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Generalized epidemic model incorporating non-Markovian
infection processes and waning immunity
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The Markovian approach, which assumes exponentially distributed interinfection times, is dominant in
epidemic modeling. However, this assumption is unrealistic as an individual’s infectiousness depends on its viral
load and varies over time. In this paper, we present a Susceptible-Infected-Recovered-Vaccinated-Susceptible
epidemic model incorporating non-Markovian infection processes. The model can be easily adapted to accurately
capture the generation time distributions of emerging infectious diseases, which is essential for accurate epidemic
prediction. We observe noticeable variations in the transient behavior under different infectiousness profiles and
the same basic reproduction number Ry. The theoretical analyses show that only R, and the mean immunity
period of the vaccinated individuals have an impact on the critical vaccination rate needed to achieve herd
immunity. A vaccination level at the critical vaccination rate can ensure a very low incidence among the
population in the case of future epidemics, regardless of the infectiousness profiles.
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I. INTRODUCTION

The widely used formulation of compartmental epidemic
models in terms of ordinary differential equations (ODEs)
implicitly assumes both a constant probability per unit of time
of leaving the infectious state (recovery rate) and a constant
transmission probability per unit of time (transmission rate).
This is analogous to the setting where the sojourn times in
the infectious state (infectious period) and the generation (or
interinfection) times are exponentially distributed. Follow-
ing [1,2], we define generation times as the time between
the infection of a secondary case and the infection of the
corresponding primary case.

However, many empirical studies have shown that the ex-
ponential distribution does not fit well clinical data about
sojourn times in several compartments of an infectious dis-
ease model. For example, several studies have shown that the
generation times for the spreading of severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2) are not exponentially
distributed [3-5]. This necessitates the development of proper
epidemic models that consider nonexponential sojourn times.

Already in the foundational paper by [6], the formulation
of the Susceptible-Infected-Recovered (SIR) model assumed
a transmission probability depending on the time after infec-
tion, also called the age of infection. The reason for that is
pretty clear: an individual’s infectiousness depends on their
viral load, which, in turn, varies over time. Similar ages are
also introduced when the probability of processes like loss of
immunity depends on the time after entering the recovered
state (time since clearance). In such cases, the dynamics are
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described by non-Markovian processes, as the current status
of individuals depends on their complete history within a
given compartment. Consequently, the sojourn time in each
state and the generation time no longer follow an exponential
distribution.

In a deterministic context, this fact leads to the formulation
of epidemic models in terms of partial differential equa-
tions (PDEs), where a population is described by densities
with respect to one or more of those times or ages. For the
age-of-infection SIR model, the PDE corresponds to the so-
called McKendrick—von Foester equation (see [7] for a model
with several ages, including the age of vaccination). Such a
formulation, equivalent to renewal equations under enough
regularity conditions [8], allows the analysis of the impact of
non-Markovian processes on the epidemic spread. Recently, a
PDE formulation at the node level has also been used to model
the epidemic spread on complex networks [9,10].

Staged-progression epidemic models are an alternative
way to model non-Markovian epidemics. These models are
halfway between simple ODE compartmental models and
PDE models because they consider a sequence of different
lengths of infectious stages (compartments). Each of them
has its own recovery rate and transmission rate [11,12]. So
they can be considered as a sort of discretization of the PDE
models [13]. Indeed, these models have been used in the
literature to approximate nonexponential infectious periods by
subdividing the infectious compartment into several subcom-
partments with exponentially distributed infectious periods.
The original distribution is then approximated by a sum of
exponential distributions [14].

In this paper, we formulate a Susceptible-Infected-
Recovered-Vaccinated-Susceptible (SIRVS) epidemic model
and provide theoretical analyses of the model regarding the
equilibria and the critical vaccination rate. Following [15], the
latter is obtained from the bifurcation from the disease-free
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equilibrium where susceptible and vaccinated individuals are
present. We perform PDE numerical integration and agent-
based simulations to examine the impact of infectiousness
profiles and vaccination rates on epidemic dynamics under
these two approaches. In particular, agent-based simulations
allow to assess the impact of population sizes on the occur-
rence of secondary waves.

The contributions of the paper are summarized as follows:

We present a general method to model non-Markovian
infection processes from rate-based transitions. In the agent-
based simulations, transitioning from Markovian infection
processes to non-Markovian infection processes is achieved
by adjusting the value of infectiousness parameter, which
results in the desired generation time distributions. This im-
plementation option provides a straightforward way to create
comparable agent-based models from PDE models.

