷ j )⊥) in (D.5) and using (D.6) and that

a+(y) is bounded, we estimate the first term on the right in (D.4) as follows
∣∣∣Ps+(ŷ j ) − (ŷ j1 − z1)

s+
∣∣∣ |a+(ŷ j )|

≤ c

(
|ψ(z⊥) − ψ((ŷ j )⊥)|s +

{
|ŷ j1 − z1|s−1|ψ(z⊥) − ψ((ŷ j )⊥)|, s > 1

0, 0 < s ≤ 1

)
.

(D.7)

Recall that in this lemma we assume that the amplitude of B satisfies B̃(y, η) ≡
B̃0(y, η). By (4.8), the fact that the amplitude of B is homogeneous in the frequency
variable (and, therefore, the Schwartz kernel K (y, w) of B is homogeneous inw), and
Assumption 4.3(IK1),

|Bϕ(u)| ≤ c (1 + |u|)−(β+n) , u ∈ R
n . (D.8)

Therefore, by (8.11) and (D.1)–(D.3), we have to estimate the following two sums

J1 :=
∑

| j |≤ϑ/ε

|(ψ(z⊥) − ψ((ŷ j )⊥))/ε|s
(1 + |(y − ŷ j )/ε|)β+n

,

J2 :=
∑

| j |≤ϑ/ε

|(ŷ j
1 − z1)/ε|s−1|ψ(z⊥) − ψ((ŷ j )⊥)|/ε

(1 + |(y − ŷ j )/ε|)β+n
.

(D.9)

The second sum is required if s > 1.
Note that the quantities J1,2 include the factor ε−s , which appears on the left in

(8.11) and has been unaccounted for until now. The remaining factor εβ has been
accounted for in (D.1). In (8.11), B0 already acts with respect to the rescaled variable
y/ε, so the factor εβ is not needed on the right in (8.11). Since B0 is shift-invariant, it
is not necessary to represent its action in the form (D.2).
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Assumptions of the lemma imply

|ψ(z⊥) − ψ((ŷ j )⊥)| ≤ |ψ ′(y⊥∗ )||z⊥ − (ŷ j )⊥| ≤ c(ε1/2 + |z⊥ − (ŷ j )⊥|)|z⊥ − (ŷ j )⊥|
(D.10)

for some c > 0. Here y⊥∗ ∈ R
n−1 is some point on the line segment with the endpoints

z⊥, (ŷ j )⊥, and we have used that |ψ ′(y⊥∗ )| ≤ c(|z⊥| + |z⊥ − (ŷ j )⊥|), which follows
from ψ ′(y⊥

0 ) = 0.
Letm = m(z, ε) ∈ Z

n be such that |(z+UT ỹ0)/ε−UT Dm| < c. The dependence
of m on z and ε is omitted from notations. This implies

max(|z1 − ŷ j1 |, |z⊥ − (ŷ j )⊥|) ≤ |z − ŷ j | ≤ cε

∣∣∣∣∣
z +UT ỹ0

ε
−UT Dm −UT D( j − m)

∣∣∣∣∣
≤ cε(c + | j − m|). (D.11)

Also, using that |y − z| = O(ε) gives

∣∣∣∣ y − ŷ j

ε

∣∣∣∣ =
∣∣∣∣ (y − z) + (z − ŷ j )

ε

∣∣∣∣ ≥ c| j − m| if | j − m| � 1. (D.12)

Substitute (D.10) into the expression for J1 in (D.9), shift the index j → j − m, and
use (D.11), (D.12):

J1 ≤c
∑

| j |≤ϑ/ε

(ε1/2 + ε(c + | j |))s(c + | j |)s
(1 + c| j |)β+n

+ O(εs/2). (D.13)

Here we have used that we can ignore any finite number of terms (their contribution
is O(εs/2)), and (D.12) applies to the remaining terms. This gives

J1 ≤ c
∑

0<| j |≤ϑ/ε

(ε1/2 + ε| j |)s
| j |β+n−s

+ O(εs/2)

≤ c
∫ ϑ/ε

1

(ε1/2 + εr)s

rβ+1−s
dr + O(εs/2) = O(εmin(β−s,s/2)).

