
Scaling transformations and the origins of light relics constraints
from cosmic microwave background observations

Fei Ge ,1 Francis-Yan Cyr-Racine ,2 and Lloyd Knox1
1Department of Physics and Astronomy, University of California, Davis, California 95616, USA

2Department of Physics and Astronomy, University of NewMexico, Albuquerque, New Mexico 87106, USA

(Received 6 November 2022; accepted 16 December 2022; published 13 January 2023)

We use here a family of scaling transformations, that scale key rates in the evolution equations, to
analytically understand constraints on light relics from cosmic microwave background (CMB) maps, given
cosmological models of varying degrees of complexity. We describe the causes of physical effects that are
fundamentally important to the constraining power of the data, with a focus on the two that are most novel.
We use as a reference model a cosmological model that admits a scaling transformation that increases light
relic energy density while avoiding all of these causes. Constraints on light relics in a given model can then
be understood as due to the differences between the given model and the reference model, as long as the
additional light relics only interact gravitationally with the Standard Model components. This under-
standing supports the development of cosmological models that can evade light relics constraints from
CMB maps.
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I. INTRODUCTION

Extensions of the StandardModel of particle physics often
contain light degrees of freedom (see, e.g., Refs. [1–9]),
in addition to those of the photon and standard model
neutrinos, that would be thermally produced in the early
universe. Constraints on such scenarios have come for
decades from observations of the abundances of light
elements, helium [10–14] and deuterium [15–18] in particu-
lar. More recently, observations of the cosmic microwave
background [19–21] have also led to constraints that likewise
have an important influence on particle physics model
building. For a recent review of current constraints on light
relic abundances and their associated physical models see
Ref. [22]. Precision measurement of the energy density in
light relics is a major science goal of next-generation cosmic
microwave background (CMB) projects such as Simons
Observatory [23] and CMB-S4 [24].
Despite intense interest in constraining light relics, and

decades of study of such constraints, the existing literature
is incomplete in its description of how these constraints
arise from CMB observations. Useful explanations do exist
in the literature (see e.g., Refs. [25–29]), but they leave us
unable to answer certain questions. The desire to answer
these questions is what motivated our work and has led
us to the more complete understanding of the origin s of
light-relic constraints that we present here.
Our analysis has focused on all the dimensionful

quantities in the relevant Einstein-Boltzmann equations
governing evolution of the metric, matter, and radiation.
These are: the gravitational free-fall rates,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GρiðzÞ

p
for

each component i, the photon (Thomson) scattering rate

σTneðzÞ, hydrogen recombination rates and the Fourier
mode wave number k. For scale-invariant initial conditions,
a uniform scaling of all the rates and k, leaves dimension-
less observables invariant [[30], hereafter CGK], a con-
clusion that can be reached by dimensional analysis alone.
Invariance under a power-law primordial power spectrum
can be achieved by adding an appropriate scaling of its
amplitude [30,31]. In a given model space, the energy
density in light relics can be increased as part of a uniform
scaling up of a number of these rates. If they can all be
scaled then there will be no constraints on light relic
densities from dimensionless observables. In general, only
some of the rates can be uniformly scaled and those model
spaces that admit only less-comprehensive scaling trans-
formations will have tighter constraints on light relics.
In CGK we also introduced a physical model in which a

scaling transformation could be implemented that, while
not leading to an exact symmetry, had very small sym-
metry-breaking effects. In this paper we expand upon our
previous description of the scaling transformation and use it
to improve our understanding of constraints on light relics.
We use the physical model as a reference model that
supports our analytic understanding of results in other
model spaces that also have additional light relics.
Previous explanations [25,27], although they did not use

this exact language, took advantage of a scaling trans-
formation, HðzÞ → λHðzÞ, achievable in standard model
extensions with additional light relics, under which there
is an approximate symmetry of angular scales strongly
linked with observables: that of the sound horizon, θs and
of the Hubble length scale at matter-radiation equality,
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θEQ (both projected from the last-scattering surface). With
this scaling transformation as a starting point, the effects
that break the symmetry, rendering it only approximate, can
be understood as leading to our ability to constrain addi-
tional energy density in light relics. Photon diffusion is
such an effect; the angular scale of the photon diffusion
distance at last scattering is not invariant under a uniform
scaling of the Hubble rate [32]. Photon diffusion breaks the
symmetry, giving us sensitivity toHðzÞ, as long as there are
no other parameters to vary in the model that could
significantly impact photon diffusion.
This damping scale effect is one of several effects

leading to constraints on light relics. We list here four
causes of such effects, all arising from nonuniform changes
to the rates we listed above. Three of these have already
been articulated in the literature and one we articulate here
for the first time. These are
(1) changes to the photon scattering rate relative to the

Hubble rate1: leads to damping and polarization
generation effects [25,27,31,33],

(2) changes to the fraction of radiation density that is
free-streaming particles prior to recombination:
changes acoustic oscillation phase and amplitude
[26,28,29],

(3) changes to the fraction of matter that is pressure-
supported: leads to gravitational potential differences
that impact photon perturbation evolution (effects we
describe here for the first time), and

(4) changes to recombination rates relative to the
Hubble rate: impacts the ionization history xeðzÞ
with ensuing observational consequences [31].

All of these can be understood as arising from departures
from the scaling transformation presented in CGK. The
causes are in a decreasing order of the magnitude of
symmetry-breaking impact they can have.
This work was stimulated by our desire to understand the

origin of constraints in a model space that had degeneracy
directions that could eliminate all effects from causes 1 and
2. Such constraints were presented in Refs. [28,34–36].
There one can see that even if the photon scattering rate to
Hubble rate ratio can be held constant via a change in the
primordial helium abundance, and if the free-streaming
fraction can be held fixed, the constraints on light relics,
while loosened, still exist.
The scaling transformation presented in CGK, by

allowing for the elimination of causes 1, 2, and 3, provides
us with a convenient means of understanding the con-
straints presented in Refs. [28,34–36]. These constraints
can then be understood as arising from differences between
the models considered in these works and the reference
model exploiting the scaling transformation presented in

CGK. We use this approach to articulate what we have
enumerated as cause 3 and its associated effects.
Scaling transformations as a means to understand con-

straints on new physics have been used elsewhere in the
literature, most notably by Zahn and Zaldarriaga [[31],
hereafter ZZ]. They were not trying to understand con-
straints on light relics in particular, but more generally the
sensitivity to the expansion rate through the epoch of
recombination. To that end they introduced a scaling of
Newton’s constant G → λ2G, and showed that CMB
temperature and polarization anisotropy measurements at
small scales, due to a combination of what we are calling
here cause 1 and cause 4 effects, would bring sensitivity to
the expansion rate during recombination. Going a step
further, Martins et al. [33] studied correlated scaling of both
G and the fine-structure constant α, allowing for a mecha-
nism to leave the ratio of the photon scattering rate to
Hubble rate unchanged. This allowed them to study new
physics constraints in a model space where cause 1 had
been approximately eliminated, allowing them to focus on
what we identify here as cause 4. While all the observable
consequences of cause 4 are ultimately due to its impact on
the photon scattering rate, via small changes to the free-
electron fraction xeðzÞ, we choose here to separate these
recombination-related effects from cause 1. We have found
it useful to distinguish this impact on the photon scattering
rate relative to the Hubble rate from others, namely because
even if we artificially fix recombination, changing the
Hubble rate changes this rate ratio.
By understanding better the constraints on light relics

from CMB observations we have been able to construct
light relics models that largely evade these constraints.
With such models it is important to consider other sources
of constraints. We thus include a brief discussion of
constraints from ages of stars and from inferences of
primordial light element abundances.
This paper is organized as follows: In Sec. II we present

the scaling transformation from CGK and the origin of its
associated symmetry in the Einstein-Boltzmann equations
and initial conditions. In Sec. III we present power spectra
that result from a series of approximations to the CGK
scaling transformation. These scaling transformations are
the ones available in particular model spaces, and hence our
results here shed light on parameter constraints in these
different model spaces. In Sec. IV we present and discuss
parameter constraints in various light relics model spaces.
We summarize and conclude in Sec. V.

II. SYMMETRY OF COSMOLOGICAL
OBSERVATIONS UNDER SCALING

TRANSFORMATIONS

In this section we show that the CMB anisotropy spectra
are nearly invariant under the scaling transformation

1More precisely we mean here all changes to the photon
scattering rate relative to the Hubble rate at fixed ionization
fraction xeðzÞ.
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ffiffiffiffiffiffiffiffi
Gρi

p
→ λ

ffiffiffiffiffiffiffiffi
Gρi

p
;

σTne → λσTne;

As → As=λðns−1Þ; ð1Þ

where i enumerates all the components with densities ρi,
and As and ns are the amplitude and spectral index of the
primordial power spectrum. The observables are exactly
invariant if we (artificially) fix the ionization history xeðzÞ.
To show the existence of this symmetry, we start in

Sec. II A by computing how the solution to the Boltzmann
equations describing cold dark matter (CDM), baryons,
photons, and neutrinos transform under this scaling. We
then discuss the behavior of the gravitational potentials
under this transformation. In Sec. II B we show how the
CMB power spectra can be left exactly invariant under this
scaling once the primordial spectrum of fluctuations is
properly adjusted. Our discussion follows that presented in
Ref. [31], but is extended here beyond the tight-coupling
approximation. In Sec. II C we present a means of
mimicking the gravitational free-fall rate scaling in a
physical model. In Sec. II D we discuss our implementation
of photon scattering rate scaling and the dependence of the
photon scattering rate on recombination rates relative to the
Hubble rate.