We include the effects of recovery while calculating in-
fectiousness profiles, which is more realistic compared to
previous models which model the infectiousness profiles in-
dependent of the recovery.

With the same R, we observe significant differences in
the transient phase between non-Markovian and Markovian
models, and the magnitude of the differences is affected by the
infectious period. The transient phase refers to the early stages
of the epidemic dynamics, when the number of infections
changes and the system is far from the steady state.

We provide equilibrium analyses of the model and con-
clude that only Ry and the mean immunity period of the
vaccinated individuals have an impact on the critical vacci-
nation rate needed to achieve herd immunity.

A continuous vaccination of the population at the pre-
dicted critical rate ensures a very low incidence among the
population in case of future epidemics, regardless of the in-
fectiousness profiles.

To the best of the authors’ knowledge, the work for the
first time explores the potential contribution of agent-based
models contrasted with PDE models in non-Markovian epi-
demic modeling. We observe the median values of simulation
results with secondary waves are close to the results of the de-
terministic PDE model for population sizes sufficiently large.
In contrast, simulations produce patterns not predicted by the
PDE model when population sizes are sufficiently small and
the stochastic extinction of the disease becomes an important
factor after an initial outbreak.

II. THE REPRODUCTION NUMBER
AND GENERATION TIMES

Suppose the recovery rate y and the infectiousness (per-
contact transmission probability) B are both functions of the
age of infection 7, i.e., ¥y = y(r) and B = B(t), and we
assume a constant contact rate ¢ per individual in a randomly
mixed population. In that case, the basic reproductive number
Ry is the sum of the infections caused by an infected individ-
ual at each age of infection in a totally susceptible population,
conditioning on the probability of being infectious at each age.
So we have

Ro = C/ B(r) e li vOds g, (1)
0

where the exponential term is the probability of being infec-
tious at time T since infection, and n(t) = ¢ B(t) e o ¥)ds
is the infectivity of an individual at the age of infection 7 [14].
In other models, the contact rate ¢ is included in the definition
of B, which is then called effective contact rate [16].

A simple but important remark follows from (1), namely, if
B is constant, then Ry depends on the mean infectious period
7; but not on its particular distribution: Ry = ¢ 8 7;. A similar
result follows for staged-progression models if 8 is constant
in each compartment: Ry = > 1, R = ¢ Y+, B;T} with ny,
being the number of infectious compartments [11].

Normalizing the infectivity 7(t) by /R¢ we obtain the prob-
ability density function (PDF) of the generation times during
the initial phase of an epidemic [2,17]:

— fol y(s)ds
w(e) = 177(;) _ Cﬂ(f)eR _ @)
0 0

The interinfection times generated according to this time-
independent PDF have been called intrinsic generation times
to distinguish them from the realized generation times as
the epidemic progresses [18]. The realized generation time
distribution changes over time due to changes in individuals’
contact patterns, the depletion of the susceptible population,
and the competition among infectors [18-21].

From the relationship between the transmission probability
B(7), the recovery rate y(t), and the generation time distri-
bution w(r) given by Eq. (2), it follows that an equivalent
approach to study non-Markovian infection processes is the
one based on the distribution itself of the generation times
during the epidemic spread. For instance, such an approach
has been used to simulate stochastic epidemics on networks.
This relationship clearly shows that changing the profile of
w(t) will affect the epidemic threshold because it implies a
change in the profile of §(t), even though the mean infectious
period and the mean transmission rate are kept the same. This
is what was observed in [22].

The empirical knowledge of w(r) at the beginning of
an epidemic helps to estimate R, from the initial epidemic
growth rate r by means of the relation [2,14,17]:

/00 e Tw(t)dtr = i, 3)
0

Ro
obtained from the Euler-Lotka equation after replacing n(t)
by Row(t). This expression also says that if we set Ry
to a fixed value, then different generation time distributions
w(t) will lead to different initial epidemic growth rates r and,
hence, to different transient behaviors of the epidemic.

III. THE SIRVS MODEL

In this paper, we generalize the SIRVS epidemic model
with waning immunity for recovered (R) and vaccinated (V)
individuals considered in [15] by introducing an age of infec-
tion for the individuals in the I compartment, and an age of
immunity (time since clearance) for individuals in the R and
V compartments.