(D.14)

To estimate J2, we use the same approach as in (D.10)–(D.14):

J2 ≤ c
∑

| j |≤ϑ/ε

(ε1/2 + ε| j |)(c + | j |)s
(1 + c| j |)β+n

+ O(ε1/2)

≤ c
∑

0<| j |≤ϑ/ε

ε1/2 + ε| j |
| j |β+n−s

+ O(ε1/2)

≤ c
∫ ϑ/ε

1

ε1/2 + εr

rβ+1−s
dr + O(ε1/2) = O(εmin(β−s,1/2)) = O(ε1/2).

(D.15)
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Here we have used that β − s ≥ N/2 ≥ 1/2.
The second term on the right in (D.4) is estimated as follows:

|ŷ j
1 −z1|s

∣∣∣a+(ŷ j ) − a+(y0)
∣∣∣ ≤ |ŷ j

1 −z1|s
∣∣∣(a+(ŷ j )−a+(z)) + (a+(z) − a+(y0))

∣∣∣
≤ c[ε(c + | j − m|)]s(ε(c + | j − m|) + ε1/2).

(D.16)

Shifting the j index as before and estimating a finite number of terms by O(ε1/2)

gives an upper bound

∑
0<| j |≤ϑ/ε

ε1/2 + ε| j |
| j |β+n−s

+ O(ε1/2) = O(ε1/2). (D.17)

The terms with the subscript ′−′ in (8.11) are estimated analogously. Our argument
proves (8.11) with B instead of B0 on the right. This implies, in particular, that the
sum on the right in (8.11) is restricted to | j | ≤ ϑ/ε.

The left-hand side of (8.11) is bounded, because

|P(ŷ j )| ≤ |ŷ j
1 − z1| + |ψ(z⊥) − ψ((ŷ j )⊥)|

≤ cε(c + | j − m|)(1 + (ε1/2 + ε(c + | j − m|)))
≤ cε(1 + | j − m|)

(D.18)

by (D.6), (D.10), (D.11), and | j | ≤ ϑ/ε, and

|P(ŷ j )/ε|s
(1 + |(y − ŷ j )/ε|)β+n

≤ c
∑

0<| j |≤ϑ/ε

1

| j |β+n−s
+ O(1) < ∞. (D.19)

It is easy to see that

εβ

∣∣∣∣
(
Bϕ

(
· − ŷ j

ε

))
(y) − B0ϕ

(
y − ŷ j

ε

)∣∣∣∣ ≤ c
ε1/2

(1 + |(y − ŷ j )/ε|)β+n
.

(D.20)

This follows from ϕ ∈ C
�β+

0 �
0 , |y − y0| = O(ε1/2), and

|∂mη (B̃0(y, η) − B̃0(y0, η))| ≤ cm |y − y0||η|β−|m|, |η| ≥ 1, m ∈ N
n
0 . (D.21)

Together with (D.19) this implies that replacing y with y0 in the amplitude of the
�DO B (i.e., replacing B̃0(y, η) with B̃0(y0, η)) introduces an error of the magnitude
O(ε1/2), while keeping the sum restricted to | j | ≤ ϑ/ε.

Using that |y − z| = O(ε), (D.3) and (D.8) imply that the terms of the series on
the right in (8.11) are bounded by O((1+ | j |)s−(β+n)). Hence the series is absolutely
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convergent. Contribution of the terms corresponding to | j | > ϑ/ε is bounded by
c
∑

| j |>ϑ/ε | j |s−(β+n) = O(εβ−s) → 0 for some c > 0, and the lemma is proven.

Appendix E. Proof of Lemma 8.3

Pick some sufficiently large J � 1. Then, with D1 := UT D,

φ(v + �v, p) − φ(v, p) =
∑
j∈Zn

[
B0ϕ(v + �v − D1 j) − B0ϕ(v − D1 j)

]
A(�0 · D1 j − p)

=
∑
| j |≤J

(·) +
∑

| j |>J

(·) =: J1 + J2.
(E.1)

Because B0 ∈ Sβ0(Rn × R
n), [1, Theorem 6.19] implies that B0 : C

�β+
0 �

∗ → Ca∗ ,
a = �β+

0 � − β0 = 1 − {β0} > 0, is continuous. Nonsmoothness of the symbol at
the origin, which is not allowed by the assumptions of the theorem, is irrelevant. By

assumption, ϕ ∈ C
�β+

0 �
0 (Rn), so J1 = O(|�v|a). In the second term J2, the arguments

of B0ϕ are bounded away from zero, and the factor in brackets is smooth. Moreover,
using again that the Schwartz kernel K (y, w) of B0 is homogeneous in w, we have,

|∂ulB0ϕ(u)| = O(|u|−(n+β0+1)), |u| → ∞, 1 ≤ l ≤ n. (E.2)

Using the argument analogous to the one in (D.19), we easily see that J2 = O(|�v|).
This proves the first line in (8.22).