A. Symmetry of the equations of motion

As a starting point, let us first examine the Boltzmann
equations governing the evolution of photons and baryons
fluctuations. Using the scale factor a as our time variable,
these take the form [37]

∂Fγ0

∂a
¼ −

k
a2H

Fγ1 þ 4
∂ϕ
∂a

;

a2H
∂Fγ1

∂a
¼ k

3
ðFγ0 − 2Fγ2Þ þ

4k
3
ψ þ _κ

"
4

3
vb − Fγ1

#
;

a2H
∂Fγ2

∂a
¼ k

5
ð2Fγ1 − 3Fγ3Þ −

9

10
_κFγ2;

a2H
∂Fγl

∂a
¼ k

2lþ 1
½lFγðl−1Þ − ðlþ 1ÞFγðlþ1Þ& − _κFγl;

∂δb
∂a

¼ −
k

a2H
vb þ 3

∂ϕ
∂a

;

a2H
∂vb
∂a

¼ −aHvb þ c2skδb þ kψ þ
ρ̄γ
ρ̄b

_κ

"
Fγ1 −

4

3
vb

#
;

ð2Þ

where Fγl are the multipole moments of the photon
temperature perturbation, k is the Fourier wave number,
_κ ¼ aσTne is the Thomson opacity, δb is the baryon density
perturbation, vb is the baryonic bulk velocity, cs is the
baryonic sound speed, and ϕ and ψ are the two gravita-
tional potentials in the conformal Newtonian gauge. Note
that we have used the relationship

d
dη

¼ a2H
d
da

ð3Þ

to convert between conformal time (η) derivatives and
scale-factor derivatives. It is straightforward to see that
these equations are invariant under the transformation

H → λH; k → λk; σTne → λσTne: ð4Þ

These transformations correspond to equally rescaling all
length scales appearing in the Boltzmann equations: the
Hubble horizon, the wavelength of fluctuations, and the
photon mean free path. To close this system of equations,
we need the perturbed Einstein equations for the ϕ and ψ
potentials. We use here the Poisson and shear equations

k2ϕþ 3aH
"
a2H

dϕ
da

þ aHψ

#
¼ −4πGa2

X

i

ρiδi;

k2ðϕ − ψÞ ¼ 12πGa2
X

i

ðρi þ PiÞσi;

ð5Þ

where δi, σi and Pi are the energy density perturbation,
anisotropic stress and pressure of species i, respectively.
These equations are invariant under the transformation
given in Eq. (4), provided that the energy density of each
component is individually rescaled, that is,

ffiffiffiffiffiffiffiffi
Gρi

p
→

λ
ffiffiffiffiffiffiffiffi
Gρi

p
. Massless neutrinos and darkmatter follow collision-

less versions of the equation given in Eq. (2), implying that
they too are invariant under the transformationH → λH and
k → λk. We note that the evolution of massive neutrinos
perturbations are also invariant under this transformation,
once their masses are also properly rescaled.
We thus see that the linear evolution equations of all

components present in the Universe are invariant under the
transformation

ffiffiffiffiffiffiffiffi
Gρi

p
→ λ

ffiffiffiffiffiffiffiffi
Gρi

p
; k → λk; σTne → λσTne: ð6Þ

As we shall see in the next subsection, the rescaling of the
wave number k is actually unnecessary since one can
express the solution Φ̃ðk; a; λÞ to the perturbation equations
for a given wave number k in the presence of the scaling in
terms of the original solution in the absence of scaling but
for a different wave number k0 ¼ k=λ

Φ̃ðk; a; λÞ ¼ Φðk=λ; a; λ ¼ 1Þ; ð7Þ

where Φ; Φ̃ here stand for any of the perturbation variables
(e.g., δ; v; Fγl, etc.), and where it is now understood that
both

ffiffiffiffiffiffiffiffi
Gρi

p
and σTne are rescaled in the transformation.

Such a relation was first presented in Ref. [31] in the
context of the tight-coupling approximation ( _κ ≫ H), but
we see here that it applies in a broader context once the
Thomson opacity is also rescaled.
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B. Symmetry of the power spectra

Having established the symmetry structure of the per-
turbed Boltzmann and Einstein equations, we now turn our
attention to the symmetry of the actual observables: the
power spectra. Our goal is to understand how the different
power spectra transform (if at all) under the scaling trans-
formation given in Eq. (6). Here, we will focus on the CMB
temperature power spectrum for simplicity, but note that the
polarization and cross temperature-polarization spectra
behave the exact same way under the scaling symmetry.
Under the scaling transformation, the CMB temperature
power spectra can be written as

CTT
l ðλÞ ¼

Z
dk
k
PðkÞjΔ̃Tlðk; λÞj2; ð8Þ

where PðkÞ is the primordial spectrum of fluctuations, and
ΔTlðk; λÞ is the photon transfer function under the trans-
formation given in Eq. (6). The latter can be written as

Δ̃Tlðk; λÞ ¼
Z

1

0
da S̃Tðk; a; λÞjlðkχ̃ða; λÞÞ; ð9Þ

where S̃Tðk; a; λÞ is the photon source term, and χ̃ða; λÞ is
the comoving distance to the scale factor a in the presence
of the rescaled Hubble rate. The source term S̃T depends on
cosmological perturbations obeying Eq. (7) and on the
photon visibility function g̃ða; λÞ ¼ −d=daðe−κ̃ða;λÞÞ, where

κ̃ða; λÞ ¼
Z

1

a
da0

λσTne
a0λH

¼ κða; λ ¼ 1Þ; ð10Þ

hence showing that the visibility function, once expressed
in terms of the scale factor a, is invariant under the scaling
transformation. This then ensures that

S̃Tðk; a; λÞ ¼ STðk=λ; a; λ ¼ 1Þ: ð11Þ

Similarly, we have χ̃ða; λÞ ¼ χða; λ ¼ 1Þ=λ. We thus get

Δ̃Tlðk; λÞ ¼
Z

1

0
daSTðk=λ; a; λ ¼ 1Þjlððk=λÞχða; λ ¼ 1ÞÞ

¼ ΔTlðk=λ; λ ¼ 1Þ; ð12Þ

and the CMB temperature spectrum takes the form

CTT
l ðλÞ ¼

Z
dk
k
PðkÞjΔTlðk=λ; λ ¼ 1Þj2

¼
Z

dk0

k0
Pðλk0ÞjΔTlðk0; λ ¼ 1Þj2: ð13Þ

Adopting the standard power-law primordial power spec-
trum PðkÞ ¼ Asðk=kpÞns−1, where kp is the pivot scale, and

rescaling the scalar amplitude As → As=λns−1 we can write
this as

CTT
l ðλÞ ¼

Z
dk0

k0
As

λns−1

"
λk0

kp

#
ns−1

jΔTlðk0; λ ¼ 1Þj2

¼
Z

dk0

k0
As

"
k0

kp

#
ns−1

jΔTlðk0; λ ¼ 1Þj2

¼ CTT
l ðλ ¼ 1Þ; ð14Þ

hence showing that the CMB temperature spectrum is
indeed exactly invariant under the transformation

f
ffiffiffiffiffiffiffiffi
Gρi

p
→ λ

ffiffiffiffiffiffiffiffi
Gρi

p
; σTne → λσTne; As → As=λns−1g: ð15Þ

An entirely similar argument applies to the polarization and
cross spectra, implying that the primary CMB is entirely
unchanged under this transformation. Furthermore, matter
clustering observables (e.g., σ8) are also invariant under this
transformation (following a very similar argument to that
presented above), which together with the invariance of
distance ratios also leaves the lensing of the CMB
unchanged. We thus conclude that the observable CMB
is completely invariant under the above transformation. In
what follows, we shall refer to this scaling as the free-fall,
amplitude, and Thomson (FFAT) scaling.
Although our focus in this paper is onCMBpower spectra,

the invariance of BAO observables, cosmic shear power
spectra, and matter power spectra under the FFAT trans-
formation can be easily demonstrated with the arguments we
have presented in this and the previous subsection.

C. Mirror world mimic of gravitational rate scaling

In our Universe, the invariance under the FFAT scaling
transformation is broken by direct measurements of the
energy density of certain cosmological components. In
particular, the FIRAS [38,39] measurements of the mean
temperature of the CMB photons today tightly constrain the
photon energy density, ργ;0, hence preventing the scaling
transformation

ffiffiffiffiffiffiffiffi
Gρi

p
→ λ

ffiffiffiffiffiffiffiffi
Gρi

p
from being implemented.

