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ABSTRACT

Empirical analysis of a major overnight-funding network of European banks shows that, when
liquidity disruptions occur in a part of the network, lending banks in other parts of the network
broaden their cohorts of borrowers in the part of the network that is subject to the disruptions.
Measures of this broadening are useful new statistics for the amount of information conveyed
from one part of the network to another. In our setting, we call this broadening “counterparty
sampling,” and present evidence that it improves the network’s stock of information about future
interest rates. By comparing to linkages forecast by an LSTM deep learning model for counterparty
linkages, we find that the extent of surprising new linkages predicts lower future rates. Our evi-
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dence supports the idea that interbank funding networks provide benefits of learning and infor-
mation aggregation, and our measures suggest new ways of looking at sparse networks with

stable structures but dynamically-changing linkages.

1. Introduction

Different from a social network where linkages tend to be
persistent, other important network settings, such as traffic,
weather, and financial trading, have stable node structures
but their linkages or linkage intensities are often sparse and
fleeting. With a focus on modern finance studies, we investi-
gate one such financial network, the overnight-funding net-
work of commercial banks. In this network, banks loan each
other deposits for short periods of time to satisfy the liquid-
ity (cash) needs of the borrowing banks and earn fees for
the lending banks. This specific network is empirically
important in itself and has been a topic of interest in mod-
ern finance due to economy-wide implications." Our work
intends to suggest new network theory inspired data metrics
for interbank networks and employ data science tools in
econometrics and deep learning to systematically investigate
whether banks are learning macro information via broaden-
ing their lending connections and whether banks’ re-config-
urations of lending links in reaction to routine shocks to the
liquidity needs of other banks is predictive of future inter-
est rates

A recent important event in the fed funds market illus-
trates the need for our investigation. On September 17,
2019, the benchmark overnight unsecured fed funds rate, a
measure of the fee that lending banks receive from borrow-
ing banks, spiked to 5.25%, after trading in a range of
2.09-2.20% over the previous month. The mean daily abso-
lute deviation that week was 129 basis points, after averaging

3 basis points over the year before that point. The precipi-
tating event was an unexpected shortage of liquid reserves,
the portion of deposits retained by banks in cash, not lent
out (Kaminska 2019). An analysis by Federal Reserve Board
staff comments: “Lenders did not appear to step into the
market to take advantage of the higher rates ...Borrowers
generally trade with the same group of lenders at similar
volumes every day and even market volatility as substantial
as what we saw in mid-September does not seem to change
that” (Anbil et al. 2020). Apparently, in this case, banks did
not reconfigure their lending relationships in response to
the underlying liquidity shock. The Federal Reserve staff
report suggests that interbank lending failed to help the U.S.
fed funds market to learn its new equilibrium rate.

By studying a time series of exogenous liquidity stresses
with regular periodicity in the European interbank market,
we provide an inference that this failure may be more the
exception than the rule.” Consistent with the observations
above regarding September 2019, the topology of the
European interbank network changes little with the onset of
stress and uncertainty. Under the surface, however, we find
that distant banks, i.e. those in less-stressed parts of the net-
work, re-establish older lending ties with banks in the most-
stressed part, and also broaden lending ties to include more
borrowers. The distant lending banks include the large
money-center banks that comprise the rate-setting panel for
3-month LIBOR, a key interest rate for bank loans. On a
time-series basis, the breadth of distant banks” lending cli-
ques—groups of borrowing banks from the liquidity-stressed
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regions—predicts 3-month LIBOR changes a week later.
This predictability is most dependable for the day of the
week on which the monetary authority routinely makes its
policy announcements, suggesting that information relevant
to upcoming macroeconomic policy determinations is con-
veyed from the stressed groups of banks to the groups that
lend to them.

We choose to study the market for overnight funds in
Europe because a rare opportunity existed for researchers to
observe interbank deposits trading directly in an electronic
market known as “e-MID” during the early 2000s. In its
heyday, most European banks were members of the e-MID
system.” The typical e-MID transaction occurs when a bor-
rower bank quotes an interest rate at which it would like to
borrow overnight (with the quote and bank identifier visible
to all member banks), and where a lending bank then
accepts the quote to lend at that rate—technically sells a
deposit (Angelini et al. 2011; Beaupain and Durré 2008).
Settlement is electronically automatic upon the quote accept-
ance, so any off-line information gathering or conversations
between banks must take place first.

During the period of its operation, e-MID is headquar-
tered in Italy, and the largest number of banks actively trad-
ing on it are Italian banks. In contrast, the largest banks on
the network are non-Italian banks. Moreover, Italian banks
experience a repeated exogenous uncertainty-increasing
liquidity event on a roughly monthly basis during the period
of our data: Italian banks are required to transmit their cus-
tomers’ ongoing tax payments to the government on a spe-
cific schedule each month. The tax payment amounts are
systemically important and difficult to predict: the European
Central Bank states that it considers the time-varying bank
system transfers to the Italian government to be a significant
“autonomous factor” influencing the varying liquidity needs
of the banking system overall (see https://www.ecb.europa.
eu/mopo/lig/html/treas.en.html).* Uncertainty is high during
the period just before the tax transmittal period when the
tax collection process is underway, and then is resolved (i.e.
the liquidity in the system becomes known) as the payments
are transmitted to the government. We, therefore, compare
network activity differences during the more-uncertain “pre-
tax-transmittal periods” (PTTPs) when information about
the balance of reserves is relatively scarce, especially from
the point of view of non-Italian banks, as compared to later
adjacent “tax-transmittal periods” (TTPs), periods when
uncertainty is resolved. For our investigation, we designate
TTPs and PTTPs to be 5 business days centered around the
tax-transmittal date and the same day of the previous week,
respectively.

The non-Italian banks on the e-MID network include all
the large money-center banks that are part of the rate set-
ting-panels for LIBOR rates during this period. A central
idea for our investigation is that these large non-Italian
banks that are important for establishing key rates, such as
3-month LIBOR face an information deficit about an
important component of system-wide liquidity during pre-
tax-transmittal periods. If they choose, they can lend to
Italian banks overnight at competitive rates via e-MID,

gaining credit information and perhaps other insight into
the Italian liquidity situation. If micro and macro learning
are complimentary (Hirshleifer and Sheng 2022), this infor-
mation might help them to better understand the developing
equilibrium for rates important to their loan business.

The idea that network connections serve as a conduit for
information flow has intuitive appeal and has been much
considered in the literature on social structure and econom-
ics (Granovetter 2005). The idea that ties bridging to distant
parts of a network are important for information originated
in sociology (Granovetter 1973, 1983). A node’s “strong”
locally-connected nodes are apt to also be connected to each
other or at least to be similar in important ways, and thus
might not conduct much new information. In contrast, Burt
(1992) explicates a key reason for “the strength of weak
ties”: though no particular weak tie (i.e. nodes that are dis-
tantly but not locally connected) is of much importance, it
is weak ties overall that disproportionately bridge different
parts of a network and convey distant information. Our
investigation can be characterized as measuring the extent to
which weak ties are important for linking different bank
cohorts and enabling information to flow between them.

Pfaltz (2012) considers these ideas in the context of the
mathematical network theory. Separated parts of networks,
defined as parts with no direct bridges, can only be joined
by adding edges (i.e. links or connections). By linking previ-
ously distant, tightly-interconnected clusters (such as triads),
such additional edges move the network toward being fully
connected. Pflatz notes that adding such bridging edges can
lead to a meaningful increase in connectedness while imply-
ing only small changes in standard summary measures of
network topology.” Pfalz suggests that one natural measure
of change in this direction would then be the increase in
entropy, an index of disorder. We will use the change in
entropy as one statistical indicator of possible bridge-build-
ing when systems become stressed. We also suggest, and
show the usefulness of, some intuitive measures of changes
in banks’ lending cliques, such as the number of trading
partners that are brought back from previous spates of sys-
tem stress and the cross-sectional variation in banks’ sets of
trading partners.

Having described the setting and network reasoning, we
can now state our findings more specifically. Using vector
autoregressions (VARs), we establish that recent changes in
the nature of distant banks’ lending cliques Granger-causes
interest rates (i.e. Granger non-causality is rejected).
Additionally, we find that changes in rate volatility do not
Granger-cause future rates. That is, the lending-clique
related actions of banks are the key, not the volatility that
may have led to them. Further, the evidence for Granger
causality is strongest when we focus on changes that occur
on the day of the week when the European Central Bank
(ECB) Governing Council makes it key monetary policy
decisions for the Eurozone, suggesting that changes in the
nature of lending cliques may help distant banks learn about
how recent liquidity pressures feed into ECB decisions. This
core evidence is consistent with the idea that the distant
banks that set 3-month LIBOR learn about the implications
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of the Italian liquidity stress for future rates via the broader
lending cliques that they establish. We call this behavior
“counterparty sampling” because it has the effect of adding
to the quantity of information about future interest rates
that is present in the network.

Even so, it is possible that counterparty sampling is a
reaction to information banks already have, rather than a
way of gathering new information. This possibility is high-
lighted because counterparty sampling increases are direc-
tionally associated with increases in rates. Banks might
broaden their lending cliques to better profit from upcoming
higher rates. To investigate, we measure the surprises in
counterparty sampling by comparing link outcomes to the
link predictions of a standard long short-term memory
(LSTM) deep learning model and then investigate whether
the extent of surprising new linkages is also predictive of
future interest rates. The LSTM has appeal as a prediction
mechanism because it allows for non-linear connections
(which the VARs do not), because it allows linkage patterns
from further in the past to revive in importance (in a way
that typical time-series models do not), and because it deals
well with the relatively sparse linkage matrices that charac-
terize interbank networks (in which banks tend to have
lending links to only a few other banks). We find that the
extent of surprises is predictive of lower future rates. The
positive association with linkages overall thus emanates
from the predictable part of changes in linkages, which
could reflect banks’ reacting to add borrowers based on
expecting better rates. But such a reaction is not a plausible
explanation for the negative association with surprises.

Overall, we establish the existence of counterparty sam-
pling in interbank lending relationships as a response to
routine spates of uncertainty and provide evidence that sug-
gests counterparty sampling is predictive of future rates of
direct concern to banks. The evidence is supportive of the
idea that banks learn in the lending process.