The second line in (8.22) is proven analogously:

φ(v, p + �p) − φ(v, p)

=
∑
j∈Zn

B0ϕ(v − D1 j)
[
A(�0 · D1 j − (p + �p)) − A(�0 · D1 j − p)

]

=
∑

|�0·D1 j |≤J

(·) +
∑

|�0·D1 j |>J

(·) =: J1 + J2.

(E.3)

Clearly, A(q + �p) − A(q) = O(|�p|min(s0,1)) uniformly in q confined to any
bounded set. Using in addition that B0ϕ(u) is bounded and B0ϕ(u) = O

(|u|−(n+β0)
)

as |u| → ∞, we get that J1 = O(|�p|min(s0,1)).
In J2, the argument ofA is bounded away fromzero. In viewofA′(q) = O(|q|s0−1),

|q| → ∞, we finish the proof by noticing that

|J2| ≤ O(|�p|)
∑
| j |>0

| j |s0−1

| j |n+β0+1 = O(|�p|). (E.4)

The fact that both estimates are uniformwith respect to v and p confined to bounded
sets is obvious.
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Appendix F. Proof of Lemma 10.3

Asusual, c denotes various positive constants thatmayhavedifferent values in different
places. Recall that β0 − s0 > 0. Set k := �β0�, ν := k − β0. Thus, 0 ≤ ν < 1, and
ν = 0 if β0 ∈ N. Similarly to (9.2),

B = W1∂
k
y1 + W2, (F.1)

for some W1 ∈ S−ν(V × R
n),W2 ∈ S−∞(V × R

n).

F.1. Proof in the Caseˇ0 /∈ NNN

Let K (y, w)be theSchwartz kernel ofW1. Suppose, for example, that P := P(y) > 0.
The case P < 0 is completely analogous. Initially, as κ2 in Lemma 10.3, we can pick
any constant that satisfies κ2 ≥ 2κ1, where κ1 is the same as in (7.11). This implies
that P/2 ≥ κ1ε. Later (see the beginning of the proof of Lemma F.1), we update the
choice of κ2. Denote (cf. (10.5))

Jε(y) := (Bgε)(y) − (Bg)(y) = (B�gε)(y). (F.2)

Then

Jε(y) =J (1)
ε (y) + J (2)

ε (y) + O(εs0),

J (1)
ε (y) :=

∫
|P(w)|≥P/2

K (y, y − w)�g(k)
ε (w)dw,

J (2)
ε (y) :=

∫
|P(w)|≤P/2

K (y, y − w)�g(k)
ε (w)dw.

(F.3)

The big-O term in (F.3) appears because of the �DOW2 in (F.1), and the magnitude
of the term follows from (7.12) with l = 0. From (7.9) and (7.11) with l = k, (F.3),
and (9.4) with l = 0, it follows that

|J (1)
ε (y)| ≤ cε

∫
|P(w)|≥P/2

|w1 − ψ(w⊥)|s0−1−k

|y − w|n−ν
dw

= cε
∫

|p|≥P/2

∫ |p|s0−1−k

|([P − p] + ψ(y⊥) − ψ(w⊥), y⊥ − w⊥)|n−ν
dw⊥dp.

(F.4)

Hence, we obtain similarly to (9.8)

|J (1)
ε (y)| ≤cε

∫ ∫
|p|≥P/2

|p|s0−1−k

(|P − p| + |w⊥|)n−ν
dpdw⊥

≤cε
∫

|p|≥P/2

|p|s0−1−k

|P − p|1−ν
dp = cεPs0−1−β0 .

(F.5)
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To estimate J (2)
ε (y), integrate by parts with respect to w1 in (F.3):

|J (2)
ε (y)| ≤c

⎛
⎝Jk +

k−1∑
l=l0

(J−
l + J+

l )

⎞
⎠ , l0 := �s−

0 �,

Jk :=
∫

|P(w)|≤P/2

∣∣∣∂k−l0
w1

K (y, y − w)�g(l0)
ε (w)

∣∣∣ dw,

J±
l :=

∫
Rn−1

∣∣∣∂k−1−l
w1

K (y, y − w)�g(l)
ε (w)

∣∣∣
w=(ψ(w⊥)±P/2,w⊥)

dw⊥.