The population in each compartment at time ¢ is then
described by the densities I(¢, T), R(t, t), and V (¢, T) with
respect to the corresponding sojourn time t in the compart-
ment. As in [15], the epidemic timescale is supposed to be
much faster than the timescale for demographic processes
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(growth, births, and deaths), which allows us to consider that
the population remains constant and equal to N, that is,

S(t)—i—/ I(t,t)dr—i—/ R(t,t)dr—i—/ V(t,t)dt=N.
0 0 0

Moreover, we assume that the recovery rate y(t) satisfies

that lim (t e~ /o ¥®4ds) = 0. The same condition is satisfied
T—>00

by the rates §(t) and §(7) of immunity loss in the R and
V compartments, respectively. This hypothesis guarantees a
finite mean sojourn time T in any of these compartments:

o0 rT o0 T
Ty = / ra(t)e‘jo a@ds g — / e Joe®ds gr oo,
0 0

with a(t) = y(7), 8'(r), 8(r) + v. Here v > 0 stands for
the vaccination rate of susceptible and recovered individuals.

According to the previous assumptions, the equations gov-
erning the dynamics of the SIRVS model are given by

al  dl

m + 3= =y (@I, 7),

v v

5 + E = _3 (T)V(t9 T)r

%ﬁL%——((S( )+ v)R(, T)

or " or o TURET
ds *°
— =/ [8°()V(t,T)+ 8(T)R(, T)ldT
a =),

—S¢(t) — vS,
where ¢ denotes the force of infection (the rate at which a
susceptible individual becomes infected) and is given by
I(,
@ 7) drt.
N

These equations are endowed with the boundary conditions
att =0:

(1) = c/o B(r)

1(z,0) = S(1)o(),

Vi, 0)= vS(t)—i—v/ R(t, t)dr,
0

R(t,0) = / y(o)l(t, 7)dr,
0

and the initial condition 1(0, 7) = I°(z), V(0, ) = V°(1),
R(0, 7) = R%(7), and S(0) = S°.

Note that, if all the rates are constant, we obtain the original
ODE model in [15] by integrating the first three equations of
the SIRVS model with respect to 7.

IV. EQUILIBRIA AND THE CRITICAL
VACCINATION RATE

Using that o v(@e fv®ds g =1 and

lim (re~ o @©+vdsy = 0 it follows that the equilibrium
T—>00

densities satisfy
I*(.L_) — S*(p e,fg’ )/(S)ds’
VE(T) = vS* (1 + ¢* Ty)e lo 'O,
R*(T) — S*¢ effor(é(s)Jrv)ds’

where ¢* = & fooo B(t)[*(t)dr is the equilibrium force of
infection, and T5 = fooo e~ Jo 66&+v)ds g1 i the mean sojourn
time in the R compartment. Note that 75 takes into account
that an R individual can lose its immunity and become sus-
ceptible, or, alternatively, it can move to the V compartment if
vaccinated.

Introducing the expression of /*(t) into that of ¢* and
using (1), it follows

S*
9" =" Ro.

So either ¢* =0, which corresponds to the disease-free
equilibrium (DFE), or ¢* > 0 and then R¢S*/N = 1, which
corresponds to the unique endemic equilibrium.
The DFE is then given by I*(t) = 0, R*(t) = 0, and
N vN

Sf=—--—, V)=
() 1+U?5u

— — e—fur (3”(5)(157
14+ vTg

where T is the mean immunity period of vaccinated individ-
uals, and it is used that S* + fooo V*(r)dt = N. As expected,
if v =0 then §* = N.

At the endemic equilibrium (/*(t), V*(7), R*(t)), the frac-
tion of susceptible individuals at equilibrium is

I

N Ry

which is the same well-known relationship between s* and R
as for the standard SIS (and SIRS) models ([23]). Note that,

to have an endemic equilibrium (s* < 1), Ry > 1.
The value of ¢* is obtained from the condition

*

o0 o0 o0
S*—i—/ I*(r)dt+/ V*(t)dr—i—/ R*(t)dt =N,
0 0 0

which amounts to
T, "+ vTe +vTeT30" + T30 =Ro— 1,
where T, is the mean infectious period. So the force of infec-
tion at the endemic equilibrium is given by
Ro—1—vTs

¢ T, (0 tvty) “)

Note that, with vaccination, Ry > 1 does not guarantee
¢* > 0. Now, itis needed that Ry > 1 + v T4v.

So, assuming this condition and dividing the equilibrium
densities by the total population N, it follows that the normal-
ized equilibrium densities i*, w*, and r* in the I, V, and R
compartments, respectively, are given by

1 Ro_l_vftgv
RoT, +75(1 +vTs)
% v _ Ro_l_l}f(gv

wi(t)=—|14+7;5= — —
Ro 7T, +T5(1 +vTs)

% 1 R()_l_v?b‘u

()= 5——— —
RoTy +75(1 +v7Ts)

l*('L') — 7([(; y(s)ds’

) e~ fof 8”(5)dx’

e~ for 8(s)+v)ds .