Our paper contributes to the literature in several ways.
Regarding networks generally, we first propose several data
metrics inspired by network topology theory for assessing
the extent of dynamic changes in interbank lending linkages,
and show that even when network topology does not change
in response to shocks, changes in specific linkages can have
strong effects on the functioning of the network.
Additionally, we show that these change measures map the
movement of economic information from one part of the
network to another, and the breadth of nodes’ linkage sets
can be effective indexes relating to information transmission
to distant nodes. By further extending our empirical analysis
to a dynamic deep learning model, we show that the appli-
cation of an LSTM can improve inference in empirical set-
tings beyond what typical time series models can provide. In
particular, we substantiate that it is the innovations (sur-
prises) in linkages, not just the changes, that conveys
information.

In addition, we make specific contributions in under-
standing banks’ systemic risk and interbank network struc-
ture effects. Regarding systemic risk, Caballero and Simsek
(2013) have emphasized that banks’ knowledge of other
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banks’ financial health is limited by the extent of their coun-
terparty relationships. They reason that during times of sys-
temic  stress, the health of counterparties’
counterparties (and counterparties of those counterparties,
etc.) are of increased concern, banks may retrench into a
liquidity conservation mode. Our evidence suggests that
banks sometimes engage in more extensive counterparty
sampling during times of stress, which may broaden their
information set and could partly offset the need for
retrenchment. Regarding interbank network structure, our
evidence suggests that interbank lending relationships matter
for informational reasons, not only because of domino-the-
ory concerns about interlinked liabilities. Our evidence com-
plements the recent model of Denbee et al. (2021), which is
premised on the idea that the liabilities topology of the
interbank network is less important than banks’ interpreta-
tions of their peers’ actions. Denbee et al. (2021) show that
the key to the systemic demand for liquidity is whether
banks consider each other’s reserves to be substitutes (i.e.
reservoirs of readily-borrowable liquidity) or compliments
(i.e. indications of the value of retaining liquidity on their
own accounts). We show that changes in banks’ links to
other banks, which can bring in new information on which
to base their views, are predictive of rates in the markets for
liquidity. Thus, we show a price effect of linkages that com-
plements their quantity effect.

The next section of our paper overviews aspects of the
literature on interbank networks as necessary context. The
subsequent two sections then describe our data and empir-
ical methods, respectively. A fifth section presents our
results on network changes in uncertain times, and a sixth
section reports on the predictive power of the counterparty
sampling changes for interest rates during spates of uncer-
tainty. A seventh section considers and rejects some non-
learning explanations for the importance of counterparty
sampling. A final section concludes.

when

2. Interbank networks

The importance of bank interconnectedness for systemic
risk, i.e. the risk of a collapse of the banking system, is a
foundational concept relating to financial stability and finan-
cial crises (Allen and Gale 2000; Diamond and Dybvig 1983;
Eisenberg and Noe 2001). Banking systems generally include
some mechanisms, such as overnight funds trading net-
works, intended to help the system self-insure against local-
ized liquidity shortfalls that could otherwise cause instability
or force “fire sales” of bank assets to raise funds
(Greenwood et al. 2015; Shleifer and Vishny 2011). The
actual cross-bank liabilities can be highly variable, depending
on which banks need to call on the insurance, even though
the structure of the system itself may be stable. Glasserman
and Young (2016) provide a comprehensive survey from
this interbank-liability perspective.

Interbank networks have also been usefully analyzed
from a trading perspective. A relevant example is Brunetti
et al. (2019), who empirically build the network of interbank
cross-liabilities from bids, asks, and trades for the same e-
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MID market that we study. They find that this “physical
network” deteriorated and fragmented as the Global
Financial Crisis proceeded. Afonso et al. (2014) also study
an interbank funding network during the Global Financial
Crisis, finding that borrower characteristics became more
important for lending decisions. Ashcraft and Duffie (2007)
find that the probability of two banks trading is increasing
in the strength of their prior relationship. Hatzopoulos et al.
(2015) document preferential trading partners over time in
the same market we investigate. Though a focus on actual
or potential crises clearly pervades these literatures, they also
provide insights into the functioning of interbank networks
at times of stress and uncertainty that fall short of being
cataclysmic.

Finally, interbank networks have been studied from a net-
work topology perspective. Researchers often document a
core-periphery or tiered network topology.® Craig and von
Peter (2014) point out that any non-random structure to
interbank networks suggests a purpose in addition to merely
diversifying liquidity shocks. Blasques et al. (2018) point to
easing the costs of credit risk monitoring as one reason
bank networks might not be random, and suggest a model
in which counterparty monitoring helps generate a core-per-
iphery topology. Also in this vein, Erol and Ordonez (2017)
emphasize that banks make relationships to assure them-
selves access to reserves to support profitable lending on cli-
ent projects. When circumstances limit the profitability of
such lending, the benefits of relationships are likewise lim-
ited. Beyond a tipping point where any bank finds that
many other banks have decided to withdraw, the network
can become very sparse. Their model suggests that banks
will form isolated “cliques” to obtain the benefits of support
for reserves without taking more-than-necessary risk of
being harmed by the shocks of other banks. Erol and
Ordonez (2017) thus provide a basis for examining the pos-
sibility of cliques and other persistent counterparty group-
ings, and for considering the possibility of quick changes in
their compositions. We emphasize the importance of cliques
from an informational perspective.

Taking together these three research perspectives on
interbank networks—interlinked liabilities, the trading, and
the network topology—we draw several points to motivate
and guide our work. First, network linkages can be highly
dynamic, even if the network structure is stable. Second,
linkages, structure, or both might change in times of stress
or crisis. Third, important topological aspects of interbank
networks driven by banks’ underlying economics, such as
lending cliques, may deserve a special focus.

3. Data

Our data detail trading on the e-MID platform (formally,
Mercato Interbancario dei Depositi), and have been obtained
directly from e-MID. e-MID was a quote-driven screen-
based platform for interbank deposit trading by European
banks. Quotes (i.e. binding bids and offers for bank depos-
its) were visible to all participating banks, and trades against

those quotes could be executed electronically. Trading was
available in several currencies, though trading in euros was
the most common. Deposits were lent and borrowed on an
unsecured basis. Various loan maturities up to a year were
available, but the great majority of trades were for overnight
deposits. We focus on euro-denominated overnight borrow-
ing and lending.

We begin with all trades where a lending bank accepts a
borrowing bank’s bid for an overnight deposit. The data
identify the lending and borrowing banks with unique refer-
ence numbers that anonymize each bank’s identity except
for its country. Key fields include the timestamp and size of
the loan in euros. From this trade record, we first construct
a daily dataset with observations on the total of loans each
day from each lender to each borrower and then identify
bank-pair linkages for each week according to whether one
bank lent to the other at least once.

e-MID was headquartered in Italy, and Italian banks rep-
resented the largest cohort of banks in the system. However,
many banks from Germany, France, and other European
countries were also active traders. Given our purposes as
described in the introduction, we key on Italian borrowers
and non-Italian lenders. These non-Italian lenders include
the large money-center banks that sat on panels to deter-
mine LIBOR interest rates, which were the benchmark rates
for most bank loans to customers.

During the early 2000s, interbank trading on the e-MID
platform was very active and was regarded as typical of
deposit trading by European banks overall (Finger et al.
2013). Aciero et al. (2016) report that e-MID trading repre-
sented 20% of all interbank transactions in Europe as late as
2007. Monticini and Ravazzolo (2011) state that e-MID was
still representative of Euro area interbank trading overall
even in 2008. After 2008, trading on e-MID declined and
became more dominated by Italian banks. The e-MID mar-
ket eventually closed after 2011.

Before 2004, the ECB’s operational framework for provid-
ing liquidity was different than afterward in several salient
ways that would affect comparability.” After 2006, the Italian
Ministry of Finance undertook a new practice of concurrent
money market operations to improve the predictability of
the government account, with the result that tax-payment-
associated systemic liquidity uncertainty that is at the heart
of our empirical design became somewhat curtailed. Further,
the Global Financial Crisis, which coincided with the various
LIBOR rate setting scandals that eventually led to LIBOR’s
demise, began to affect Europe beginning in summer 2007.

We study data from 2005 to 2006. All things considered,
2005 and 2006 is the right time period for our investigation.
We focus on data after 2004 to avoid any lack of compar-
ability within our samples due to the changes in the ECB
operations starting in 2004. We focus on data before 2007
so that we have an active market rather than eMID in
decline, when it may be less representative of the full market
for overnight funds, and so that we have a market during
normal times rather than a crisis-time market.



Our investigation is facilitated by the temporal pattern of
ECB system-wide liquidity management in the early 2000s.
Banks’ reserves were assessed for regulatory purposes over
rolling “reserve maintenance periods.” A reserve mainten-
ance period is the timespan over which banks must hit tar-
geted reserve levels. The ECB’s calendar of reserve
maintenance periods, tied to the schedule of ECB Governing
Council meetings, is published well in advance. During the
period of our data, reserve maintenance periods ranged in
length from 20 to 43 days, with most periods being about a
month long. The rough correspondence between mainten-
ance periods and calendar months allows us to conveniently
refer to specific maintenance periods according to the calen-
dar month within which they begin.

To have comparisons that are robust to the normal influ-
ence of ECB liquidity/regulatory architecture on banks’
reserves-management incentives, we organize our sample as
a set of consecutive maintenance periods, each with a tax-
transmittal period and a pre-tax-transmittal period included.
Beaupain and Durré (2008) document platform-wide trading
regularities corresponding to the start of a period (light
activity and rate volatility), end of a period (heavy trading
and rate volatility), as well as to the roughly-weekly occur-
rences of ECB MROs.

In the introduction, we have already described the ration-
ale and institutional setup of the Italian tax-transmittal sub-
period (TTP) and a pre-tax-transmittal sub-period (PTTP).
For our investigation, we designate TTPs and PTTPs to be 5
business days centered around the tax-transmittal date and
the same day of the previous week, respectively. Each main-
tenance reserve period contains one PTTP and one TTP,
with the TTP coming close to the end of the maintenance
reserve period. Given that the Italian tax calendar is an
autonomous factor driving liquidity risk in the eurozone
according to the ECB, we consider PTTPs as likely higher
uncertainty times, and TTPs as times when uncertainty is
resolved. Later we provide evidence this is indeed the case.

4, Empirical Design

Our empirical design has two main components. In the first
component, we investigate the effects on network topology
and lending relationship patterns when a tax-transfer-period
spate of uncertainty occurs. In the second component, we
examine the time-series relations of topology and lending
relationships with the future realizations of key interest rates
and spreads of concern to banks. We next describe, in turn,
the set-up of each of these two components of our empir-
ical plan.

