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Abstract

This paper studies an important sequential decision making problem known as the multi-
armed stochastic bandit problem with covariates. Under a linear bandit framework with
high-dimensional covariates, we propose a general multi-stage arm allocation algorithm
that integrates both arm elimination and randomized assignment strategies. By employing
a class of high-dimensional regression methods for coefficient estimation, the proposed algo-
rithm is shown to have near optimal finite-time regret performance under a new study scope
that requires neither a margin condition nor a reward gap condition for competitive arms.
Based on the synergistically verified benefit of the margin, our algorithm exhibits adaptive
performance that automatically adapts to the margin and gap conditions, and attains op-
timal regret rates simultaneously for both study scopes, without or with the margin, up
to a logarithmic factor. Besides the desirable regret performance, the proposed algorithm
simultaneously generates useful coefficient estimation output for competitive arms and is
shown to achieve both estimation consistency and variable selection consistency. Promis-
ing empirical performance is demonstrated through extensive simulation and two real data
evaluation examples.

Key Words: contextual bandits, exploration-exploitation tradeoff, high-dimensional regression
model, sequential decision making, stepwise regression procedure

1. Introduction

Sequential decision making problems are commonly encountered optimization tasks with im-

portant modern applications. For example, in medical service, a physician must decide the

appropriate dose level for prescriptions, with the hope of maximizing patients’ well-being and

preventing adverse effects; in online service, a news website must recommend “top” news articles

from multiple candidate news articles to upcoming website visitors to attract more readings;

in financial service, a lending firm seeks to decide whether and under what terms they should

approve upcoming applicants’ loan requests and to reduce overall default rates. These decision
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making problems can be formulated as the multi-armed stochastic bandit problem: at each user

visit, an agent must choose one of the candidate decision arms (e.g., news articles) and then

observe a reward (e.g., 1 for reading and 0 for non-reading) from the chosen arm, where the

reward follows some unknown distribution; the primary target is to maximize the overall reward

over a certain number of visits.

The classic settings (Robbins, 1954; Lai and Robbins, 1985; Berry and Fristedt, 1985; Lai,

1987; Gittins, 1989; Auer et al., 2002) typically assume that the reward distribution of each arm

is homogeneous. See, e.g., Bubeck and Cesa-Bianchi (2012), Lattimore and Szepesvári (2020),

Chan (2020), and references therein for a recent overview on algorithm efficiencies under related

settings. In many real applications, we have access to extra covariate information from users

of the service, which holds promise for personalized service. In personalized medical service,

for example, the treatment effect can be dependent on a patient’s medical profiles such as age,

medical history, and genetic information; in personalized online service, a reader’s interest in

news article contents may also be associated with information such as location and browsing

history. This promising variation of sequential decision making problems that incorporate user-

space covariates is known as the multi-armed bandit problem with covariates.

Initialized by Woodroofe (1979), bandit problems with covariates tend to be classified into two

categories according to assumptions on the mean reward functions. The first category is referred

to as the nonparametric bandit problem with covariates, in which the mean reward functions are

assumed to satisfy mild smoothness conditions. Notably, Yang and Zhu (2002) studied strong

consistency properties of a class of randomized allocation algorithms. Rigollet and Zeevi (2010)

and Perchet and Rigollet (2013) proposed arm-elimination type algorithms and established their

near minimax rates for cumulative regrets. Some related recent work in this category can also

be found in Qian and Yang (2016a,b), Guan and Jiang (2018), and Reeve et al. (2018).

The second category is called the parametric linear bandit problem with covariates, where

the mean reward functions take a linear form with unknown arm-specific parameters. In this

category, Goldenshluger and Zeevi (2009, 2013) and Bastani and Bayati (2020) considered fixed

dimensions and high-dimensional covariates, respectively, and showed that their forced sampling

algorithms with exploitation achieve (near) minimax rates when a margin condition (Tsybakov,

2004) and a constant gap condition are imposed. However, the performance of their algorithms

remains unknown in more general scenarios where these two conditions are possibly violated.

A detailed discussion involving these conditions is given in Section 6 to exhibit the valuable
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connection and critical difference between our work and the literature.

In this paper, we propose a multi-stage arm allocation algorithm with arm elimination and

randomized allocation to solve the linear bandit problem with high-dimensional covariates. We

particularly study the integration of a class of stepwise-type high-dimensional regression methods

into the proposed approach and develop new technical tools to analyze non-i.i.d. samples inherited

from arm allocation of the bandit algorithm. Our work significantly extends the theoretical

understanding under the parametric framework; the main contribution is outlined as follows.

First, this paper investigates a new study scope that does not necessarily require the margin

condition or the constant gap condition of competitive arms (the arms with positive probabilities

of being optimal), and demonstrates a finite-time regret analysis that shows near minimax opti-

mal performance of the proposed algorithm (Section 5.2). To our knowledge, no other existing

algorithm is known to work under this new study scope (see also the discussion in Section 6.1).

By the discovery of an intriguing connection between the margin and the gap conditions, our

new results on regret analysis also synergistically complement the existing literature and to-

gether verify the “benefit” of margin conditions in a minimax sense that, if satisfied, can lead

to significantly improved regret rates. Second, our algorithm enjoys adaptive performance, in

that it automatically captures the regret benefit under the margin and the constant gap condi-

tions and always maintains near-optimal performance regardless of whether these conditions are

satisfied (Section 6). This seems to be the first study to exhibit such an adaptive phenomenon

for linear bandits with high-dimensional covariates. Third, we show that the outputs of our

bandit algorithm possess desired statistical properties, including parameter estimation consis-

tency and variable selection consistency for competitive arms (Section 5.3). Note that variable

selection consistency with simultaneous optimal regret guarantees (without or with the margin

and constant gap conditions) has not been reported elsewhere in the literature. Also, promising

applications of our proposal are demonstrated through two real data examples on drug dose

assignment and news article recommendation.

It is worth noting that bandit problems have been studied under other related settings.

The examples include best policy matching (e.g., Langford and Zhang, 2008; Agarwal et al.,

2014), arm-space (with or without user-space) contextual bandits (e.g., Auer et al., 2007; Abbasi-

Yadkori et al., 2011), difficulty links on simple and cumulative regret minimization (Bubeck et al.,

2011), the multi-class banditron (e.g., Kakade et al., 2008; Beygelzimer et al., 2017), Bayesian-

type approaches (e.g., May et al., 2012; Laber et al., 2018), and bandits with delayed feedback
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(e.g., Bistritz et al., 2019; Arya and Yang, 2020), among many others (see, e.g., Cesa-Bianchi and

Lugosi, 2006; Bubeck and Cesa-Bianchi, 2012; Zhou, 2015; Lattimore and Szepesvári, 2020 for

bibliographic remarks, surveys and references therein). However, these alternative settings and

the corresponding algorithms do not address the main issue of this study. For example, Lattimore

and Szepesvári (2020, Ch.23) studied a general arm-space setting for sparse contextual linear

bandits, where the (possibly infinitely many) arms share the same unknown sparse coefficient

vector. The cumulative regret of the algorithm designed for this setting increases at a polynomial

rate with respect to the arm feature dimension. In constrast, our study framework focuses on

a user-space setting with a finite and relatively small number of arms, which have their own

individual sparse coefficients. As will be seen, the optimal arm depends on the user covariates,

and the corresponding cumulative regret has the desirable logarithmic rate in terms of the user

covariate dimension.

In fact, our study is in line with the very fruitful research topic known as dynamic treatment

regimes (DTR; e.g., Murphy, 2003; Qian and Murphy, 2011; Goldberg and Kosorok, 2012; McK-

eague and Qian, 2014; Laber et al., 2014; Shi et al., 2018, and many important others). Rather

than considering an i.i.d. sample with multi-time point decision rules, this paper focuses on the

single-time point decision for sequentially coming users and intends to achieve guaranteed near

optimal cumulative rewards for all these users as a whole.