(F.6)

By construction, P/2 ≥ κ1ε. Using (7.11), (7.12) with l = l0 (both inequalities apply
when l = l0 = �s−

0 �), and arguing similarly to (F.4), (F.5), gives

Jk ≤c
∫

|p|≤κ1ε

εs0−l0

|P − p|β0+1−l0
dp + cε

∫
κ1ε≤|p|≤P/2

|p|s0−l0−1

|P − p|β0+1−l0
dp

≤ cεs0−l0+1P−(β0+1−l0) + cεPs0−1−β0

∫
κ1(ε/P)≤| p̌|≤1/2

| p̌|s0−l0−1

|1 − p̌|β0+1−l0
d p̌

≤ cεs0−l0+1P−(β0+1−l0) + cεPs0−1−β0
(
1 + (ε/P)s0−l0

)
,

(F.7)

where we have used that l0 < s0. Using again that ε/P ≤ 1/(2κ1) gives Jk ≤
cεPs0−1−β0 .

Next we estimate the boundary terms in (F.6). By (7.11) (using that �s−
0 � = l0 ≤

l ≤ k − 1) and (9.4),

J±
l ≤ cε

∫
Rn−1

|w1 − ψ(w⊥)|s0−1−l

|y − w|n+β0−1−l
dw⊥, w1 = ψ(w⊥) ± P/2. (F.8)

Appealing to (9.7) gives

J±
l ≤ cεPs0−1−l

∫
Rn−1

dw⊥

(P ± (P/2) + |w⊥|)n+β0−l−1 = cεPs0−1−β0 , (F.9)

which finishes the proof. As easily checked, the integral in (F.9) converges because
l ≤ k − 1 < β0.

F.2. Proof in the Caseˇ0 ∈ NNN

Suppose now β0 ∈ N, i.e. k = β0 and ν = 0. All the terms that do not involve
integration over a neighborhood of the set {w ∈ V : P(w) = P} are estimated the
same way as before. For example, estimation of J (2)

ε (y) is completely analogous to
(F.6)–(F.9), and we obtain the same bound |J (2)

ε (y)| ≤ cεPs0−1−β0 . Estimating of
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J (1)
ε is much more involved now, because the singularity at P(w) = P is no longer

integrable. We have with some c1 > 0, which is to be selected later:

J (1)
ε (y) =J (1a)

ε (y) + J (1b)
ε (y) + J (1c)

ε (y),

J (1a)
ε (y) :=

∫
P/2≤P(w)≤P−c1ε

K (y, y − w)�g(β0)
ε (w)dw,

J (1b)
ε (y) :=

∫
P−c1ε≤P(w)≤P+c1ε

K (y, y − w)�g(β0)
ε (w)dw,

J (1c)
ε (y) :=

∫
P+c1ε≤P(w)

K (y, y − w)�g(β0)
ε (w)dw.

(F.10)

We do not estimate the integral
∫
P(w)≤P/2(·)dw, because the domain of integration

is bounded away from the set {w ∈ V : P(w) = P}, and this integral admits the
same bound as in the previous subsection (cf. (F.5)). Similarly to (F.5), by (7.11) with
l = β0,

|J (1a)
ε (y)| ≤cε

∫
P/2≤p≤P−c1ε

ps0−1−β0

P − p
dp = cεPs0−1−β0 ln(P/ε),

|J (1c)
ε (y)| ≤cε

∫
P+c1ε≤p

ps0−1−β0

p − P
dp = cεPs0−1−β0 ln(P/ε).

(F.11)

The term J (1b)
ε is split further as follows:

J (1b)
ε (y) =J (1b1)

ε (y) + J (1b2)
ε (y) + J (1b3)

ε (y),

J (1b1)
ε (y) :=

∫
|P−P(w)|≤c1ε
|y⊥−w⊥|≥c1P

K (y, y − w)�g(β0)
ε (w)dw,

J (1b2)
ε (y) :=

∫
|P−P(w)|≤c1ε
|y⊥−w⊥|≤c1P

K (y, y − w)(�g(β0)
ε (w) − �g(β0)

ε (y))dw,

J (1b3)
ε (y) :=�g(β0)

ε (y)I , I :=
∫

|P−P(w)|≤c1ε
|y⊥−w⊥|≤c1P

K (y, y − w)dw.