4.1. First Empirical Design Component: Effects of
Uncertainty-Increasing Cases on Network Topology
and Lending Relationships

Our first empirical design component corresponds to our
purpose to characterize the reaction of lenders in the inter-
bank network to increased uncertainty and liquidity stress.
We identify cases of repeated increased uncertainty with a
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predictable timing, with corresponding control-group cases
for each that are otherwise similar but removed from the
uncertainty. The control cases are the key to holding con-
stant the effects of the ECB maintenance period and refi-
nance operation regime, as well as financial and economic
conditions more generally.

The uncertainty vs. control case split is based on the
Italian tax collection cycle. As discussed above, the monthly
process of transferring ongoing tax payments in the govern-
ment’s accounts in Italy drains a significant but highly
uncertain amount of liquidity from banks. The ECB notes
this as having eurozone-wide significance, not only for Italy.
The transfers occur around the 23rd of each month. The
uncertainty is resolved as the transfers occur and the
amount of liquidity drained becomes known to system par-
ticipants. Our control period is thus defined as the 5 busi-
ness-day period beginning on the tax transfer date (the 23rd
or the first Italian business day after the 23rd), and the
uncertainty period is defined as the 5 business-day period
before the tax transfer date. For nomenclature, we call these
the uncertainty case as the “pre-tax-transfer sub-period”
(PTTP for short) and the control case as the “tax-transfer
sub-period” (TTP for short), respectively.® There is one
PTTP and one TTP within each monthly ECB reserve main-
tenance period. Therefore, our study effectively focuses on
the 24 ECB reserve maintenance periods during 2005
and 2006.

This uncertainty case vs. control case split can also be
motivated statistically. The mini-table below shows the roll-
ing mean levels of 5-day variance for several money market
interest rates and spreads with strong relevance to banks
during each of these case periods, with t-statistics for the
difference in parentheses.” The sample for the mini-table
includes all the tax-transfer periods and pre-tax-transfer
periods in 2005 and 2006. The variance in these overnight
rates is sharply greater during the PTTP uncertainty cases
than during the TTP control/uncertainty-resolution cases. At
a minimum, the multiple is about four times.

We measure the effects of uncertainty increases on two
aspects of the interbank lending network. The first is net-
work topology, using several standard metrics. The other is
the tendency of lenders to broaden or narrow their group of
borrowers, using several different metrics. For nomenclature,
we refer to a lender’s group of borrowers as its “lending
clique.” These measures are described below.

Tax-transfer-based cases

Weekly variance in TTP control case PTTP uncertainty case

EONIA rate 0.0055 0.0228
t-statistic for difference (3.63)
Euro LIBOR overnight rate 0.0048 0.0182
t-statistic for difference (3.49)
Euro LIBOR 3-month spread 0.0053 0.0200
t-statistic for difference (3.46)

To assess network topology, we measure network density,
clustering/transitivity, in-degree centralization, and out-
degree centralization. These are standard descriptive
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measures of network topology and have specific economic
importance in our context. Brunetti et al. (2019) emphasize
the importance of network topology. Among other things,
they consider especially density and transitivity/clustering as
being important. Denbee et al. (2021), in their theoretical
model of interbank liquidity linkages, propose that a bank’s
centrality, i.e. the extent to which it is linked to the network
of other banks by either borrowing (for the in-degree case)
or lending (for the out-degree case) is salient for its contri-
bution to systemic risk. Centralization measures, as net-
work-wide aggregates of bank-specific centrality measures,
provide a summary of the tendency of the network to have
banks that are systemically important. Below we provide
some detail on the calculation of these specific network top-
ology measures.

e Bank network density is computed as the number of
banks with a lending link between them relative to the
maximum possible number of links for a network with
the same number of nodes.

e A bank’s transitivity (also known as clustering) is com-
puted as ratio of the count of closed three-link lending
triads in the network (i.e. where A lends to B, B lends to
C, and C lends to A) relative to the number of two-link
lending relationships possible in the network (A lends to
B, B lends to C). It is the ratio of triads that are closed
relative to the number that could be closed. Since the
most connected network is one where every triad is fully
linked, transitivity is a simple proportional measure as to
how far the actual network rises toward this potential
level of connectedness. In terms of the theoretical discus-
sion of networking above, a network with high transitiv-
ity would have a large number of strong ties.

e A bank’s out-degree centrality is computed as C,,:(i) =
Zjli i where y;; is an indicator variable equal to one if

bank i lends to bank j and zero otherwise. Similarly, its
in-degree centrality is computed as C;, (i) = Zjli \yji where
y;i is an indicator variable equal to one when bank j
lends to bank i and zero otherwise. Then the (Freeman)
degree centralization measures are computed as the aver-
age deviation of each node’s degree centrality from the
most-central node’s centrality (i.e. a measure of the vari-
ation in centrality across the network), standardized as a
proportion of the summed deviations for a hypothetical
network with the largest possible summed deviations for
a network with the same number of nodes. The theoret-
ically most centralized network (a star network with each
node connected only to a single central node) has the
largest average variation in centrality because it has only
one highly linked node connecting all others, so the rela-
tive average variation is then a proportional measure as
to how far the actual network rises toward this potential
level of centralization.

As Pfaltz (2012) notes, a network that adds links that
bridge between disparate groups of network banks may
experience only very minor changes in the standard network
topology statistics, such as those laid out above. Therefore,

to specifically assess the tendency of lenders to broaden or
narrow their lending cliques, we use several specific metrics
as follows.

o First, we assess the proportion of network banks’ lending
relationships that are with banks they lent to during the
previous tax-transfer period (TTP) or pre-tax-transfer
period (PTTP), respectively. If banks tend to bring back
relationships from a month earlier similar-uncertainty
situation, it is an indication of restoring lending relation-
ships that might convey information useful during such
times. This contrasts with cases where banks might sim-
ply continue to trade with the counterparties they have
been using most recently. We call this metric the propor-
tion of restorations of previous trading relationships.

e Second, we count the number of borrowers in each net-
work bank’s lending clique during a particular TTP or
PTTP. Then, for the network as a whole, we compute
the mean size of lending cliques and the cross-sectional
standard deviation of lending cliques. The mean is a
measure of the extent of an average lending banks’ rela-
tionships. The standard deviation impounds this infor-
mation also, in that the minimum size of a clique is zero.
Additionally, the standard deviation impounds informa-
tion about the variety of clique sizes in the system.

o Finally, we use Shannon’s entropy, a summary statistic
from network science that measures the overall level of
disorder in the network. For a network with N banks,
entropy is defined as H = — Y~ " p;In (p;), where p; =
ki x ﬁ with k; being the number of banks that bank i
lends to. Networks with larger entropy are more dis-
orderly, i.e. have a stronger tendency for any two banks
to be connected. When banks spread their lending across
larger cliques, entropy is apt to increase. One reason for
including entropy is that it has prominence in informa-
tion theory as a summary measure of the information in
a system.

Each of these three measures is a different summary of the
overall breadth of relationships in the interbank lending net-
work. We will therefore refer to them as network breadth
measures. Foreshadowing our finding that broader networks
convey information in the manner of drawing larger data sam-
ples, we also call them “counterparty sampling” measures.

To use the standard topology and the counterparty sam-
pling measures for our purpose, we assemble interbank
lending data for a particular time period (such as the TTP
or PTTP sub-period within a reserve maintenance period)
into a set of directional “links” corresponding to lender-bor-
rower relationships between bank pairs. We begin at a daily
level, totaling up the lending from each bank i to each other
bank j from the e-MID transaction record. To focus on
lending decisions, we consider only cases where a lending
bank lifts a bid for an overnight deposit from a borrowing
bank, as discussed above. Next we aggregate the pair-specific
lending over the entire time period. Whenever the aggregate
lending from i to j during the period is positive, we record a
link in the interbank network “adjacency matrix” showing



connections of all possible bank pairs i,j. Adjacency matri-
ces then become the input data for computing the network
topology and counterparty sampling measures above.

In addition to computing aggregate lending considering
all loans from i to j, we sometimes separately compute
aggregate lending using only “small” loans, where the divid-
ing line between large and small is set on a lender specific
basis. That is, for each lending bank i we examine its full
distribution of loans during the maintenance period and
designate as “small” all loans below the 25th percentile in
size by euros lent. The point of measuring small loan net-
works is to focus on connections for which credit risk con-
siderations are less important.

In addition to connectedness, the size of the interbank
network should be expected to be economically important.
Therefore, as control variables for our study we use some
standard measures as follow:

o Total euros lent, defined as the number of euros lent by
all banks in aggregate on a day,

o Number of distinct lenders, defined as the number of
banks that lend on a day, and

o Number of distinct borrowers, defined as the number of
banks that borrow on a day.

The various measures above are applied to the full net-
work of lenders, the network of non-Italian banks lending
to Italian banks, and, for comparison, the network of Italian
banks lending to non-Italian banks.

4.2. Second Empirical Design Component: Predictive
Relationships between Changes in Lending
Relationships and Interest Rates

We also undertake a second analysis to assess the predictive
relation between network patterns and the 3-month LIBOR
interest rate. This rate is of key importance a benchmark
interest rate for bank loans, it is determined by a daily sur-
vey of large non-Italian banks in the e-MID network, and it
is not directly determined by trading in the e-MID network.
For all these reasons, 3-month LIBOR is a good focus to test
if the extent and variety of e-MID lending relationships pro-
vide useful information to lenders about the future state of
the banking system and the economy.

We use Granger causality tests to assess the predictive
power of our counterparty sampling measures to predict
these rates on a day-ahead basis. In general, Granger causal-
ity tests are y* tests of predictive effects based on estimates
of linear vector autoregression systems (VARs). We estimate
5-equation VARs for the system of the change in 3-month
LIBOR, one of the network connectedness measures (i.e.
either the proportion of restorations, the standard deviation
of clique size, or the entropy), the number of distinct bor-
rowers, the number of distinct lenders, and the number of
euros lent in aggregate. We also include day-of-the-week
indicator variables to allow for weekly seasonal effects.
Importantly for our purpose, we often allow for an add-
itional equation for the interaction of a network
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connectedness measure and an indicator variable for the
PTTP uncertainty-case period.

Our basic implementation of this VAR system uses five
day lags of all the endogenous variables since our counter-
party sampling measures are computed on a weekly basis
and so do not change from day to day. In the empirical sec-
tion later, these results are shown in Table 4.'° To check the
results’ robustness, we also use a one-week-lag setup, meas-
uring weekly changes in LIBOR. We show the results for
weekly changes in Table 6.