In the remainder of the paper, we provide the basic settings of the bandit problem with

high-dimensional covariates in Section 2. The main algorithm and the integrated stepwise-type

coefficient estimation are described in Sections 3 and 4, followed by a theoretical investigation

in Section 5. The benefit of the margin condition and the algorithm’s adaptive performance

are studied in Section 6. Simulation and real data evaluation are given in Sections 7 and 8,

respectively.

We close this section by briefly summarizing the notation consistently used in this article: n

for the user visit index and N for the total number of visits; k for the stage index and K for the

total number of stages; i for the arm index, I for a chosen arm, and l for the total number of

arms.

2. Setting for linear bandits with high-dimensional covariates

In many applications, as opposed to the classical setting with homogeneous distributions, the

reward from a decision arm often depends on many user covariates. In the following, we propose

4



developing a new algorithm to solve the sequential decision making problem with linear mean

reward structures in high-dimensional settings. Suppose there are l candidate decision arms

(l ≥ 2) and let N be the total number of user visits. Given user covariate vector X ∈ Rp

and arm i (1 ≤ i ≤ l), we consider linear model structures in which the observed reward Yi

has the conditional mean fi(X) := E(Yi |X) = XTβi, where βi = (βi1, βi2, · · · , βip)T ∈ Rp is

the true coefficient vector for arm i. We assume the sparsity condition in which only a subset

of elements in X is associated with Yi. Define the set of relevant variables for arm i to be

Vi = {1 ≤ j ≤ p : |βij| > 0} and its size qi := |Vi| < p.

Our problem of interest works like the classical setting but with the necessary incorporation

of the covariates. At each user visit n (1 ≤ n ≤ N), a user covariate vector Xn ∈ Rp is first

revealed, where the Xn’s are i.i.d. from some unknown distribution (same as X) with domain

X ⊂ Rp. Let Ij be the chosen arm at each visit point j (1 ≤ j < N), and let Yi,j be the reward

if arm i is chosen. Then given the observable information {(Xj, Ij, YIj ,j), 1 ≤ j ≤ n − 1} and

current covariate vector Xn, a bandit algorithm is applied to choose an arm In and receive the

corresponding reward YIn,n = XT
nβIn + εIn,n, where εi,n is the random error of arm i and is not

necessarily independent of Xn.

2.1. Definitions and assumptions

Before introducing the algorithm evaluation, we first give key assumptions. For x ∈ X , define

the optimal mean reward f ∗(x) = max1≤i≤l x
Tβi. Assume that the set I = {1, · · · , l} of all

candidate arms can be partitioned into a set of competitive arms Io and a set of non-competitive

arms Iu. Let Ti be the competitive region where arm i ∈ I is optimal:

Ti = {x ∈ X : xTβi −max
j ̸=i

xTβj > 0}. (1)

As given in Assumption 1, we define that arm i is a competitive arm in Io if it is an optimal arm

with a positive probability bounded away from zero.

Assumption 1. (Competitive arms) There is a positive constant c1 such that for each arm

i ∈ Io, P (X ∈ Ti) > c1.

As given in Assumption 2, we define that arm i is a non-competitive arm in Iu if it is always

a sub-optimal arm with a gap of ζ̃N from the optimal reward. Here we allow Iu to be an empty

set. If Iu = ∅, then Assumption 2 simply reduces to a null assumption, which is also the case

in the settings of Goldenshluger and Zeevi (2013). If Iu ̸= ∅, ζ̃N is allowed to approach zero as
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N → ∞.

Assumption 2. (Non-competitive arms) Each arm i ∈ Iu satisfies that with probability 1,

max1≤j≤lX
Tβj −XTβi > ζ̃N , where ζ̃N ≥ c2

Nψ∨(logN)1/2
for some constants c2 > 0 and 0 ≤ ψ ≤

1/4.

We also assume in Assumption 3 that the covariates satisfy a version of the restricted isometry

property (RIP; Candes and Tao, 2005). The RIP condition and its related variants have often

been used in the analysis of high-dimensional linear regression methods (e.g., Meinshausen and

Yu, 2009; Zhang, 2010, 2011b). By the nature of our targeted bandit problem with covariates,

an “oracle” allocation strategy (the benchmark in regret definition that knows the competitive

regions for all the competitive arms) is to always deliver a competitive arm at this arm’s own

competitive region; it is then natural to have conditions that use the arms’ own competitive

regions, since under the “oracle” benchmark, each competitive arm’s data points must all fall

within its own competitive region. Specifically, for each arm i ∈ Io, define the conditional second

moment on the competitive region in which Σi = E(XXT |X ∈ Ti); for each arm i ∈ Iu, define

Σi = Σ = E(XXT ). Given any arm i ∈ I and positive integer s, define λi(s) = min{vTΣiv :

∥v∥2 = 1, ∥v∥0 ≤ s}.

Assumption 3. There exists a constant c∗ > 0 such that for each arm i ∈ I, λi(q∗) > c∗, where

q∗ := C1 max1≤i≤l qi for some constant C1 > 1.

In Assumption 3, q∗ serves as an upper bound of all qi’s at the same order of maxi∈I qi; a

sufficient condition of Assumption 3 is that the minimum eigenvalues of the Σi’s, denoted by

λmin(Σi), are bounded away from zero.

In addition, we assume bounded reward coefficients such that ∥βi∥1 ≤ b for some constant

b > 0, and the sub-Gaussian condition for random errors such that E(evεi,n |Xn) ≤ exp(v2σ2/2)

for all v ∈ R. For simplicity, we consider bounded domain X with ∥Xn∥∞ ≤ θ for some constant

θ > 0, but it may be extended to covariates with a sub-Gaussian distribution.

2.2. Algorithm evaluation

Let i∗(x) = argmaxi∈I fi(x) be the arm that has the maximum mean reward given x, and define

f ∗(x) = fi∗(x). Without knowledge of random error, the “oracle” (but clearly not applicable)

benchmark is to choose the optimal arm I∗n := i∗(Xn) at each visit point n. To evaluate the algo-

rithm performance, define the cumulative regret RN that measures the shortfall of the algorithm
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in cumulative mean reward compared to the “oracle” benchmark:

RN =
N∑
n=1

(
f ∗(Xn)− fIn(Xn)

)
. (2)

It is desirable for an allocation strategy to have a guaranteed finite-time upper bound on cumu-

lative regret. Note that for each visit point n, only the reward of the chosen arm can be observed

while the rewards of all the other arms are not observable: we inevitably encounter incomplete

information under the bandit settings.

In addition, a useful but less discussed question of interest in the linear bandit problem is

whether the devised algorithm outputs meaningful variable selection results for the competitive

arms. Suppose at the end of running an allocation strategy, the algorithm output gives a set

of estimated competitive arms Îo, and for each arm i ∈ Îo, there is an associated estimate

β̂i = (β̂i1, β̂i2, · · · , β̂ip) for βi; the estimated set of important variables is defined as V̂i = {1 ≤

j ≤ p : |β̂ij| > 0}. Then we say an algorithm is variable selection consistent if

P (Îo = Io) → 1 and P (V̂i = Vi for all i ∈ Io) → 1 as N → ∞. (3)

It is also desirable to establish that the algorithm is coefficient estimation consistent. That is, for

each competitive arm i ∈ Io, ∥β̂i−βi∥2 = Op(ϑN), where ϑN is the (preferably fast) convergence

rate with ϑN → 0 as N → ∞. Both variable selection consistency and coefficient estimation

consistency (e.g., Zou, 2006; Meinshausen and Yu, 2009; Fan and Lv, 2010; Qian et al., 2019a and

references therein) are widely studied in the statistics literature for high-dimensional regression

problems. In our bandit problem setting, these results provide some asymptotic theoretical

guarantees on the algorithm output for an analyst who may want to subsequently use the output

for understanding relevant variables and designing new offline policies.