(F.12)

Similarly to (F.5), by (7.11) with l = β0,

|J (1b1)
ε (y)| ≤cε

∫
|w⊥|≥c1P

∫
|P−p|≤c1ε

ps0−1−β0

(|P− p|+|w⊥|)n dpdw
⊥ ≤ cε2Ps0−2−β0 .

(F.13)

The second part is estimated by rearranging the �g terms:

J (1b2)
ε (y) :=

∫
|P−P(w)|≤c1ε
|y⊥−w⊥|≤c1P

K (y, y − w)
[
(g(β0)

ε (w) − g(β0)
ε (y))

− (g(β0)(w) − g(β0)(y))
]
dw.

(F.14)
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Lemma F.1 There exist c, c1, κ2 > 0 so that

|g(β0)(w) − g(β0)(y)| ≤ c|w − y|P(y)s0−1−β0 ,

|g(β0)
ε (w) − g(β0)

ε (y)| ≤ c|w − y|P(y)s0−1−β0 ,

if y, w ∈ V, |P(y) − P(w)| ≤ c1ε, |y⊥ − w⊥| ≤ c1P(y), P(y) > κ2ε.

(F.15)

Proof We begin by updating the choice of κ2. Select κ2 ≥ 2κ1 so that P ≥ κ2ε

implies

P(v) ≥ cP for any v ∈ V, |v − y| ≤ εdϕ, dϕ := diam(suppϕ), (F.16)

for some c > 0.
Next we select c1. First, pick any c1 so that 0 < c1 ≤ κ1. This ensures that

P(w) ≥ P − |P − P(w)| ≥ κ1ε, and (7.11) can be used to estimate the derivatives
of �gε(w). Let cψ := maxv∈V |ψ ′(v)|. Our assumptions imply

|y1 − w1| ≤ |P − P(w)| + |ψ(y⊥) − ψ(w⊥)| ≤ c1(ε + cψ P). (F.17)

Let v be any point on the line segmentwith the endpointsw and y, i.e. v = y+λ(w−y),
0 ≤ λ ≤ 1. Then

P(v) ≥ P − (|y1 − w1| + |ψ(v⊥) − ψ(y⊥)|) ≥ P − c1(ε + cψ P) − cψc1P.

(F.18)

Reducing c1 > 0 even further, we can ensure that P(v) ≥ cP for some c > 0. This is
the value of c1 that is assumed starting from (F.10). In the rest of the proof we assume
that w, y ∈ V satisfy the inequalities on the last line in (F.15) with the constants c1
and κ2 that we have just selected.

From (7.5) with |m| = β0 + 1,

|g(β0)(w) − g(β0)(y)| ≤ |w − y| max
0≤λ≤1

|(∂yg(β0))(y + λ(w − y))|
≤ c|w − y|Ps0−1−β0 (F.19)

for some c > 0.
To prove the second line in (F.15), find c2,3 > 0 such that

v ∈ V, |v − y| ≤ ε(c2 + dϕ) implies P(v) ≥ c3P. (F.20)

By (F.16), c2,3 with the required properties do exist.
Now, assume first that |w − y| ≥ c2ε, where c2 is the same as in (F.20). Clearly,

|g(β0)
ε (w) − g(β0)

ε (y)| ≤ |�g(β0)
ε (w)| + |g(β0)(w) − g(β0)(y)| + |�g(β0)

ε (y)|.
(F.21)
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By construction, (7.11) applies to �g(β0)
ε (w). Applying (7.11) to the first and third

terms on the right in (F.21), and (F.19) – to the second term on the right, gives

|g(β0)
ε (w) − g(β0)

ε (y)| ≤ cεP(w)s0−1−β0 + c|w − y|Ps0−1−β0 + cεPs0−1−β0

≤ c|w − y|Ps0−1−β0 ,
(F.22)

because ε ≤ (1/c2)|w − y| and

P(w) ≥ P − |P − P(w)| ≥ P(1 − c1(ε/P)) ≥ P(1 − c1/(2κ1)) ≥ P/2. (F.23)

If |w − y| ≤ c2ε, we argue similarly to (C.22):

g(β0)
ε (w) − g(β0)

ε (y) = ε−β0
∑
j

(
(∂β0

v1
ϕ)

(
w − ŷ j

ε

)
− (∂β0

v1
ϕ)

(
y − ŷ j

ε

))

×
∑

|m|=β0+1

Rm(ŷ j , y)(ŷ j − y)m

|Rm(ŷ j , y)| ≤ 1

(β0 + 1)! max
|m′|=β0+1,|y−v|≤(c2+dϕ)ε

|∂m′
v g(v)|.