With an included lag at only one horizon, Granger-caus-
ality can be assessed via the t-statistic on the relevant coeffi-
cient. The most important equation in our VARs is the one
for changes in 3-month LIBOR, and our reporting focuses
on this one. We measure daily changes in 3-month LIBOR
in order to avoid overlapping data. As noted, we also esti-
mate VARs where the change in 3-month LIBOR is meas-
ured as a weekly change, but in that case use only data for a
particular day of the week. One important case regards
Thursday data, for this is the day when the ECB Governing
Council holds its monetary policy meetings and press
conferences.

As with the first design element, we carry out these
investigations based on, alternatively, the full network of
lending banks and the sub-network of non-Italian banks
that lend to Italian banks. Our hypothesis about bridging
links is reflected most directly in measures regarding the
non-Italian bank sub-network, but if the effects are pervasive
we might also expect to see similar evidence for the
full network.

5. Findings regarding the Effect of Uncertainty on
Network Topology and Lending Relationships

5.1. Descriptive Example of the e-MID
Interbank Network

To begin, it is helpful to have a sense of the general arrange-
ment of the interbank network and to visualize some of the
points we are making about counterparty sampling during
lower-uncertainty vs. higher-uncertainty times.

Figure 1 presents a graphical depiction of the interbank
network during the February and March 2006 reserve main-
tenance periods. The figure is based on an adjacency matrix
constructed separately for each maintenance period that
includes all banks that lend by lifting borrowers’ quotes."'
The top panel of the figure shows the network during TTP
control-case periods, and the bottom panel shows the net-
work during PTTP uncertainty-case periods.

Network nodes represent individual banks in the net-
work, and are arrayed around a circle or clockface for visual
convenience. The darker green colored nodes, from about
11 o’clock on the clockface to about 4 o’clock, represent
non-Italian banks from across Europe. The lighter colored
nodes represent Italian banks.

Link-lines connecting nodes represent that at least one
loan was made between that pair of banks during the main-
tenance period. Red links represent relationships that are
present only during February and green links represent
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(b) February-March 2006 PTTP network breakout, with restoration (gray), stopping (red) and starting (green)

links.

Figure 1. February-March 2006 tax-transfer period (TTP) and February-March 2006 pre-tax-transfer period (PTTP) interbank lending networks, with restoration,
stopping, and starting links. Networks are based on all loans made when lending banks accept e-MID borrowing request quotes. Gray edges indicate links that exist
in the TTP or PTTP case, respectively, of the February reserve maintenance period and continue to exist in the March reserve maintenance period’s TTP or PTTP
case, respectively. Red edges indicate lending links that exist in the respective February case but do not exist in the respective March case (“stopping links”). Green
edges indicate lending links that begin in the respective March case but did not exist in the respective February case (“starting links”). Edges begin at the lender
node and are terminated with a directional arrow short of reaching the borrower node so that lending cliques can be visualized. Node shading indicates bank
nationality, with Italian banks shaded lighter, and other nationalities’ banks shaded darker.

relationships that are present only during March. Grey links
represent relationships that are present during both months.

It is evident in the figure that the interbank networks are
similarly dense for both maintenance periods (i.e. comparing
left and right in the figure). The network is also highly
interlinked during both TTP and PTTP periods (i.e. com-
paring top to bottom in the figure), though it appears a little
less-dense in the PTTP periods each month. Lending links
involving both Italian and non-Italian banks are common-
place, though lending links within geographic blocks are
more common, as indicated by the less-dense more-uncol-
ored swaths toward the top right of each clockface.

The overall pattern is suggestive of both “strong” links
that densely interconnect local nodes and “weak” links that
bridge to distant parts of the network as in Granovetter
(1973). The pattern is also a first visual indication that
entropy may be greater within the non-Italian and Italian
clusters, respectively, than in the network overall, in that the
full network has additional structure (which would reduce
entropy by definition).

Next, we discuss implications suggested by the coloring of
the links, i.e. ones that are unique to one month or are pre-
sent across the months. From that perspective, repeat links
connecting a particular type of sub-period (PTTP or TTP)



across time for adjacent maintenance periods are “restoration
links,” i.e. evidence of relationships that have been restored
from a past time of either higher (PTTP) or lower (TTP)
uncertainty that have a time gap between them. Lending
banks could be expected to return to borrowers that they
have found useful given the type of market conditions. We
want to investigate the possibility that the usefulness includes
information flow about the uncertainty situation. With this in
mind, the count of restoration links is one measure we use to
assess the extent to which banks keep past condition-specific
information flow possibilities open.

Taking the March network as an example, while there is a
slightly larger proportion of restoration links in the full net-
work of all lenders in the PTTP sub-period than in the TTP
sub-period (28 vs. 27%), restoration links are less common
than starting links or stopping links in both sub-periods. The
comparison of PTTP restoration links to TTP restoration
links is much more lopsided when the network of non-Italian
lenders to Italian banks is considered (15 vs. 7%). We are not
arguing that these differences are necessarily representative of
the network in general over time, but only explicating the
counterparty-sampling measurement approach and showing
with an example how counterparty patterns can vary across
the higher- and lower-uncertainty cases. Later, we will con-
sider whether they differ on average and whether it makes a
difference for future interest rates how they differ.

Another perspective on counterparty sampling can be
taken by considering the breadth, variation, and changes in
banks’ lending cliques. Table 1 provides a numerical
accounting of lending relationships for example of the
February 2006 network. The table shows the distributions of
the number of unique counterparties lent to by lending
banks as a numerical histogram where buckets are formed
according to the number of unique borrowers for each given
lending bank. Panel A shows the control-group TTP case,
Panel B shows the uncertainty-increased PTTP case, and
Panel C shows the differences. During the PTTP sub-period,
more banks choose to do some lending, fewer banks choose
to lend to only a small number of counterparties, and more
banks choose to lend to a medium size number of counter-
parties. About the same proportion of banks choose to lend
to a large number of counterparties. The indication is that
the weight of the distribution has shifted toward larger lend-
ing cliques for the PTTP sub-period case, which would be
consistent with more counterparty sampling in this example
case. In later sections of the paper when we need summary
indications of the extent of such tendencies we will use the
median size of lending cliques and the cross-sectional stand-
ard deviation. Given the lower bound of zero on lending cli-
que size, we lean toward using the cross-sectional standard
deviation because it is sensitive to both the tendency for
large cliques and the tendency for different banks to have
different clique choices.

The link-count and clique-size examples discussed above
focus on how the patterns of counterparty relationships
change differently over time for higher vs. lower uncertainty
cases. With this in mind, Table 2 reports some standard
topology characteristics of the TTP-PTTP comparison using
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Table 1. Percentage distribution of lending clique sizes.

m

Number of unique banks lent by a lending bank % Of all network banks

Panel A: TTP

0 “Non-lenders” 49.1
1-5 “Small clique lenders” 20.8
6-20 “Medium clique lenders” 13.8
21-90 “Large clique lenders” 16.4
Panel B: PTTP

0 “Non-lenders” 35.0
1-5 “Small clique lenders” 223
6-20 “Medium clique lenders” 273
21-90 “Large clique lenders” 15.3
Panel C: Differences

0 “Non-lenders” —14.1
1-5 “Small clique lenders” 1.50
6-20 “Medium clique lenders” 13.5

—-1.1

A lending clique is defined as the set of borrowing banks that a particular
lending bank provides with overnight deposits during a particular time
period by lifting a quotes requesting a deposit on the e-MID system during
a particular time period. Panel A shows the distribution of lending clique
sizes during the tax-transfer period (TTP) in the February 2006 ECB reserve
maintenance period. Panel B shows the distribution during the pre-tax-trans-
fer (PTTP) period of the same maintenance period. Panel C shows the differ-
ences between those two distributions. For this table, the network for all
banks refers to the set of banks that lend at least once during the February
or March 2006 reserve maintenance periods that have been the subject of
our introductory examples.

21-90 “Large clique lenders”

Table 2. Comparison of lending network descriptive characteristics and their
changes across tax-transfer period (TTP) and pre-tax-transfer period (PTTP) for
February 2006.

M () 3)

Characteristics TTP PTTP Difference
Panel A: Full network

Number of network banks 159 157 -2
Number of lending relationships 880 644 —236
Density 0.035 0.026 —0.009
In-degree centralization 0.175 0.154 —0.021
Out-degree centralization 0.353 0.238 —0.115
Transitivity 0.225 0.124 —0.101
Panel B: Small loan network

Number of network banks 155 151 —4
Number of lending relationships 406 263 —143
Density 0.017 0.012 —0.005
In-degree centralization 0.087 0.055 —0.032
Out-degree centralization 0.238 0.170 —0.068
Transitivity 0.148 0.088 —0.060

Panel A describes the lending network for all loans made when lending banks
accept e-MID borrowing request quotes. Panel B describes the lending net-
work for normal-size loans, and Panel B describes the network for small
loans, defined as those in the lowest quartile of loan size for each specific
lending bank.

the February 2006 maintenance period as an example. Panel
A is constructed for the full network using all loans where a
lender lifts a quote from a borrower. Panel B uses only
lender-specific small loans, i.e. those in the lower quartile of
loan size for the specific lender. The purpose of including
Panel B is to move away from situations where credit-risk
considerations might be a key driver of interbank lending
choices toward measuring the pattern of lending relation-
ships where a possibly-informational connection exists but a
counterparty default would not be devastating to the lender.
The panels give similar impressions overall, suggesting that
the link structure of the network is not driven only by credit
risk considerations. For this example of a PTTP uncertainty
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Table 3. Selected characteristics of interbank lending networks across months for tax-transfer sub-periods (TTP) and pre-tax-transfer

sub-periods (PTTP).