The condition for a bifurcation from the DFE is obtained
by imposing that the right-hand side of (4) is equal to 0. In
particular, using v as a tuning parameter, the resulting critical
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S

FIG. 1. SIRVS model transition process. Each circle represents
one of the disease states: susceptible (S), infected (I), recovered (R),
and vaccinated (V). Symbols above the arrows indicate the rates of
transitions between the states.

vaccination rate is
Ro—1
Ty

Ve

Note that, since this paper considers waning immunity, con-
tinuous vaccination campaigns are required to preserve herd
immunity. The critical vaccination rate defines the minimum
supply of vaccine that ensures that the system always reaches
the DFE after the introduction of new cases. In other words
this vaccination rate confers herd immunity to the popu-
lation and thus prevents future major epidemic outbreaks.
Interestingly, only the mean immunity period of vaccinated
individuals (but not the distribution of its duration) is relevant
for v.. In particular, the threshold condition obtained in [15]
follows from this expression after replacing 75 by 1/8;, the
mean duration of immunity arising from vaccination when §°
is constant and equal to §;.

V. AGENT-BASED STOCHASTIC SIMULATIONS

To perform stochastic simulations, we reconceptualize the
mathematical formulations from an agent-based perspective.
The PDE models adopt an aggregate representation of the en-
tire population. In comparison, agent-based models (ABMs)
enable us to analyze the overall system behavior emerging
from autonomous agents’ behaviors and interactions. In the
model, each person agent follows the SIRVS transition pro-
cess as shown in Fig. 1.

At the start of the simulation, all individuals are equally
susceptible, except a small fraction of the population that will
be randomly selected to enter the infectious state to start the
epidemic. Each person agent i records the time when it tran-
sitioned to the infectious state (becomes infected), denoted
by (7). Each person contacts ¢ number of other agents on
average per day. Every time an infectious person agent i exe-
cutes a contact event, it will fire an infection event based on a
probability S(7), where t is the age of infection [current time
t — to(i)]. If the infection event happens, person-agent i will
randomly select a person-agent j from the whole population
to transmit the infection. If the selected person j is in the
susceptible state, person j will immediately transition to the
infectious state. Otherwise, person j will remain in its current
state. Later, person i will leave the infected state and transition

to the recovered state at recovery rate y(r) = 1/7,, leading
to exponentially distributed infectious periods. In addition, a
person agent in the recovered state or susceptible state will
transition to the vaccinated state according to the same rate v
as defined by the PDE model. As immunity wanes over time,
a person in the vaccinated state or in the recovered one will
transition to the susceptible state based on an immunity loss
rate § = §°.

VI. RESULTS

In this section we compare the epidemic dynamics of the
SIRVS models with different infectiousness profiles, infec-
tious periods, and vaccination rates.

A. General setup

Results are obtained from both agent-based simulations
and the PDE model formulation. The ABMs are implemented
in the AnyLogic 8 university researcher version. The PDE
system of the model is numerically integrated by using a finite
difference scheme based on the one introduced in [24]. Agent-
based simulations are performed with the same parameters
values as the mathematical model. There are 500 simulation
runs for each scenario. In all scenarios, the basic reproduction
number Ry is set to be 2.5, and the contact rate ¢ equals 10.
In addition, we assume recovered and vaccinated individu-
als have the perfect protection against infections for a mean
immunity period of six months based on references [25,26].
In particular, the rates of immunity loss are assumed to be
constant and equal to § = 6" = 0.0055. For these values of
Ry and 8", the corresponding critical vaccination rate is v, =
0.00825. Finally, the recovery rate y (7) is also assumed to be
constant and, hence, equal to 1/7,,.

For scenarios with constant infectiousness, 8(t) is constant
and equal to Ry /c. In this case, since y is also constant, the
generation time is exponentially distributed: w(r) = ye™ 7"
[cf. Eq. (2)]. For varying infectiousness profiles, following [3],
we assume that w(t) follows a Weibull distribution, i.e.,
w(t) = f{(f)k’le’“/’\)k, with the shape parameter k kept un-
changed and changing the scale parameter A to result in the
desired value of the mean generation time (MGT). More
precisely, from the expression of the MGT of a Weibull distri-

bution, it follows that A = 11,\{[1—?};, where I" denotes the gamma
k

function. Then B(7) will follow from Eq. (2) with Ry = 2.5
and ¢ = 10. So the generation time distribution w(t) is in-
troduced only to obtain B(t), which is then used to trigger
an infection event once an infectious contact has occurred.
In other words, simulations did not use timeout-triggered
infection transmissions based on w(t), but rather rate-based
transitions (see Fig. 1). The realized generation times are then
recorded to check the accuracy of the procedure.