2.3. A useful example

In our following study, we will first focus on the study scope from Section 2.1, that is, the

class of l-armed bandit reward function (or coefficient) sets with joint distributions PX,ε of

(Xn, ε1,n, · · · , εl,n) that satisfy all the conditions in Section 2.1. Each member in the class is

characterized by a set of coefficients {β1, · · · ,βl} with a distribution PX,ε. Later on in Section 6,

we will present another study scope that imposes two additional assumptions including a margin

condition and a constant gap condition of competitive arms. In general, more assumptions lead

to smaller class size and a potentially lower (minimax) optimal regret rate; as will be seen, the

different study scopes lead to different optimality results (and different algorithmic design).
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To facilitate an appreciation of the generality and challenges of the study scope in Section 2.1,

we next present a useful example. Given l = 2 and q, define a subclass consisting of all the two-

armed bandit pairs of coefficients {β1,β2} with PX,ε that satisfy the following scenarios. Treating

the first elements in β1 and β2 as intercept terms, we define β1 = (0, κ√
q
, · · · , κ√

q
, · · · , 0)T ∈ Rp,

β2 = (ω,− κ√
q
, · · · ,− κ√

q
, · · · , 0)T ∈ Rp, where β1 and β2 have q nonzero elements besides the

intercept, κ > 0, ω ∈ (−κ, κ), and κ√q is upper bounded by a positive constant. Also denote

the covariates by X = (1, X1, · · · , Xp−1), where X1, · · · , Xp−1 are i.i.d. with Uniform[−1, 1];

conditioning onXn, the random errors ε1,n and ε2,n satisfy the sub-Gaussian condition. This gives

the simple scenarios in which f1(X) = κ√
q

∑q
j=1Xj and f2(X) = ω− κ√

q

∑q
j=1Xj; the competitive

region for arm i (i = 1, 2) is Ti = {x ∈ X : fi(x)−fj(x) > 0, j ̸= i}. For convenience, we denote

this bandit subclass as P . Then all the members in P satisfy the assumptions in Section 2.1 and

indeed fall within the intended study scope (as shown by Propositions 7 and 8 in Supplement A.1).

We can then construct a sequence of its members with both coefficient parameters κ and ω

indexed by N : let κ = κN = N−α for some constant α > 0 and ω = ωN ∈ (−κN , κN); we

denote the corresponding mean reward function pairs as {f1,N(·), f2,N(·)}. This example gives

the properties in Proposition 1.

Proposition 1. Consider the sequence of the class members constructed above from P. Then

given any constants α > α′ > 0 with δ̃N = N−α′
, we have

P (0 < f ∗
N(X)− f ♯N(X) < δ̃N) → 1 as N → ∞, (4)

where f ∗
N(X) = max(f1,N(X), f1,N(X)) f ♯N(X) = min(f1,N(X), f2,N(X)); equivalently,

P (f2,N(X)− f1,N(X) > δ̃N) + P (f1,N(X)− f2,N(X) > δ̃N) → 0 as N → ∞. (5)

Proposition 1 reflects a philosophy for our proposed study in which a newly designed algorithm

may ideally be able to handle increasingly closer competitive arms as N gets larger, so that to

some extent, it parallels the statistical thinking that larger sample size allows for the finding of

increasingly smaller treatment effects. The class P will also be helpful to establish a regret lower

bound (to be shown in Section 5.2).

Noting the polynomially decreasing δ̃N in (4) and (5), it will be seen in Section 6.1 that the

study scope of Section 2.1 and the associated algorithm design are deemed different from the

existing literature. On one hand, Bastani and Bayati (2020) novelly designed algorithms that

are well-suited with provable optimality under the additional margin condition and constant gap

condition for competitive arms. On the other hand, neither of these two additional conditions
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are necessarily satisfied for Section 2.1, and the literature has not yet shown how to design a

generally near optimal algorithm. We will defer the detailed discussion to Section 6.1 on the

connection between the different study scopes, without or with the two conditions.

Furthermore, it would be interesting for a newly designed algorithm to simultaneously perform

optimally when these additional conditions are imposed: that is, can an algorithm adaptively

achieve near optimality in both worlds of the different study scopes, and attain potential regret

“benefit” if the additional conditions are satisfied? The efforts to address this issue will be

presented in Section 6.2.

3. A multi-stage algorithm in high dimensions

Our proposed algorithm divides the total visit points into K + 1 stages, with stage 0 being

the initial forced sampling stage. Here Ñk (1 ≤ k ≤ K) is the end visit point of stage k,

and Nk = Ñk − Ñk−1 is the sample size of stage k. Set N0 = lτ0, τ0 = c0q
2
∗ log pN(N

2ψ ∨ logN),

Nk = 2Nk−1, and K = ⌈log2(1+N/N0)−1⌉, where pN = p∨N , c0 is some positive constant, ⌈·⌉ is

the ceiling function, and stage K may have a sample size less than 2NK−1. We set c0 = 32θ2cρc
−2
2

(or its upper bound) for Section 5, where cρ > 0 is a constant (to be given in Theorem 1). Given

stage k, define Ak,i = {n : Ñk−1 + 1 ≤ n ≤ Ñk, In = i} to be the set of visit points where arm i

is chosen; similarly, define Bk,i = {n : 1 ≤ n ≤ Ñk, In = i}.

Let XN = (X1,X2, · · · ,XN)
T be the N × p matrix containing all the user covariates, and

let yN = (y1, y2, · · · , yN)T be the vector containing the reward responses from the chosen arms

with yn = YIn,n (1 ≤ n ≤ N). Then given any visit index set A = {j1, j2, · · · , j|A|} with

1 ≤ j1 < · · · < j|A| ≤ N , define XA ∈ R|A|×p and yA ∈ R|A| to be the corresponding covariate

design sub-matrix from XN and the reward response sub-vector from yN , respectively; that is,

rown(XA) = rowjn(XN) and rown(yA) = rowjn(yN) for 1 ≤ n ≤ |A|. We can apply a specified

high-dimensional linear regression method with tuning parameter ξ to obtain the coefficient

estimator β̂(XA,yA, ξ). In our following discussion, unless stated otherwise we will use the

high-dimensional Interactive Greedy Algorithm (IGA, Qian et al., 2019b), which is a generalized

method from stepwise-type regression (e.g., Zhang, 2011a,b; Ing and Lai, 2011). Here, ξ represents

the tuning parameter for IGA and regulates the estimator sparsity from the solution path. It is

closely related to the penalty term of the high-dimensional information criterion (Ing and Lai,

2011), which is used to overcome potential overfitting problems associated with the orthogonal

greedy algorithm. We offer a brief description of the coefficient estimation by IGA in Section 4.
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Algorithm 1 Stage-wise arm elimination with randomized allocation.

1. Set initial sampling stage with sample size N0. Choose each arm an equal number of times
τ0. For each arm i ∈ I, compute the initial estimated coefficient β̃i. Set k = 1.

2. At stage k, perform the following substeps at n = Ñk−1 + 1, · · · , Ñk.

• Reveal covariate Xn ∈ Rp.

• Pre-screen arms using the initial sampling data to generate the arm set

S̃n := {i ∈ I : max
j∈I

XT
n β̃j −XT

n β̃i ≤ δN}. (6)

• If k > 1, eliminate arms on S̃n to generate the set of “promising” arms

Ŝn := {i ∈ S̃n : max
j∈S̃n

XT
n β̂j,k −XT

n β̂i,k ≤ ∆k}; (7)

otherwise, set Ŝn = S̃n.
• Define În = argmaxi∈Ŝn X

T
n β̂i,k. Perform randomized allocation to choose an arm In

from Ŝn with h ≥ 1 and receive reward YIn,n:

In =

{
În, with probability h

h+|Ŝn|−1
,

i, with probability 1

h+|Ŝn|−1
, i ̸= În, i ∈ Ŝn.

3. Find the estimated coefficient for next stage by computing β̂i,k+1 for each i ∈ I.

4. Set k = k + 1. Repeat steps 2–4 until the end of N user visits.

5. Obtain an estimated set of competitive arms ÎN =
⋃N
n=ÑK−2+1 Ŝn and output the estimated

coefficient β̂i = β̂i,K for all i ∈ ÎN .