(1) ) 3) 4

TTP PTTP Difference z-statistic
Panel A: Standard network topography statistics
Sub-panel A.1: Network of non-Italian lenders to Italian borrowers
Out-degree centralization 0.103 0.132 0.029 1.660
In-degree centralization 0.203 0.215 0.002 0.426
Sub-panel A.2: Network of Italian lenders to non-ltalian borrowers
Out-degree centralization 0.194 0.190 —0.004 0.254
In-degree centralization 0.173 0.156 —0.017 1.077
Sub-panel A.3: Full network of all lenders to all borrowers
Out-degree centralization 0.307 0.316 0.009 0.447
In-degree centralization 0.169 0.170 0.001 0.180
Transitivity 0.236 0.231 0.006 0.274
Panel B: Information-flow-oriented statistics
Sub-panel B.1: Network of Italian lenders to non-ltalian borrowers
Average clique size 4.984 3.756 —1.228 —4.491
Standard deviation of clique size 3.161 2451 0.710 —2.322
Proportion of restorations 0.208 0.164 —0.044 —3.662
Proportion of small restorations 0.180 0.128 —0.052 —3.156
Proportion of small restorations 0.180 0.128 —0.052 —3.156
Entropy 1.065 0.901 —0.164 —2.753
Sub-panel B.2: Network of non-Italian lenders to Italian borrowers
Average clique size 3.876 5.369 1.493 2.570
Standard deviation of clique size 1.968 3.044 1.076 2.627
Proportion of restorations 0.075 0.134 0.059 3.383
Proportion of small restorations 0.069 0.107 0.308 1.961
Entropy 0.574 0.840 0.266 2.821
Sub-panel B.3: Full network of all lenders to all borrowers
Average clique size 11.919 11.799 —0.120 0.407
Standard deviation of clique size 7.612 7414 —0.198 —0.809
Proportion of restorations 0.258 0.267 0.009 1.190
Proportion of small restorations 0.171 0.167 —0.004 —0.529
Entropy 1.300 1.334 0.034 1.266

The table shows averages of select network characteristics over all ECB reserve maintenance periods in 2005 and 2006 according to
TTP and PTTP designations. Panel A shows standard network topography statistics. Panel B shows information-flow-oriented statis-
tics as developed in the test. In each panel, statistics are shown for the network of non-Italian lender banks to Italian borrower
banks, for the network of Italian lender banks to non-Italian borrower banks, and for the full network, respectively.

case as compared to a TTP control case, the number of
links, density, in- and out-degree centralization, and transi-
tivity are all reduced. Based on these topological measures,
the network appears to move somewhat toward more dis-
order, i.e. a state more like a random network. Especially
meaningful may be the drop in transitivity, indicating rela-
tively fewer closed triads and thus possibly more bridging
links that might be important for information flow.

We now proceed to a systematic analysis of data for
PTTP and TTP effects across all the 2005 and 2006 reserve
maintenance periods.

5.2. Results regarding Effects of Uncertainty Cases on
Network Topology and Relationships

In this subsection, we extend the investigation of network
topology and relationships to provide more systematic infer-
ence, following the empirical design developed above.
Standard network topology measures may be at least some-
what sensitive to the issues we are investigating and contrib-
ute to understanding the e-MID network in the context of
the literature. And the counterparty sampling measures
should focus even more on the issues at hand.

With this in mind, Table 3 provides both topology and
counterparty sampling statistics summarized separately for
the TTP and PTTP sub-period cases during the 2005-2006
reserve maintenance periods. The table is constructed by first
measuring each respective statistic (whether a standard top-
ology statistic or a counterparty sampling statistic) for the
TTP and the PTTP within each of the 24 reserve mainten-
ance periods in our sample, and then constructing averages,
differences in averages, and test statistics across all 24 obser-
vations. Within each panel are sub-panels for the sub-net-
work of non-Italian banks lending to Italian banks, the
sub-network of Italian banks lending to non-Italian banks,
and the full network. Panel A presents standard topology sta-
tistics, and Panel B presents counterparty-sampling statistics.

Examination of the standard network topology statistics in
Panel A shows no statistically-significant differences in out-
degree centralization, in-degree centralization, or transitivity.
This is true for the two sub-networks and the full network, i.e.
in all three sub-panels. Evidently, the topology of the e-MID
interbank network is similar on average across uncertainty vs.
control cases. In keeping with the points made in Pfaltz
(2012), any change in the networks tendency to link in general
or to link across geographical regions is not reflected in the
overall standard topology measures. If there is a change, more
focused measures are needed to illuminate it.



Panel B presents the more information-flow-oriented
counterparty sampling statistics that we have developed, for
the two sub-networks and the full network. During PTTP
sub-periods as compared to TTP sub-periods the network of
non-Italian lenders making loans to Italian banks (Sub-panel
B.1) shifts on average to larger cliques, more variation in cli-
ques, more restorations, more restorations considering only
small loans, and more entropy. All differences are statistic-
ally significant and seem large enough to be economically
meaningful. Overall, more connections, more variety in con-
nections, and more disorder are evident.

In contrast, the network of Italian banks lending to non-
Italian banks (Sub-panel B.2) exhibits changes in exactly the
opposite direction comparing across TTP vs. PTTP cases.
All of the counterparty sampling statistics are smaller on
average in the PTTP uncertainty cases (Sub-panel B.3). All
the differences are statistically significant, though not as eco-
nomically large as the ones in Sub-panel B.1. The spates of
uncertainty represented by the PTTP cases are rooted in the
Italian bank sub-network. The statistics may therefore indi-
cate that Italian lenders have no need to gather information
by establishing broader, more disorderly sets of relationships
across the gap to continental Europe. Establishing such sets
of relationships might be more costly during a time of
stress, and so are avoided absent the need.

For the full network (Sub-panel B.3), there are no statis-
tically significant differences comparing across TTP and
PTTP cases, neither in mean clique size, standard deviation
of clique size, proportion of restorations, proportion of
restorations for lender-specific small loans, or entropy. This
is evidence that the changes discussed above are rooted spe-
cifically in connections across the regions.

The counterparty sampling statistics each measure a dif-
ferent mechanical aspect of the network, but they all give
the same statistically-significant message. Non-Italian banks
are reaching more broadly to lend in Italy. It is as if the
banks are sampling relationships in Italy, perhaps hoping to
learn. This fits with the idea of bridging ties being more
strongly present during the high-uncertainty PTTP cases:
non-Italian lenders are reaching across the gap into the set
of Italian borrowers with lending relationships. If these rela-
tionships open the door to information flow, we might
expect to see the tracks in further analysis.

In this section, we have assessed the on-average differen-
ces in the interbank network across the lower- and higher-
uncertainty cases. The extent of the differences does vary
from one reserve maintenance period to another, which
opens the door to analysis based on the extent of the vari-
ation. In the next section, we provide such an analysis with
a focus on how the network variations may relate to future
interest rates.

6. Results regarding Predictive Relationships
between Changes in Lending Relationships and
Interest Rates

The previous section shows that, when volatility spikes due
to liquidity shocks building in one part of the banking
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sector, there are some on-average reactions in the linkages
to distant sections of the interbank market that are reflected
in counterparty sampling measures. To see if these reactions
contain information that is relevant for the future path of
interest rates, we next exploit the variation in those reactions
across the reserve maintenance periods in our sample. In
this section, we report the results of time series tests that
connect future interest rates with interbank network trading
relationship data over all days during 2005-2006, relying on
the empirical design outlined earlier.

6.1. Predicting Week-Ahead Daily Changes

Table 4 reports on a single equation, the one for the 3-
month LIBOR changes equation, from vector-autoregression
systems (VAR) involving for the sub-network of non-Italian
banks that lend to Italian banks. We focus on changes in 3-
month LIBOR changes because an augmented Dickey-Fuller
test (not reported) indicates that the raw 3-month LIBOR
time series may be non-stationary.

The VARs reported in columns (1), (3), and (5) are con-
structed exactly as in Equation (1), and each includes a sin-
gle counterparty sampling measure in the system: either the
proportion of restorations, the standard deviation of clique
size, or entropy. In every case, the coefficient linking the
lagged counterparty sampling measure to the change in 3-
month LIBOR is statistically insignificant. There is no evi-
dence of Granger causality. Counterparty sampling appar-
ently does not influence 3-month LIBOR changes
unconditionally.

The VARs reported in columns (2), (4), and (6) are
respectively analogous to those in columns (1), (3), and (5),
and also report on the 3-month LIBOR change equation
with each of the three different counterparty sampling
effects. These VARs are also constructed as in Equation (1)
except that they additionally include an interaction term for
the counterparty sampling measure and a PTTP indicator
variable, as discussed in the Empirical Design section above.
The estimated coefficients on the interaction term are uni-
formly positive and statistically-significant, providing posi-
tive evidence of Granger causality due to counterparty
sampling changes during these periods. The indication is
that measures relating to more counterparty sampling and
network disorder in the bridging links between non-Italian
bank lenders and Italian bank borrowers are positively
related to upcoming changes in LIBOR a week ahead, but
only during PTTP uncertainty-case time periods.

Each of the counterparty sampling measures is different
in the way it captures network disorder and broader linkages
with banks in the part of the network that is affected by the
liquidity shocks. Yet they are moderately correlated (not
reported in the table), indicating that they may capture simi-
lar underlying economic regularities. For this reason, as well
as due to the limited number of daily observations in our
2year time period, if we use all three measures in the same
VAR system, the interaction terms are statistically insignifi-
cant. Even so, an F-test (not reported in the table) rejects
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Table 5. Full lender bank network vector-autoregressions showing the influence of information-flow-oriented network statistics on one-week-ahead daily changes in 3-month euro LIBOR.

Regressors

—0.015 (—1.26)
0.006™* (2.15)

—0.016 (—1.36)

Proportion of restorations

Proportion of restorations x PTTP dummy

Standard deviation of clique size

—0.001 (—1.47)
0.001** (1.99)

—0.001 (—1.51)

Standard deviation of clique size x PTTP dummy

Entropy

—0.005 (—1.11)

—0.004 (—0.83)

0.001*** (2.33)

Entropy x PTTP dummy

—0.001 (—1.26)
0.001** (2.19)

—0.001 (—1.20)

Summary counterparty sampling measure

Summary counterparty sampling measure x PTTP dummy

Current change in 3-month LIBOR

Number of distinct lenders

0.083* (1.89)
—0.001"* (—2.30)

0.083" (1.87)
—0.001"** (—2.34)

0.081* (1.84)

—0.001*** (—2.48)

0.082" (1.84)
—0.001*** (—2.49)

0.084" (1.90) 0.080" (1.80) 0.081* (1.83)
—0.001*** (—2.74) —0.001*** (—2.66)

—0.001** (—2.22)

0.085" (1.90)
—0.001%* (—2.21)

0.001""* (2.58)
—0.000 (—0.50)

0.001*** (2.54)
—0.000 (—0.42)

0.001*** (2.74)
—0.000 (—0.35)

0.001*** (2.59) 0.001*" (3.00) 0.001*" (2.99) 0.001*** (2.65)
—0.000 (—0.46) —0.000 (—0.13)

—0.000 (—0.25)

0.001*** (2.51)
—0.000 (—0.045)

Number of distinct borrowers

Total euros lent

—0.000 (—0.29)

Y
499

Day of week dummies

Observations
R-square

499
0.055

499
0.063

499
0.053

499
0.064

499
0.056

499
0.064

499

0.055
The table reports selected statistics from vector autoregressions (VARs) based on the 5th daily lag of five endogenous variables: a network characteristics, the change in 3-month LIBOR, the number of active lending

0.064

banks, the number of active borrowing banks, and the total volume of lending. The network characteristic is either the proportion of restorations, the standard deviation of clique size, the network entropy, or a sum-

mary measure based on all three, respectively. For some VARs, interaction terms involving the network statistic and a dummy indicating the pre-tax-transfer period is also included as an additional endogenous variable

with its own VAR equation. The VAR systems reported here thus have either 5 or 6 equations, depending on whether an interaction is included. Day-of-the-week dummy variables are also included as exogenous varia-

bles in every VAR. The table reports only on the equation having the 3-month LIBOR change as the dependent variable. The significance levels of 10% (*), 5% (**), and 1% (***) are used in the analysis.
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meetings to determine monetary policy. If the network
measures predict Thursday-to-Thursday LIBOR changes bet-
ter than weekly changes ending on other days of the week,
it would suggest that some of the information flow is useful
for reasons beyond the Italian tax-transmission events, but
also link to the information that the ECB uses in setting
its policy.