(F.24)

Here (∂v1ϕ)(·) is the derivative of ϕ(v) with respect to v1 evaluated at the indi-
cated point. By (F.20), (7.5) implies |Rm(ŷ j , y)| ≤ cPs0−1−β0 . The assertion follows

because ϕ ∈ C
�β+

0 �
0 (Rn). ��

Applying (9.4) with ν = l = 0 and (F.15) in (F.14) yields (cf. (9.6)–(9.8))

|J (1b2)
ε (y)| ≤ cPs0−1−β0

∫
|P−P(w)|≤c1ε
|y⊥−w⊥|≤c1P

|w − y|
|y − w|n dw

≤cPs0−1−β0

∫
|w⊥|≤c1P

∫
|P−p|≤c1ε

1

(|P − p| + |w⊥|)n−1
dpdw⊥

≤cPs0−1−β0

∫
|w⊥|≤c1P

∫
|p|≤c1ε

dpdw⊥
(|p| + |w⊥|)n−1

= cεPs0−1−β0 ln

(
P

ε

)
.

(F.25)

The final major step is to estimate the integral in the definition of J (1b3)
ε .

I =
∫
|y⊥−w⊥|≤c1P

∫
|(y1−w1)−(ψ(y⊥)−ψ(w⊥)|≤c1ε

K (y, (y1 − w1, y
⊥ − w⊥))dw1dw

⊥

=
∫
|v⊥|≤c1P

∫ c1ε

−c1ε
K (y, (v1 + h(v⊥), v⊥))dv1dv

⊥, h(v⊥) := ψ(y⊥) − ψ(y⊥ − v⊥).

(F.26)
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Let W̃ (y, η) be the amplitude of W1 ∈ S0(V × R
n) in (F.1). Then

I = c
∫

|v⊥|≤c1P

∫ c1ε

−c1ε

∫
�

W̃ (y, η)e−i(η1(v1+h(v⊥))+η⊥v⊥)dηdv1dv
⊥

= c
∫

�

sin(c1εη1)

η1

∫
|v⊥|≤c1P

W̃ (y, η)e−i(η1h(v⊥)+η⊥v⊥)dv⊥dη.

(F.27)

Our goal is to show that I is uniformly bounded for all ε > 0 sufficiently small and P
that satisfy P/ε ≥ κ2 > 0. We can select W1,2 in (F.1) so that the conic supports of
their amplitudes are contained in that of B. First, consider only the principal symbol
ofW1, which we denote W̃0(y, η). We can assume that W̃0(y, η) ≡ 0 if η /∈ �, η �= 0,
where � ⊂ R

n \ {0} is a small conic neighborhood of �0 ∪ (−�0). This set is used
in (F.27). The corresponding value of I , which is obtained by replacing W̃ (y, η) with
W̃0(y, η) in (F.27), is denoted I0.

As W̃0(y, η) is positively homogeneous of degree zero in η, set

W̃±(y, u) := W̃ (y, η1(1, u)) = W̃0(y,±(1, u)), u = η⊥/η1 ∈ �⊥, (F.28)

where �⊥ is a small neighborhood of the origin in R
n−1: �⊥ := {u ∈ R

n−1 : u =
η⊥/η1, η ∈ �}. The sign ′+′ is selected if η1 > 0, and ′−′ - otherwise. By the
properties of W , W̃±(y, ·) ∈ C∞

0 (�⊥). Thus, (F.27) implies

I0 = c
∫

R

sin(c1εη1)

η1

∫
|v⊥|≤c1P

∫
�⊥

W̃±(y, u)e−iη1uv⊥
due−iη1h(v⊥)dv⊥|η1|n−1dη1

= c
∫

R

sin(c1εη1)

η1

∫
|v⊥|≤c1P

W±(y, η1v
⊥)e−iη1h(v⊥)dv⊥|η1|n−1dη1

= c
∫

R

sin(c1εη1)

η1

∫
|w⊥|≤c1P|η1|

W±(y, w⊥)e−iη1h(w⊥/η1)dw⊥dη1

= c
∫

R

sin(λ)