Then, given arm i, β̃i := β̂(XA0,i
,yA0,i

, ξ0) are the estimated coefficients from stage 0; we set

β̂i,k := β̂(XAk−1,i
,yAk−1,i

, ξk) to be the coefficients used by stage k and estimated from the data

of its previous stage, where the ξk’s are their respective tuning parameters. If Ak−1,i = ∅, we

set β̂i,k := β̂(XBk−1,i
,yBk−1,i

, ξk), where the alternative choice of estimated coefficients with the

larger sample Bk−1,i (that includes all historical data of arm i) is given in Remark 2 of Section 4.

We are now ready to describe the details of the proposed multi-stage algorithm as shown in

Algorithm 1. Specifically, Step 1 is the initial sampling of stage 0 that allocates each arm an equal

number of times. Step 2 shows that for each visit point n of a given stage k, after the observation

of covariate Xn ∈ Rp, there are two substeps of arm screening procedures: (6) pre-screens out

uncompetitive arms, and (7) performs an extra elimination step to generate “promising” arms

for use in the subsequent randomized allocation substep. We set the parameters δN = 2θb0 and

∆k = 2θbk with b0 = q∗
√

2cρ log pN/τ0 and bk = q∗
√

2c̃ρ log pN/Nk, k ≥ 2, for Section 5, where
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cρ and c̃ρ are positive constants (to be given in Theorems 1 and 2). Here q∗ can also be replaced

by a general upper bound s∗ (s∗ ≥ q∗); its implication w.r.t. the analysis is given in Remark 6

of Section 6.2.

In the last substep of Step 2, define În = argmaxi∈Ŝn X
T
n β̂i,k where any tie-breaking rule

may apply. Let h ≥ 1 be a randomization parameter. Then, under the randomized allocation

scheme, we choose an arm i from Ŝn with probability 0 < pn,i ≤ 1, where
∑

i∈Ŝn pn,i = 1 and
pn,În
pn,i

= h for all i ̸= În; that is, pn,În = h

h+|Ŝn|−1
and pn,i =

1

h+|Ŝn|−1
for i ̸= În in Ŝn. In particular,

h = 1 corresponds to simple randomization among arms in Ŝn. We use h = 1 in theoretical

development for simplicity.

Step 3 updates the coefficient estimation after the current stage. In Step 4, the algorithm

moves to the next stage, and continues in a stage-wise fashion until the end of N user visits. Then

Step 5 outputs the estimated set of competitive arms and their associated coefficient estimates.

Considering the scenario in which the last stage K has a small sample size, we use the last two

stages to estimate ÎN .

Remark 1. Algorithm 1 includes the arm pre-screening substep (6) for all stages. If Iu = ∅, the

algorithm can be further simplified by removing this substep. However, if Iu ̸= ∅, the optimal

arm may be eliminated by a non-competitive arm, and the analysis argument (to be outlined

in Section 5.1 and Proposition 3 for having “good” events) may not hold without this substep.

The use of randomized allocation with h > 1 (as opposed to h = 1) is mainly motivated by the

potentially more efficient exploitation of the estimated promising arms in practice. A similar

empirical idea for randomization has also been used for the nonparametric bandit problem with

covariates (e.g., Qian and Yang, 2016b); the feature of (non-uniform) randomized allocation,

together with the embedded key arm-elimination technique (Perchet and Rigollet, 2013), can be

practically useful to provide additional flexibility for an algorithm to further utilize the reward

function estimation; all theoretical results of our proposed algorithm remain the same for upper

bounded h; we will demonstrate its empirical performance with h > 1 in the numerical studies.

4. Coefficient estimation

As IGA is embedded into Algorithm 1 and plays an important role in coefficient estimation,

we next briefly describe main steps of IGA summarized in Algorithm 2 to keep the paper self-

contained.

Given the input design matrix X ∈ Rm×p and response vector y ∈ Rm, define the objective

11



Algorithm 2 Stepwise coefficient estimation.

1. Initialize r = 0, β(r) = 0, G(0) = ∅, 0 < ρ ≤ 1 and ξ > 0. Set ϕ(0) = Q(β(r)) −
min1≤j≤p, α∈RQ(β

(r) + αej).

2. Perform forward selection with the following substeps.

(a) Find candidate variable set

Gρ = {g ̸∈ G(r) : Q(β(r))−min
α∈R

Q(β(r) + αeg) ≥ ρϕ(r)}. (8)

(b) Select element g(r) ∈ Gρ and set G(r+1) = G(r) ∪ {g(r)}.

(c) Compute β(r+1) = argminsupp(β)∈G(r+1) Q(β), and find ξ(r+1) = Q(β(r))−Q(β(r+1)).

(d) Set r = r + 1.

3. Set ϕ̃(r) = minj∈G(r) Q(β(r) − eTj β
(r)ej) − Q(β(r)). If ϕ̃(r) < ξ(r)/2, perform backward

selection with following substeps.

(a) Find g(r) = argminj∈G(r) Q(β(r) − eTj β
(r)ej).

(b) Set r = r − 1 and G(r) = G(r+1)\{g(r+1)}.
(c) Compute β(r) = argminsupp(β)∈G(r) Q(β).

(d) Update ϕ̃(r) = minj∈G(r) Q(β(r) − eTj β
(r)ej)−Q(β(r)).

(e) If ϕ̃(r) < ξ(r)/2, repeat backward selection substeps above.

4. Find ϕ(r) = Q(β(r))−min1≤j≤p, α∈RQ(β
(r) + αej). If ϕ

(r) ≥ ξ, repeat Steps 2–4; otherwise,

output β(r).
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function Q(β) = 1
m
∥y−Xβ∥22. Let ej ∈ Rp be the unit vector with the j-th element being zero.

Then from Algorithm 2, following initialization (Step 1), the forward selection in Step 2 selects

one variable into the active set G(r) and drives down the objective function Q(β) in a stepwise

fashion, that is, (8) essentially considers all the candidate variables one by one and finds those

that rank high in reduction of Q(β). Alternatively, to avoid repeated optimization tasks on the

objective function and to significantly reduce computation time, we can also replace (8) and ϕ(r)

by gradient-based criterion:

ϕ(r) = ∥∇Q(β(r))∥∞ and Gρ = {g ̸∈ G(r) : |∇gQ(β
(r))| ≥ ρϕ(r)}, (9)

where ∇Q(β) is the gradient vector and ∇gQ(β) is its g-th element. Without additional in-

formation on true variables, it suffices that we set ρ = 1. Step 3 is the backward elimination

step that checks if some variables may become redundant after the new variable is included from

forward selection. This forward-backward iteration scheme continues until the addition of any

new variables does not significantly reduce the objective function as shown in Step 4.

Remark 2. Given X, y, and ξ, the output of Algorithm 2 gives the coefficient estimator β̂(X,y, ξ).

The parameter ξ regulates the solution sparsity: a larger ξ tends to provide a sparser solution. In

empirical studies, instead of giving explicit values for ξ, we use the number of steps to determine

solution sparsity, which is automatically selected by ten-fold cross validation (CV) on (X,y)

under the mean square error criterion. The package that implements the IGA method with

CV is publicly available on GitHub. Also, in the description of Algorithm 1, we use the stage-

specific sample Ak,i for coefficient estimation to make the proofs more concise. In practice, we

recommend using the sample choice of including all historical data from previous stages so that

β̂i,k+1 := β̂(XBk,i ,yBk,i , ξk+1).