There exists a variety of estimated epidemiological param-
eters for COVID-19. For example, the MGT of the alpha and
delta SARS-CoV-2 variants are estimated between 3.44 and
7.5 days [19]. Similarly, variations exist regarding the duration
of the infectious period [27]. The central values reported for
Weibull shape parameter k and the scale parameter A in [3] are
2.826 and 5.665, respectively. In this paper, we consider MGT
varying between 4 and 8 days with an interval of one day, and
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FIG. 2. Infectiousness profiles. The solid lines correspond to five
infectiousness profiles associated with a mean infectious period 7, =
14 days to obtain the same Ry = 2.5. The dashed lines show five
infectiousness profiles associated with a mean infectious period 7, =
7 days to achieve the same R, = 2.5. Colors (blue, orange, yellow,
purple, green) correspond to the five mean values for the generation
times, varying between 4 and 8 days with an interval of 1 day. The
Weibull shape parameter k = 2.826 for all curves.

T, = 14 or T, =7 days. Figure 2 shows the infectiousness
profiles corresponding to different MGTs and 7,. In the
ABM, we record the infection times between infector and
infectee for all simulation runs associated with index cases
and plot their distributions in Fig. 3. Index cases refer to those
individuals infected at the beginning of the epidemic, who are
used to introduce the disease into the population. The mean
infectious period 7, used to generate Fig. 3 is equal to 14
days. However, its precise value is irrelevant to the measured
Weibull generation time distribution as long as it is far enough
from 0. This fact, numerically verified for several values of 7,,
confirms that the computation of 8(t) from Eq. (2) counter-
balances the recovery effects (see Fig. 2).

B. Scenarios without vaccinations

In this section, 0.01% of the total population is initially
infected, and the remaining population is susceptible at the
beginning of the epidemic. Without considering vaccinations,
the results from ABM and the PDE model are presented in
Figs. 4 and 5.

Overall, the model with time-varying infectiousness pro-
files (Fig. 5) leads to more oscillations and of greater
amplitude when compared to that with constant infectiousness
profiles (Fig. 4). Due to their stochastic nature, ABMs provide
extra patterns not observed in the PDE model. As ABMs
treat each individual as an agent, and PDE models can have
fractions of an individual, all curves with PDEs are associated
with secondary waves resulting from a damped oscillatory
approach to endemic equilibrium. At the same time, in the
ABM (Fig. 5), 454 out of 500 (90.80%) simulation runs result
in secondary waves, and the rest die out after the first epi-
demic wave. Accordingly, we present the median values of

FIG. 3. Generation time distributions at the beginning of the
epidemic. Colors (blue, orange, yellow, purple, green) correspond
to the five generation time distributions, measured from the ABM,
with mean values varying from 4 to 8 days with an interval of 1 day.
In panels (a)—(e), red curves refer to the theoretical generation time
distributions for each scenario. The generation times in each scenario
follow the Weibull distribution with the same shape parameter k and
varied scale parameter A. In the simulations, the mean infectious
period 7, is set as 14 days, and the population size is 500 000.

simulation runs with secondary waves and the PDE results
in Fig. 4(a) and Fig. 5(a). With a population size equaling
500 000, the ABM results resemble PDE results very well.

Figure 6 shows the impact of the population size and infec-
tiousness profiles on the risk for secondary waves. We can see
that the chance for secondary wave occurrences rises along
with the increase in MGT. Probably this is due to the fact that
those individuals who remain infectious for a long time have
higher infectiousness towards the end of their epidemic period
as the MGT increases because the infectiousness profile gets
stretched out to the right. On the other hand, the percentage
of simulation runs with secondary epidemic waves in popula-
tions of size 20 000 is lower than that in populations of size
100 000 and 500 000. So, with the same fraction of infected
cases, larger populations have a higher chance for secondary
outbreaks over small populations.