Formally, we are applying a variation on Equation (1)
where the periodicity of the data is weekly, the lag-length is
one and day-of-the-week dummy effects are zeroed-out. The
number of observations drops to about 100, matching to the
number of business weeks in our two-year sample period.

Table 6 shows the key results of this investigation.
Because we have found that counterparty sampling in the
full network of all lenders is important, we use the full net-
work."”” In the table, we report only the 3-month LIBOR
estimating equation as usual and, to save space, we show
only the coefficients relating to the network summary coun-
terparty sampling measure. We have confirmed that the
findings are consistent with those for VARs based on the
specific counterparty sampling measures.

VAR systems with the counterparty sampling measure
but no interaction term show only a statistically-insignificant
effect of the measure on LIBOR for every day-of-the-week
case. VAR systems with an interaction term show significant
effects of the PTTP interaction term for LIBOR changes
ending on Wednesday and Thursday. The network changes
during uncertainty-case PTTP periods are predictive of
weekly LIBOR changes that coincide with the day of the
week of the ECB meetings or the day before. The meetings
occur every other week, so the correspondence is strong.

7. Exploring Possible Non-learning Explanations

We have shown that changes in interbank network lending
linkages that broaden banks’ counterparty cliques in more
varied and disorganized ways, a pattern we call
“counterparty sampling,” is predictive of changes in the 3-
month LIBOR interest rate during disequilibrating spates of
uncertainty. The evidence is consistent with the idea that
banks gain information via counterparty sampling that is
useful for understanding the upcoming path of an important
interest rate.

In this section, we consider and rule out two alternative
explanations. First, we consider the possibility that the statis-
tical predictive power of counterparty sampling that we have
documented is only a stand-in for the spates of volatility
that are the occasion of the counterparty sampling. In that
case, counterparty sampling is simply a coincident occur-
rence around the time of interest rate shifts, and not causal
in any sense.

Second, we consider the possibility that lending banks do
not learn about the interest rate path by counterparty sam-
pling, but rather lenders already have private information
about the likely path of rates. In that case, the lending that
we have termed counterparty sampling would simply be a
business use of the information. In particular, lenders who
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Table 6. Vector-autoregressions showing the influence of the information-flow-oriented network summary statistic on one-week-ahead weekly changes in 3-month euro LIBOR.

Thursday Friday

Wednesday

Tuesday

Monday

Weeks ending on

Regressors

—0.017 (—0.16) 0.001 (0.31) 0.001 (0.30) —0.001 (—0.26) —0.001 (—0.35) —0.002 (—0.92) —0.002 (—0.88) —0.002 (—1.03) —0.002 (—1.12)

—0.014 (—0.14)

Summary counterparty

sampling measure
Summary counterparty sampling

0.001 (0.33) 0.003*** (2.98) 0.003*** (2.70) 0.001 (1.16)

—0.005* (—1.84)

measure x PTTP dummy

Current change in

0.310%%* (3.39)  0.329%** (3.74) 0.174* (1.85) 0.208** (2.26)  —0.050 (—0.50) —0.042 (—0.43)

0.198** (2.10)

0.197** (2.09)

—0.017 (—0.16)

—0.014 (—0.14)

3-month LIBOR
All other endogenous variables

included as regressors

Observations
R-square

98

98
0.132

102
0.263

101 101 103 103 102
0.225 0.179 0.242 0.211

0.224

91
0.082

91

0.144

0.075
The table reports selected statistics from vector autoregressions (VARs) based on a one-week lag of four variables: the network summary breadth characteristic, the change in 3-month LIBOR, the number of active lend-

ing banks, the number of active borrowing banks, and the total volume of lending. The VAR systems reported here thus have either 5 or 6 equations, depending on whether an interaction is included. The table

reports only on the equation having the 3-month LIBOR change as the dependent variable. Separate VARs are estimated for weekly changes ending with each respective day of the week. The significance levels of

10% (*), 5% (**), and 1% (***) are used in the analysis.

expect rates to rise might want to establish broader lending
relationships to profit.

7.1. Is It Network Changes or It Is Heightened Stress
That Is Predictive?

Our story is that changes in banks’ counterparty sampling
is predictive of changes in an important interest rate dur-
ing spates of disequilibrium. The evidence suggests that
the counterparty changes not only help the system re-
equilibrate but also perhaps help banks that are remote
from the disequilibrating event to learn about the situation
as it matters for future rates. Since the counterparty
changes and the stress periods are aligned in time, it is
important to confirm that it is not the liquidity stress itself
that is predictive of future interest rates.

In Table 7 we present evidence that it is the network
changes that matter for future rates, not the spates of vola-
tility that are the temporal occasion of the network
changes. The table presents the results of our now-familiar
VAR systems with the addition of equations for the recent
(5-business-day) variance of overnight euro LIBOR rates
and the recent variance of the euro LIBOR spread. The
euro LIBOR spread is defined as the difference between 3-
month LIBOR and overnight LIBOR. We allow for the
time-series connection between these rates and the future
3-month LIBOR rate to be different in the PTTP uncer-
tainty cases vs. the TTP control cases by including inter-
action terms, analogous to the ones in our VAR
systems above.

Table 7 presents findings for the VAR equation with
future 3-month LIBOR as the dependent variable. Column
(1) presents a VAR that does not include the lagged coun-
terparty sampling regressors, but only the variance meas-
ures, while Columns (2), (3), and (4) present VARs that
each include one of the counterparty sampling measures as
well. The variances have uniformly tiny coefficients and ¢-
statistics in all four VARs. The counterparty sampling
measures’ interaction terms have statistically-significant
positive coefficients, just as in the VARs presented above.
The bottom line is that the counterparty sampling meas-
ures Granger-cause future 3-month LIBOR, not the ele-
vated variances.

We have now checked whether it is the increases in
uncertainty themselves that correspond to the predictabil-
ity. It is not. Network changes in response to spates of
uncertainty are what predict future rates.

7.2. Are Lending Banks Exploiting Information They
Already Have?

It seems reasonable that lending banks might broaden their
lending cliques when they expect interest rates to rise, con-
sistent with our evidence so far. New or restored lending
relationships would become more profitable when rates are
higher. In this section, we pursue two additional analyses
that, in the end, instead shore up the learning interpret-
ation we have proposed.



Table 7. Vector-autoregressions
the full network of all lenders.
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showing the influence of variance summaries on one-week-ahead daily changes in 3-month LIBOR in

(M

@

3)

(4)

Regressors

Recent LIBOR sum of squares
Interaction with PTTP

Recent spread sum of squares
Interaction with PTTP
Proportion of restorations
Interaction with PTTP

Std. Dev of clique size
Interaction with PTTP

Entropy

Interaction with PTTP
Endogenous variables included
Day of week dummies included
Observations

R-square

—0.001 (—0.03)
0.062 (0.41)
0.006 (0.09)
—0.045 (—0.27)

Y
Y
499
0.055

—0.009 (—0.14) —0.020 (—0.32) —0.004 (—0.08)
0.056 (0.37) 0.078 (0.52) 0.054 (0.36)
0.020 (0.30) 0.031 (0.46) 0.018 (0.28)
—0.057 (0.35) —0.080 (—0.49) —0.054 (—0.33)

—0.015 (—1.28)

0.006" (1.88)
—0.001 (—1.54)

0.001* (1.68)

0.084" (1.91)
0.001** (2.01)

Y Y Y
Y Y Y
499 499 499
0.065 0.065 0.065

The table reports selected statistics from vector autoregressions (VARs) based on a 5-business-day lag of several variables: the sums of
squares of recent changes in overnight LIBOR and LIBOR spread, the change in 3-month LIBOR, a specific counterparty sampling char-
acteristic (alternatively, either no counterparty sampling characteristic included, or the proportion of restorations, or the standard devi-
ation of clique size, or the entropy). The VAR systems also include counterparty sampling characteristic interaction terms relating to
the pre-tax-transfer uncertainty PTTP cases. All VARs also include other the endogenous variables as in Equation (1): the number of
active lending banks, the number of active borrowing banks, and the total volume of lending, with coefficients not reported to save
space. All VARs include day-of-the-week dummy variable regressors. The table reports only the system equation having the 3-month
LIBOR change as the dependent variable. Column (1) reports for the VAR including no breath characteristic. Column (2) reports for the
VAR including also the proportion of restorations, column (3) for the VAR including the standard deviation of clique size, and column
(4) for the VAR including no breath characteristic, respectively. The significance levels of 10% (*) and 1% (***) are used in

the analysis.

7.2.1. Counterparty Sampling Does Not Predict the Rate
Directly Traded in the e-MID Market

Our evidence on rate predictability so far is based on week-
ahead 3-month LIBOR rates. One reason to think this is
learning-driven is that lending banks would not profit more
by lending a week before interest rate increases. But, even
so, they might be established in advance some lending rela-
tionships and patterns that would have good profit potential
a week later. Another reason working against such a private
information explanation is that the major trading rate in e-
MID is not a 3-month rate, but rather an overnight rate.
Private information on the 3-month rate cannot be directly
exploited by trading a 3-month rate. But, even so, 3-month
LIBOR and overnight rates are closely correlated, so perhaps
overnight trading could link to 3-month rate information.