5. Understanding algorithm performance

To understand the performance of the proposed algorithm, it is helpful to study how the algo-

rithm estimates the conditional mean rewards and the coefficients and how these estimates are

associated with “good” events on arm selection. In Section 5.1, we outline the analysis strategy

for the cumulative regret upper bounds, which consist of four main steps. We provide the upper

and lower bounds on the cumulative regret in Section 5.2, and establish the variable selection

and coefficient estimation consistency properties in Section 5.3.
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5.1. Outline of main analysis steps

The first main step is regret decomposition via the partitioning of the sample space into

properly defined events. Specifically, let RN0 and RN1 be the regrets accumulated in Stage 0 and

the following stages, respectively. Then we see that RN = RN0 +RN1. Also define the following

events on coefficient estimation errors. For 2 ≤ k ≤ K, define

F0 = U1 = {∀i ∈ I, ∥β̃ − βi∥1 ≤ b0}, Fk = {∀i ∈ Io, ∥β̂i,k − βi∥1 ≤ bk}, (10)

and Uk = F0 ∩
(⋂k

j=2 Fj

)
. The whole sample space can be partitioned into the events

U c
1 , Uk ∩ F c

k+1, UK for 1 ≤ k ≤ K − 1 (11)

to further decompose the cumulative regret, so that

RN1 = RN1I(U
c
1) +

K−1∑
k=1

RN1I(Uk ∩ F c
k+1) + RN1I(UK) =: R0 +

K−1∑
k=1

Rk +RK . (12)

To provide upper bounds for the decomposed regrets, we need to understand the properties and

implications of these associated events to be shown in the next two main steps.

In the second main step, we intend to achieve the following specific objective (1): un-

der “good” events, via connection with coefficient/reward estimation errors, the regret can be

upper-bounded. We further divide the analysis effort of this step into two substeps, which in-

clude studying (1a) arm pre-screening behavior and (1b) arm elimination behavior. Steps (1a)

and (1b) are summarized in Propositions 2 and 3, respectively, whose proofs are relegated to

Supplement A.2.

Proposition 2. Given stage k (k ≥ 1), if the event Uk holds, then at any visit point n (Ñk−1+1 ≤

n ≤ Ñk), the optimal arm I∗n remains in S̃n, and any non-competitive arm i ∈ Iu is excluded

from S̃n.

Proposition 3. Given stage k (k ≥ 2), if the event Uk holds, then at any visit point n (Ñk−1+1 ≤

n ≤ Ñk), the optimal arm I∗n remains in Ŝn; in addition, any “promising” arm i ∈ Ŝn belongs to

the arm set Un,k = {j ∈ Io : XT
nβI∗n −XT

nβj ≤ 2∆k}.

The two propositions above suggest that with the arm pre-screening and elimination proce-

dures, the event Uk regarding the coefficient estimation errors leads to the “good” event that the

algorithm always keeps the optimal arm while all the other remaining arms must be in the arm

set Un,k, thereby restricting the regret of each step within 2∆k to achieve objective (1). There-

fore, to study the maintenance of “good” events for arm selection, it is important to understand
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the coefficient estimation errors.

Due to the nature of necessarily evolving arm allocation in sequential decision making, only

one response from the selected arm is revealed while responses from all the other arms are not

available; the accumulated data for each arm are not i.i.d. random samples anymore (as opposed

to regular settings in high-dimensional regression problems), which poses unique challenges in

studying the statistical properties of the estimated coefficients. With the multi-stage approach

and stage-wise arm elimination, we also employ randomized arm allocation to help partly over-

come the technical issues (besides empirical performance considerations, to achieve a balance

between exploration and exploitation).

In the third main step, we intend to achieve the specific objective (2): the (conditional)

probabilities of violating the “good” events are relatively small. For this purpose, we establish

Theorems 1 and 2 (see below). These theorems are proved through four substeps (2a) randomized

allocation with “random” samples, (2b) sample size determination, (2c) covariate “design matrix”

properties, and (2d) coefficient estimation upper bounds, details of which are also relegated to

Supplement A.2. Note that ξ0 and the ξk’s correspond to the tuning parameter ξ in Algorithm 2,

which computes β̃i and the β̂i,k’s, respectively; recall that pN = p ∨N .

Theorem 1. Suppose Assumptions 1–3 hold. Then there exists a positive constant cr such that

given ξ0 =
cr log pN

τ0
, it holds with probability less than l/N3 that

∥β̃i − βi∥1 >

√
cρq∗(qi + logN + qi,0 log pN)

τ0

for some i ∈ I, where qi,0 = |Ji,0|, Ji,0 = {j ∈ Vi : |βi,j| <
√
cβ log pN/τ0}, and cρ, cβ > 0 are

some constants.

Theorem 2. Suppose Assumptions 1–3 hold. Then there exists a positive constant c′r such that

given ξk+1 =
c′r log pN
Nk

and Uk (1 ≤ k ≤ K − 1), it holds with probability less than 3l/N3 that

∥β̂i,k+1 − βi∥1 >

√
c̃ρq∗(qi + logN + qi,k log pN)

Nk

for some i ∈ Io, where qi,k = |Ji,k|, Ji,k = {j ∈ Vi : |βi,j| <
√
c̃β log pN/Nk}, and c̃ρ, c̃β > 0 are

some constants.

These two theorems suggest that with the proposed algorithm, given Uk, the probability of

violating Fk+1 (or Uk+1) on the coefficient estimation errors is small; consequently, since Uk+1

always implies the “good” arm selection events on the next stage as shown in the propositions
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for objective (1), the same probability bound applies to violating these “good” events, thereby

achieving objective (2).

As the last main step, we obtain the decomposed regrets by Propositions 2 and 3 from

objective (1) and Theorems 1 and 2 from objective (2), and subsequently assemble the cumulative

regret upper bounds to be shown next in Section 5.2.1.

5.2. Upper and lower bounds on cumulative regret

We demonstrate here the near minimax optimal regret performance of the proposed algorithm,

where the upper bound and the lower bound are given in Sections 5.2.1 and 5.2.2, respectively.

5.2.1 Upper bound

The analysis efforts briefly summarized in Section 5.1 enable us to provide the following finite-

time regret analysis for (2).

Theorem 3. Suppose Assumptions 1–3 hold. Then there exist positive constants C21 and C22

such that the cumulative regret of Algorithm 1 satisfies

E(RN) ≤ C21lq
2
∗ log pN(N

2ψ ∨ logN) + C22q∗
√
N log pN (13)

with C21 = 4θbc0+6θb and C22 = 8θc̃
1/2
ρ ; in particular, if ψ = 0 and p = o(N ζ) for some constant

ζ > 0 with fixed l and q∗, then for any large enough N ,

E(RN) ≤ 2C22q∗
√
N log pN . (14)

In Theorem 3, the upper bound of (13) consists of two components. Roughly speaking, the

first component is mainly attributed to the initial forced sampling, which generates initial crude

estimates for the coefficients and ensures good performance for the pre-screening of the uncom-

petitive arms; mainly from the much more refined arm elimination stages for the competitive

arms, the second component is usually a dominating term as shown by (14).

Note that under additional conditions (to be introduced in Section 6.1), existing algorithms

(Goldenshluger and Zeevi, 2013; Bastani and Bayati, 2020) indicate that by an exploitation-based

strategy, it is ensured for regret analysis that the optimal arm in its competitive region with a

certain constant reward gap can be exclusively selected with high probability. However, such

analysis argument is not technically feasible here. To overcome this difficulty, we employ arm

elimination and randomized allocation to carefully control regret accumulation in a stagewise

fashion, thereby circumventing the need for these additional conditions. The inherited new
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technical challenges in regret analysis are naturally shared with the simultaneous establishment

of variable selection consistency to be shown in Section 5.3.

5.2.2 Lower bound

We then seek to address whether it is possible for any alternative algorithm to achieve a regret

rate much slower than that of (14). For this purpose, recall the bandit subclass P defined from

the example of Section 2.3, which has been verified to satisfy all the conditions of Section 2.1.

Theorem 4. For any admissible bandit strategy, there is a positive constant C3 such that with

any large enough N , we can always find some class member in P under which its cumulative

regret satisfies

E(RN) > C3

√
N.

The regret lower bound in Theorem 4 implies that the upper bound in Theorem 3 is almost

not improvable for N (up to a logarithmic factor), and that our proposed algorithm has near

minimax optimal performance under the study scope of Section 2.1.