Simulation runs without secondary waves may be associ-
ated with epidemics dying out after the first peak, with initial
extinctions, or with no index cases. Focusing on whether the
secondary waves appear after the first peak, we calculate the
risk for secondary waves in Fig. 6, without taking into ac-
count those simulation runs associated with initial (stochastic)
extinctions or those without selected index cases. At the be-
ginning of each simulation run, each agent enters the infected
state based on a probability of 0.0001. This leads to stochas-
ticity in the number of index cases and thus to simulation
runs that fail to introduce index cases with populations of
size 20 000, for which the expected number of index cases is
only 2. Let us denote the percentages of total simulation runs
with initial extinctions and without index cases as p., and p,,,
respectively. The values of p,., and p,, become substantially
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small as the population size increases. For example, with
populations of size 20 000, p., = 10.40% (p,, = 11.00%)
for MGT=4 days, and p. = 15.80% (p,, = 12.60%) for
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FIG. 5. Simulation results with varying infectiousness profiles (MGT=5 days) and a mean infectious period 7, = 14 days. In panel (a), the
dashed lines depict the fraction of individuals obtained from the numerical integration of the PDE model, and the solid lines show the median
value of simulation runs with secondary waves from the ABM. In panels (b)—(d), various colors represent the values resulting from different
simulation runs. Panel (b) plots the fraction of infected cases for all simulation runs. Panels (c) and (d) show the fractions of recovered and
susceptible cases for all simulation runs. Five hundred simulation runs are performed with a population size of 500 000.
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FIG. 6. The impact of population size and the mean generation
time on the risks for secondary wave occurrences. In the figure, MGT
stands for the mean generation time, which varies from 4 to 8 days
with an interval of 1 day. The mean infectious period 7, = 14 days.
The value in the heatmap indicates the percentage of simulation runs
with secondary epidemic waves, given a first epidemic peak. Simula-
tion runs associated with initial extinctions or without selected index
cases are not considered. In all these cases, the predicted endemic
equilibrium is eventually reached.

Figure 7 depicts the fractions of infected individuals
obtained by considering variations in infectiousness profiles.
These fractions follow from the numerical integration of the
PDE model and are given by fOOO I(t,t)dt/N. In Fig. 7(a),
with the mean infectious period 7, = 14 days, when the MGT
increases from 4 to 8 days, the peak time for the epidemic
waves is postponed (from day 41 to day 79 for the first peak
time) with height reduced by 29.95%. This shift in the time
of the first peak is consistent with lower initial epidemic
growth rates predicted by Eq. (3) for larger MGTs. Precisely,
the predicted values of the initial growth rate are as follows:
r(MGT=4)= 0.2464, r(MGT=5)=0.1971, r(MGT=6)=
0.1642, r(MGT=7)= 0.1408, r(MGT=8)=0.1235, and
r = 0.1071 for constant B. All of them are in agreement with
the initial growth rates estimated from Eq. (3). In comparison,
differences between epidemic curves due to the shift in the
infectiousness profiles are less pronounced when the range of
MGT gets closer to the mean infectious period, e.g., T, =7
in Fig. 7(b). Remarkably, the only initial growth rate that has
changed is the one for constant 8, which, now, is higher than
those corresponding to the largest MGT (predicted initial
growth rate for constant B8: r = 0.2143). This is due to the
fact that, for constant S, the generation time distribution
is equal to the distribution of the length of the infectious
period [cf. with Eq. (2)]. The rest of the generation time
distributions are independent of the recovery rate, and, so,
the corresponding curves are arranged in the same order
in both panels. This indicates that the differences between
models based on time-varying and constant infectiousness
profiles heavily depend on the recovery processes.
When recovery processes interfere less with infection
processes, we can see noticeable effects of infectiousness
profiles.
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FIG. 7. Impact of infectiousness profiles on the fraction of in-
fected individuals. In panel (a) the infectious period 7, = 14 days. In
panel (b) T, = 7 days. A shorter infectious period (faster recovery)
interferes more with the generation time distribution (transmission
process) and reduces the differences among curves. Figures in both
panels are based on the numerical integration of the PDE model.

C. Scenarios with vaccinations

Figure 8 shows the fractions of infected individuals, com-
puted again as fooo 1(¢t, t)dt /N, with a uniform vaccination
rate v equal to 0.5v. and v., and different infectiousness
profiles. Here the critical vaccination rate v. = (Ro — 1)/Tsv
equals 0.00825. All individuals are initially susceptible except
0.01% of the total population, which is set as index cases
to start the epidemic. We can see that the infectiousness
profiles and the mean infectious period affect the epidemic
dynamics in the transient phases but have no impact on the
critical vaccination as long as the parameters can achieve the
same Rg.