To nonetheless exploit the scaling symmetry while main-
taining agreement with our knowledge of the CMB thermal
history, it is useful to consider a practical cosmological
model containing a mirror world dark sector (MWDS) (see
e.g., Refs. [5,9,40–68]). As discussed in CGK, such a
model can very closely mimic the

ffiffiffiffiffiffiffiffi
Gρi

p
→ λ

ffiffiffiffiffiffiffiffi
Gρi

p
trans-

formation while leaving the tightly constrained visible
radiation and matter budget of the Universe unchanged.
In this work, our main interest is not in the MWDS as a
plausible cosmological scenario (see however Ref. [69]),
but rather as a useful reference model that can help us
understand the origins of constraints on light relics. With
this in mind, we briefly summarize the properties of the
mirror sector that are most relevant to our work below.
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The MWDS contains a copy of baryons, photons and
neutrinos in the dark sector. In this model, the relative
energy density ratios of the dark baryon, dark photons and
dark neutrinos are exactly the same as those in the visible
sector. The presence of the dark photons effectively scales
the photon gravitational free-fall rate while respecting the
FIRAS constraint on the mean temperature of CMB
photons. The addition of dark baryons acts to increase
the energy density in baryonlike matter (i.e., matter that
cannot cluster prior to the epoch of recombination) while
keeping the photon-to-baryon ratio unchanged in the
visible sector. The addition of dark neutrinos, or any other
free-streaming particles, are used to scale up the energy
density of free-streaming species while preserving the free-
streaming fraction of relativistic particles. That is, instead
of scaling every component, we alter the scaling trans-
formation so as to fix ρb, ργ , and ρν while ρx þ ρDx →
λ2ðρx þ ρDx Þ where x indicates baryons, photons, or neu-
trinos and the superscript D denotes their dark sector
versions.
Within the dark sector, dark baryons (including dark

electrons) and dark photons can interact via a Thomson-
scattering like interaction. This interaction ensures that the
fraction of the total matter density that can cluster is kept
fixed at all times, as well as maintaining a similar pressure
strength in the photon-baryon fluid in both visible and dark
sectors. To ensure the photon perturbations of both sectors
are in phase and that photon-baryon decoupling occurs at
the same time in both sectors, we fix the ratio of hydrogen
binding energy to photon temperature and keep the fine
structure constant and proton mass the same in both sectors.
We neglect any mixing between the dark and visible
sectors, and assume that two sectors only interact through
gravity. After dark recombination, the MWDS forms
atomic dark matter [70–93], which contributes a small
fraction of the overall dark matter budget with the rest being
made of standard CDM.

D. Photon scattering and recombination rates scaling

The second crucial transformation of the FFAT scaling
[Eq. (1)] is the photon scattering rate σTne. In this
paper, this scaling is implemented by altering the pri-
mordial helium abundance, YP. Since ne ∝ xeð1 − YPÞρb,
it is possible to change YP to enforce the photon scat-
tering rate scaling [at fixed xeðzÞ] by performing the
transformation

1 − YP → λð1 − YPÞ; ð16Þ

with ρb held fixed to its base ΛCDM value due to the
sensitivity of the CMB power spectra to the baryon-to-
photon ratio. Much like the MWDS, we do not consider
this scaling of the helium abundance away from its big
bang nucleosynthesis (BBN) prediction as part of a
plausible cosmological scenario. Instead, we use this

scaling of YP as a tool to understand light relics constraints
from the CMB. See Sec. IV B below for a discussion
of light-element abundances in the presence of the
FFAT scaling.
This scaling could also be implemented by rescaling the

Thomson cross section σT ∝ α2=m2
e , where α is the fine-

structure constant and me is the electron mass. This would
require varying these fundamental constants (see e.g.,
Refs. [33,94–99]) away from their Standard Model values.
Besides the obvious model-building challenge that this
brings, care must also be taken if this route is chosen as
other combinations of α and me enter the problem, most
notably the Rydberg constant ϵ0 ∝ α2me. While we do not
follow this path here, we note that the scaling α → λ1=6α
and me → λ−1=3me would achieve the right scaling of
the Thomson cross section while leaving the Rydberg
constant invariant.
Since they are similar electromagnetic processes, the

leading-order hydrogen recombination rate [100,101] and
the photon scattering rate have the same parametric
dependence on α, me, and ne, with both rates ∝ σTne
(assuming the Rydberg constant is left unchanged). This
means that, at leading order, a rescaling of the photon
scattering rate automatically results in the same scaling of
the hydrogen recombination rate. Thus, the FFAT scaling
leaves the ratio of the leading-order hydrogen recombina-
tion rate to the Hubble rate unchanged, hence leaving the
ionization history of the Universe nearly invariant.
The ionization history is however not exactly invariant

under FFAT scaling due to the relative importance of other
atomic rates to the overall hydrogen recombination process,
most notably the two-photon 2s − 1s transition rate, and
the Lyman-α photon escape rate [102]. The ratios of these
rates to the Hubble expansion rate are not invariant under
the FFAT transformation, resulting in small changes to the
ionization history. This in turns leads to small modifications
to the Thomson scattering rate and therefore to CMB
spectra.
We are now ready to fully motivate our distinction

between causes 1 and 4. We could certainly choose to
organize our enumeration of causes so that they are both
counted as cause 1. For both of them, observational
consequences arise entirely from the changes to the ratio
of the photon scattering rate to the Hubble rate. We have
found it useful though to make the distinction for two
reasons. First, even at fixed xeðzÞ changing the Hubble rate
generally leads to changes to σTneðzÞ=HðzÞ, and this
change is generally larger than the change just due to
changes to xeðzÞ alone. Note that our focus on the ratio
of rates, rather than σTneðzÞ alone, is appropriate because
it is the ratio that leads to observational consequences;
a changing ratio is a departure from uniform scaling.
Second, the helium scaling provides us with a means of
eliminating what we call cause 1, without eliminating what
we call cause 4. In the next section wewill see the impact of
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cause 4 in models that differ in ways that eliminate the
other three causes.
We close this section with a caveat about our ordering of

the causes according to the magnitude of their impact.
Rescaling the gravitational free-fall rates

ffiffiffiffiffiffiffiffi
Gρi

p
→ λ

ffiffiffiffiffiffiffiffi
Gρi

p

without a corresponding scaling of the photon scattering
rate (and thus of the leading-order recombination rate)
would result in much larger changes to the ionization
history xeðzÞ. In this case, cause 4, although still subdomi-
nant to cause 1, would no longer be subdominant as
compared to causes 2 and 3.

III. ANALYSIS OF MODELS

Our approach to understanding constraints on light relics
models starts with understanding power spectra differences
between a best-fit ΛCDM model and a point in the light
relics model space with increased light relic abundance.
Power spectra differences tend to be smaller if the chosen
point in the light relics model space is along the trajectory
of a scaling transformation away from the best-fit ΛCDM
model, and thus we choose such a parameter-space location
for our comparisons.
To understand the origin of these power spectra

differences, we replace the ΛCDM model with a reference
model that has the same (or very nearly the same) spectra as
the best-fit ΛCDM model and that has the same light relics
abundance as the light relics model of interest. For a
graphical summary of the relationship between these three
models, see Fig. 1. We use the MWDS plus free helium
model space to define such a reference model. The
advantage of this replacement is that we are now comparing
two models that are much more similar; the differences
between them are fewer in number and thus the origin of
the spectral differences becomes clearer. At the same time,
the replacement has not changed the power spectra
differences, so we are still developing an understanding
of the same differences.
Thus motivated, in this section we examine the perfor-

mance of various approximations to the FFAT scaling; i.e.,
we evaluate the changes that occur to CMB power spectra
under these transformations. We begin with the most minor
departures from the FFAT scaling, and proceed toward the
more major departures. We thus start in Sec. III A with
the MWDS, first with helium scaling and then without it.
In Sec. III B we include the helium scaling but drop the
MWDS in favor of more vanilla additional light relics. The
weakest departure from full scaling we study in this
subsection preserves the free-streaming fraction of radia-
tion (prior to hydrogen recombination) by using the
appropriate mix of free-streaming and fluid additional light
relics. We also study in Sec. III C the two extremes of
additional light relics that are purely free streaming or
purely fluidlike. In Sec. III D we look at the same model
spaces, except with BBN-consistent helium instead. As we
progress away from the FFAT scaling in this manner,

new physical effects become important that drive
differences with the ΛCDM best-fit power spectra.
All of the above cases are in model spaces with zero

neutrino mass and the ionization history, xeðzÞ, fixed to a
fiducial best-fit ΛCDM value. In Sec. III E we examine the
quantitative symmetry-breaking impacts of the neutrino
mass and out-of-equilibrium recombination.
To fully define these scaling transformationswe nowpoint

out where we are scaling from. We choose to scale from an
ΛCDM cosmology, which we refer to as the base ΛCDM
model, with cosmological parameters2,3 fH0;Ωbh2;Ωch2;
τ;As;ns;YP;Nfs;Nfld;Σmνg¼ f67.36½km=s=Mpc&;0.02237;
0.12;0.0544;2.1×10−9;0.9649;0.2454;3.046;0;0g.

FIG. 1. A schematic visualization of the relationship in model
space between a best-fit ΛCDM model, the light relics (LR)
model of interest, and a reference model used to understand the
origin of the spectral differences between ΛCDM and the LR
model of interest. The reference model and the LR model have
the same value of Neff while the ΛCDM model and the reference
model have the same power spectra. Spectral differences between
the LR model and the ΛCDM model are thus the same as those
between the LR model and the reference model. Model
differences between the LR model and the reference model are
fewer in number than are the model differences between the LR
model and ΛCDM and thus understanding the impact of these
differences on spectra is easier. Spectral differences can be
understood as arising from the constraints on the model space
of interest that prevent it from following a FFAT scaling
trajectory, and the impact of the resulting differences from FFAT
scaling on the spectra.