Remark 3. In the upper-bound regret analysis, it is assumed that ∥Xn∥∞ is bounded above by

a constant θ > 0, which is involved in setting the coefficients of algorithm parameters. This con-

dition can be relaxed to allow element-wise sub-Gaussian conditions on the covariates. Specif-

ically, assume that for all covariates Xn = (Xn,1, Xn,2, · · · , Xn,p)
T , there exists some constant

σX > 0 such that E(evXn,j) ≤ exp(v2σ2
X/2) for v ∈ R and 1 ≤ j ≤ p. Define the event

A = {∥Xn∥∞ ≤ cxσX
√
log pN for all 1 ≤ n ≤ N} with some constant cx ≥ 2

√
2. Then the

following Proposition 4 shows that the regret contributed by Ac is relatively negligible.

Proposition 4. Given the sub-Gaussian conditions on covariates, it is satisfied that

E
(
RNI(A

c)
)
≤ 4bcxσXp

−1
N

√
log pN .

By treating Ac as a “bad” event in our regret decomposition, Proposition 4 suggests that we can

just focus on the “good” event in which all covariates are bounded by θ̃N = cxσX
√
log pN and

replace the constant θ by θ̃N instead; as a result, the algorithm analysis under event A can be

performed similarly, with the mild price on regret rate by extra multiplicative factors of log pN .

5.3. Variable selection and coefficient estimation consistency

The proposed algorithm also generates consistently estimated competitive arms ÎN and their

consistently estimated coefficients as shown in Theorem 5. Here, q̄i is the size of variables with
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relatively weak signals. Note that the coefficient estimation error bound of β̂i in Theorem 2

includes the slight price of an extra additive logN term; this reflects the subtle need for the

bandit algorithm to simultaneously achieve the desired finite-time regret guarantees. However,

this extra logN term can be removed for the coefficient estimation consistency in Theorem 5,

which matches a known result of a regular sparse high-dimensional regression setting (that is,

Op(
√
(qi + q̄i log pN)/N)).

Theorem 5. Under the same conditions of Theorem 3, the algorithm output of the estimated

competitive arms satisfies P (ÎN = Io) → 1 as N → ∞. In addition, the output of coefficient

estimation for each arm i ∈ Io satisfies ∥β̂i − βi∥2 = Op(
√

qi+q̄i log pN
N

), where q̄i = |J̄i|, and

J̄i = {j ∈ Vi : |βi,j| <
√

4c̃β log pN
N

}.

Combined with a beta-min condition, we further establish coefficient estimation and variable

selection consistency simultaneously for the competitive arms in Theorem 6. Therefore, the

proposed bandit algorithm also achieves the desired property (3).

Theorem 6. Suppose an arm i ∈ Io satisfies minj∈Vi |βi,j| ≥
√

4c̃β log pN
N

. Then under the same

conditions of Theorem 3, the output of coefficient estimation for arm i ∈ Io satisfies

1) coefficient estimation consistency: ∥β̂i − βi∥2 = Op(
√

qi
N
);

2) variable selection consistency: P (V̂i = Vi) → 1 as N → ∞.

In particular, if mini∈Io, j∈Vi |βi,j| ≥
√

4c̃β log pN
N

, Algorithm 1 is variable selection consistent.

The variable selection consistency of Theorems 5 and 6 also uses results from finite-time

analysis, which shows the desired sparsity recovery with high probability. Indeed, it is shown

in Supplement A.4 that for any large enough N , P (IN ̸= Io) ≤ 3K/N and for every i ∈ Io,

P (V̂i ̸= Vi) ≤ 4K/N .

Remark 4. From the proofs of Theorems 1 and 2, we can see that the positive constants

c′r, c̃ρ, c̃β, cr, cρ, cβ exist. Given that there are constants cd, cf > 0 associated with the IGA

method as shown in Lemma 1 of Supplement B, we can set

c′r =
128θ2σ2cf

c41c∗
(2 +

1

8θ2
), c̃ρ =

64σ2

c41c∗
(cd + 4cf ) +

32θ2c′r
c21c∗

, c̃β =
512θ2c′r
c21c∗

,

cr = 16θ2σ2cfc
−1
∗ (2 +

1

8θ2
), cρ = 8σ2c−1

∗ (cd + 4cf ) + 8θ2crc
−1
∗ , cβ = 128θ2crc

−1
∗ .
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6. Adaptive performance

6.1. Benefit of margin condition

A margin condition is known as an assumption that regulates the complexity and rates of conver-

gence for classification and estimation problems (Mammen and Tsybakov, 1999; Tsybakov, 2004;

Audibert and Tsybakov, 2007). To fully appreciate the contribution of our new algorithm design

in this work and discern its distinction from the existing literature, it is helpful to consider and

discuss a margin condition under linear bandits with covariates. In particular, a margin condition

has been assumed and carefully studied in earlier work under both the fixed-dimension setting

(Goldenshluger and Zeevi, 2013) and the targeted high-dimensional setting (Bastani and Bayati,

2020); their corresponding bandit algorithms are well-designed to optimally solve the problem

under both a margin condition and a constant gap condition.

We next define these conditions. For x ∈ X , let I♯(x) = {i ∈ Io : fi(x) < f ∗(x)} be the

set of sub-optimal arms. Then define f ♯(x) = maxi∈I♯(x) x
Tβi if I

♯(x) ̸= ∅, and f ♯(x) = f ∗(x)

otherwise.

Assumption 4. There exists a positive constant L such that given any δ > 0,

P
(
0 < f ∗(X)− f ♯(X) < δ

)
≤ Lδ.

Assumption 4 requires that except for a subset of the domain with small probability close

to the decision boundary, the optimal mean reward can be separated from sub-optimal rewards

by arbitrarily small δ. Alongside the margin condition, earlier work also assumes the following

constant gap condition.

Assumption 5. There are positive constants ϖ, c̃1 > 0 such that for each arm i ∈ Io, P (X ∈

T̃i) > c̃1, where

T̃i = {x ∈ X : xTβi −max
j ̸=i

xTβj > ϖ}.

First, we discover that the margin condition of Assumption 4 and the gap condition of As-

sumption 5 are closely related. Indeed, as shown in the following first statement of Proposition 5,

if we impose the margin condition in addition to those of Section 2.1, then the resulting study

scope becomes largely equivalent to that of Bastani and Bayati (2020) since it is guaranteed that

Assumption 5 is also satisfied.

Proposition 5. If Assumption 1 holds, then Assumption 4 implies Assumption 5. On the other

hand, Assumption 5 implies Assumption 1.
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The second statement of Proposition 5 implies that the study scope of Bastani and Bayati

(2020) is subsumed in (and is smaller than) that of Section 2.1. In particular, neither Assump-

tion 4 nor Assumption 5 are necessarily satisfied under the study scope of Section 2.1 with

Assumption 1: indeed, as an example, the bandit class P of the example in Section 2.3 together

with Proposition 1 implies the following results.

Proposition 6. Assumptions 1–3 are satisfied for all the class members in P, but neither As-

sumption 4 nor Assumption 5 holds for all the members in P.

Consequently, in light of the connection illustrated by Proposition 5, the key difference in

the study scopes and the regret bounds for Section 2.1 from the existing literature lies in the

margin condition. In a synergistic manner, our regret bounds in Section 5.2 complement earlier

results with the margin condition (Goldenshluger and Zeevi, 2013; Bastani and Bayati, 2020),

and together verify the benefit of a margin condition to achieve a significantly improved regret

rate (from polynomial to logarithmic).

Remark 5. The discussion above resolves the seemingly contradictory optimal regret rates for the

bandit problem with high-dimensional covariates: In Section 5.2, we show that the near N1/2 rate

is optimal and is achievable by Algorithm 1, but the existing literature (Bastani and Bayati, 2020)

shows that the near logN rate is optimal and is achievable by an exploitation-based algorithm.