On the other hand, we consider scenarios (Fig. 9) where
the vaccinated population is present at the beginning of the
epidemic, and 0.01% of the susceptible population is initially
infected. More specifically, the fraction of the susceptible
population is obtained through the DFE condition $*/N =
1/(1 +vTs), and the rest of the population is vaccinated
[fyV*(r)dt/N =1—8*/N]. Accordingly, we have 40%
and 57.14% of the total population susceptible at the begin-
ning of the epidemic for scenarios with v = v, and v = 0.5v,,
respectively.

Figure 9 shows the evolution of the median fractions of
infected cases resulting from simulations where vaccinated
people are initially present. As expected, when new cases are
introduced, outbreaks are contained very well under scenarios
with v = v, with only a very small fraction of infections.
In comparison, there are large outbreaks under scenarios
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FIG. 8. Scenarios with vaccinations. All individuals are initially susceptible except 0.01% of the total population which is set as index
cases. In panels (a) and (c), the mean infectious period 7, = 14 days, and the vaccination rate equals 0.5v, and v, respectively. In panels
(b) and (d), T, = 7 days and the vaccination rate equals 0.5v. and v, respectively. Figures are obtained from the numerical integration of the
PDE model.

with v = 0.5 v.. For example, with MGT=4 days, the peak
fraction of infected cases in Fig. 9(a) is 0.0889, while the
peak fraction of infected cases in Fig. 9(b) is 1.16 x 107*.
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population size of 500 000, a peak fraction

equal to 1.16 x 10~* means that only 58 individuals are in-
fected at peak time. So, at the critical vaccination rate v = v,
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FIG. 9. Scenarios with initially vaccinated individuals. The vaccinated population is initially present at a fraction given by the DFE, and
0.01% of the susceptible population is initially infected. Panels (a)—(b) plot the median fractions of infected cases from ABM. The vaccination
rate equals 0.5v, and v, in panels (a) and (b), respectively. Panel (c) depicts boxplots of the measured R through ABM, and the black solid
circles reflect the predicted Rj. R}, denotes the basic reproduction number at the DFE considering vaccinations. The mean infectious period
T, is 14 days. Five hundred simulation runs are performed for each scenario with a population size of 500 000.
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FIG. 10. Simulation results with varying infectious profiles MGT=

5 days) and non-Markovian recovery processes. The Weibull infectious

period distribution is associated with shape parameter oo = 2.82 and scale parameter u = 15.72, leading to a mean infectious period 7, = 14
days. Panels (a)—(c) plot the fractions of infected, recovered, and susceptible cases, respectively, for all simulation runs. Various colors represent
the values resulting from different simulation runs. In panel (d), we present the infectious period distribution measured from ABM, and the
red curve refers to the theoretical infectious period distribution. Here 0.01% of the susceptible population is initially infected. Five hundred

simulation runs are performed with a population size of 500 000.

the introduction of new infections at the start of the simulation
leads to only minor outbreaks. Figure 9(a) also shows that the
initial growth rates are lower than without vaccination but are
ordered in the same way. As additional information, Fig. 9(c)
depicts the measured R through simulations, which is the
number of secondary cases divided by the number of index
cases. Since the initial fractions of vaccinated and susceptible
individuals are given by the DFE, R can be interpreted as the
basic reproduction number at the DFE considering vaccina-
tions. At the critical vaccination rate v., the mean value for Rj
ranges from 0.9895 to 1.0182. At v = 0.5 v,, the mean value
for Ry varies between 1.4069 and 1.5645. Under scenarios of
v ="v, and v = 0.5 v, the predicted values for R, namely,
RoS*/N, are 1 and 1.4285, respectively, which are within the
observed ranges.

VII. DISCUSSION

This paper presents a general SIRVS model considering
waning immunity and age of infection. We analyzed how
variations in infectiousness profiles under the same R could
affect the epidemic dynamics. Compared with Markovian
models, non-Markovian models with time-varying infectious-
ness profiles create more damped oscillations with peak times
affected in the transient phases. Remarkably, the magnitude
of this difference between the two types of models heavily de-
pends on the recovery processes. When the recovery process
interferes more with the infection processes, the variations be-
tween models become less pronounced. Such an interference
is possible because, in the standard formulation of epidemic

models with age of infection (see, for instance, [28]), recovery
and infectiousness are modeled as independent of each other.
This modeling assumption, however, is clearly questionable if
infectiousness is interpreted in terms of viral load and recov-
ery occurs only once a low level viral load is reached.