2With the exception of Σmν these are the parameter values for
the best-fit Planck 2018 TTTEEEþ LowEþ lensing ΛCDM
cosmology [19] with Σmν fixed to 0.06 eV.

3We adopt Nfs ¼ 3.046 from the Planck 2018 TTTEEEþ
LowEþ lensing ΛCDM cosmology in our analysis, but we note
that recent calculations find Neff ¼ 3.044 as the expected value
based on standard assumptions of the thermal history [103–105].
A change from 3.046 to 3.044 would have negligible impact on
our results.
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The scaling transformations we examine are summarized
in Table I. They are arranged vertically so that as one moves
down the page the degree of symmetry decreases, although
there is some back and forth with respect to the photon
scattering rate scaling.All of the transformationswe consider
have the HðzÞ → λHðzÞ scaling, which in the model spaces
we consider is guaranteedbyρm, ρrad, andρΛ all scalingupby
λ2. The case of FFAT scaling is the transformation given by
Eq. (1). Unless otherwise specified, the scalings we use in
this section increase the Hubble parameter by 10% (that is,
λ ¼ 1.1). For all scaling transformations listed in Table I, the
amplitude of the scalar fluctuations As is always adjusted
according to As → As=λns−1.
Note that here we are strictly focused on scaling trans-

formations and their impact on power spectra. In Sec. IV
we will study the constraints on parameters in the model
spaces that are related to these transformations. Power
spectra changes, though useful for understanding parameter
constraints, cannot be related directly to parameter con-
straints as degeneracies with other parameters can be
important, and here we are not attempting any adjustments
to maximize likelihoods.

A. Mirror world dark sector

Motivated by the scaling transformation in Sec. II, we
investigate the FFAT scaling model and its practical
implementation using the MWDS. The CMB power spectra
are shown in Fig. 2.
First, note that the CMB angular power spectra of the

FFAT scaling model (blue lines) following Eq. (1) are
exactly the same as those in the base ΛCDM model (black
dashed lines). The CMB power spectra are indeed invariant

with massless neutrinos and fixed ionization history. This is
exactly as expected from Sec. II, because the power spectra
are dimensionless.
As pointed out in the previous section it is not possible to

implement the FFAT scaling transformation without break-
ing the observational constraint on the CMB mean temper-
ature today, but we can use a MWDS to mimic it. In Fig. 2,
we show the power spectra of the MWDS models maxi-
mally exploiting the FFAT scaling in red dotted lines
(MWDS+YSym

P model). We see that the MWDS scaling
transformation together with the helium abundance reduc-
tion to boost the photon scattering rate leads to CMB power
spectra that are very nearly identical to those of FFAT
scaling, and therefore of ΛCDM.
In contrast, if one instead chooses to not scale the photon

scattering rate, the power spectra change significantly. In
Fig. 2, the power spectra of the MWDSþ YBBN

P model
(green lines) are obviously different from the other spectra
shown in the plot. In this model, the photon scattering rate
is not scaled, but calculated following the BBN-predicted
YP. The TT spectrum gets smaller with l getting larger
compared to the other models in the figure. The EE
spectrum is larger at low-l and smaller in the high-l tail.
These changes to the spectra are all due to the photon-

scattering rate being below its FFAT scaling value, a
consequence of our use of a BBN-consistent YP. In the
language of our four causes, this is cause 1: a change to
the photon scattering rate relative to the Hubble rate [at
artificially fixed xeðzÞ]. Due to the increased expansion
rate, there is an increased helium yield from BBN, due to
both neutron-proton freeze-out at higher temperature and
less time for neutron decay between then and the onset of
helium production [106]. This is the opposite direction of

TABLE I. Properties of the scaling transformations applied in this section. A check mark (✓) means the corresponding scaling
transformation property has been implemented, while a cross (✗) means it has not. The fraction of radiation energy density in free-
streaming species is denoted as Rfs. The superscript “D” indicates a component in the MWDS discussed in Sec. III A. Transformations in
model spaces without an MWDS get a “' ' '” in the second-from-right column indicating that property is not applicable. FFAT scaling
means scaling according to Eq. (1). Note that all of these scaling transformations implicitly include As → As=λðns−1Þ and, except when
noted otherwise, an artificially fixed recombination history xeðzÞ.

Scaling transformation properties

Scaling transformation
ρm ∝ λ2 ρrad ∝ λ2

ρΛ ∝ λ2 σTne ∝ λ Rfs fixed
ðργ þ ρDγ Þ ∝ λ2

ðρb þ ρDb Þ ∝ λ2 ρi ∝ λ2 ∀ i

Free-fall, Amplitude, and Thomson (FFAT) ✓ ✓ ✓ ' ' ' ✓

MirrorWorldþ YSym
P ðMWDSþ YSym

P Þ ✓ ✓ ✓ ✓ ✗

MirrorWorldþ YBBN
P ðMWDSþ YBBN

P Þ ✓ ✗ ✓ ✓ ✗

ΔNfs þ ΔNfld þ YSym
P (Mixþ YSym

P ) ✓ ✓ ✓ ' ' ' ✗

ΔNfld þ YSym
P

✓ ✓ ✗ ' ' ' ✗

ΔNfs þ YSym
P

✓ ✓ ✗ ' ' ' ✗

ΔNfs þ ΔNfld þ YBBN
P (Mixþ YBBN

P ) ✓ ✗ ✓ ' ' ' ✗

ΔNfld þ YBBN
P ✓ ✗ ✗ ' ' ' ✗

ΔNfs þ YBBN
P ✓ ✗ ✗ ' ' ' ✗
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change in helium yield that we would want to appropriately
scale the photon scattering rate; at a given baryon density,
the boosted helium leads to a reduction in free electrons
density. One result is an increased photon mean free path
during the recombination period and thus increased dif-
fusion damping. The last scattering period is also longer
due to the larger photon mean free path, leaving a longer
time for quadruple moments of the photon perturbations to
grow [31]. As the main source of polarization [32], the
larger quadruple moments boost polarization amplitude. At
small scales, the polarization amplitude is damped due to
photon diffusion. Thus, the boosted amplitude is only seen
at large scales.
The net result of this isolated cause 1 effect with λ ¼ 1.1

(which brings us to Neff ¼ 4.61) are spectral differences at
the 10% to 15% level.

B. Free streaming and fluid light
relics with scattering rate scaling

Having established in the previous subsection that the
MWDS can provide a highly effective mimic of the FFAT
scaling transformation, we can now look at simpler models
of light relics and understand the changes in power spectra
as arising from the differences between these models and
the MWDS model. Here, and in the next subsection,
we keep the photon scattering rate scaling, and extend
ΛCDM with either free-streaming or fluid light relics or a
mix of the two. These model spaces cannot mimic the

scaling of all the gravitational free-fall rates
ffiffiffiffiffiffiffiffi
Gρi

p
, but still

allow for HðzÞ → λHðzÞ.
It is in this subsection that we present our answer to the

question that initially motivated the investigations that led
to CGK and this paper. That question is, how do the CMB
data lead to constraints on light relics models when one has
addressed the damping scale and polarization generation
problems by freeing up helium (eliminating cause 1), and
eliminated impacts of a changing free-streaming fraction
(cause 2)?
As is conventional we parametrize the energy density

in free-streaming and fluidlike species in terms of their
effective number of neutrino species, Nfs and Nfld respec-
tively so that the total radiation energy density is given by

ρradðzÞ¼ργ;0ð1þzÞ4
$
1þðNfsþNfldÞ

7

8

"
4

11

#
4=3

%
; ð17Þ

where ργ;0 is the photon mean energy density today tightly
constrained by FIRAS. In our base ΛCDM model
ðNfs; NfldÞ ¼ ð3.046; 0Þ.
To ensure HðzÞ → λHðzÞ we have to send ρΛ → λ2ρΛ,

ρmðzÞ → λ2ρmðzÞ, and ρradðzÞ → λ2ρradðzÞ. For both matter
and radiation there are choices to be made. For matter here
we always choose to keep the baryon density fixed, in order
to keep the baryon-to-photon ratio fixed. We increase ρcdm
by a sufficient amount to ensure the desired ρmðzÞ scaling.
For the radiation density, we make the minimum departure

FIG. 2. CMB power spectra comparisons of the best-fit ΛCDMðΣmν ¼ 0Þ model to models scaled from there via FFAT scaling and
MWDS scaling by λ ¼ 1.1 to H0 ¼ 74.1 km=s=Mpc. The black dashed lines show the base ΛCDMðΣmν ¼ 0Þ model. The blue solid
lines show the CMB power spectra after FFAT scaling. The symbol YBBN

P means that the primordial helium fraction is derived from the
BBN prediction, while YSym

P means the helium abundances is set by the scaling transformation of Eq. (16). All of the fractional
differences in the bottom panels are compared to the ΛCDMðΣmν ¼ 0Þ case. Cosmic variance in individual multipoles is shown as a
gray band.
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fromMWDS scaling by having the appropriate mix of free-
streaming and fluidlike additional relics to preserve the
free-streaming fraction of radiation,

Rfs ¼ ρfs=ρrad; ð18Þ

and refer to this model as ΔNfs þ ΔNfld þ YSym
P or

Mixþ YSym
P . In Sec. III C, we also consider the two

extreme cases of increasing the radiation density with
either free-streaming particles alone (ΔNfs þ YSym

P ) or
fluidlike additional relics alone (ΔNfld þ YSym

P ).
In Fig. 3 we compare the power spectra of these three

models to the MWDSþ YSym
P spectra. Let us consider the

free-streaming-ratio-preserving case (Mixþ YSym
P ). We see

for this model a slight decrease in power on large scales and
a slight increase in power on smaller scales. We turn to the
differences with the corresponding MWDS model for our
explanation of these spectral differences. These models,
prior to recombination, have the same free-streaming
radiation densities, the same fluid radiation densities,
and the same dark matter densities. They differ in two
distinct ways: first, the atomic dark matter in the MWDS
model is replaced with additional cold dark matter in the
model of interest and second, the fluidlike dark radiation in
the MWDS model transitions to free-streaming radiation at
recombination (which, by design of our particular MWDS
model, happens at the same time whether it is visible
recombination or dark recombination).