There is no conflict here since the study scope of Section 2.1 imposes no assumption on the margin

(or the related constant gap condition); hence under this more “difficult” situation without

assuming the margin, it is natural that the optimal regret rate is higher than the logarithmic

rate; Theorem 4 has shown that no algorithm is able to give a regret rate lower than N1/2.

To some extent, this observation of different optimal regret rates is reminiscent of the intriguing

debates on the optimal convergence rates (and their associated classifier rules) for nonparametric

classification in the statistics literature as discussed by Tsybakov (2004, p.146):

How fast can the convergence of classifiers be and how does one construct the clas-

sifiers that have optimal convergence rates? ... Yang (1999) claims that the optimal

rates are quite slow (substantially slower than n−1/2) and they are attained with plug-

in rules; Mammen and Tsybakov (1999) claim that the rates are fast (between n−1/2

and n−1) and they are attained by ERM (empirical risk minimization rules) and re-

lated classifiers. ... In fact, there is no contradiction since different classes

of joint distributions of (X, Y ) are considered. Yang (1999) ... do not impose
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assumption on the margin. Therefore, it is not surprising that they get rates slower

than n−1/2: one cannot obtain a rate faster than n−1/2 with no assumptions on the

margin. ... On the contrary, Mammen and Tsybakov (1999) ... show what can be

achieved when ... assumption on the margin holds. In this case the fast rates (up to

n−1) are realizable.

Therefore, the results presented in this subsection for the targeted bandit problem with covariates

pleasantly join the celebrated group of known benefits by margin conditions (if satisfied) as

exhibited in nonparametric estimation and nonparametric bandit problems (Tsybakov, 2004;

Audibert and Tsybakov, 2007; Rigollet and Zeevi, 2010; Perchet and Rigollet, 2013).

6.2. Achieving regret benefit adaptively

An important question naturally arises from our discussion in Section 6.1: since it is usually

unknown whether the margin condition (or the closely related constant gap condition) holds, is

it possible to design a bandit algorithm to adaptively achieve the regret benefit from the margin

condition? That is, does there exist an algorithm that can simultaneously perform optimally

under both of the study scopes, without or with assuming the margin, and automatically take

advantage of the desirable regret benefit if the margin condition is satisfied? To a large ex-

tent, this question also resembles the spirit of adaptive performance to the margin proposed for

classical classification and estimation problems (Tsybakov, 2004). In the following, we provide

an affirmative answer and show that our proposed algorithm indeed adapts to the two different

study scopes, and always attains near optimal regret rates (up to a logarithmic factor) regardless

of whether the margin condition holds.

Assumption 6. If Iu ̸= ∅, Assumption 2 holds with ψ = 0.

Like Assumptions 4 and 5, Assumption 6 above for non-competitive arms was also used in

Bastani and Bayati (2020), which considers a special case of Assumption 2. Now our study scope

in this subsection, similar to that of Bastani and Bayati (2020), is devised to be the bandit class

that imposes Assumptions 4 and 6 in addition to those of Section 2.

Theorem 7. Suppose Assumptions 4 and 6 and the conditions of Theorem 3 hold. Then there

exists a positive constant C̃2 such that the cumulative regret of Algorithm 1 satisfies

E(RN) ≤ C̃2lq
2
∗ log pN logN, (15)

with C̃2 = 4θbc0 + 6θb+ 32θ2c̃ρ.
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Using the same algorithm designed in Section 3, Theorem 7 shows that under the margin

condition, our algorithm also enjoys a nearly optimal regret rate up to a logarithmic factor (the

lower bound is given by Goldenshluger and Zeevi, 2013); for example, if l and q∗ are upper

bounded and p = o(N ζ) with some constant ζ > 0, then the regret upper bound in Theorem 7

is simplified to O((logN)2). The upper bound here slightly improves on the result in Bastani

and Bayati (2020) by removing an additive term of O((log p)2). This result together with Theo-

rem 3 and Theorem 4 confirms that our proposed algorithm simultaneously enjoys near optimal

performance under both study scopes given in Section 2.1 and Section 6.

In addition, as the conditions of Theorem 3 are still satisfied here, the variable selection

consistency results of Theorem 6 for the proposed algorithm continue to hold under the margin.

Remark 6. For studying Algorithm 1 in the previous two sections, to help maintain the “good”

events of arm elimination and selection required by Propositions 2 and 3 with high probabilities,

the coefficients used in parameters τ0, δN , and ∆k involve q∗, an upper bound of maxi∈I qi at

the same order. We can also replace q∗ with a general upper bound s∗ (s∗ ≥ q∗) in setting these

coefficients; then the proofs remain largely the same, although as a mild compromise, in the regret

upper bounds of Theorems 3 and 7, q∗ should be replaced by s∗ as well. We note that the use of

a general upper bound s∗ in setting algorithm parameter coefficients for theoretical development

was also required in the related literature; for example, the regret bound in Theorem 7 becomes

O(ls2∗ log pN logN), and the quadratic rate of s∗ matches the result of Bastani and Bayati (2020),

which required both Assumption 4 and Assumption 5. In addition, the regret lower bounds with

the margin (Goldenshluger and Zeevi, 2013) and without the margin (Theorem 4) are both in

respect of N only. It remains unclear whether s∗ can be unknown to an algorithm and whether a

matching bound for s∗ can be obtained. We leave these as open challenging questions for future

investigation.

7. Simulation

We next evaluate the performance of the proposed bandit algorithms on simulated data. For

brevity, the multi-stage type algorithms described in Section 3 are abbreviated as “MS”. We

considered IGA and lasso as the methods for coefficient estimation and denote the corresponding

bandit algorithms by MS-IGA and MS-lasso. For comparison, we used the MS algorithm without

any covariates (denoted by MS-simple), that is, the mean reward estimates in Algorithm 1

were replaced by the simple average of the accumulated response values of each arm. We also

22



considered the bandit algorithm in Bastani and Bayati (2020) as a useful benchmark (denoted by

B-lasso). Due to the page limit, all simulation settings and results are relegated to Supplement C,

where we evaluate the performance of the proposed algorithms in Supplement C.1 and perform

a sensitivity analysis on parameter choice in Supplement C.2.

8. Real data evaluation

We next use two real data sets to evaluate the performance of the proposed algorithm. One

challenge naturally arises due to the incomplete nature of the data sets for the bandit setting:

unlike simulation, for each user visit, we only observe the user response to one selected arm.

To account for such limited feedback, the following two data sets require different evaluation

strategies, which will be described in their respective subsections. In addition, to achieve faster

computation for MS-IGA, we used the gradient-version of Algorithm 2 that replaces criterion (8)

with (9). The parameters were chosen the same way as discussed in Supplement C.2.

8.1. Warfarin dose assignment

Warfarin is a widely used anticoagulant, and its appropriate dosing is important for the pre-

vention of adverse events (International Warfarin Pharmacogenetics Consortium, 2009). The

warfarin data set (available from https://www.pharmgkb.org) contains 6922 patient records,

each of which has covariate information including demographic variables (e.g., gender, ethnicity,

age), clinical background variables (e.g., height, weight, comorbidities, medication, smoking),

and genotypic variables (CYP2C9 and VKORC1 genetic variants). We converted categorical

variables to corresponding binary indicators and replaced missing values by the respective sam-

ple means, which resulted in 127 covariates for each patient. In addition, the continuous outcome

variable was the stable therapeutic dose of warfarin, and we included 6037 patients for bandit

algorithm evaluation after removing records with missing dose values.

To generate bandit arms, we categorized the outcome variable by grouping it to l (l = 2, 3, 4)

categories, using the l-quantiles as breaking points (that is, we used median for l = 2, tertiles

for l = 3, and quartiles for l = 4) so that each arm (or category) in the data set corresponds to

approximately the same number of patients. Since the outcome variable is the doctor-prescribed

steady-state dose values that gave stable anticoagulation levels, if the therapeutic dose value fell

in the category of an arm i∗, we set this arm i∗ to be the patient’s optimal arm with reward

1, while all the other arms j (j ̸= i∗) were considered sub-optimal with reward 0. This setting
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allowed us to evaluate any bandit algorithm: an algorithm incurs no regret if it chooses i∗ for the

patient, and incurs unit regret otherwise. We randomized the order of patient visits and ran the

bandit algorithms sequentially over the whole data set to record the final per-round regret rN ,

the sample size of each chosen arm ni, and the number of selected variables nVari (i = 1, · · · , l).