We have also seen that different combinations of infec-
tiousness profiles and infectious periods have no impact on
the critical vaccination v, as long as they lead to the same R.
Indeed, given Ry, the mean duration of the recovery period
is the only feature of its profile that determines the value
of v.. However, when vaccination rates are lower than the
critical rate v., models with time-varying infectiousness still
have a transient behavior with damped oscillations of higher
amplitude than Markovian models and retain the same order
of the initial growth rates. This echoes the findings of [1],
which found that vaccination reduces the reproduction num-
ber without changing the generation time distribution during
the epidemic. Besides, with susceptible and vaccinated people
at the beginning of the epidemic, a population at the predicted
critical vaccination rate is resilient to future epidemics, re-
gardless of the particular infectiousness profile.

Loss of immunity is one of the causes of the oscillations
observed in epidemic models. For instance, if there is a con-
stant period of temporary immunity, destabilization of the
endemic equilibrium of the SIRS model is possible through
a Hopf bifurcation [29]. As for damped oscillations, they
occur in the standard (Markovian) SIRS model, and an ap-
proximation of their period is also well known [23]. Here we
have explored the impact of the infectiousness profile on the
occurrence and shape of these oscillations.
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We have found that ABMs not only can produce results
close to the PDE formulation with large population sizes,
but also provide additional insights into the risk of secondary
waves that are not obtained under the latter formulation. They
suggest that, even with large populations, epidemics could
die out after an initial epidemic peak if the decline in preva-
lence is fast enough. The occurrence of these waves then
depends on both population size and infectiousness profile
(through the assumed mean generation time). Moreover, since
they are always associated with an endemic equilibrium, if
stochastic extinction after the first peak is avoided, the con-
vergence towards endemic equilibrium always occurs because
the damped behavior of the oscillations prevents a return to
very low levels of prevalence. Besides, at the same popu-
lation size, the percentages of simulations with secondary
waves with constant infectiousness are higher than those with
varying infectiousness. Therefore, given the importance of re-
ducing the risks of the emergence of secondary waves during
the course of an epidemic, it highlights the importance of
selecting the appropriate modeling approach and estimating
the generation time distributions to tackle future epidemics.
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APPENDIX: SIMULATION RESULTS
WITH NON-MARKOVIAN RECOVERY PROCESSES

Denote y(t) as the age-dependent recovery rate, and
Yip(T) as the infectious period distribution. This distribution
can be characterized as recovery processes, which can be
expressed as follows:

Yip(t) = y(x)e o 7, (A1)

In the following, we consider infectious periods (from I to
R compartments) following the Weibull distribution, v;,(t) =
%(ﬁ)""le’(’/ 1" where « is the shape parameter and j is the
scale parameter of the infectious period distribution. Accord-
ing to Eq. (A1), we have y (1) = %(ﬁ)"“l.
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FIG. 11. Scenarios with different infectiousness profiles and the
same non-Markovian recovery time distributions. The Weibull in-
fectious period distribution is associated with a shape parameter
o = 2.82 and a scale parameter ;1 = 15.72, resulting in a mean in-
fectious period T,, = 14 days. The figure depicts the median fraction
of infected cases from the ABM. Initially, 0.01% of the susceptible
population is infected. Five hundred simulation runs are performed
for each scenario with a population size of 500 000.

From Eq. (2), it follows that
w(T)Ry
ce Jov®ads’

B(r) =

have

B(r) =
w(t)Ry/(c e G ). In the simulations, we set o = 2.82
and pu = 15.72 to obtain the mean infectious period 7, = 14
days. The parameters of w(tr) are the same as those in the
main text.

Without considering vaccinations, the results from agent-
based simulations are plotted in Fig. 10. We record the
recovery times for all simulation runs associated with index
cases, from which we compute the corresponding infectious
periods and plot their distribution in Fig. 10(d). In Fig. 10, 493
out of 500 (98.6%) simulation runs result in secondary waves,
while the rest die out after the first epidemic wave. In compar-
ison, with the same MGT (5 days) and a constant recovery rate
equal to the inverse of a mean infectious period T, = 14 days,
90.8% simulation runs result in secondary waves. It suggests
that, with the same mean infectious period, the percentage of
secondary wave occurrences increases when the recovery rate
changes from constant to nonconstant values.

In Fig. 11, we present the median values of simulation runs
with secondary waves. Consistent with the patterns observed
in Fig. 7, we can observe that as the MGT increases from 4 to 8
days, the peak time for the epidemic waves is postponed (from
day 42 to day 79 for the first peak time) with a reduced height
of 35.91%. When comparing the results with constant recov-
ery rate shown in Fig. 7, we notice that the disease prevalence
increases when infectious periods are Weibull distributed but
with the same T, = 14 days.
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