We find that the differences in the spectra are predomi-
nantly due to the lack of pressure support for the cold dark
matter that would be dark baryons in the corresponding
MWDS model, a lack of pressure support that alters
gravitational potentials.
This finding, evidence for which we will present shortly,

should not be surprising. The most dramatic difference
between the two models is that what is atomic dark matter
in one model, experiencing pressure support, is cold dark
matter in the othermodel, experiencingnone.The differences
in the radiation content are much milder: although the dark
photons effectively form a fluidwith the dark baryons, with a
somewhat reduced sound speed compared to the fluidlike
light relics, the dark photons and fluidlike light relics both
experience pressure support. After recombination the dark
photons (by design) are free streaming, unlike the fluidlike
light relics which remain fluidlike, but by this time the
radiation is a small contributor to the total density.
The cause of the differences between these spectra can

also be expressed in a manner independent of the proper-
ties of the reference model: it is due to the change to the
fraction, prior to recombination, of nonrelativistic matter
that is pressure supported. This is our cause 3. In the
Mixþ YP model this fraction is simply ρb=ρm. In the
MWDSþ YP model it is ðρb þ ρDb Þ=ρm.
Let us first look at what happens on larger scales by

examining the evolution of the photon monopole pertur-
bation moment, Θ0, and ψ in our two models for a
perturbation wavelength that contributes significantly to
the first peak of the temperature power spectrum. We see in

FIG. 3. CMB power spectra comparisons of the MWDSþ YSym
P model to several other light relics models. In all models,

λ ¼ 1.1. The increase in the effective number of neutrino species due to free-streaming (or fluidlike) species is ΔNfs (ΔNfld). We use the
MWDSþ YSym

P model as the reference model, which is indistinguishable from the corresponding FFAT scaling model. The fractional
differences in the bottom panels are relative to the reference model. Cosmic variance in individual multipoles is shown as gray
bands.
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Fig. 4 that in the Mixþ YSym
P model that the gravitational

potential decays less than in the MWDS model (since
ψ < 0, the lesser amount of decay shows up in the residual
plot as a negative Δψ). This is expected since the pressure
support in the MWDS model leads to greater potential
decay. The smaller amount of decay reduces the resonant
driving of the baryon-photon fluid oscillations and thereby
reduces Θ0 at last scattering, at which time the oscillator of
this mode reaches its first compression. The net result is an
even larger decrease in the effective temperature Θ0 þ ψ ,
which, since this is a positive quantity, is also a decrease in
its amplitude. Thus we see a suppression in power near the
first peak.
On smaller scales things play out a bit differently as

shown in the bottom panel of Fig. 4. There we show, as a
representative case, the evolution of Θ0 and ψ in our two
models for a perturbation wavelength that contributes to the
5th peak of the temperature spectrum. With this smaller-
wavelength mode, horizon crossing happens earlier when
the radiation-to-matter ratio is higher. In both models,
substantially more gravitational potential decay occurs and

there is more scale-factor evolution between horizon cross-
ing and last-scattering. Unlike with modes that contribute to
the first peak, potential differences begin to emerge after the
first compression, driving changes to the baryon-photon
fluid that, by the time of last-scattering, boost the amplitude
of both Θ0 and Θ0 þ ψ .
We now identify the main factor leading to the gravita-

tional potential differences. Comparing the two modes in
Fig. 4, the residual changes are similar from the horizon entry
until finishing the first maximum contraction. The difference
starts to emerge during the sub-horizon evolution after the
horizon entry until the last scattering. During this time, the
growth of photon temperature monopole is halted due to
the pressure within the photon-baryon fluid. The CDM
perturbation is able to keep growing. As a result, the
CDM perturbation will become the main source driving
the potential growth. In turn, the photon perturbation multi-
poles are driven by the potential in Eq. (2). To see this,we use
the time-space component of the Einstein equation,

k2
"

_ϕþ
_a
a
ψ

#
¼ 4πGa2

X

i

ðρi þ PiÞθi;

with Eq. (5) to get expressions for gravitational potential
without time derivatives:

k2ϕ ¼ −4πGa2
$X

i

ρiδi þ
3aH
k2

X

i

ðρi þ PiÞθi
%
;

k2ψ ¼ −4πGa2
$X

i

ρiδi þ
3aH
k2

X

i

ðρi þ PiÞθi

þ3
X

i

ðρi þ PiÞσi
%
; ð19Þ

where θi is the velocity divergence of specie i. The difference
in the potential perturbation comes from the difference in
the CDM density perturbation. Under the subhorizon limit,
aH
k ≪ 1, the velocity term can be neglected compared to the
other terms. Proportional to Rfs [26,28], the shear term has
the same contribution between the Mixþ YSym

P model and
MWDSþ YSym

P model, where the free-streaming fractions
are the same. The density perturbation is dominated by the
CDM, Σiρiδi ≈ ρcδc, at subhorizon scale.
Looking at the Boltzmann equations of Eq. (2), the

gravitational potential impacts the evolution of the photon
perturbations. After horizon entry, the gravitational poten-
tial decays and oscillates. For the Mixþ YSym

P model, it is
the reduced gravitational potential decay post first com-
pression that drives the photon perturbation to a larger
amplitude. In the residual plot of the mode corresponding
to the 5th peak of Fig. 4, we see the difference in Θ0 grows
with time. At last scattering,Θ0 þ ψ is at a larger amplitude
in Mixþ YSym

P model. As a result, the CMB power
spectrum has larger amplitude at small scales, which we
see as the excess power in the TTand EE residuals in Fig. 3.

FIG. 4. Evolution of Θ0 and ψ of the scales corresponding to
the first and fifth peak in the temperature power spectrum of the
Mixþ YSym

P model (in green) and MWDSþ YSym
P model (in red).

The top parts of both panels show the amplitude of Θ0 (dash-
dotted lines) and −ψ (dashed lines). The bottom parts of both
panels show the difference of Θ0 (light blue), ψ (orange) and
Θ0 þ ψ (dark blue) of the Mixþ YSym

P model compared to the
MWDSþ YSym

P model; e.g., the light blue curve in the residual

panel is ΘMixþYSym
P

0 − ΘMWDSþYSym
P

0 . The solid and dotted vertical
lines show the scale factors of matter-radiation equality and last
scattering, respectively.
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A change in the gravitational potential amplitude also
modifies the zero-point equilibrium position of the Θ0 þ ψ
oscillator. This results in alternating higher and lower peaks
in the CMB temperature spectrum residual at small scales.
While present, this pattern is partially obscured in the
temperature residuals shown in Fig. 3 by other out-of-phase
source contributions (especially cross terms) to the total
CMB spectrum. To better illustrate this point, we compare
in the Appendix the different contributions to the spectral
differences shown in Fig. 3, including the contributions
from the monopole term Θ0 þ ψ , the velocity of the
plasma, the early integrated Sachs-Wolfe effect, and gravi-
tational lensing. We find that the monopole term dominates
over most of the higher l range, with the boosted Θ0 and
shift to the oscillator’s zero-point clearly visible there. We
also find that the eISWand the velocity term are both signi-
ficant on larger scales. Lensing starts to make ∼10%-level
changes to the fractional differences at l > 2000.
In this subsection, we have studied what we call the

Mixþ YSym
P model and addressed the question of why its

CMB spectra differ from those of ΛCDM even when we
choose points in the respective model spaces that both have
the same shape ofHðzÞ, scattering rates, and free-streaming
fractions (prior to recombination). Such a comparison has
no cause 1 or cause 2 and because we also artificially fix
xeðzÞ there is also no cause 4.
Our explanation relies on our use, as a reference model,

of an MWDSþ YSym
P model obtained by a scaling trans-

formation away from the best-fit ΛCDM model. We identi-
fied the important difference between the Mixþ YSym

P
model and the reference model as the fraction of CDM
in the former model that is replaced with atomic dark matter
in the latter model. This change is a change to the fraction
of nonrelativistic matter that is pressure supported; i.e., this
is cause 3. The resulting difference in pressure support
leads to differences in gravitational potentials, which in
turn lead to differences in the CMB spectra. We see
differences in the spectra, for λ ¼ 1.1, are at the
2 to 3% level. At least for the TT spectrum, for most
values of l, these changes were driven mostly by changes
to the monopole Θ0 þ ψ at recombination, rather than ISW
effects, the Doppler term or gravitational lensing.