λ

∫
|w⊥|≤ P

ε
|λ|

W±(y, w⊥) exp

(
−iλ

h(c1εw⊥/λ)

c1ε

)
dw⊥dλ,

(F.29)

where W±(y, w⊥) is the inverse Fourier transform of W̃±(y, u) with respect to u.
Since P/ε is bounded away from zero, h(0) = 0, and W±(y, w⊥) is smooth and
rapidly decreasing as a function ofw⊥, we have by the dominated convergence theorem

∫
|w⊥|≤ P

ε
|λ|

W±(y, w⊥) exp

(
−iλ

h(c1εw
⊥/λ)

c1ε

)
dw⊥

→
∫

Rn−1
W±(y, w⊥)e−ih′(0)·w⊥

dw⊥ = W̃±(y,−ψ ′(y⊥)) = W̃0(y,±(1, −ψ ′(y⊥)))

(F.30)

as λ → ±∞, and convergence is uniform with respect to ε and P that satisfy P/ε ≥
κ2. As is seen,

(
1

−ψ ′(y⊥)

)
is a vector normal to � at the point

(
ψ(y⊥)

y⊥
)
.
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The remainder term in (F.30) is bounded by the expression

∫
|w⊥|≤ P

ε
|λ|

|W±(y, w⊥)|
∣∣∣∣exp

(
−i

λh(c1εw⊥/λ)

c1ε
+ ih′(0) · w⊥

)
− 1

∣∣∣∣ dw⊥

+
∫

|w⊥|≥ P
ε
|λ|

|W±(y, w⊥)|dw⊥

≤ c
ε

|λ|
∫

Rn−1
|W±(y, w⊥)||w⊥|2dw⊥

+
∫

|w⊥|≥κ2|λ|
|W±(y, w⊥)|dw⊥ = O(|λ|−1).

(F.31)

Due to W̃±(y, ·) ∈ C∞
0 (�⊥), the big-O term on the right-hand side of (F.31) is

uniform with respect to y ∈ V and 0 < ε ≤ 1. Hence

I0 = c
∫

R

sin(λ)

λ
W̃0(y, λ(1,−ψ ′(y⊥)))dλ + O(1)

= c
π

2

[
W̃0(y, (1,−ψ ′(y⊥))) + W̃0(y,−(1,−ψ ′(y⊥)))

]
+ O(1),

(F.32)

where O(1) is uniformwith respect to y ∈ V as well, which proves that I0 is uniformly
bounded.

The remaining term �I = I − I0 comes from the subprincipal terms of the ampli-
tude �W̃ = W̃ − W̃0. The corresponding �DO is in S−ν(V ×R

n) for some ν > 0, so
its Schwartz kernel �K (y, w) is smooth as long as w �= 0 and absolutely integrable
at w = 0. It is now obvious that �I is bounded as well.

By Lemma 7.4 (use (7.11) with l = k = β0), |�g(β0)
ε (y)| ≤ cεPs0−1−β0 if P ≥

κ1ε, combining with (F.12) proves that |J (1b2)
ε (y)| ≤ cεPs0−1−β0 . By (F.12), (F.13),

(F.25), we conclude |J (1b)
ε (y)| ≤ cεPs0−1−β0 ln(P/ε). Combining with (F.10) and

(F.11) we finish the proof.

Appendix G. Proof of Lemma 11.1

We begin by proving (11.8). From (3.5) and (3.9), |d�|∂	1/∂ y1 = 1, i.e. ∂	1/∂ y1 >

0.
Recall that y = Y (y(2), x) is found by solving x (1) = 	(1)(x (2), y) for y(1).

Differentiating x1 ≡ 	1(x (2), (Y (1)(y(2), x), y(2))) with respect to x1 gives 1 =
(∂	1/∂ y1)(∂Y1/∂x1). Since ∂	1/∂x (2) = 0 and ∂	1/∂ y⊥ = 0, differentiating the
same identity with respect to x⊥ gives 0 = (∂	1/∂ y1)(∂Y1/∂x⊥), and all the state-
ments in (11.8) are proven.

By (3.13), (6.3), and (6.14),

| det Q|1/2 = | det M22|
| det(� ◦ 	)x (2)x (2) |1/2 = | det(∂2	1/∂x (2)∂ y(2))|

|d�|N/2| det�IIS |1/2 . (G.1)
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Using that |d�|∂	1/∂ y1 = 1 completes the proof.
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