To check, we estimate some sets of VAR systems that
include the overnight LIBOR rate, which is essentially the
same as the rate traded in our e-MID data. We ask if the
counterparty sampling measures predict changes in over-
night LIBOR on a week-ahead basis and/or on an overnight
basis, either during normal times or during the pre-tax-
transfer period spates of uncertainty. In a nutshell, we find
that they do not. Counterparty sampling is predictive of
only the 3-month rate—a rate that relates most closely to
bank’s loan businesses as a major benchmark but is not
traded in our data and is not a major part of e-MID value
outside our data either. The evidence is therefore more con-
sistent with banks learning than it is with banks exploiting
private information in their trading.

The tabulated evidence is in Table 8. The mechanical
structure of the VAR systems we report in that table is
analogous to those in earlier tables, so we tabulate only the
key estimates focusing on week-ahead changes in overnight
LIBOR (i.e. a timing exactly the same as in Equation (1).
We report coefficients on our four counterparty sampling

measures as a possible Granger-cause of week-ahead changes
in overnight LIBOR (i.e. the three specific measures pertain-
ing to restorations, variation in clique size, and entropy, and
the principal-component summary measure of counterparty
sampling). As usual, there is a separate VAR system for
each measure. Each VAR system has the same full set of
endogenous variables as in previous tables, except that now
overnight LIBOR is included instead of 3-month LIBOR.
The counterparty sampling measures used here are based on
the lending network of non-Italian banks that lend by lifting
the quotes of Italian banks, to maximize the chance of prior
private information being available to the lenders.

The estimated coefficients are directly comparable to
those in Table 5 for 3-month LIBOR. In contrast to the
coefficients in that table, the ones in Panel A are uniformly
small and statistically insignificant in every case. There is no
counterparty sampling measure that shows any sign of being
predictive for week-ahead overnight LIBOR, whether in nor-
mal times or during spates of pre-tax-transmittal period
uncertainty.

Table 8 has been constructed using the non-Italian lender
network. We note that we obtain qualitatively identical
results if we use the full network of lenders.

Our takeaway is that the learning story is better sup-
ported than the prior private information story. Banks that
are choosing their e-MID lending counterparties based on
private information about upcoming overnight LIBOR
would most profitably use it to trade on overnight LIBOR,
but we do not see the tracks of such trading.

7.2.2. Surprises in Counterparty Sampling Are Negatively
Related to Future Rates

Our main evidence on predicting 3-month LIBOR with

counterparty sampling measures shows positive
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Table 8. Non-ltalian bank network vector-autoregressions showing the influence of information-flow-oriented network statistics one-week-ahead daily changes in

overnight euro LIBOR.

Regressors (1) (2) (3) 4)
Proportion of restorations 0.027 (0.78)

Proportion of restorations x PTTP dummy —0.032 (—0.81)

Standard deviation of clique size 0.001 (0.02)

Standard deviation of clique size x PTTP dummy —0.001 (—0.82)

Entropy —0.008 (—1.05)

Entropy x PTTP dummy —0.004 (0.62)

Summary counterparty sampling measure —0.001 (—0.24)
Summary counterparty sampling measure x PTTP dummy —0.001 (—0.74)
Other endogenous variables included? Y Y Y Y

Day of week dummies included? Y Y Y Y
Observations 499 499 499 499
R-square 0.025 0.024 0.027 0.024

The table reports selected statistics from vector autoregressions (VARs) based on lags of 5 variables: a network characteristics, the change in overnight LIBOR,
the number of active lending banks, the number of active borrowing banks, and the total volume of lending. The network characteristic is either the propor-
tion of restorations, the standard deviation of clique size, the network entropy, or a summary measure based on all three, respectively. The VARs additionally
include interaction terms involving the network statistic. The VAR systems reported here thus have 6 equations. Day-of-the-week dummy variables are also
included as exogenous variables in every VAR. The table reports only on the equation having the overnight LIBOR change as the dependent variable.

relationships. The counterparty sampling measures combine
expected and surprise components. If banks are adjusting
their lending cliques based on the expectation of higher
rates, the core of the predictive association would be with
the expected part of the counterparty sampling series,
because that is the part that has a pattern relative to condi-
tions in the network. In contrast, we next show a strong
predictive relationship in the negative direction for the sur-
prise series—more surprises in the extent of linkages, and
lower interest rates in the future. A negative relationship is
not consistent with the idea of banks’ broadening their lend-
ing cliques to take advantage of expected higher rates, but is
consistent with the learning interpretation.

To set up this investigation, we begin by computing pre-
dictions of a standard long short-term memory (LSTM)
deep learning neural network model for bank’s lending cli-
ques and compare them to the actual lending cliques that
are observed during each week of our data. Simple neural
network models can be thought of as approximations of
complex non-linear data-generating functions (Hornik et al.
1989). Feedforward neural networks can approximate non-
linear ARMA models with standard time-series decay prop-
erties, for example. Hochreiter and Schmidhuber (1997)
make the case that LSTM networks are especially good for
fitting complex sequences of data, such as time series. In
our situation, we have the possibility that links depend on
long-past links that sometimes become important. Dixon
et al. (2022) provide an overview of LSTM models that
emphasizes how their combination of forget gates, output
gates, and input gates enables them to propagate forward a
smoothed hidden state that essentially contains a long-term
memory. This is very appealing for our situation where we
think of conditions of certainty and uncertainty that may
repeat over time with long and variable lags. Additionally,
LSTM models do not rely on explicit assumptions of statio-
narity, which we cannot be sure of for the case of interbank
networks, and they can deal with sparse data matrices like
our adjacency matrices.

Past adjacency matrices are the source of input features
for our application of an LSTM model. Even though our
LSTM model is a standard implementation, we implement

important configuration and hyperparameter choices that
help us take account of the changeability of adjacency matri-
ces. At each date, the LSTM model updates a hidden state
computed from past adjacency matrices. We append a
decoder to convert the hidden state to link probability pre-
dictions. The overall model setup involves specific choices in
terms of the loss function that we use to guide the estima-
tion of parameters, especially to take account of the sparsity
of adjacency matrices. We explain our setup and choices in
detail in the Appendix. We train the model in a rolling win-
dow fashion, based on 10 weeks’ of prior adjacency matrices.
After each training of the model, we use it to predict bank-
specific linkages for the next week of our data set."* Then,
to compute a network-wide summary statistic of the extent
of surprises at a given time, we measure the difference
between the average of the predicted probabilities for each
possible pairwise link and the average of the 0-1 indicator
variables for the actual existence of links.

With the surprise measure in hand, we then follow the
recipe of the second part of our empirical design, using the
surprise series as the counterparty sampling measure in a set
of Granger causality models. For comparison with our ear-
lier results, we predict week-ahead one-day changes and also
weekly changes from Thursday to Thursday. The results are
presented in Table 9.

Panel A presents the results of using LSTM surprises to
predict week-ahead one-day changes in 3-month LIBOR.
Column (1) is directly comparable to Table 4, with the VAR
system having the same setup except that now the counter-
party sampling measure is the LSTM surprise. Like the
results in that table, the level effect of the counterparty sam-
pling measure is small and statistically insignificant. In con-
trast to the results in that table, the coefficient on the
interaction term is negative and fairly strongly statistically
significant (just shy of the 5% p-value level). Column (1)
VAR results establish that the effect of LSTM surprises dur-
ing PTTP uncertainty periods is significantly less that the
insignificant level overall. Column (2) provides a second
perspective by removing the level effect from the VAR and
instead including interaction terms for both PTTP and non-
PTTP periods. Consistent with the impression given by
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Table 9. Non-ltalian bank network vector-autoregressions showing the influence of the aggregate intensity of surprises in the overnight lending linkages to
Italian banks for the week-ahead one-day changes in LIBOR and Thursday-to-Thursday weekly changes.

Regressors

(1 )

Panel A: Predicting one-week-ahead daily changes in 3-month LIBOR
Surprise in extent of counterparty sampling relative to LSTM model predictions

Surprise in extent of counterparty sampling relative to LSTM model predictions x non-PTTP Dummy
Surprise in extent of counterparty sampling relative to LSTM model predictions x PTTP Dummy

Other endogenous variables included?
Day of week dummies included?
Observations

R-square

Panel B: Predicting weekly Thursday-to-Thursday changes in 3-month LIBOR
Surprise in extent of counterparty sampling relative to LSTM model predictions

Surprise in extent of counterparty sampling relative to LSTM model predictions x non-PTTP Dummy
Surprise in extent of counterparty sampling relative to LSTM model predictions x PTTP Dummy

Other endogenous variables included?
Observations
R-square

—0.0103 (—0.78)
—0.0103 (—0.78)

—0.0495"** (—3.15) —0.0392"* (—4.46)

Y Y
Y Y
471 471
0.053 0.055

0.0185 (0.23)
0.0185 (0.23)

—0.1740% (—1.92) —0.1554""* (—3.66)

Y Y
93 93
0.240 0.240

The table reports selected statistics from vector autoregressions (VARs) based on lags of 5 variables: network characteristics, the change in overnight LIBOR, the
number of active lending banks, the number of active borrowing banks, and the total volume of lending. The network characteristic is the surprise in the net-
work-wide proportion of links relative to the forecasts of a long short-term memory (LSTM) deep learning model. The VARs additionally include an interaction
term involving the network statistic. The VAR systems reported here thus have 6 equations. Day-of-the-week dummy variables are also included as exogenous
variables in the Panel A VARs. The table reports only on the equation having the 3-month LIBOR change as the dependent variable. Figures in parentheses are
t-statistics and the significance levels of 10% (*) and 1% (***) are used in the analysis.

Column (1), Column (2) shows that the non-PTTP effect of
the LSTM surprises is insignificant and the PTTP effect is
strongly significant and negative. Thus, overall, the PTTP
effect is both relatively more negative than the TTP effect
and is also negative in an absolute sense.

Panel B presents results of a similar analysis as Panel A,
except where the dependent variable being predicted is the
Thursday-to-Thursday weekly change in 3-month LIBOR.
The results are fully consistent with those in Panel A. The
level effect of LSTM surprises is insignificant in Column (1)
and the interaction term for the effect during the PTTP
uncertainty period is negative and strongly statistically sig-
nificant. The non-PTTP effect in Column (2) is small and
insignificant, and the PTTP uncertainly effect is negative,
large in absolute value, and statistically significant.