C. Additional pure free-streaming
or pure fluidlike light relics

In the previous subsection we introduced three models
and focused our attention on the one that preserves the free-
streaming fraction, Rfs. Now we turn to the other two
models. TheHðzÞ → λHðzÞ transformation is still enforced
in the models, but the additional light relics are free-
streaming species only (ΔNfs þ YSym

P ) or fluidlike relics
only (ΔNfld þ YSym

P ). The CMB power spectra are shown in
Fig. 3. The main changes to the power spectra, compared
to the Mixþ YSym

P and MWDSþ YSym
P models, are the

overall amplitude difference and the temporal phase shift.
These effects have been studied in Refs. [26,28].
In the pure free-streaming model power is suppressed

and in the pure fluid model power is enhanced. The free-
streaming species reduce the super-horizon solution to the
gravitational potential due to the shear induced by neu-
trinos, leading to a less “radiation driving” boost to the
photon perturbation after horizon entry. Besides, the
neutrinos freeze out earlier than last scattering and start
to free stream with a speed faster than the sound speed of
the photon-baryon plasma. The neutrino perturbation and
the photon perturbation of the same scale are out-of-
resonance, reducing the photon perturbation amplitude.
As a result, adding more free-streaming species will reduce
the amplitude of the power. Also in these models there are
temporal phase shifts to the acoustic oscillations that are
proportional in amplitude to Rfs, that lead to shifts in the
peaks and therefore oscillatory features in the residual
power spectra. These lead to especially pronounced oscil-
lations in the residuals in the pure free-streaming case as
their sign leads them to interfere constructively with the
oscillations that are already there in the fixed Rfs case.
In the previous subsection we isolated effects from

cause 3. In this one we see the combined effects of causes
2 and 3 for two different models. We can see from the
residuals in Fig. 3 that cause 2 and cause 3, for λ ¼ 1.1, are
leading to changes in spectra at the 5% to 6% level.

D. Free streaming and fluid light
relics without photon scattering rate scaling

In this subsection, we continue our movement away from
FFAT scaling by looking at the models of Secs. III B
and III C, but now with BBN-consistent YP instead of
enforcing the primordial helium abundance as in Eq. (16).
This effectively removes that scaling of the photon scatte-
ring rate. In Fig. 5, we compare the power spectra resulting
from these three different scaling transformation with the
Mixþ YSym

P model and with the reference model. We see in
these residuals the combined effects of causes 1, 2, and 3.
The impacts of cause 1 can be seen in the decreasing
amplitude in power at high-l tail and the significant
changes in the EE spectra residuals. The overall power
spectrum amplitude differences of the three models are
induced by cause 2. The impact of cause 3 can only be
seen in the region around the first two peaks between
Mixþ YBBN

P and MWDSþ YBBN
P , where the impacts of

causes 1 and 2 are negligible.

E. Mirror world with physical
recombination and massive neutrinos

In the previous subsections, we have assumed massless
neutrinos and a fixed ionization history for all the models.
Under both assumptions, the MWDS model can exploit the
scaling symmetry without violating the COBE/FIRAS
constraint. However, the scaling transformation is not
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preserved by the physical recombination process and the
presence of massive neutrinos.
The sensitivity to the expansion rate is acquired during

the out-of-equilibrium recombination, with its sensitvity to
the ratio of the expansion rate to the microphysical reaction
rates, as emphasized by ZZ. When the expansion rate is
faster, the recombination will deviate from the equilibrium
state earlier. Since the photon diffusion damping of the
power spectra and the CMB polarization anisotropy are
generated during this out-of-equilibrium period, the physi-
cal recombination process may not preserve the dimension-
less CMB power spectra. In ZZ, they emphasize the
physical recombination rate as responsible for the
symmetry-breaking effects seen in their CMB TT and
EE power spectra. However, these effects are also due to
other sources of changes to the photon scattering rate
relative to the Hubble rate. Here we isolate the effects just
due to changing the recombination rates relative to the
Hubble rate; i.e., we isolate the effects due to cause 4.
In Fig. 6, we compare the CMB TTand EE spectra with a

physical recombination process (red dash-dotted lines) to
the one with fixed recombination history (black dashed
lines) and the FFAT scaling model (blue solid lines). The
deviation is only about 2% up to l ≈ 2500. The symmetry-
breaking effect from out-of-equilibrium recombination is
thus mild, although not entirely negligible. We will see in
the next section that the effect, the fourth in our

FIG. 5. CMB power spectra comparisons of free-streaming and fluid light relics models without scattering rate scaling to the
Mixþ YSym

P model and MWDSþ YSym
P model. In all models, λ ¼ 1.1. The MWDSþ YSym

P CMB power spectra are shown in solid blue
lines. The black dashed lines show the same spectra of the Mixþ YSym

P model as in Fig. 3. The increase in the effective number of
neutrino species due to free-streaming (or fluidlike) species is ΔNfs (ΔNfld). By YBBN

P we mean that the primordial helium fraction is
derived from BBN prediction. All of the fractional differences in the bottom panels are relative to the reference model, MWDSþ YSym

P .
Cosmic variance in individual multipoles is shown as gray bands.

FIG. 6. CMB power spectra of MWDS models with and
without fixing the recombination history. The CMB spectra of
the FFAT scaling model are shown in blue solid lines. The
MWDSþ YSym

P model with fixed ionization history is shown in
black dashed lines. The MWDSþ YSym

P model with physical
recombination process is shown in red dash-dotted lines.
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categorization of effects, has an impact on the posterior
distribution of H0 probability for the MWDSþ YP model.
In Fig. 7, we show the impact of massive neutrinos on the

MWDSþ YSym
P model scaled up from the best-fit ΛCDM

model with Σmν ¼ 0.06 eV. We compare the CMB TTand
EE power spectra to those of this same best-fit ΛCDM
model (blue solid lines). We see some small (< 0.5%)
departures from the FFAT scaling result.
These small changes emerge because the scaling of

neutrino energy density is no longer uniform across redshift.
Exactly how this departure from uniform scaling occurs
depends on how the neutrino sector is being modeled. We
have modeled it with one massive species and Nν − 1
massless species. Our default scaling method leaves the
massive species alone, and increases Nν − 1 sufficiently to
achieve, at high redshift,ρνðzÞ → λ2ρνðzÞ.When themassive
neutrino becomes nonrelativistic, if we have not scaled up its
mass then we have ρnon-relν;massive ∝ Σmν ∝ λ0, so HðzÞ at low
z drops below its scaling value.
All of the departures from FFAT scaling occur at low

redshift well after recombination. Thus the impacts on the
spectra have to do with late-time effects. The dominant
impact is due to a shift in the distance to last-scattering. At
higher l we also see some impact of changes to gravita-
tional lensing. Gravitational lensing is sensitive to HðzÞ
through its impact on distance ratios, as well as on the
growth of structure [e.g., [107]].
The degree of symmetry can be improved by extending

the scaling transformation to include mν → λ2mν. This
does not fully restore the symmetry, but one can see in

Fig. 7 (see linewith Σmν ¼ 0.0726 eV) that it brings us very
close. This scaling is possible as long as the absolute scale
of neutrino masses is unknown. Once determined through
direct laboratory measurements (see. e.g., Ref. [108]), this
new absolute scale would provide a new source of FFAT
scaling breaking, albeit at a very mild level.

IV. CONSTRAINTS ON LIGHT RELICS

In the previous section we studied power spectrum
differences that arise with a best-fit ΛCDM model when
there are additional light relics. We looked at these
differences for various light relic model spaces. Here we
discuss the constraints on light relic energy densities, as
parametrized by Neff, as well as the Hubble constant H0.
For brevity, we do not cover the same range of model

spaces as in the previous section. We focus on four which
have progressively looser constraints on Neff :

(i) Nfs: We assume free-streaming light relics only and
allow Nfs to vary. We also set the primordial helium
fraction to the BBN-predicted value.

(ii) Nfs þ YP: We assume free-streaming light relics
only and allow Nfs to vary. We also set the
primordial helium fraction, YP, free.

(iii) Nfs þ Nfld þ YP: We assume that the light relics
consist of free-streaming and fluidlike species, and
set both Nfs and Nfld independently free. We also set
YP as a free parameter.

(iv) Mirror Worldþ YP (MWDS+YP): We allow the
scaling transformation factor λ and the mirror world
dark baryon fraction of total dark matter fADM to
vary independently with a flat prior range 1.00001 <
λ < 1.3 and fADM ∈ ½0; 1&. We also allow YP to vary
independently. The dark photon temperature is set
by TD

γ =Tγ ¼ ðλ2 − 1Þ1=4.

A. Constraints from CMB and BAO

We first look at the constraints from CMB and BAO. The
light relics Neff includes the free-streaming species (Nfs),
fluidlike additional relics (Nfld) and dark photons (ND

γ ); i.e.,
Neff ¼ Nfs þ Nfld þ ND

γ . In all four models above, we
calculate the physical ionization history, xeðzÞ, using
RECFAST [109,110] and calculate the ionization history
of the mirror world following [80]. The sum of neutrino
masses,

P
mν, is also fixed at 0.06 eV.