The experiment was repeated 100 times with permuted visit orders; the averaged results are

summarized in Figure 1 and Table 1.
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Figure 1: Boxplots of per-round regret from different bandit algorithms using warfarin dose data
with 100 random permutations. Left panel: 2 arms; middle panel: 3 arms; right panel: 4 arms.

Table 1: Averaged algorithm performance using warfarin dose data with 100 random permuta-
tions.

2 arms 3 arms 4 arms

Arm i 1 2 1 2 3 1 2 3 4

n̄i

MS-simple 4493 1544 2004 3225 808 1799 1825 1299 1114
B-lasso 3124 2913 2361 2621 1055 2334 1120 2073 510
MS-lasso 3025 3012 2242 1685 2110 2001 1047 1079 1910
MS-IGA 3041 2996 2194 1744 2099 1905 1123 1148 1861

nVari

B-lasso 28.45 27.66 29.29 23.47 15.92 29.40 25.37 23.12 7.41
MS-lasso 27.57 28.70 25.31 6.07 24.94 24.41 1.06 1.52 24.72
MS-IGA 16.17 20.81 15.77 4.73 19.55 16.59 5.60 4.51 19.58

r̄N

MS-simple 0.495 (0.001) 0.659 (0.001) 0.750 (0.001)
B-lasso 0.254 (0.003) 0.476 (0.005) 0.611 (0.004)
MS-lasso 0.267 (0.001) 0.474 (0.001) 0.623 (0.002)
MS-IGA 0.261 (0.001) 0.464 (0.001) 0.607 (0.001)

The boxplots from Figure 1 show that MS-simple without considering covariates yielded the

least favorable performance in all three scenarios, indicating the effectiveness of using covari-

ate information in choosing warfarin dose. Together with Table 1, we observe that MS-IGA
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performed better than MS-lasso in these scenarios; MS-IGA also performed very competitively

compared to the benchmark and had reduced variability in per-round regret. In addition, the av-

eraged sample sizes of different arms appear more balanced for MS-IGA than for the benchmark,

particularly under the 3-arm and 4-arm scenarios; to some extent, this may reflect the less greedy

nature of the proposed algorithm. MS-IGA often selected fewer variables than the benchmark;

the exceptions come from arm 3 of the 3-arm scenario and arm 4 of the 4-arm scenario as these

arms were chosen less often than the other candidate arms by the benchmark.

8.2. News article recommendation

In the following, we use the Yahoo! front page user click log data set (version 2.0; Yahoo! Aca-

demic Relations, 2011; available from http://webscope.sandbox.yahoo.com). The complete

set includes about 28 million user visits to the news front page from October 2 to 16, 2011, and

each user visit record has 135 binary user covariates and a pool of candidate news articles. One

article is chosen uniformly at random from the pool and is displayed to the user; the binary

user response to the selected article is also recorded, with 1 for click and 0 for non-click. As the

candidate pools of news articles are dynamic and the popularity of a news article can change in

the long run, to account for these complications in algorithm evaluation, we adopted a screening

strategy similar to May et al. (2012) and only considered short-term performance using data

collected on the first day (October 2, 2011) with a three-article (id 563115, 563846, 565822) set

as the stationary candidate arms. Accordingly, we retained the user visit records where the can-

didate pool contained all three articles and the displayed article was one of them. The resulting

reduced data set contained 148,341 user visits for subsequent bandit algorithm evaluation.

Unlike the warfarin dose data, since a randomly selected news article is displayed at each

visit, we should not assume the optimal arm is known. Instead, we applied the unbiased offline

evaluation strategy developed in Li et al. (2010) to evaluate a bandit algorithm. That is, for each

user visit, if the arm chosen by the algorithm matched the displayed arm, we kept this visit as a

“valid” data point for algorithm use; otherwise, this visit record was ignored and not accessible by

the algorithm. Accordingly, each algorithm ran through the data set sequentially until N “valid”

data points were obtained with N = 30,000; the resulting “valid” data was used to calculate the

click through rate (CTR) as an unbiased evaluation of the bandit algorithm performance. We

ran the MS-simple, B-lasso, and MS-IGA algorithms over a random permutation of the reduced

data set and repeated the experiment 100 times. We used the averaged CTR from a complete
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random strategy (that chose arms uniformly at random) to generate each algorithm’s relative

CRT by computing the ratio between the algorithm’s CRT and that of the complete random

strategy. We then summarized the numerical results in Figure 2 and Table 2.
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Figure 2: Averaged relative CRT
with news article recommenda-
tion data.

Table 2: Averaged algorithm performance
with news article recommendation data.

MS-simple B-lasso MS-IGA MS-B-lasso

Avg. relative 1.040 0.924 1.070 1.070
CTRN (0.003) (0.003) (0.003) (0.003)

n̄i
arm 1 4358 29235 7373 6760
arm 2 7092 526 8960 8869
arm 3 18550 239 13667 14371

nVari
arm 1 - 8.34 4.78 9.27
arm 2 - 0.26 3.99 7.89
arm 3 - 0.04 7.38 8.76

Compared to the complete random strategy, we observe from the plots in Figure 2 that MS-

simple (without considering covariates) significantly improves the averaged CTR by about 4%.

MS-IGA further improves the averaged CTR, which can be attributed to the user covariates in

the reward modeling, while the benchmark surprisingly underperforms. The very unbalanced

arm sample sizes from the benchmark suggest that its observed result could be again due to the

more greedy nature of the benchmark designed to emphasize arm exploitation more than the

MS-type algorithms; as a numerical check, we then revised the benchmark by keeping the lasso

as the coefficient estimation method (with the same tuning parameter setting as B-lasso) but

adopting our MS-type algorithm instead (thus we denote it by MS-B-lasso). Interestingly, as

shown in Table 2, MS-B-lasso performs competitively in this case compared to MS-IGA, with

less sparse variable selection outcomes and reasonably balanced sample sizes.

9. Discussion

We study the bandit problem with high-dimensional covariates by designing an adaptive algo-

rithm with arm elimination and randomized allocation. The algorithm enjoys near minimax

optimal regret performance under both study scopes (without or with the margin), and demon-

strates adaptive performance by one unified algorithm. We also establish simultaneous coefficient

estimation and variable selection consistencies for the output of the proposed algorithm. The

26



extensive numerical studies indicate that our proposal holds promise in real applications on per-

sonalized medical and online services. The previous discussion implicitly assumes that the total

number of visits N is known a priori; if N is unknown, the proposed approach can be extended

by employing the “doubling argument” (e.g., Cesa-Bianchi and Lugosi, 2006; Perchet and Rigol-

let, 2013). Although we only used IGA (as opposed to lasso) for Algorithm 1 to help achieve

variable selection consistency with improved coefficient estimation consistency, we expect that

popular shrinkage-type regression methods such as the adaptive lasso, SCAD, and MCP (Zou,

2006; Fan and Li, 2001; Zhang, 2010) could be other promising coefficient estimation candidates

to be integrated for the bandit problem algorithms; a comprehensive and rigorous investigation

on their theoretical and numerical properties could be of independent interest and is left for

future studies.

Supplementary Materials

Supplement to “Adaptive Algorithm for Multi-armed Bandit Problem with High-dimensional

Covariates” (supplement.pdf): Supplement A provides the proofs of the propositions and the

main theorems. The technical ancillary lemmas for the theorems are relegated to Supplement B.

Our simulation studies are given in Supplement C.

MATLAB package for the IGA method is available at https://github.com/weiqian1/IGA.
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