The finding that surprises in linkages are negatively asso-
ciated with future changes in rates is not consistent with the
idea that banks broaden their lending cliques to take advan-
tage of expected future rate increases. This idea is ruled out.
The clique changes we focus on here are deviations from
the pattern uncovered by the deep learning model, not
expected. And when there are a lot of them, rates tend to
decrease, not increase. In contrast, the learning idea allows
for such a pattern, and so is not ruled out.

8. Conclusion

Interbank networks are important for several reasons relat-
ing to systemic risk and the services the banking system
provides to the economy. In this paper, we have suggested
an additional reason for their importance: information flow
and learning. We have provided statistical evidence that
changes in lending banks’ use of the interbank network dur-
ing periods of stress are predictive of future interest rates. In
particular, changes that reflect an increase in the breadth of
lenders’ counterparty cliques, a phenomenon we call
“counterparty sampling,” are the key. Our findings suggest

that ideas about networks from sociology and information
theory are applicable to bank networks in that ties that
bridge otherwise-distant parts of the interbank network are
important for information flow. Banks learn from lending in
the interbank network.

Notes

1. One example is the economically-pivotal U.S. federal funds
(or “fed funds”) market. Interbank lending connections can
increase systemic risk by propagating one bank’s failure to
other network banks that have lent to it. But they can also
help the banking system to be more reliable for customers
who want to withdraw funds because banks can borrow to
cover any temporary cash shortage, and also to be more
reliable for outside borrowers because banks can easily
obtain funds to lend if they don’t have enough.

2. The September 2019 fed funds market situations arose as a
combination of exogenous and endogenous influences.
Corporate taxes and a large Treasury bond auction drained
reserves from the banking system at a time when reserves
were already at historic lows (Anbil et al. 2020). The mix
makes causal inference more challenging than in
our setting.

3. This market traded substantial volumes of deposits until
the Global Financial Crisis, but eventually withered as
liquidity for banks’ short-term needs became readily
available via ECB facilities during the more-recent
quantitative easing and ample reserves regimes (Pontus
et al. 2021). Though e-MID is not the only means for
interbank loans during this period, transacted e-MID rates
closely track other interbank rates due to banks’
opportunities to arbitrage (Angelini et al. 2011).

4. The requirement was instituted in 2002 by the Italian
government via Decree 63/2002, Article 1. Specifically it
required transmittal of 80% of all taxes collected by the
third business day after collection. Typically this would be
the 23rd of each month (or the following day if the 23rd is
a weekend or holiday). Thus there are large changes in
government deposits at Italian banks during the few days
preceding the 23rd.

5. Denbee et al. (2021) emphasize that whether a bank
network amplifies or dampens shocks depends on what
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10.

11.

12.

13.

14.

banks infer from each other’s liquidity holdings more than
on network topology, similar to our idea that information
flow is more key than topology.

For example, see Anderson et al. (2019) for the U.S. banks
in the nineteenth century, Craig and von Peter (2014) for
German banks, Blasques et al. (2018) for the Netherlands,
and Iori et al. (2008) for Italy.

Beaupain and Durré (2008) discuss the differences. In a
nutshell, the ECB’s main refinancing operations (MROs)—
the most important source of overnight liquidity in the
eurozone—effectively discouraged bids for funds during
periods when participants expected target rate cuts, which
led to occasional liquidity shortages. Subsequently,
maturities of MRO funds where shortened and the timing
of reserve maintenance periods (the spans over which
required reserve levels much be satisfied) were adjusted.
The actual liquidity drain comes during the tax transfer
period, which could be a surprise in itself. In fact, in the
U.S. case noted in the introduction, a corporate tax
payment event seems to have been one of the sources of
the volatility. Below we provide statistical support for our
notion that, in the context of the eurosystem, it is actually
a resolution of uncertainty.

The t-statistics are simple ts that do not adjust for the
overlapping data. They are intended only to be indicative
of the pervasiveness of the sharp differences. For this
exercise, as well as for analogous rolling weekly
calculations later in the paper, we measure days as
business days, accounting for bank holidays.

Formally, our basic daily VAR setup can be written as

Y = FYH + 0Od; + ¢, 1

where y, = (y1,6:¥2,6:¥3,6 Y4, ¥5,¢) is the vector of (1) cur-
rent observations on daily changes in 3-month LIBOR, (2)
a specific counterparty sampling measure (i.e. either the
proportion of restorations, the standard deviation of clique
size, or entropy), (3) the number of distinct borrowers, (4)
the number of distinct lenders, and (5) the number of
euros lent in aggregate. d, is a 4-element vector of dummy
variables for the days of the week Tuesday through Friday,
and & is a random error vector. I' is a 5 X 5 matrix of
VAR time-series coefficients to be estimated, and ® is a
5 % 4 matrix of coefficients. As noted above, we sometimes
add an important sixth equation to the VAR system,
appending yg,; to the y, vector, where ys; = y,¢ x P;, with
P; being a dummy variable registering whether date ¢ is in
a PTTP uncertainty-case period. As an alternative for some
analyses, we instead set up a basic weekly VAR as

e =Ty, +é 2

where time is indexed in weeks (instead of in days as in our
basic daily VAR), so y;; becomes current observation on
weekly changes in 3-month LIBOR, and other elements of y,
are also weekly observations.

Mechanically, an adjacency matrix for an N-bank network

is an Nx N matrix of zeros and ones, where a one
indicates that a lending relationship from a row bank to a
column bank existed on at least one day during the
time period.

The first principal component is computed in the standard
way, as the vector that maximizes the variance of the
projection of all three counterparty sampling measures.

We have checked to be sure that we obtain similar results
with the non-Italian bank sub-network. This is in fact
the case.

We lose some weeks at the beginning due to the need to
train the model the first time.
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Appendix: Setup of the LSTM Model

In this study, we measure surprises in counterparty sampling by com-
paring link outcomes to the link predictions of a standard long short-
term memory (LSTM) recurrent neural network (RNN) model and
then investigate whether the extent of surprising new linkages is also
predictive of future interest rates. Though, as with most deep learning
approaches, LSTM-based RNNs have the disadvantage that they are
challenging to interpret, they also have advantages that are important
for our application. In contrast to standard time series models, LSTM
does not rely as much on assumptions about the data, such as linear
link connections and stationarity. Further, with appropriate loss func-
tions, we have found that LSTM models deal well with the relatively
sparse linkage matrices that characterize interbank networks.

The generic logic and setup of LSTM models are provided in, for
example, Goodfellow et al. (2016) and, with particular application to
finance, in Dixon (2020). A standard LSTM model as applied to the
sequence of adjacency matrices updates the model’s “hidden state,”
which is a complex non-linear combination of data on historical adja-
cency matrices that carries the information needed to predict adjacency
matrices. We also add a fully-connected layer decoder, incorporating a
loss function as described below, to transform the hidden state into
adjacency matrix predictions.

For our implementation, several specific considerations are signifi-
cant. In particular, these are the inclusion and nature of a decoder, the
loss function that underlies parameter estimates, the training and test-
ing sample setups, and specific hyperparameter choices. In the follow-
ing paragraphs, we describe these considerations and the design
choices that they lead to. We also describe how we benchmark our
LSTM model to substantiate that it is a high-quality link prediction

DATA SCIENCE IN SCIENCE . 19

process that we can depend on to determine the link surprises that we
use in the paper.

Inputting a history of adjacency matrices {A; ,...,Ar1}, we want
to output a prediction for the next adjacency matrix, A;. To the LSTM,
we append a fully connected layer to transform the output hidden state
h; to obtain the one-step-ahead prediction. The decoder is the sigmoid
function ¢ in the expression.

ﬁt = U(Whht + b),

where W), and b are the weight and bias terms applied to the fully con-
nected layer h, The output p, is interpreted as a probability value
which we then use to predict links based on a maximal area under the
ROC curve (AUC) criterion. The use of a decoder in this way is added
to the generic LSTM model.

We need a specific loss function and optimizer to train the model
to best improve link prediction accuracy. There are two special consid-
erations in our setting. First, based on an examination of the e-MID
data, the network snapshots are sparse in that there are many more
zero elements than nonzero. Therefore, we use a weighted squared
error loss function as follows:

k N N
Losszg E E a,lt a,J, *}.,-,j
t j

i

where a;;; is the element in the ad]acency matrix A; and a;;; is the
element in the output probability matrix A;, and where 4;; is the par-
ameter that controls the loss weight. For simplicity, the 4;; value does
not change with different time ¢. The point for adopting different /;
for null or existing links is to bias the system to choosing low probabil-
ities, which will translate into null links, to match the bias toward
sparsity in the system. We have also experimented with using the
unweighted squared error loss function to optimize parameters in our
LSTM, finding lower accuracy.

As an important consideration in the context of an interbank net-
work is that positive links relate to systemic risk, as discussed in the
text—false negatives should therefore be considered more costly than
false positives. In our training process, we assign a higher /;; value to
cases with positive links and a lower /; ; value to cases without positive
links. To avoid overfitting, we also employ the regularization term L.,
which is the sum of squares of the weight parameters. Therefore, the
total loss function is defined as:

Losstotal = Loss + BL0SSeq

where f is the trade-off tuning parameter. To minimize the total loss
Loss01q, We make use of the Adam optimizer.

To train the LSTM model, we feed k historical interbank network
snapshots (A;,...,A;—1) to predict A, and use the estimated parame-
ters we obtain from the training process to feed into the network snap-
shots (A, ..., Aryk—1) to obtain the prediction for Asy;. With aggregated
weekly data from 2005 to 2006, we train and test the performance on a
rolling window basis with window size k = 10.

There are several particular choices that must be made for the
training process, which we have chosen based on gird searches. The
number of the hidden layers of the LSTM model is d =12. The weight
decay parameter of the Adam optimizer is 1 x 10~°, and the learning
rate is 0.01. The penalty value 4;; is 4 for the positive links in the loss
function. The trade-off tuning parameter f is 0.01. With these model
settings, we apply the LSTM model to N =164 banks in the network to
get predictions that become the basis for measuring whether a particu-
lar link is a surprise, as used in the final section of the paper.

The point of our LSTM application is to get strong performance in
link prediction within the setting of the sparse and dynamic interbank
network. We have compared the performance of our model as
described here with that of a standard discrete autoregressive (DAR)
model as originated by Jacobs and Lewis (1978). The average out-of-
sample AUC from the DAR model, with windowing setup to match
our design, is 0.71. The average out-of-sample AUC from the LSTM
model is 0.86. Thus, we believe it is a superior choice to use the model
described in this Appendix as the basis for evaluating surprises for the
analysis in our paper than to use the standard model.