To get the constraints onNeff andH0, we modified CAMB

[111] to solve the relevant Boltzmann equations and used
COSMOMC [112] to sample the parameter posterior distri-
bution. We combine the CMB data (Planck TTþ TEþ EE,
LowlT, LowlE and lensing likelihood [113]) and baryon
acoustic oscillation (BAO) data (6dFGS [114], SDSS MGS
[115] and BOSS DR12 [116]) to get joint constraints.
The constraints on Neff and H0 of the four models are

shown in Fig. 8. We see for the first three model spaces the
uncertainties opening up moderately under the progression

FIG. 7. Similar to Fig. 6, but showing power spectra for a
ΛCDM model with massive neutrinos and power spectra for
MWDS models scaled from this ΛCDMmodel, with and without
fixing xeðzÞ and scaling the neutrino mass.
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from one, two, and then three beyond-ΛCDM parameters.
The progression is expected both from a pure parameter-
count perspective, and also because of the new scaling
transformations each additional parameter allows.
With each new parameter added, the allowed scaling

transformations share more of the properties with
MWDSþ YSym

P scaling, as one can see in Table I. The
more these properties are shared, the fewer the differences
between the reference model and the corresponding point4

in the model space of interest.

In Fig. 8 we see a dramatic expansion of uncertainties as
we move from those first three models to the MWDSþ YP
model. This model allows for Neff to be increased along a
direction in parameter space (the MWDSþ YP (with
physical xeðzÞ) scaling direction) that avoids causes 1 to 3.
The difference with the result for the Nfs þ Nfld þ YP
model, which allows for avoidance of causes 1 and 2, is
due to the impact of cause 3, as discussed in the previous
section.
That there should be such a dramatic expansion of

uncertainties is not at all obvious from the results we
saw in the previous section. The four model spaces we
consider here, ordered from most constraining to least,
allow for elimination of none of our listed causes, cause 1,
causes 1 and 2, and causes 1, 2, and 3. We found in the
previous section that cause 1, 2, 3, and 4 lead to differences
between the ΛCDM spectra and spectra of models with
Neff ¼ 4.61 (λ ¼ 1.1) at the 10% to 15% level, 5% to 6%
level, 2% to 3% level and 1% to 2% level respectively. Just
based on these numbers alone one might expect at most a
doubling of uncertainty in going from our second-to-least
constraining model to our least constraining model.
Recall though that these spectral comparisons were done

along these scaling directions. There is nothing to guar-
antee that the maximally symmetric scaling transformation
takes us from best-fit ΛCDM to the best-fit location in the
new model space. In general, there will be variations of
parameters that take us off that scaling trajectory that can
act to reduce the residuals displayed in the previous section.
These accidental degeneracy directions (accidental as they
are not associated with any known transformation sym-
metry) are also important to the quantitative results on
display in Fig. 8. Apparently, the residuals we saw due to
cause 4 are not only smaller, but also particularly amenable
to reduction via these accidental degeneracy directions.
The uncertainties under the MWDSþ YP model are not

infinite. The constraining power emerges due to cause 4,
and the inability of other parameter variations to completely
undo its impact. Cause 4 is the recombination rates relative
to the Hubble rate, which impact xeðzÞ and therefore the
photon scattering rate relative to the Hubble rate. This is
the cause articulated by ZZ, but not distinguished by them
from other, usually more dominant, causes of changes to
neðzÞ=HðzÞ. Here we see, for the first time, the impact on
parameter constraints due to cause 4 alone. They only
become important in a model space in which the other three
causes can be avoided.
The mode of the one-dimensional posterior for H0 given

the MWDSþ YP model is shifted to significantly higher
H0. The CMB data do have a slight preference for models
in this space with higher H0. The best-fit model has
H0 ¼ 79.69 and a χ2 value that is lower by 4 from that
of the best-fit ΛCDM model. This level of improvement,
given four additional free parameters, is consistent with
noise fitting expectations given ΛCDM as the true model.

FIG. 8. Constraints on the effective number of neutrino species
(Neff ) and the Hubble constant (H0). The free-streaming species,
fluidlike species, and dark photons all contribute to Neff ¼
Nfs þ Nfld þ ND

γ . In black are the constraints given the model
with only free-streaming species and BBN-predicted YP
[Nfs þ Recfastþ Σmνð¼ 0.06 eVÞ], while the constraints given
the model with only free-streaming species and free YP are shown
in gray [Nfs þ YP þ Recfastþ Σmνð¼ 0.06 eVÞ]. Results given
the model with free Nfs, Nfld and YP are shown in blue
[Nfs þ Nfld þ YP þ Recfastþ Σmνð¼ 0.06 eVÞ]. The green
curves show the constraints of the MWDSþ YP þ Recfastþ
Σmνð¼ 0.06 eVÞ model. In these models, the primordial helium
abundance,YP, is also a free parameter. The total mass of neutrinos,
Σmν is set to 0.06 eV in all three models. The gray band in the left
two panels shows the H0 measurement from [117].

4Recall that this corresponding point has the same value ofNeff
as the reference model and is reached by scaling from ΛCDM
with the scaling transformation that has the highest degree of
symmetry allowed in the model space.
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The residuals seen in Sec. III E due to the impact of
cause 4, though small, are nevertheless significant given the
Planck error bars. The best-fit MWDSþ YP model has
much smaller residuals. Evidently the residuals in Fig. 6
can be mostly compensated with the appropriate parameter
adjustments.

B. Additional constraints from stellar
ages and light-element abundances

The MWDSþ YP model opens up constraints on Neff to
such a large degree that it is important to consider other
sources of constraints on Neff from observables that are not
protected by the scaling transformation symmetry. We
briefly consider three of those here.
There is a long tradition of inferring the primordial

helium abundance from observations of metal-poor ionized
gas. Spectral observations in the ultraviolet include both He
and H transitions. These can be modeled to simultaneously
determine properties of the medium, including the ratio of
helium to hydrogen. The low metallicity indicates relatively
small amounts of stellar processing, allowing one to
extrapolate helium inferences over a range of metallicities
to a primordial helium abundance (at zero metallicity with
small uncertainty. Aver et al. [14] report YP ¼ 0.2453(
0.0034 (see also Refs. [10–13]). We can see in the left panel
of Fig. 9 that the helium measurement, combined with the

Planck measurements, place a very strong constraint on
Neff for the MWDSþ YP model. This constraint could be
circumvented with an alternative mechanism, besides low-
ering YP, to scale up the photon scattering rate [CGK].
Yet further constraints from light element primordial

abundance determinations emerge when one considers their
creation in the first few minutes of the Universe. With some
standard assumptions (such as zero neutrino chemical
potential), one can calculate expected light element pro-
duction as a function of Neff and the baryon-to-photon
ratio. For baryon-to-photon ratios consistent with Planck
observations, Fields et al. [[118], hereafter F20] infer
Neff ¼ 2.88( 0.28 from measurements of primordial
helium and deuterium abundances.
These bounds could be circumvented with a violation of

some of the assumptions of the standard BBN calculation.
One of these assumptions is that the Neff relevant for CMB
anisotropy calculations is the same as for BBN calcula-
tions. A late reheating of the MWDS could potentially
evade these constraints (see, e.g., Refs. [120–122]),
although no viable scenario has yet been described.
The scaling transformationHðzÞ → λHðzÞ also sends the

age of the Universe at any redshift tUðzÞ → tUðzÞ=λ. Lower
limits on the age at any redshift thus place upper bounds
on λ. Vagnozzi et al. [119] have recently considered
constraints on ages from modeling of old astrophysical
objects observed over a range of redshifts at z < 8. Their
constraints are cosmology model dependent, with sensi-
tivity to the shape of HðzÞ at these low redshifts. However,
the shape they assume is that of ΛCDM, with Ωm assumed
to be in a fairly narrow range, with the amplitude controlled
by H0. That is the same shape of HðzÞ preserved by our
scaling transformations. Given how tightly the data con-
strain the MWDSþ YP model to the scaling transforma-
tion, it is a good approximation to simply apply their
resulting constraint on H0 directly, as we have in the left
panel of Fig. 9.

V. SUMMARY AND CONCLUSIONS

In this paper we introduced a new general framework for
understanding constraints on light relics from CMB obser-
vations using a set of scaling transformations. The scaling
transformations all involve various rates that impact the
evolution of cosmological perturbations, as well as an
ns-dependent scaling of the amplitude of the primordial
density perturbation power spectrum. They range from the
least-comprehensive scaling that merely preserves the shape
of the Hubble rate [HðzÞ → λHðzÞ] to the most-comprehen-
sive case of a uniform scaling of all the relevant rates in the
problem [with recombination rates effectively scaled by
an artificial fixing of the ionization fraction history xeðzÞ].
This latter scaling leaves all dimensionless cosmological
observables invariant, as we pointed out in CGK.
The gravitational free-fall rates,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GρiðzÞ

p
for each

component i, the photon (Thomson) scattering rate

FIG. 9. Constraints in the Neff − YP and Neff −H0 planes from
a variety of datasets. The black contour lines indicate the 68%
and 95% credible regions from CMB and BAO data given the
MWDSþ YP model. In the right panel are also samples from that
posterior probability distribution color coded by the age of the
Universe at z ¼ 0. In the left panel the green contours, so tight in
one direction that they appear collapsed down to a green curve,
are the 68% and 95% credible regions for BBN-consistent helium
for the same model and datasets. Also shown in the left panel are
YP constraints from [14], inferred from extragalactic regions of
metal-poor ionized gas, and constraints on Neff derived from
inferences of helium and deuterium and BBN predictions [118].
The right edge of the shaded region in the right panel is the
95% confidence upper limit on H0 from Vagnozzi et al. [119]
based on inferred ages of old astrophysical objects over a range of
redshifts. It is cosmology model dependent, but in a way that
makes it appropriate for our application here, as we describe in
the text.
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σTneðzÞ, and hydrogen recombination rates, are all the rates
that enter the evolution equations for ΛCDM and the
extensions we consider here. The FFAT scaling trans-
formation [implicitly understood to be at fixed xeðzÞ] is
a uniform scaling of all these rates.
The FFAT scaling transformation is tightly constrained

by the FIRAS determination of the mean photon density
today and therefore its associated free-fall rate today. The
MWDSþ YP model, introduced in CGK, can evade this
constraint and allows for a scaling transformation that
provides very nearly the same degree of symmetry as FFAT
scaling. The MWDS includes dark baryons and dark
photons. This model admits the MWDSþ YSym

P scaling
transformation that we showed to be essentially equivalent
to FFAT scaling regarding its impact on CMB spectra. We
used this scaling transformation to identify a reference
model, useful for understanding constraints on light relics
in the various model spaces we consider.
We identified four causes of observational consequences

that can lead to constraints on light relics. These causes are
all associated with a lack of scaling of some rate, or a
nonuniform scaling of rates. They are: (1) changes to the
photon scattering rate relative to the Hubble rate,
(2) changes to the fraction of radiation density that is
freely streaming, (3) changes to the fraction of nonrela-
tivistic matter that is pressure supported, and (4) changes to
recombination rates relative to the Hubble rate. The order-
ing here is from most impactful causes to least impactful.
The first two are well-studied in the literature [25–28], the
third we articulated here for the first time, and the fourth
was originally proposed in Ref. [31].
We used the scaling transformations to create, in Sec. III,

informative comparisons of spectra from different model
spaces. We found there that cause 1, 2, 3, and 4 lead to
differences between the ΛCDM spectra and spectra of
models with Neff ¼ 4.61 (λ ¼ 1.1) at the 10% to 15% level,
5% to 6% level, 2% to 3% level and 1% to 2% level
respectively.
To investigate how cause 3 leads to observable conse-

quences we compared a model with increased Neff , reached
by a scaling transformation that preserves the rate ratios of
causes 1 and 2 (the Mixþ YSym

P scaling transformation), to
its corresponding reference model. We found that this
model, after horizon crossing, has reduced gravitational
potential decay, relative to the reference model, due to all of
its dark matter lacking pressure support, while in the
reference model a fraction of the dark matter has pressure
support. This difference in potential evolution changes the
CMB power spectra from the ΛCDM best-fit one mainly
through its impact on the monopole source of the CMB
spectra by shifting the equilibrium position of the monop-
ole oscillation and driving the photon perturbation itself to
a larger amplitude during the subhorizon evolution period.
The dark baryons in the MWDS model introduce pressure
support to a nonzero fraction of the dark matter, making

evolution of the gravitational potential appropriate for
preserving CMB anisotropy and polarization observables
under the FFAT scaling transformation.
Cause 4 was articulated first by Ref. [31], but its

observable consequences are only now clear. This is the
only one of the four causes that cannot be eliminated by
the scaling transformations possible in the MWDSþ YP
model. We saw its impact on spectral differences in Sec. III
and, more indirectly, on the constraints on Neff and H0

in Sec. IV.
In principle we could list an additional cause that can be

important in model spaces with nonzero neutrino mass. We
found though that a fixed neutrino mass, of 0.06 eV, only
mildly breaks the symmetry, at the fractions of a percent
level for λ ¼ 1.1. This mild symmetry breaking is due to
small departures in HðzÞ at late time from its scaling
trajectory.
Because CMB and BAO data allow for fairly high values

of Neff and H0 in the MWDSþ YP model we reported, in
Sec. IV B, on constraints on this model space from other
observables, that greatly restrict this freedom. Primordial
helium abundance measurements, comparison of light
element abundance measurements and BBN predictions,
and inferences of the ages of the oldest astrophysical
objects, all lead to significant constraints on Neff .
Our analysis has proceeded from identification of the key

rates in the problem that make sensitivity to HðzÞ from
dimensionless observables, such as CMB spectra, possible.
These are gravitational free-fall rates, the photon scattering
rate, and recombination rates. Although we have restricted
our analysis to extensions with additional light relics, we
note that in anymodel space, the ability to predictH0 given
CMB spectra also depends fundamentally on known rates
that control out-of-equilibrium processes. Similar analyses
thus may help to bring analytic understanding to constraints
from a broader set of cosmological models.
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APPENDIX: THE IMPACT OF THE
SOURCE TERMS AND CMB LENSING

ON CMB POWER SPECTRA

In this appendix, we discuss the contributions of the
effects induced by the gravitational potential change to
the overall difference between the Mixþ YSym

P model and
the FFAT scaling and MWDSþ YSym

P models. We will
discuss the contributions of the monopole term, Doppler
term and integrated Sachs-Wolfe effect sourcing the
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CMB spectrum first. Then we show the impact from
CMB lensing.
To start with, we can regroup the CMB temperature

anisotropy source term into the following form:

Sðk; ηÞ ≈ SMono þ SDoppler þ SISW

≈ gðηÞ½ΔT0ðk; ηÞ þ ψðk; ηÞ& þ 1

k2
d
dη

½θbðk; ηÞgðηÞ&

þ e−τ½ _ψðk; ηÞ þ _ϕðk; ηÞ&: ðA1Þ

The three main contributions to the CMB power spectrum
are the monopole (SMono), the Doppler term (SDoppler) and
the ISW effect (SISW). In Fig. 10, we show the fractional
differences of the source terms contributing to the overall
difference in the unlensed CMB power spectra between the
Mixþ YSym

P model and the FFAT scaling model.
At scales l≳ 600, the leading difference comes from the

monopole power (SMono, in orange), while the contribution
from the Doppler term (SDoppler, in green) is subdominant.
Compared to the power from monopole source alone, the
power of monopole plus Doppler source (SMono þ SDoppler,
in red) have larger boost at monopole power troughs than
monopole power peaks. This is due to the fact that the
Doppler term is not in phase with the monopole oscillation.
The ISW power (in blue) are almost the same at this range
between the two models. The difference of the power
spectra of the complete sources (in black) to the SMono þ
SDoppler only spectra is due to cross terms with the ISW
source in the power spectra.
The contributions of the monopole term are twofold. The

additional cold dark matter without pressure support in
Mixþ YSym

P induces a deeper gravitational potential, shift-
ing the zero-point equilibrium of oscillator Θ0 þ ψ further
away from zero. On small scales corresponding to the third

and higher peaks, where the subhorizon evolution is
long enough, the photon perturbation, Θ0, itself is driven
to a larger amplitude due to reduced potential decay.
In Fig. 11, we show the residuals of ψ , Θ0 þ ψ , and
Θ0 þ ½1þ Rðz)Þ&ψ at last scattering as a function of k=h.
The zero-point equilibrium position of Θ0 þ ψ is −Rψ ,
and the baryon-to-photon density ratio factor, R is 0.61 at
last scattering in the base ΛCDM model. We see that
Δ½Θ0 þ ð1þ RÞψ & oscillates around zero. The alternating
high-low peaks of the monopole power seen in Fig. 10 are
due to the change to the zero-point equilibrium position
of Θ0 þ ψ oscillator. The increase to the overall amplitude
of Θ0 þ ψ in Mixþ YSym

P model leads to the overall
positive fractional changes to the monopole spectrum at
high-l range.
On large scales, however, the contributions from the

monopole, Doppler and ISW term are comparable.
Next, we investigate the impact of CMB lensing

on the difference of the CMB power spectra between the

FIG. 10. Fractional contributions of different source terms to
the difference in the unlensed CMB power spectrum between the
Mixþ YSym

P model and the FFAT scaling model. The gray
vertical lines show the peak locations in CMB power spectrum
and the black vertical lines show the trough locations.

FIG. 11. Residuals of Mixþ YSym
P model with respect to

MWDSþ YSym
P model at the time of last scattering as a function

of k=h. The baryon-to-photon density ratio factor, R, at last
scattering is 0.61.

FIG. 12. Fractional changes of the lensed and unlensed power
spectra from Mixþ YSym

P model to the FFAT scaling model.
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Mixþ YSym
P model and the FFAT scaling model. The effect

of CMB lensing on the damping tail is to “transport” the
power on large scales to small scales [123]. In Fig. 12, we
compare the fractional difference in the lensed (orange
lines) and unlensed (black lines) power spectra of the

Mixþ YSym
P model to the FFAT scaling model. The frac-

tional differences of the lensed and the unlensed power
spectra are almost of the same overall amplitude. The CMB
lensing is not the main contribution to the difference in the
power spectra of the two models.
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